The Secular Stagnation of Investment?

Thomas Philippon, with G. Gutierrez and C. Jones

NYU, NBER, CEPR

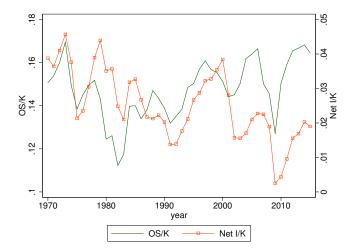
March 2017, Atlanta

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Investment and Operating Profits

• Net investment rate

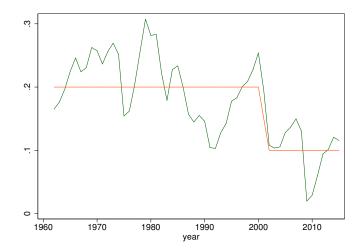
$$x_t \equiv rac{I_t}{K_t} - \delta_t = rac{K_{t+1} - K_t}{K_t}$$


• Net operating return

$$\frac{P_t Y_t - \delta_t P_t^k K_t - W_t N_t - T_t^y}{P_t^k K_t}$$

▲□▶ ▲課▶ ▲理▶ ★理▶ = 目 - の��

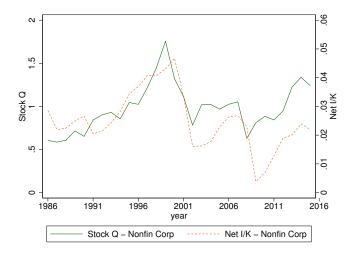
Fact #1: Business is Profitable but does not Invest


Figure: x_t and operating return

Notes: Annual data for Non financial Business sector (Corporate and Non corporate) - 50

Fact #1: Business is Profitable but does not Invest

Figure: x_t / Operating Surplus



Notes: Annual data for Non financial Business sector (Corporate and Non corporate).

Q-Theory

• FOC
$$x_t = \frac{1}{\gamma}(Q_t - 1)$$

• Tobin's Q
$$Q_t \equiv \frac{\mathbb{E}_t \left[\Lambda_{t+1} V_{t+1}\right]}{P_t^k K_{t+1}}$$

Fact #2: I/K is low while Q is High

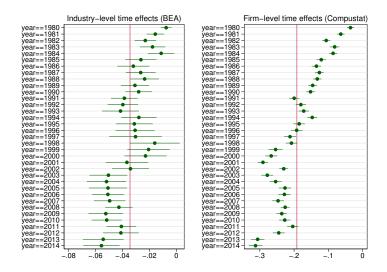
Note: Annual data. Q for Non Financial Corporate sector from Financial Accounts.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 ● ���?

Theory

- Theories that predict low I/K because they predict low Q
 - E.g.: spreads & risk premia, low expected growth, low profits, regulatory uncertainty...

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うらつ


- Solve the wrong puzzle: Q is high, but l/κ is low.
- Theories that predict a \underline{gap} between Q and l/κ
 - gap between average Q and marginal Q
 - gap between Q and manager's objective function

Gutiérrez & Philippon (2016)

▲□▶ ▲課▶ ▲理▶ ★理▶ = 目 - の��

• Use industry and firm level data

Fact #3: Gap Starts around 2000

Note: Time fixed effects from errors-in-variables panel regressions of de-meaned net investment on median/firm-level Q. Industry investment data from BEA; Q and firm investment from Computat.

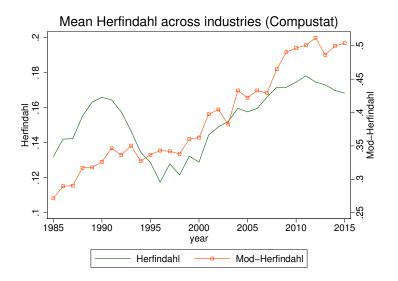
うくぐ

Fact #4: What Does (Not) Explain Investment Gap in Micro Data

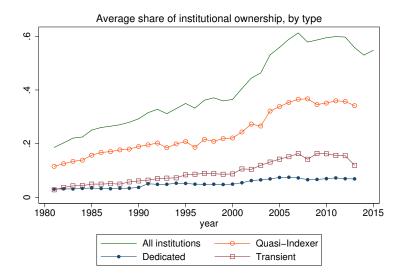
- Gutiérrez & Philippon (2016a): industry and firm level data
- Investment gap *NOT* explained by:
 - credit constraints, safety premium, globalization, regulation,...

ション ふゆ く ビット キロ・ ト きょうめん

- Intangibles relevant, but not main explanation
- But gap well explained by:
 - Competition (lack of)
 - Governance

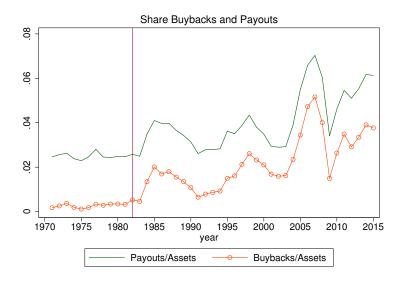

Two measures of concentration

 Traditional Herfindahl + Common ownership adjustment (Azar, et. al. (2016))


$$Mod - HHI = \sum_{j} s_{j}^{2} + \sum_{j} \sum_{k \neq j} s_{j} s_{k} \frac{\sum_{i} \beta_{ij} \beta_{ik}}{\sum_{i} \beta_{ij}^{2}}$$
$$= HHI + HHI^{adj}$$

• Other measures including entry, share of sales by top #10 firms, etc. also significant

Fact Concentration has Increased



Institutional Ownership has Increased

900

Share Buybacks have Increased

Note: Annual data from Compustat

Causality?

- Gutiérrez & Philippon (2016b)
 - Competition: Dynamic Oligopoly with Leaders/Followers/Entrants

• Key predictions of increased competition by entrants

- More investment by leaders (escape competition effect)
- Exit and/or lower investment by laggards (Schumpeterian effect)

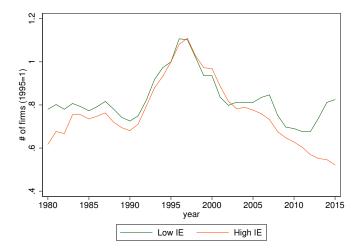
ション ふゆ く ビット キロ・ ト きょうめん

• Positive aggregate impact in *closed* economy/industry.

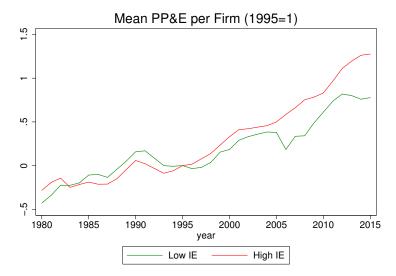

Causality

- Identification & External validity
 - Natural experiment: China
 - Instrumental variable: excess entry in the 1990s
- Closed economy
 - followers become more competitive -> industry investment increases

▲日 ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ● ● ● ●

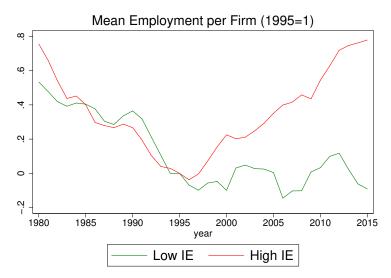

- Open economy: foreign entrants
 - Domestic leaders *increase* investment
 - Impact on industry investment ambiguous

Average China Import Competition


Note: Annual data. Import competition defined as $\Delta IP_{j\tau} = \frac{\Delta M_{j\tau}}{Y_{j,91} + M_{j,91} - E_{j,91}}$.

Number of US Firms, by Exposure to China

Notes: Annual data. US incorporated firms in manufacturing industries only. Industries assigned to exposure based on median 91-11 exposure. (1995 = 1)


PP&E of Surviving Firms

Notes: Annual data. US incorporated firms in manufacturing industries only. Industries assigned to exposure based on median 91-11 exposure. Similar patterns for

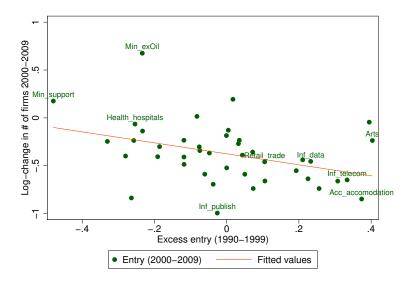
500

Employment of Surviving Firms

Regressions results

	(1)	(2)	(3) log(Intan _t)	(4)	(5)	(6)
	$\log(AT_t)$	$\log(1 L_t)$	nog(man _t)	$\log(\pi r_t)$	$\log(1 L_t)$	log(man _t)
$\textit{Post95} imes \Delta \textit{IP}_{j,99,11}$	-0.210* [-2.42]	-0.228* [-2.29]	-0.218 [-1.01]	-0.414** [-3.92]	-0.468** [-4.00]	-0.445+ [-1.79]
$Post95 imes \Delta IP_{j,99,11} imes Lead$				0.658**	0.765**	0.860*
, ostos × ±n j,99,11 × Leud				[4.32]	[4.67]	[2.06]
$\log(Age_{t-1})$	0.240**	0.331**	0.018	0.235**	0.325**	0.017
108() 180(-1)	[7.70]	[9.22]	[0.24]	[7.59]	[9.12]	[0.23]
	[]	L. 1	L* 1	[]	L*]	[]
Observations	50376	50235	29925	50376	50235	29925
Within R ²	0.45	0.22	0.35	0.46	0.22	0.35
Overall R ²	0.09	0.07	0.10	0.09	0.07	0.10
Industry controls [†]	YES	YES	YES	YES	YES	YES
Year FE	YES	YES	YES	YES	YES	YES
Firm FE	YES	YES	YES	YES	YES	YES
Sample		All firms	5		All firms	

Notes: T-stats in brackets. + p<0.10, * p<0.05, ** p<0.1. Standard errors clustered at the firm-level. Results robust to clustering at industry-level or instrumenting for ΔIP with ΔIP_{oc} . § Leaders defined as firms with above-median Q as of 1995 within each NAICS Level 4 industry † Industry controls include measures of industry-level production structure (e.g.,K/Emp) as of 1991


Competition & Investment: Beyond Manufacturing

- Chinese import competition
 - clean identification
 - but limited scope (only manufacturing)
- Broader approach
 - excess entry in 1990s
 - identification issue: entry at t depends on expected demand at $t + \tau$, so low concentration would predict future investment even under constant competition
 - Need instrument that predicts concentration but not future demand
 - We use excess entry in the 1990s
 - we can show it varies a lot across sectors, and it is orthogonal to future demand

ション ふゆ く ビット キロ・ ト きょうめん

• we do not know exactly why (although we can tell stories: VCs, entry costs, etc.)

IV: Entry post-2000 vs. Excess entry in 1990s

IV: Regression Results

	(1) 1st St.	(2) 2nd St.	(3) 1st St.	(4) 2nd St.
	$HHI_{i t-1}$		$HHI_{i t-1}$	
	>2000	>2000	>2000	>2000
Mean Stock Q (t-1)	0.016**	0.029**	0.022**	0.033**
	[2.61]	[10.40]	[3.89]	[7.42]
Excess Inv ₉₀₋₉₉	-0.569	-0.589*		
	[-1.08]	[-2.41]		
Excess Entry _{90–99} (i)	-0.153**			
/>	[-4.76]			
Excess Entry _{90–99} (i) × Med HHI _t			1.295+	
			[1.66]	
$HHI_{i,t-1}$	-0.246**	-0.249**		-0.539**
	[-6.96]	[-5.06]		[-5.41]
Comm. Own. adj. (t-1)		-0.063**	-0.120**	-0.080**
		[-3.80]	[-3.34]	[-2.71]
Age and size controls	Y	es	Y	es
Year FE	Ν	lo	Y	es
Industry FE	N	lo	Y	es
Observations	672	672	672	672
R^2		0.078		0.045
tos: T stats in brackets + n<0.10 *	n/0.05 *	* n/ 01		

Notes: T-stats in brackets. + p<0.10, * p<0.05, ** p<.01.

Competition and Investment: Summary

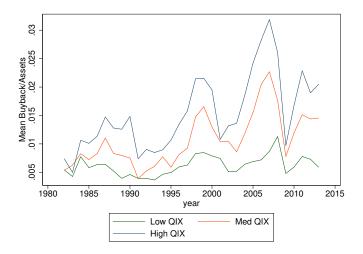
- Most domestic industries have become MORE concentrated
 - Lower competition/entry means less investment by leaders and less investment at the industry level
- Some manufacturing industries have seen increased competition from China
 - Domestic leaders have increased investment, R&D, and employment
 - But much less entry, so overall effect on domestic investment somewhat negative


(ロ) (型) (E) (E) (E) (C)

• Next: Governance

Governance & Investment: Causality

- Problem:
 - Buybacks should depend on investment opportunities, ownership as well.
 - Need to isolate buybacks driven by ownership, but exogenous to financial performance
- Solution 1: natural experiment
 - Russel index rebalancing, Crane-Micheneau-Weston (2016)
- Solution 2: instrument variables
 - Excess QIX ownership pre-2000: QIX ownership is highly persistent: t 5Y ownership predicts 0.9x ownership at t
 - Activism increased after 2004 -> unforeseen in 2000; but QIX predicts activism (Appel et. al. 2016)
 - Coefficients consistent with solution 1.


Activism

Source: JP Morgan (February 12,2014)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Buyback rate by ownership type

Notes: Annual data for all US incorporated firms in Compustat. Firm financials from Compustat; ownership from Thomson Reuters and Brian Bushee's website.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □豆 − のへで

Governance: Firm IV Estimates

	1st Stage		2nd	1st Stage		2nd
	(1)	(2)	(3)	(7)	(8)	(9)
	Stock Q	Buyb/Ass	Net I/K	Stock Q	Buyb/Ass	Net I/K
	\geq 2000	\geq 2000				
Industry Median Q (t-1)	0.650**			0.732**	0.000	
	[21.46]	[-0.56]		[25.47]	[-0.33]	
% QIX owners(96-99)	0.279**	0.013**				
_	[3.03]	[4.32]				
$QIX_{96-99}(i) imes BBA(t)$				-20.949*	3.969**	
				[-2.36]	[14.85]	
Stock Q (t-1)			0.048**			0.046**
			[2.99]			[2.86]
Buyback/Assets (t-1)			-4.740*			-5.570**
			[-1.98]			[-6.08]
Pre-2000 firm-level controls		Yes			No [†]	
Year FE	Yes			Yes		
Industry FE	Yes			No		
Firm FE	No			Yes		
Observations	20841			29973		
Between/Overall R^2	1	19.5% / 4.6	%	8.1% / 4.0%		

Notes: T-stats in brackets. + p<0.10, * p<0.05, ** p<0.01. Firm-level controls include include market capitalization, leverage, sales growth, dividends, profitability, size, etc. † Only log-age is included as control.

Aggregate Implications

• Preferences

$$\mathbb{E}_{0}\left[\sum_{t=0}^{\infty}\beta^{t}\left(\frac{C_{t}^{1-\gamma}}{1-\gamma}-\frac{N_{t}^{1+\varphi}}{1+\varphi}\right)\right],$$

•
$$C_t = \left(\int_0^1 C_{j,t}^{\frac{\varepsilon-1}{\varepsilon}} dj\right)^{\frac{\varepsilon}{\varepsilon-1}}$$

- Wages set à la Calvo
- Kernel

$$\mathbb{E}_t\left[\Lambda_{t+1}\frac{P_t}{P_{t+1}}\tilde{R}_{t+1}\right] = 1$$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 三国 - のへ⊙

Model: Capital Producers

• Firm Value

$$V_t = \sum_{j=0}^{\infty} \Lambda_{t,t+j} Div_{t+j}$$

Accumulation

$$K_{t+1} = (1 - \delta_t) K_t + I_t$$

• Payments

$$Div_t = R_{k,t}K_t - P_{k,t}I_t - \frac{\varphi_k}{2}P_{k,t}K_t\left(\frac{I_t}{K_t} - \delta_t\right)^2.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Model: Final Producers

Objective

$$min^{W}/PN + R_kK$$

s.t.
$$Y = AK^{\alpha}N^{1-\alpha}$$

• Price setting à la Calvo, desired markup

$$\mu_t = \frac{\varepsilon_t}{\varepsilon_t - 1}$$

• Market Value of Producers

$$V_{t}^{\varepsilon} = P_{t}Y_{t}(1 - \mathtt{MC}_{t}) - \Phi_{t} + \mathbb{E}_{t}\left[\Lambda_{t+1}V_{t+1}^{\varepsilon}\right]$$

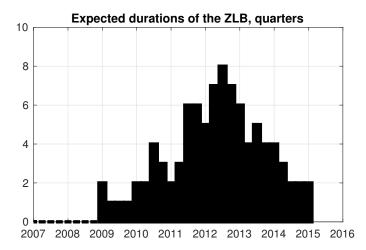
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Micro Calibration

• Firm *i* in industry *j*

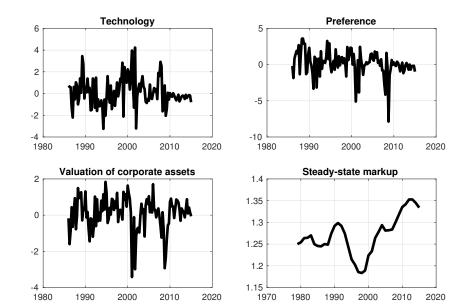
$$C_{j,t} = \left(\int_0^j C_{i,j,t}^{\frac{\varepsilon_{j,t}-1}{\varepsilon_{j,t}}} di\right)^{\frac{\varepsilon_{j,t}}{\varepsilon_{j,t}-1}}$$

- Desired markup: $\frac{P_{j,t}}{P_t} = \mu_{j,t} MC_t$ where $\mu_{j,t} = \frac{\varepsilon_{j,t}}{\varepsilon_{j,t}-1}$

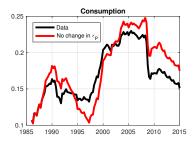

• Capital demand in cross section

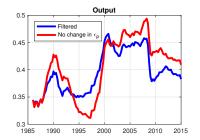
$$\log K_{j,t} = A_t - \varepsilon \log \mu_{j,t}$$

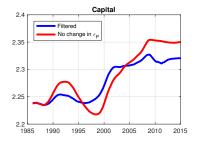
- Estimate in panel of industries $\log K_{j,t} = ... 1.3\chi_{j,t}$ where $\chi_{j,t}$ is concentration ratio
- Set cross-industry elasticity to arepsilon=1
- then construct a measure of "average" markup based on the "average" concentration ratio

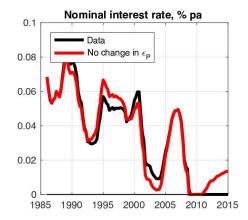

$$\log ar{\mu}_t pprox 1.3 ar{\chi}_t$$

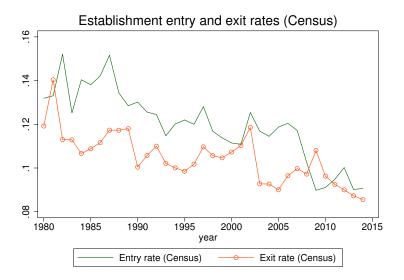
ZLB



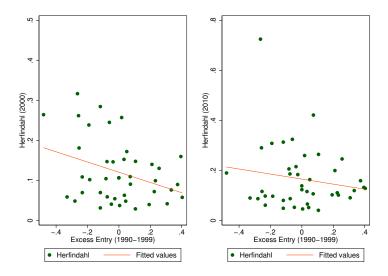

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで


Shocks


Counter-Factual



Counter-Factual


→ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 → � � �

EXTRA: Entry has Decreased

Notes: Annual data from Census BDS

IV: Concentration as of 2000/2010 vs. Excess entry in 1990s

◆□ > ◆□ > ◆三 > ◆三 > 三 のへで

EXTRA: Shocks

• TFP

$$a_t = \rho_a a_{t-1} + \varepsilon_{a,t}$$

Discount rate shock to the pricing kernel

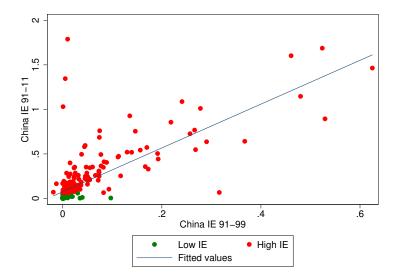
$$\lambda_{t+1} = \log \beta - \gamma(c_{t+1} - c_t) + \zeta_t^d$$
$$\zeta_t^d = \rho_d \zeta_{t-1}^d + \varepsilon_t^d$$

• Risk premium on corporate assets

$$q_t^k = \mathbb{E}_t \left[\lambda_{t+1} + \log \left(r_{t+1}^k + q_{t+1} + 1 - \delta + \frac{1}{2\gamma} q_{t+1}^2 \right) \right] + \zeta_t^q$$

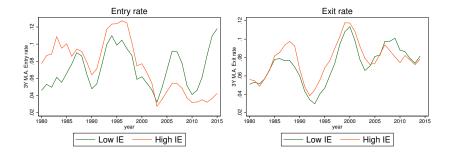
• Time-varying elasticity of substitution between goods

$$\varepsilon_t = \varepsilon_{t-1} + \varepsilon_t^{\varepsilon}$$


▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ の < @

Regressions results: continuing firms only

	<u> </u>	<u> </u>			
	(1)	(2)	(3)		
	$\log(AT_t)$	$log(PPE_t)$	log(Intan _t)		
	- , , ,				
$Post95 imes \Delta IP_{i,99-11}$	-0.592**	-0.476**	-0.414		
j,55 II	[-2.97]	[-2.69]	[-0.88]		
DeatOF V AID V Load	0.808*	0.729+	0.992		
$Post95 imes \Delta IP_{j,99-11} imes Lead$					
	[2.18]	[1.89]	[1.01]		
$\log(Age_{t-1})$	0.548**	0.457**	0.219		
,	[8.37]	[7.81]	[1.60]		
Observations	17633	17659	11847		
Within R ²	0.33	0.57	0.46		
Overall R ²	0.14	0.15	0.12		
Industry controls [†]	YES	YES	YES		
Year FÉ	YES	YES	YES		
Firm FE	YES	YES	YES		
Sample	Continuing firms				


Notes: T-stats in brackets. + p < 0.10, * p < 0.05, ** p < .01. Standard errors clustered at the firm-level. Results robust to clustering at industry-level or instrumenting for ΔIP with $\Delta IP_{oc.}$. § Leaders defined as firms with above-median Q as of 1995 within each NAICS Level 4 industry † Industry controls include measures of industry-level production structure (e.g., K/Emp) as of 1991

China import exposure was predictable in 1999

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Firm entry and exit rate, by Chinese exposure

э

Notes: Annual data. US incorporated firms in manufacturing industries only. Industries assigned to exposure based on median 91-11 exposure.

Regressions results: K, Emp and K/Emp

	(1) $\log(PPE_t)$	(2) log(<i>Emp</i> _t)	(3) $\log(\frac{PPE_t}{Emp_t})$	$(4) \\ \log(PPE_t)$	(5) $\log(Emp_t)$	(6) $\log(rac{PPE_t}{Emp_t})$
$Post95 imes \Delta IP_{j,99,11}$	-0.228* [-2.29]	-0.195* [-2.28]	-0.051 [-0.91]	-0.468** [-4.00]	-0.363** [-3.72]	-0.128+ [-1.87]
$Post95 imes \Delta IP_{j,99,11} imes Lead^{\S}$				0.765**	0.548**	0.249**
$\log(Age_{t-1})$	0.331** [9.22]	0.409** [13.45]	-0.084** [-4.05]	[4.67] 0.325** [9.12]	[3.81] 0.405** [13.38]	[2.99] -0.086** [-4.16]
Observations	50235	49649	49543	50235	49649	49543
Within <i>R</i> ²	0.22	0.109	0.216	0.224	0.113	0.217
Overall R ²	0.07	0.19	0.10	0.07	0.18	0.10
Industry controls [†]	YES	YES	YES	YES	YES	YES
Year FE	YES	YES	YES	YES	YES	YES
Firm FE	YES	YES	YES	YES	YES	YES
Sample		All firms			All firms	

Notes: T-stats in brackets. + p<0.10, * p<0.05, ** p<.01. Standard errors clustered at the firm-level. Results robust to clustering at industry-level or instrumenting for ΔIP with ΔIP_{oc} . § Leaders defined as firms with above-median Q as of 1995 within each NAICS Level 4 industry † Industry controls include measures of industry-level production structure (e.g., K/Emp) as of 1991

Interaction between Ownership and Competition

-	1st Stage		2nd	1st Stage		2nd
	(1)	(2)	(3)	(4)	(5)	(6)
		Buyb/Ass			Buyb/Ass	
	\geq 2000	\geq 2000	\geq 2000	\geq 2000	\geq 2000	\geq 2000
Industry Median <i>Q</i> (t-1)	0.581**			0.744**		
	[33.51]	[-1.03]		[44.42]	[-0.35]	
% QIX owners(96-99)	0.733**	0.003				
	[4.64]	[0.52]				
$QIX_{96-99}(i) \times MHHI$	-1.305**	0.026**				
	[-4.36]	[2.85]				
$QIX_{96-99}(i) imes B\overline{B}A(t)$				-24.316	5.085**	
				[-0.99]	[7.96]	
$QIX_{96-99}(i) imes MHHI imes B\overline{B}A(t)$				-225.2**		
$Q_{1}X_{96}=gg(1) \times WI HII \times DDA(t)$				[-4.75]	[1.65]	
Stock Q (t-1)			0.105**	[-4.75]	[1.05]	0.147**
SLOCK Q (1-1)			[11.79]			[20.51]
Dunchask (Assats († 1)			-3.134+			- 2.024 *
Buyback/Assets (t-1)						-
			[-1.68]			[-2.57]
Pre-2000 firm-level controls		Yes			No†	
Year FE		Yes			Yes	
Other FE		Industry			Firm	
Observations	20841			29973		
Between/Overall R^2	11.3% / 4.7%			16	5.5% / 9.0	%
Natary Tatata in hundrate 1 a <0.10 * a <0.05 ** a < 0.1 Einer laud controls on shour						

Notes: T-stats in brackets. + p<0.10, * p<0.05, ** p<.01. Firm-level controls as above. † Only log-age is included as control.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ