Unexpected Supply Effects of Quantitative Easing and Tightening

Stefania D'Amico FRB-Chicago Tim Seida Northwestern University

May 10, 2022

The views expressed here do not necessarily reflect the position of the Federal Reserve Bank of Chicago or the Federal Reserve System.

Background

- At ZLB (late 2008): Fed resorts to balance sheet policy (BSP), including Treasury QE
- QE (2008-2014): Fed buys assets, expanding balance sheet size
- QT (2017-2019): Fed slowly runs off assets, shrinking balance sheet size
- Supply/scarcity channel:
 - imperfect asset substitutability ⇒
 - stable demand for certain assets ⇒
 - available supply DOWN \implies excess demand cannot be satiated by substitution
 - prices UP ⇒ yields DOWN, also for similar assets
 - ample evidence that this QE's channel works

Main Questions

- Are the supply/scarcity effects of BSP state dependent?
 - Investigate how Treasury yield sensitivity to supply shocks changes across different economic and financial market conditions
 - Earlier QE vs. later QE or QT vs. QE
- Why does it matter? Because it helps us understand whether
 - BSP has diminishing returns across subsequent programs
 - BSP works in periods of market calm and away from ZLB
 - Impacts of QT and QE are asymmetric
 - Predictions of macro-finance models of QE are correct

Previous event studies

- For each program, total impact is computed combining high-frequency yield changes across selected events
 - Approach becomes increasingly more problematic after first QE, as Fed signaled it intentions well before formal announcements and strengthened conditionality of QE to macroeconomic outcomes
 - Identification of the relevant events becomes extremely hard, as any economic news and data releases can alter BSP expectations
- If the set of relevant events selected for each program is not exhaustive
- Evolution of investor expectations about BPS is not properly tracked
- Asset price impact is not estimated correctly

Our Innovations

- Focus on the BSP surprise (i.e., asset supply shock): Unexpected amount and distribution of asset purchases/reinvestments
 - Use NY Fed Survey of Primary Dealers (SPD) to measure BSP surprises
 - Treasury yield sensitivity $= \frac{\Delta yield \text{ (bps)}}{surprise \text{ (\$)}}$
 - Our Premise: Size of the BSP surprise and not necessarily the yield sensitivity that changes over time
- Exploit kinks in yield curve reaction to retrieve causal effect of BSP surprise on yields
 - For each program, no need to combine yield changes from multiple events
 - No need to control for security-level proxies of any BSP channels
- Control for interaction between BSP surprise and BSP uncertainty

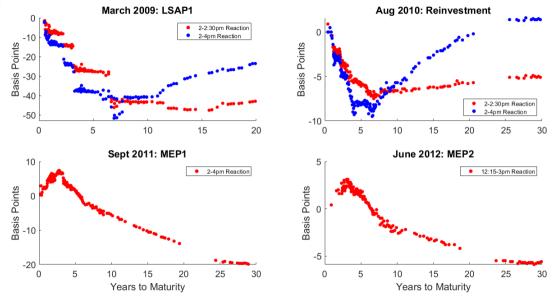
What We Find

- Well-identified supply shocks lead to conclusions quite different from previous studies, as Treasury yield sensitivities
 - Do not fall monotonically across subsequent announcements ⇒ Supply effects remain powerful over time
 - During QT are at least as large as during QE \implies Supply effects do not diminish during period of market calm and away from ZLB
 - Are amplified by interest-rate uncertainty prevailing before announcement ⇒
 Turning points in BSP elicit larger reactions
- These findings pose challenges to existing macro-finance models of QE

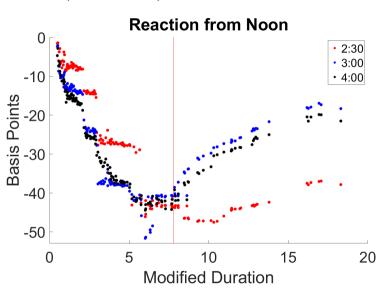
Factors affecting state dependence

- In equilibrium term-structure models accounting for the ZLB (King, 2019), the risk premium (rp) response to changes in supply (S) is an increasing function of:

$$\frac{\partial rp_t^{\tau}}{\partial S} = a_t \sigma_{r_t}^2 A_t^{\tau} \int_0^T A_t^s ds$$

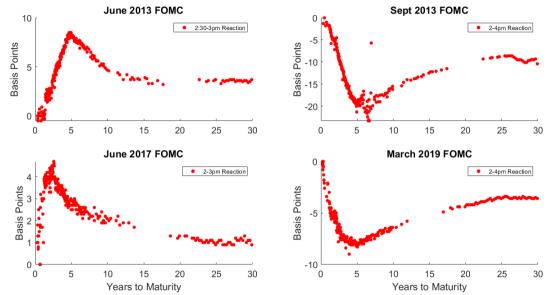

- a_t, arbitrageurs' risk aversion
- $\sigma_{r_t}^2$, interest-rate volatility
- $A_t^{\tau} \approx \int_0^{\tau} e^{-ks} Pr(r_{t+s} > 0) ds$, the discounted stream of probabilities that r will be above the ZLB over the life of the bond
- During QE: higher a_t but lower A_t^{τ} and $\sigma_{r_t}^2$ (at the ZLB)
- During QT: lower a_t but higher A_t^{τ} and $\sigma_{t_t}^2$ (away from ZLB)
- Which factor dominates is ultimately an empirical question

Events: 8 FOMC Meetings


QE Events	QT Events
Mar 2009 FOMC: LSAP1	Jun 2013 FOMC: Taper tantrum continues
Aug 2010 FOMC: Reinvestment	Sept 2013 FOMC: Tapering delayed
Sep 2011 FOMC: MEP1	Jun 2017 FOMC: Normalization Addendum
Jun 2012 FOMC: MEP2	Mar 2019 FOMC: Phasing Out of QT

- Span diverse macroeconomic/financial environments \rightarrow examine state-dependence of supply channel
- Include all major QT events, and all QE events with sufficiently granular info on BSP changes to form a sharp kink in the yield curve reaction

QE Events



LSAP1, March 18, 2009: 12-4PM

- 12:15PM: FOMC announces additional purchases, more aggressive than expected
- \$143bn dovish Treasury surprise according to SPD
- 2:44PM: NY Desk announces purchases concentrated in 2-10Y Treasuries → yield reversal in LT Treasuries
- Kink at 7.8-year modified duration (10Y maturity)

QT Events

Measures of BSP Surprises

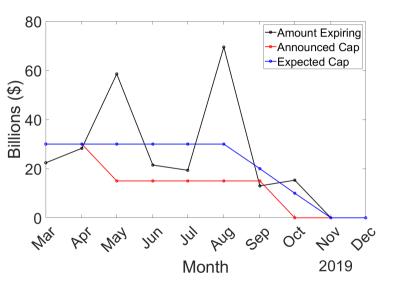
- For fixed-size program: $E_{t-\delta}[BSP_t] = Pr_{t-\delta} * E_{t-\delta}[Q|announcement]$
- For open-ended programs:

$$E_{t-\delta}\left[BSP_{t}
ight] = Pr_{t-\delta} * E_{t-\delta}\left[q_{m}|announcement
ight] * E_{t-\delta}\left[M|announcement
ight]$$

- For QT (only the amount exceeding the caps get reinvested)

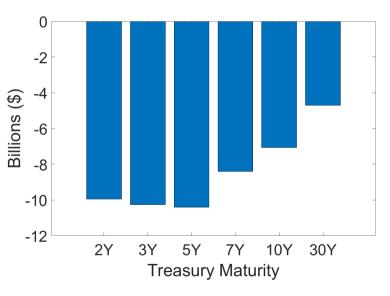
$$\textit{E}_{t-\delta}\left[\textit{BSP}_{t}\right] = \textit{Pr}_{t-\delta} * \left[\textit{S}_{\textit{m}}^{\textit{e}} - \textit{E}_{t-\delta}\left(\textit{cap}_{\textit{m}}|\textit{announcement}\right)\right] * \textit{E}_{t-\delta}\left[\textit{M}|\textit{announcement}\right]$$

- The unexpected (*U*) component: $BSP_t^U = BSP_t E_{t-\delta}\left[BSP_t\right]$
- If pre- and post-FOMC SPD are available: $BSP_{t+\delta}^U = E_{t+\delta}\left[BSP_t\right] E_{t-\delta}\left[BSP_t\right]$


June 2013 Surprise (Survey of Primary Dealers)

First reduction in pace of purchases (highlighted) shifts up 3 months

Month	Jun13	Jul13	Aug13	Sep13	Oct13	Nov13	Dec13	Jan14	Feb14	Mar14	Apr14	May14	Jun14
Jun10	45	45	45	45	45	45	30	25	20	15	10	5	0
Jun24	45	45	45	40	35	32.5	30	25	20	15	10	5	0
∆Tr's				-5	-10	-12.5							


Month	Jun13	Jul13	Aug13	Sep13	Oct13	Nov13	Dec13	Jan14	Feb14	Mar14	Apr14	May14	Jun14
Jun10	40	40	40	40	40	40	30	25	20	15	0	0	0
Jun24	40	40	40	35	33	29	25	20	15	10	5	0	0
ΔMBS				-5	-7	-11	-5	-5	-5	-5	+5		

March 2019 Surprise

- FOMC slows down balance sheet reduction more quickly than markets anticipated (reinvesting more at auctions)
- \$51bn dovish Treasury surprise ▶ Surprise Computation
- Yields go down, kink around
 5Y maturity Surprise Distribution

March 2019 Surprise Distribution

- Computed using Survey of Primary Dealers and NY Fed reinvestment rule: negative sign denotes dovish surprise (more purchases)
- Surprise peak: 5Y maturity
- Yield decrease peak: 5Y maturity

Empirical Strategy

- Slope change in yield curve reaction around kink retrieves causal effect of supply shock:
 - Only the unexpected change in asset supply (BSP surprise) with respect to maturity exhibits a discrete jump;
 - Other channels of BSP (e.g., signaling and duration-risk) change smoothly across similar maturities.
- Relative to previous studies our methodology does not require us to:
 - Combine yield changes across selected events;
 - Control for proxies of other channels;
 - Compute surprises for each individual security (Cahill et al.t, 2013).

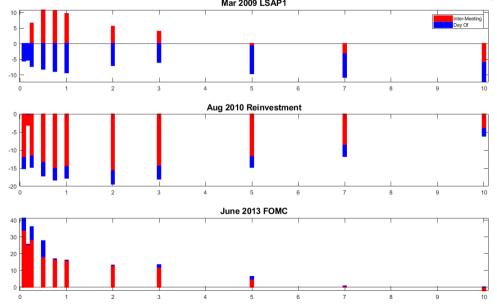
Regression Kink Design

- Restrict sample to Treasuries within +/-3 years of kink \rightarrow similar maturity:

$$\Delta y_{i,\Delta t} = \alpha + \beta_1(\tau_i - K) + \beta_2 D_i(\tau_i - K) + \epsilon_{i,\Delta t}$$

- $\Delta y_{i,\Delta t}$: yield change for security i within narrow time-window Δt around announcement
- τ_i : maturity of security *i*
- K: the kink location in the maturity range (peak of yield curve reaction)
- D_i : dummy variable: 1 if security i has $\tau_i > K$
- β_2 : change in slope at kink, **independent** of BSP surprise measurement.
- It captures whether on average shift is larger or smaller to the right of the kink

Bounds of BSP Surprise


- We provide a lower and upper bound for the yield sensitivity using two opposite assumptions about degree of market segmentation
- 1) Local surprise size equals relative supply changes only in adjacent maturity buckets bracketing the kink
 - Implying high segmentation, which gives upper bound for yield sensitivity
- 2) Local surprise size (around the kink) equals total surprise at announcement
 - No stance on segmentation, which gives lower bound for yield sensitivity
- Each has its own limitations.

Treasury Yield Sensitivity

	LSAP1	Reinvest	MEP1	MEP2	Tantrum	Feint	Addendum	QT Taper
β_2	2.28***	1.13***	-4.70***	-1.57***	-2.97***	3.35***	-2.28***	1.39***
Total Surprise (bn\$)	\$143	\$186	\$147	\$175	27.5	\$95.0	\$78.2	\$50.8
Local Surprise (bn\$)	\$74.7	77.5	\$127	\$117	\$11.3	\$39.2	\$12	\$5.6
Sensitivity (LB)	1.59	0.61	3.21	0.90	10.8	3.53	2.91	2.73
Sensitivity (UB)	3.05	1.46	3.71	1.34	26.2	8.56	19	24.6
Adj <i>R</i> ²	0.783	0.712	0.869	0.748	0.946	0.450	0.720	0.801
N	27	70	97	94	138	106	170	159

- Yield sensitivity at kink in bps per $100bn = |(\beta_2 \div surprise) * 100|$
- Yield sensitivity does not decrease monotonically and is not smaller in QT

Term-structure of 10Y rate uncertainty (swaption-implied vol)

Measure of BSP Uncertainty

Max Horizon	LSAP1	Reinvest	MEP1	MEP2	Jun2013	Sep2013	Jun2017	Mar2019
5-year	0.096	-0.203	0.018	-0.092	0.149	0.306	-0.136	-0.129
10-year	0.095	-0.199	0.019	-0.093	0.146	0.299	-0.133	-0.128

- Measure whether market uncertainty about 10-year rate is unusually elevated ahead of each FOMC meeting
 - 1) at each horizon compute average uncertainty over 10 days prior to FOMC;
 - 2) take weighted sum of those averages using weights inversely related to length of forecasting horizon;
 - 3) normalize it dividing by the average uncertainty in the year prior to FOMC and subtracting one ⇒ numbers bigger than 0 indicate high uncertainty relative to previous year.

Impact of Uncertainty on Yield Sensitivity

	Intercept	eta_1	eta_2	eta_3	eta_4	AdjR ²	N
Point Est	9.718	1.311	-2.344			0.000	818
T-Stat	(67.9)	(26.6)	(-26.9)			0.980	
Point Est	8.893	1.281	-2.373	2.998	-5.489		818
T-Stat	(59.3)	(27.7)	(-28.7)	(11.7)	(-10.8)	0.983	
Point Est	8.891	1.283	-2.377	3.061	-5.617		818
T-Stat	(59.3)	(27.8)	(-28.8)	(11.7)	(-10.9)	0.983	

- Pool together all 8 events and augment baseline specification interacting regressors with proxy of BSP uncertainty
- β_2 indicates that average supply effect of BSP announcement is about -2.34 bps per \$110bn
- β_4 indicates that average supply effect increases to -7.8 bps per \$110bn if investor uncertainty about 10-year rate is unusually elevated.

Takeaway

- Results pose challenge to current macro-finance models of QE
- Suggest supply effect is not just due to temporary market segmentation arising from limits to arbitrage
- Instead, supply risk might be systemic risk factor, amplified by novelty and uncertainty about BSP
- Supply effects are a significant share of the total BSP impact
 - Supply effect of each QE program = average yield sensitivity per \$1bn * size of the program
 - Found to account for about half of overall QE effect estimated in the literature

Implications for BSP

- Controlling for expectations and uncertainty about BSP is important for assessing its impact
- Careful forward guidance about BSP can help control financial market effects by calibrating the size of the supply shock
- BSP can still affect Treasury yields away from the ZLB and during normal market conditions ⇒ Perhaps BSP should not be limited to extraordinary circumstances
- Since supply effects are found to be sizable and can be localized, then likely through supply channel a CB could control specific segments of the yield curve