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Abstract: Models used for policy analysis should generate reliable unconditional forecasts as well as
policy simulations (conditional forecasts) that are based on a structural model of the economy. Vector
autoregression (VAR) models have been criticized for having inaccurate forecasts as well as being
difficult to interpret in the context of an underlying economic model. In this paper, we examine how the
treatment of prior uncertainty about parameter values can affect forecasting accuracy and the
interpretation of identified structural VAR models.

Typically, VAR models are specified with long lag orders and a diffuse prior about the unrestricted
coefficients. We find evidence that alternatives that emphasize nonstationary aspects of the data as well
as parsimony in parameterization have better out-of-sample forecast performance and smoother and
more persistent responses to a given exogenous monetary policy change than do unrestricted VARs.
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INTRODUCTION

Vector autoregression (VAR) models have been used widely for both forecasting and

policy analysis. VAR models designed for forecasting purposes utilize stochastic “forecasting

priors” (Sims (1987)) on the model’s parameters of the type suggested by Litterman (1979, 1986),

Doan, Litterman and Sims (1984), and Sims (1992).  In contrast, those working on policy-oriented

VAR models, like Gordon and Leeper (1994), and Christiano, Eichenbaum, and Evans (1997),

inter alia, have largely eschewed the use of prior restrictions beyond the imposition of exact

identification restrictions.

This paper documents the forecasting accuracy improvement to a VAR following the

application of informative stochastic prior restrictions and then demonstrates how these priors can

impact the dynamic relationships implied by the identified impulse responses.  We highlight these

differences by comparing the dynamics from various alternative specifications of a six-variable

VAR subject to a typical set of identifying restrictions to isolate the effects of monetary policy

shocks.

We generate finite sample probability distributions of forecasts and impulse responses in

each specification allowing us to examine the quantitative and qualitative importance of

differences among the model specifications. In forecasting applications, we find that a VAR model

that uses an informative stochastic prior is more accurate on average across variables. The next

best performing model is one specified in first differences and with the lag length restricted.  In no

case is the typical flat-prior VAR model in levels of the data the most accurate forecasting model

in a mean squared error sense.  Moreover, parameter uncertainty is a much larger source of

uncertainty about post-sample data values under a flat prior than under more informative priors.
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For analysis of the identified dynamics we find that the informative priors reinforce non-

stationary aspects of the data displayed graphically in the impulse responses.  We show that the

impulse responses from a VAR in first-differences with a short lag length are generally similar to

those of the stochastic “forecasting-prior” VAR, both of which display relatively smooth and

persistent responses to an identified monetary policy shock.  In contrast, the flat-prior VAR in

levels generally implies only temporary responses.

The paper is organized as follows.  The next section provides some additional motivation

for our empirical analysis.  The third section presents the VAR model we use. The fourth section

presents our empirical results, and the final section draws some conclusions from our

investigation.

BACKGROUND

Because of the substantial parameter uncertainty inherent to a high-dimensional forecasting

model such as a VAR, VAR models designed for forecasting (extrapolation) purposes typically

employ stochastic prior restrictions on the model’s parameters of the type initially suggested by

Litterman (1979, 1986). These forecasting priors usually give higher weight to coefficient values

that favor unit roots, small deterministic components, and future time paths that are influenced

primarily by recent observations. There is considerable empirical evidence that allowing this type

of prior information to influence the shape of the model’s likelihood function can substantially

improve out-of-sample forecast performance  (see for example Litterman (1979, 1986), Doan,

Litterman and Sims (1984), Kennedy (1989), Sims (1992), and Robertson and Tallman (1999a,b),

inter alia).



3

In contrast, relatively few studies make use of Bayesian forecasting priors as the basis for

inference about identified impulse responses. That is, in policy analysis work with VAR models

one typically assumes complete prior ignorance about the unknown parameter values, relying

instead on the sample of data to determine the shape of the likelihood function. The dichotomy

between the treatment of prior information in forecasting and policy VAR models is perhaps not

too surprising. Sims’ (1980) forceful criticism of the “incredible” nature of the exclusion

restrictions traditionally placed on simultaneous equation systems is perhaps one explanation for

the general aversion to using anything but a minimal amount of prior information in identified

VAR models. It is notable however that while these fitted VAR models are assumed to be

adequate descriptions of the distribution of the data, relatively little attention is given to the

forecasting performance of the models.

Some studies have used Bayesian forecasting priors in identified VAR models; for

example, Sims (1986,1987), Kennedy (1989), and Canova (1991) applied Litterman’s form of

stochastic priors on the reduced-form VAR coefficients together with a least squares type

estimator to approximate the error covariance.  However, in those cases the estimated probability

distributions could only be viewed as being approximately correct under the assumption that the

prior on the coefficients is independent of a diffuse prior about the error covariance (see Zellner

(1971, pp. 239-240), and Kadiyala, and Karlsson (1997)).  More recently, Highfield, O’Hara and

Wood (1991), Leeper, Sims and Zha (1996), Faust (1998), Sims (1998), and Leeper and Zha

(1999) have applied modifications of Litterman’s setup that permits exact finite sample inference

under only slightly stronger assumptions.

Separately, some authors note the apparent sensitivity of results from identified VAR

models (with uninformative priors) to changes to the sample (see for example Pagan and
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Robertson (1995), Rudebusch (1998)). This sensitivity is a common symptom of an “over-fitting”

problem due to estimating many free parameters. If the likelihood surface is relatively flat then

small changes in the sample could have a large effect on the maximum likelihood estimates.  If the

likelihood peak is sharply determined then it is less likely that additional data observations will

lead to large revisions in the probability assessment of particular parameter values.

Bayesian VAR models with priors that are designed primarily to improve out-of-sample

forecasting performance also impose smoothness on the impulse responses and influence their

long-run properties.  Sims (1987, 1999) conjectures that doing so allows the responses to be

estimated with greater precision than if one ignored the prior information. Geweke (1999)

demonstrates a formal link between a model’s adequacy and its out-of-sample prediction record in

the context of marginal likelihood analysis. However, even amongst those using Bayesian

methods on structural VAR models the perceived importance of the stochastic priors for the

results is not always clear.  For example, Leeper et al. (1996) use informative stochastic priors

because, they argue, they are “essential in order to obtain sensible results…” (p. 62). Yet, the

authors also assert that “Our prior tends to make the estimated impulse responses smoother,

without changing their overall form.” p. 63.  This latter statement conveys the impression that the

choice of prior has little impact on the nature of the estimated dynamics, but there is no empirical

evidence provided to support this claim. In fact, to the extent that the priors influence the shape of

the likelihood function one would expect to observe at least some quantitative differences in the

distribution of the impulse responses, and this idea motivates our present investigation.
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THE MODELS

The models we examine are based on a pth order VAR process

y b B y B y ut t p t p t= + + + +− −1 1 K ,   t = 1,…,T (1)

where yt  denotes an m×1 vector of current dated observations for period t on the m variables in

the VAR; the Bi  are m×m coefficient matrices; and b is an m×1 vector of constant terms.  The

error term is defined as u At t= −1ε  where ε t is assumed to be a Normal and independently

distributed m×1 vector such that E y st t s[ | , ]ε − > =0 0 , and E y s It t t s[ | , ]ε ε′ > =− 0  for all t; and A

is a non-singular m×m matrix so that the covariance of ut  is Σ = ′− −A A1 1 .  Imposing sufficient

restrictions on A allows ut  to be disentangled into interpretable “structural” shocks.

Different values for p in (1) correspond to choosing different models in the present context

because setting p amounts to restricting some coefficients to zero. In some models the coefficients

are further restricted to satisfy the constraint B Iil
p
=∑ =

1
, so that (1) can be written as a (p−1)th

order VAR in first differences:

y b y y y ut t t p t p t= + + + + +− − − − +1 1 1 1 1Γ ∆ Γ ∆K , (2)

where Γl nn l
p

B= − = +∑ 1
.  Notice that this VAR can always be written in the form of (1) by

defining B I1 1= + Γ , Bn n n= − −Γ Γ 1 , for n = 2,…,p−1, Bp p= − −Γ 1.

Models can also differ in terms of the nature of the prior uncertainty assumed about the

model’s parameters – the prior density.  We will work with the so-called natural conjugate

(Normal-Wishart) family of prior densities. In most applied work a flat (diffuse or uninformative)



6

prior is specified for θ = vec(B,Σ) in (1), or θ = vec(Γ,Σ) in (2), where B = b B Bp, , ,1 K ′  and Γ =

b p, , ,Γ Γ1 1K −
′ , respectively.  Our “forecasting prior” specifies an informative prior probability

density for vec(B) in (1) conditional on Σ together with a diffuse prior on Σ. The forms of the prior

and the posterior distributions are described in the Appendix.

To compute out-of-sample h-period-ahead forecasts and the impulse responses we solve

equation (1) forward from period T and express yT h+  as

y C b JT h h
h

T i T h i
i

h

+ − + −
=

−
= + + ∑1

0

1
D Y Ψ ε , h = 1,2,… (3)

where C I0 = , C I B Ci j i j
j

i
= + −

=
∑

1

, i = 1,2,…, with Bj = 0 for j > p; YT
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iJ J A= ′ −D 1 : ( )m m×  is the i-period-ahead matrix of

impulse responses; and J I= 0 0K  is the ( )m mp×  matrix such that y JT T= Y  (see

Lutkepohl, 1991).  Given data, Y y yT= ′
1, ,K , and parameters, θ, the first two terms in (3) sum

to give the average value of yT h+ , that is E y YT h[ | , ]+ q .  The last term in (3) is the forecast error

yT h+  − E y YT h[ | , ]+ q , and has conditional variance equal to Ψ Ψi ii
h ′=

−∑ 0
1

.
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Having observed the data, equation (3) makes clear that a model’s assessment of

uncertainty about yT h+  emanates from two sources: the unknown parameters, θ, and the post-

sample shocks εT j+ , j = 1,…,h.  In contrast, variation in the impulse responses is due solely to

uncertainty about θ.  Under a Normal-Wishart prior it is relatively easy to simulate draws on the

relevant random variables using the Monte Carlo methods presented in Sims and Zha (1998,1999),

and Waggoner and Zha (1999).

The models we examine use data on six variables measured at a monthly frequency

beginning in January of 1959, and we generate forecasts taking explicit account of the time lag of

the release for different series by using the conditional forecasting technique described in

Waggoner and Zha (1998). The data series are the levels of federal funds rate and the

unemployment rate, the natural logarithms of a commodity price index, the Consumer price index,

real GDP (distributed monthly), and the M2 monetary aggregate.1 We follow standard practice and

specify p = 13 lags as the default lag length.  However, we also examine the case when p = 7 lags

are used instead.2

We also impose sufficient exact exclusion restrictions on A to identify the VAR equations.

Traditionally A would be assumed to be triangular for a particular ordering of variables, so that the

model is a recursive one (see for example Christiano et.al. (1997)).  The triangularity assumption

means that there are no restrictions on Σ (the VAR is exactly identified), and so the structural

VAR and the reduced-form VAR would imply the same conditional distribution for the data. We

                                                

1 We use the Chow and Lin (1971) distribution technique, and it is applied exactly as described in Robertson and
Tallman (1999a).
2 A lag length of p=7 is the typical value chosen by the Akaike information criterion in a VAR estimated by ML.
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chose A to be almost, but not quite, triangular.3 The structural shock that is of primary interest is

the one identified with monetary policy – the element of ε t  corresponding to the identified

monetary policy rule.  This policy equation assumes that the Fed can give weight to the current

level of the money stock when determining the Funds rate, but responds to movements observed

in real activity and prices with at least a one-month lag.

To summarize, we will analyze the out-of-sample forecast performance and the responses

to a specific identified monetary policy shock for the following VAR models:

1. A pth-order VAR specified in levels of the data, a flat prior and p = 13 lags, denoted as model

1.  The version of model 1 with p = 7 will be denoted as model 1a.

2. A (p−1)th-order VAR specified in first differences of the data, a flat prior and p = 13 lags,

denoted as model 2. The version of model 2 with p = 7 will be denoted as model 2a.

3. A pth-order VAR specified in levels of the data, the informative “forecasting” prior described

in the Appendix, and p = 13 lags, denoted as model 3.

EMPIRICAL RESULTS

Out-of-Sample Forecasting

We focus on each VAR model’s forecasting performance for the Federal funds rate,

unemployment, real output growth, and CPI inflation.  Mean forecasts are formed for the current

quarter, the next two quarters, as well as for the current calendar year and the subsequent two

years over the period 1986 to 1997. Thus, for example, pooling the mean forecasts formed each

                                                

3 A contains only 18 free coefficients, so there are 3 less free coefficients in A than in Σ.  Consequently, iterative
methods are required to estimate A.  The restrictions on A are similar to those used in Sims (1987), Leeper and Zha
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month of a quarter gives a total of 144 current quarter forecasts for each variable. Each forecast is

constructed at the end of each month using real-time (actually available) data and with the

posterior for θ updated every three months.  Because of the data release lags (up to three months

for GDP) we employ the conditional forecasting technique suggested initially by Doan, Litterman

and Sims (1984) to allow the forecasts to depend on all the data that are available. The forecasts

from each model are the average of 5000 realizations of yT h+  simulated from equation (3) and

where each draw involves making independent draws on θ and ( ε εT T h+ +1, ,K ).4

Table 1 displays forecasting accuracy statistics (root mean squared errors) for each model’s

mean forecasts.5  The informative-prior VAR (model 3) is the most accurate in a mean squared

error sense.  However, the use of the dummy observations to modify the base random walk prior is

important, particularly for the funds rate and unemployment series that do not exhibit strong trends

(see the Appendix for a description of these dummy observations).  For the trending series the

“sum of coefficients” dummies appear more important than the “cointegration” dummy

observation. A version of model 3 without either of the dummy observations is about as accurate

as a VAR in levels with the lag length restricted to 7.

For models 1 and 2 the average forecast accuracy almost always improves when 7 lags are

used rather than 13.  Model 2a is closest to matching the average performance of the informative-

                                                                                                                                                               

(1999) and is described in detail in Waggoner and Zha (1999).
4 The data release lags allow us to condition on some elements of y yT T j+ +1,K , j ≤ 3 when making forecasts.  For

example, at the end of the month we always have the current months funds rate, but only last month’s CPI values, and
GDP data for the previous quarter.  We use the method presented in Waggoner and Zha (1998) for making draws on
the constrained shocks (ε εT T j+ +1, ,K ) over the conditioning period.  The mean of these constrained shocks will be

non-zero in general. The real-time aspects of the setup tend to be most important for the shorter-run (one- to two-
quarter-ahead) forecasts of GDP.  Failing to condition on all available data and/or using the 1999 vintage of historical
data instead of real-time data vintages has a relatively small effect on the annual forecasts.
5 The results are essentially the same if we were to evaluate (3) at the posterior mean of the coefficients instead of
directly using the posterior mean of (3).
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prior VAR, particularly for the trending series.  That is, combining the “sum of coefficients”

restriction exactly with a shorter lag length is useful for these series.  However, for the funds rate

and unemployment rate model 2a does not compare quite as favorably.  The damping of the

intercept terms toward zero and not imposing the “sum of coefficients” restriction exactly in

model 3 appears to be important in these cases.

The finding that funds rate forecasts are considerably more accurate in model 3 than in

model 1 is also relevant for the debate about the usefulness of VAR models for policy analysis.

Rudebusch (1998) cites evidence that VAR model forecasts of the funds rate are disappointingly

poor as a possible justification for dismissing VAR models as tools for policy analysis.  However,

his evidence is based on VARs specified in levels of the data with long lag lengths and a diffuse

prior about the coefficient values. Our results indicate that the use of specific informative priors on

the VAR coefficients can overturn the negative conclusion about VAR forecast performance.6

Summarizing the average accuracy of point forecasts is important but it does not show the

effect that the priors have on a model’s assessment of the uncertainty about the future.  As an

illustration, Charts 1 through 4 depicts the forecast distribution for the annual average funds rate,

unemployment rate, GDP growth and CPI inflation, respectively, from each of three VAR models.

The forecasts are formed at the end of April 1994 (following release of first quarter GDP) for the

current and each of the next three calendar years.  The first figure in each Chart displays the

forecasts from model 3.  The second figure gives the forecasts from model 2a.  The third figure

shows the forecasts from model 1. The actual post-sample realized values for each series are

                                                

6 In a related study, Robertson and Tallman (1999b) find that the mean funds rate forecasts from model 3 compare
favorably in a mean squared error sense to those from the federal funds futures market at the one and two month
horizons.  A distinct advantage to the VAR approach in this regard is that it can produce forecasts at horizons much
longer than contained in futures market data.



11

shown as solid lines in each graph. The outer dashed lines are the 16th and 84th percentiles of the

conditional distribution of the relevant components of yT h+ .7  The center dashed line is the mean

forecast.  The inner dotted lines give the 16th and 84th percentiles when we evaluate (3) at the

mean of the posterior distribution of the VAR parameters and only let future shocks generate

uncertainty about the future time path of the series.  That is, the dotted lines correspond to the

usually reported case that ignores parameter uncertainty.  Not surprisingly, parameter uncertainty

is a much smaller source of uncertainty in the forecasts that lead to a more sharply determined

likelihood (model’s 3 and 2a) than in the forecasts from the 13-lag VAR in levels under a flat prior

(model 1).

It is notable that the GDP growth and unemployment forecasts from model 1 are inaccurate

– the actual outcomes lie well outside the 68 percent probability bands. The forecast interval of the

funds rate contains the actual outcome, but also implies that interest rates at or below zero would

have been a better than even chance in 1997. In general, the VAR in first differences (model 2a)

has much tighter probability intervals than the VAR in levels (model 1). For GDP growth and

inflation these intervals are concentrated around the actual outcomes, and the mean forecasts

would have resulted in only small forecast errors. For the funds rate and unemployment rate the

outcomes lie near the top and bottom of the 68 percent probability intervals, respectively. The

funds rate distribution in particular assigns higher probability to decreasing rather than increasing

interest rates over the forecast horizon.  The 68 percent probability intervals for GDP growth and

inflation from model 3 are about the same width as from model 2a, but are concentrated on

slightly lower GDP growth and higher inflation than actually occurred.  The intervals for the funds

                                                

7 The bands are constructed point-wise, so that the posterior probability of yT h+  being in the band is 68% at each

forecast horizon individually.
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rate distribution is narrower and would have assigned a slightly higher probability to the actual

outcomes than model 2a.  The 68 percent probability interval for the unemployment rate is also

narrower than from model 2a, but still contains the actual outcomes inside the lower band.

Impulse response analysis

Charts 5 through 8 display the impulse responses to a one-time one standard deviation

monetary policy shock in each of the three model specifications discussed above (models 1, 2a and

3) fitted over the full-sample (January 1959 to December 1997).  If the policy equation is the kth

equation in the VAR then the point-wise probability distributions of the impulse responses are

constructed by making random draws on the kth column of Ψi  for periods i = 0,….,h.  The

impulse response function shows how much the expectation of YT h+  given Y and θ is revised

when one also conditions on the event that ε k T, + =1 1.  The solid line in each figure is the mean

response while the dashed lines give the 68 percent probability bands.  The dotted line is the

impulse response evaluated at the posterior mean of θ.

The following short-run features of the mean responses to a monetary policy shock are

broadly similar across all three models: the funds rate rises, real output growth and inflation

decline, and the rate of unemployment increases. In contrast, the longer-term mean impacts of the

shock differ across models, although the main differences distinguish the diffuse prior model

(model 1) from the other two models. The mean responses in model 1 display only small and

temporary impacts of a policy shock on the inflation rate, the growth rate of real output, and on the

federal funds rate. The mean responses for model 2a and model 3 display more persistent effects

on the growth rate of real output, the unemployment rate, and inflation than those observed in

model 1.
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For models 2a and 3 we found that the variability in E y YT h[ | , ]+ q  due to parameter

uncertainty was much smaller than for model 1, reflecting the more parsimonious nature of models

2a and 3 relative to model 1. An examination of the 68 percent probability bands of the responses

suggests that uncertainty about kth column of the Ψi  is quite large even in models 1 and 2a.8

Nonetheless, the probability bands indicate some significant differences across models.  In many

instances the mean impulse response outcomes from model 1 would be assigned a low probability

of occurring from the perspective of either model 2a or model 3.  Model 2a and 3 are more similar

in the sense that there is considerable overlap in the probability bands, particularly at longer

horizons.

The treatment of prior parameter uncertainty may also influence a model’s sensitivity to

changes in sample information.  As an illustration, we estimate the models (1, 2a, and 3) using

data for the period 1959 to 1991 and compare the resulting impulse responses with the full sample

estimates discussed above.  The effects on the output growth and inflation responses to a monetary

shock are displayed in charts 9 and 10, respectively.  In each chart, the dashed lines are the 68

percent probability bands based on the full sample, and the dotted lines are the corresponding

probability bands based on the shorter sample.

For model 3, the assessment of the likely paths for output growth and inflation following a

policy shock are largely the same in either sample period.  That is, there is considerable overlap in

the probability bands at each horizon.  For models 1 and 2a, there appear some notable differences

across sample periods at some horizons.  Compared to the full sample estimates, model 1 implies

that a less persistent reduction in inflation is more likely when the model is estimated over the

                                                

8 Observe that E y YT h[ | , ]+ θ  depends on B, while E y YT h k T[ | , , ],+ + =θ ε 1 1  depends on both B and A−1 . It appears
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shorter sample.  For model 2a, the impulse responses based on the shorter sample period suggest

that higher output growth and lower inflation are more likely in the medium run than when the

responses are estimated using the full sample.

CONCLUSIONS

In this paper we demonstrate that the choice of prior restrictions on a reduced form VAR

can affect forecast performance.  We further show that the choice of prior can have an important

influence on the nature of structural inferences about the effects of exogenous changes in

monetary policy.

The VAR models we examine differ in terms of the lag length used, whether or not the

model is specified in levels or first differences, and the extent of prior uncertainty assumed about

each models parameters.  The empirical results reinforce the conclusions of previous research that

for trending data pre-differencing or using a prior that gives weight to a specification in first

differences is advantageous for forecasting.  There is additional gain from restricting the number

of parameters freely estimated in the VAR by either setting coefficients on longer lags to zero or

by damping the variation of these coefficients toward zero.

We compute the distribution of the impulse responses to a particular identification of an

exogenous monetary policy shock in each model.  The longer-run characteristics of the estimated

responses differ in ways that can be directly attributed to the nature of the prior uncertainty

assumed for each model’s reduced form parameters.  In particular, the mean responses from a

diffuse prior model in levels display small and temporary impacts of a policy shock on the

inflation rate, growth rate of real output, and on the federal funds rate. The models that are closer

                                                                                                                                                               

to be the variation in the elements of A−1  that is primarily responsible for the relatively wide error bands.
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to a parsimonious first differenced form display smoother and more persistent effects on the

growth rate of real output, the unemployment rate, and inflation.

Forecasting accuracy and impulse response patterns that can be interpreted in the context

of economic theory are both criteria for choosing a model for use in policy analysis.  The results in

this paper suggest that using certain types of restrictions on the dynamics of a VAR can improve

the forecast performance over largely unrestricted VAR specifications of the type typically used in

the policy analysis literature.  At the same time these restrictions may impact substantially a

model’s responses to an identified policy shock. Given a particular set of structural restrictions,

the effects from using different priors on the interpretation of a VAR should not be ignored.
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APPENDIX – The Prior

The VAR in (1) can be written in stacked form as

Y XB u= +

where X y y yt t t t p= ′ ′ ′ ′ ′
− − −ι , , , ,1 2 K , Y y yT= ′

1, ,K , X X XT= ′
1, ,K , u u uT T= ′

1, ,K  and

B b B Bp= ′, , ,1 K .  Because the ut ’s are assumed independent and Normally distributed, the ML

estimator for (B,Σ) is $B X X X Y= ′ ′−1 6 1 , $Σ = − ′ −1

T
Y XB Y XB1 6 1 6 .

The prior we use is of the Normal-Wishart form (see for example, Drqze and Richard,

1983), Highfield, O’Hara and Wood (1991)). A Normal-Wishart prior distribution is described by

a mean coefficient matrix B0  of size m×m(p+1), a positive definite mean covariance matrix S0  of

size m×m, as well as an (p+1)× (p+1) positive definite matrix H0  and a real number ν 0  ≥ 0 to

describe the prior uncertainty about (B,Σ) around their means. Conditional on Σ, the vectorized

form of the coefficient matrix, vec(B), follows a Normal distribution N B Hvec( ),0 0
1Σ ⊗ −3 8 , while

Σ−1  follows a Wishart distribution W S v vm 0
1

0 0
− ,3 8  with E S[ ]Σ− −=1

0
1 .

Given the Normality assumption for the ut ’s, an attractive feature of using a Normal-

Wishart prior is that the posterior distribution (the product of the likelihood function and the prior

distribution) is also Normal-Wishart.  In particular, conditional on Σ, vec(B) follows the Normal

distribution N B HT Tvec( ),Σ ⊗ −13 8 , while Σ−1  is distributed as W S v vm T T T
−1 ,3 8 , where

H H X XT = + ′0 ; v v TT = +0 ; S
v

v
S

T

v v
B B H H X X B BT

T T T
T= + + − ′ ′ −−0

0 0 0
1

0
1$ $ $Σ 3 8 3 8 ; and
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B H H B X XBT T= + ′−1
0 0

$3 8 . Monte Carlo methods are available for making draws from a Normal-

Wishart posterior distribution even in the presence of over-identifying restrictions on Σ, (Sims and

Zha (1998, 1999) and Waggoner and Zha (1999)).

The nature of the prior distribution is determined by the values assumed for the parameters

of the prior distribution.  A diffuse prior is characterized by selecting v0 0= and H0 0= . Then

H X XT = ′ , B BT = $ , v TT = , and ST = $Σ . The alternative base prior we use has H0 0> , so that

the prior about Σ is left diffuse and we have an informative prior about B.  Under this alternative

we assume that the prior coefficient mean has the random walk form, B I0 0 0 0= ′, , , ,K , and H0
1−

is a diagonal matrix. Hence, up to an unknown scale factor the prior variances of the coefficients

are the same in all equations. The first diagonal element of H0
1−  is set to 106 to reflect an

effectively diffuse prior about the intercept terms. The diagonal elements corresponding to the kth

lag of the jth variable is set to ω λjk jks= 3 82 , where the parameter λ controls the overall

tightness of the prior distribution of the coefficients about their means.9  Notably, this is a less

complicated form of the Normal-Wishart prior than presented in Sims and Zha (1998), and

Robertson and Tallman (1999a).  In these papers v0 0>  so that the prior is informative about Σ.

The approach here is similar to that used by Highfield, et.al. (1991).

We then modify the random walk prior by feeding in m+1 weighted dummy observations

Y0  and X0  of the form described in Sims (1992), Sims and Zha (1998), and Robertson and

                                                

9 Litterman assumes that the lag coefficient variances have the form ωjki = ωjksiτ
δ(i,j), where τ ∈ (0,1] is the relative

tightness for coefficients on lags of “other” variables, and the function δ(i,j) is zero for i = j and one otherwise.
Allowing the prior variances to differ across equations by more than a single scale factor leads to a less tractable
posterior distribution than under the Normal-Wishart assumptions (see Kadiyala and Karlsson (1997)).
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Tallman (1999a). These dummy observations are designed to push the model towards a form

containing unit roots, while also damping the role of deterministic components.  The dummy

observations have no effect on the random walk structure of B0 .  However, they do interact with

H0  to reduce the size of the prior variation in the constant term around zero as well as inducing

negative correlation between the coefficients on the lags of the jth variable each equation and

between the constant term the lag coefficients in each equation. Thus, if coefficients deviate from

their prior means the other coefficients will tend to deviate in an offsetting way. Taken together,

the dummy variable modifications re-enforces the view that a “no change” forecast is a reasonable

starting point (Sims (1992), Leeper, Sims and Zha (1996)).

The tightness parameter, λ, the s j  factors, and the weights on the dummy observations are

numbers that must be pre-specified by the analyst. Following standard practice we choose λ = 0.1

and set the s j  equal to the standard error from pth-order univariate autoregressons fit to each

series. As in Sims (1992) the zero/one dummy observations are initially scaled by the pre-sample

means of the p initial conditions. A weight of µ1 = 5 is then applied to the m “sum of coefficients”

dummies and a weight of µ2  = 5 is attached to the single “cointegration” dummy.  To investigate

the sensitivity of the results to these choices we also experiment with setting µ1 and/or µ2  to

zero.
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Table 1: RMSE of 6-variable VAR Model Forecasts 1986-1997

Current
Quarter

First
Quarter

Second
Quarter

Current
Year

First
Year

Second
Year

Federal Funds Rate

Model 1 (p=13) 0.24 1.05 1.62 0.72 2.69 4.69

Model 1a (p=7) 0.21 0.90 1.35 0.56 2.08 3.33

Model 2 (p=13) 0.20 0.74 1.08 0.43 1.65 2.99

Model 2a (p=7) 0.16 0.63 0.95 0.39 1.56 2.66

Model 3 (p=13, λ=.1,
µ1=µ2=5)

0.12 0.46 0.77 0.28 1.23 2.09

Model 3a (p=13, λ=.1,
µ1=µ2=0)

0.18 0.84 1.41 0.58 2.30 3.65

Model 3b (p=13, λ=.1,
µ1=5, µ2=0)

0.12 0.47 0.81 0.31 1.35 2.19

Model 3c (p=13, λ=.1,
µ1=0, µ2=5)

0.18 0.85 1.45 0.60 2.33 3.66

Unemployment

Model 1 (p=13) 0.19 0.37 0.55 0.26 0.92 1.43

Model 1a (p=7) 0.18 0.34 0.49 0.23 0.84 1.39

Model 2 (p=13) 0.18 0.36 0.57 0.23 0.97 1.46

Model 2a (p=7) 0.17 0.32 0.48 0.20 0.78 1.22

Model 3 (p=13, λ=.1,
µ1=µ2=5)

0.15 0.27 0.37 0.16 0.58 0.90

Model 3a (p=13, λ=.1,
µ1=µ2=0)

0.16 0.31 0.45 0.21 0.76 1.26

Model 3b (p=13, λ=.1,
µ1=5, µ2=0)

0.15 0.28 0.40 0.16 0.62 0.90

Model 3c (p=13, λ=.1,
µ1=0, µ2=5)

0.17 0.32 0.47 0.22 0.76 1.26



Table 1 (Cntd).

Current
Quarter

First
Quarter

Second
Quarter

Current
Year

First
Year

Second
Year

CPI Inflation

Model 1 (p=13) 1.11 2.02 2.18 0.55 1.67 2.53

Model 1a (p=7) 1.06 2.04 2.18 0.52 1.54 1.55

Model 2 (p=13) 1.03 1.69 1.83 0.44 1.17 1.32

Model 2a (p=7) 1.02 1.67 1.58 0.44 1.07 0.98

Model 3 (p=13, λ=.1,
µ1=µ2=5)

0.93 1.51 1.55 0.41 1.05 1.06

Model 3a (p=13, λ=.1,
µ1=µ2=0)

1.00 1.89 2.04 0.49 1.47 1.47

Model 3b (p=13, λ=.1,
µ1=5, µ2=0)

0.93 1.52 1.55 0.41 1.05 1.05

Model 3c (p=13, λ=.1,
µ1=0, µ2=5)

1.01 1.89 2.04 0.49 1.47 1.48

GDP growth

Model 1 (p=13) 2.82 3.02 2.96 0.95 2.15 2.50

Model 1a (p=7) 2.47 2.48 2.61 0.84 2.05 2.20

Model 2 (p=13) 2.44 2.38 2.50 0.74 1.64 1.92

Model 2a (p=7) 2.23 2.11 2.19 0.71 1.42 1.71

Model 3 (p=13, λ=.1,
µ1=µ2=5)

2.14 2.06 2.11 0.71 1.43 1.59

Model 3a (p=13, λ=.1,
µ1=µ2=0)

2.45 2.60 2.63 0.85 2.10 2.36

Model 3b (p=13, λ=.1,
µ1=5, µ2=0)

2.10 2.00 2.04 0.70 1.40 1.84

Model 3c (p=13, λ=.1,
µ1=0, µ2=5)

2.50 2.63 2.64 0.86 2.17 2.54

Shaded cells indicate the smallest RMSE values.  Model 1 is a VAR specified in levels as in equation (1) with a diffuse prior.  Model 2 is a VAR
specified in first differences as in equation (2) and with a diffuse prior. Model 3 is a VAR specified in levels and using a non-diffuse prior of the
form described in the Appendix.



Chart 1: Funds rate forecasts
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Chart 2: Unemployment forecasts
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Chart 3: GDP growth forecasts
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Chart 4: CPI inflation forecasts
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Chart 5: Funds rate response to policy shock (quarterly)
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Chart 6: Unemployment response to policy shock (quarterly)
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Chart 7: GDP growth response to policy shock (quarterly)
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Chart 8: CPI inflation response to policy shock (quarterly)
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Chart 9: GDP growth response to policy shock (59-91 and 59-97)
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Chart 10: CPI inflation response to policy shock (59-19 and 59-97)

0 2 4 6 8 10 12 14
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

Model 1


