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1 Introduction

Why does output per capita vary so much across countries? This is one of the most important

questions in economics. According to the Penn World Tables, GDP per capita in the U.S.

is more than 30 times larger than GDP per capita in the poorest ten percent of countries

in the world. A large body of research works have found that differences in TFP is the

quantitatively most important factor for the cross-country differences in GDP per capita.1

This raises the question of why poor countries do not use better technologies.

This paper proposes a theory of TFP differences based on cross-country differences in the

barriers to setting up a new business. The theory is supported by strong empirical evidence.

For example, Djankov et. al. (2002) analyze the data on the regulatory cost of setting up a

new business in 85 countries, and find a negative correlation between GDP per capita and

the ratio of entry cost to GDP per capita. Nicoletti and Scarpetta (2003) and (2006) find

that entry barrier is negatively related to TFP in OECD countries. Moreover, Lewis (2004)

provides industry evidence that product market regulation negatively affects productivity in

both rich and poor countries.

Motivated by these empirical works, this paper studies how entry barriers affect technol-

ogy adoption. The model developed in this paper builds on the monopolistic competition

framework with a final good sector and many intermediate goods industries. In each in-

dustry, there is an incumbent and a potential entrant. Both of these two firms make their

technology choice based on adoption costs and compete with each other in Bertrand fashion.

This industry structure is related to Aghion et. al (2006). However, Aghion et. al (2006)

investigates how entry barriers affect the incumbent firm’s technology choice in rich coun-

tries. To analyze the large differences in TFP between rich and poor countries, this paper

deviates from Aghion et. al (2006) mainly in two ways. First, the available technology set

1See for example Klenow and Rodriguez-Clare (1997), Prescott (1998), Hall and Jones (1999). One
exception is Manuelli and Seshadri (2005)
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is continuous, and second, entrants do not operate at the technology frontier without cost.

As a result, the model can generate the negative relationship between entry barriers and

technology adoption, and countries with higher entry barriers are characterized by the use

of less advanced technologies and lower TFP.

Four findings emerge from the model. The first one is that the lack of competition leads

to adoption of less productive technologies. In particular, the paper demonstrates that the

technology adopted in the economy with entry threats is at least as good as the technology

adopted in the economy without entry threats. The second finding is that higher entry

barriers lead to adoption of less productive technologies. The third finding is that the effect

of entry barriers on technology adoption is characterized by threshold effects. In particular,

if entry barriers are below the threshold, a small reduction in entry barriers leads to adoption

of more productive technologies. However, if entry barriers are above the threshold, a small

reduction in entry barriers has no effect on technology adoption. The fourth finding is that

entry barriers could be an quantitatively important reason for the cross-country differences

in TFP and the size of the quantitative effects depends on the demand elasticity. Moreover,

the quantitative effects are bigger when the demand is price inelastic.2

The key economic mechanism underlying these results is that higher entry barriers effec-

tively reduce entry threats and lower entry threats lead to adoption of less productive tech-

nologies. To understand this, it is useful to first consider an economy without the potential

entrants. In this simpler economy, the incumbent’s incentive of adopting better technologies

is to reduce production costs. In the economy with potential entrants, the incumbent has

more incentive to adopt better technologies, since if it adopts a low technology, the potential

entrant will come in and steal the market. The lower the entry barriers are, the better the

technology the incumbent has to adopt in order to prevent entry. However, when the entry

2Although these results are derived from the static model presented in this paper, I have shown in another
paper that all of them still hold in a dynamic version of the model.
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barriers are sufficiently large, the incumbent knows for sure that the potential entrant will

not enter, and therefore adopts the same technology as that in the economy without po-

tential entrants. It follows that entry barriers have no effects on technology adoption when

they are sufficiently large, and have negative effects on technology adoption otherwise. The

idea of entry deterrence in this paper relates to the industrial organization literature that

investigates firm’s strategic behavior. Examples include Fudenberg and Tirole (1984) and

Bulow et. al (1995). However, a major focus of these papers has been on the industry level

instead of the aggregate level.

This paper is related to the literature which examines firms’ incentive of adopting new

technologies.3 It also relates to the literature which offers theory for the cross-country

differences in TFP.4 Among those, the most related ones are Parente and Prescott (1999)

and Herrendorf and Teixeira (2007). These two papers also examine the effects of barriers

to entry on TFP, but they study the entry barriers in the labor market and unions act as

the barrier to the adoption of new technologies. In contrast, this paper studies the entry

barriers in the product market and the regulatory costs of setting up a new business act as

the barrier to the adoption of better technologies. The paper shows that entry barriers in the

product market can also have negative consequences for technology adoption. In addition,

because the entry barrier is modeled as a fixed entry cost to the product market, the model

developed in this paper has the potential to be connected with the data on the entry cost

constructed by Djankov et. al. (2002). Moreover, this paper has implication about the

importance of demand elasticity on the quantitative effect of entry barriers on technology

adoption. In particular, the paper shows that entry barriers are more harmful in countries

with monopolist facing inelastic demand.

3Examples include Krusell and Rios-Rull (1996), Bellettini and Ottaviano (2005), Bridgman et. al (2007),
Acemoglu (2007), Holmes et. al (2008), and Desmet and Parente (2008).

4Examples include Amaral and Quintin (2007), Erosa and Hidalgo (2008), Buera et. al (2008), Guner et
al. (2006), Acemoglu and Robinson (2000), Acemoglu et al. (2002), Holmes and Schmitz (1995), Herrendorf
and Teixeira (2005), and Easterly and Levine (2003).
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The rest of the paper is organized as follows. Section 2 lays out the economic environ-

ment. Section 3 defines the symmetric equilibrium. Section 4 defines the limited competition

economy and characterizes the symmetric equilibrium in this economy. Section 5 character-

izes the symmetric equilibrium defined in section 3. Section 6 assesses the quantitative effects

of entry barriers on technology adoption. Section 7 concludes.

2 Model

The model can be best described as a standard monopolistic competition model with tech-

nology adoption choice. As the standard model, there is a representative household, and

two production sectors: a final good sector and an intermediate goods sector. The inter-

mediate goods sector consists of a continuum of measure 1 of industries and each industry

produces a distinct intermediate good. The new ingredient is that in each industry, there is

an incumbent and a potential entrant and both of them can adopt new technologies from a

continuous set of available technologies.

2.1 Household

There is a representative household with preferences defined over consumption of a single

good c given by:

c1−σ − 1

1− σ
(2.1)

The parameter σ satisfies σ ≥ 0. There is no labor-leisure choice. The representative

household has a time endowment of one. The household owns all firms and hence will

receive all profits.
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2.2 Production

2.2.1 Final Good Production

There are two production sectors: an intermediate goods sector and a final good sector. The

intermediate goods sector consists of a continuum of mass one of industries, each of which

produces a distinct intermediate good. The final good is produced by a representative firm

which combines intermediate goods into the final good via the production function:

y =

(∫ 1

0

x
ε−1
ε

j dj

) ε
ε−1

(2.2)

For now, I assume that the demand for the intermediates is price inelastic, that is 0 < ε < 1.

The case with ε > 1 will be discussed later.5

2.2.2 Intermediate Goods Production

There is a continuum of measure one of industries, each of which produces a distinct in-

termediate x. For reasons of tractability, the environment is symmetric with respect to

intermediates. Hence, I will not specify the industry index unless it is necessary.

In each industry, there is a continuum of technologies available, indexed by their labor

productivity. In particular, each technology is of the form x = Ah, where h is the labor

input, and A ∈ [0, Af ]. Af is the technology frontier. In what follows, I will identify a

technology by its value of A.

Each industry consists of one incumbent, one informal incumbent and one potential

entrant. Each incumbent is endowed with an initial technology A0 where A0 < Af . At

the beginning of the period, the incumbent makes a choice about updating its technology.

The cost of updating from A to A′ is given by φid(A,A′), and is measured in units of the

5Although the qualitative implications are not dependent on whether ε is less than one or greater than one,
the details of the arguments are different in the two cases, and therefore, they must be handled separately.
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final good. The updating cost could differ across countries, and the differences are captured

by the differences in the shift parameter φi. The function d is strictly decreasing in its

first argument, strictly increasing and strictly convex in its second argument, and satisfies

d(A,A) = 0 for all A.

Each informal incumbent can only operate with its endowed technology A, where A < A0.

The informal incumbent can be thought of as street vendors, which operate with very low

technologies.

The potential entrant has to pay a cost κ to enter, where κ is the parameter that indexes

the size of the barriers to entry in different countries, and is also measured in units of

the final good. I assume that κ ≥ 0. This implies that subsidies on entry are excluded.

Conditional on paying κ, the potential entrant then chooses a technology A ∈ [A,Af ] and

incurs a cost of φed(A,A), where d is the same function introduced earlier.6 This implies

that d(A,A) = 0. Comparing with the informal incumbent, the potential entrant can also

use A for free, but paying κ gives the potential entrant a right to adopt a technology better

than A.7 φi and φe could be different and the difference reflects the difference in the adoption

cost of the incumbent and the potential entrant. For example, if the new technology needs

a lot of reorganization, the potential entrant will have a lower adoption cost and φe < φi.

But if experience is crucial in adopting the new technology, the incumbent will have a lower

adoption cost and φi < φe.

2.3 Timing

In a given industry, the players are the incumbent, the informal incumbent and the potential

entrant. They play a four-stage game. In the first stage, the incumbent chooses which

6The parameter φe is again a shift parameter that could vary across countries.
7The first argument in the adoption cost function for the potential entrant represents an obsolete technol-

ogy that has a zero adoption cost. All the results in this paper will not change if this technology is different
from A.
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technology to upgrade to. In the second stage, the potential entrant decides whether to

enter, and if so, its level of technology. If the potential entrant does not enter, then in

the third stage, the incumbent and the informal incumbent play a Bertrand game. If the

potential entrant does enter, then, the potential entrant, the informal incumbent and the

incumbent play a Bertrand game in the third stage. In the fourth stage, production and

consumption take place and the game ends.

3 Equilibrium

This section defines the decentralized equilibrium for the economy just described. The

equilibrium concept is symmetric sub-game perfect where all incumbents behave identically,

all informal incumbent behave identically and all potential entrants behave identically. This

equilibrium has the following features. The consumer behaves competitively in both the final

output and the labor market, and the final good producer behaves competitively in both the

final good market and the intermediate goods market. Intermediate goods producers behave

competitively in the labor market and play the four-stage game described earlier in the

intermediate goods market. Since each industry is small, players in each industry play the

four-stage game taking as given the demand for the output of their industry, the wage in the

competitive labor market and the price of the final good.

In what follows, I denote the wage rate by w and the price of intermediate goods by p.

The price of the final good is normalized to 1. Since the equilibrium is sub-game perfect, it

is solved by backward induction.
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3.1 Household Sector

The household sector is standard. Taking prices and profits as given, the household maxi-

mizes utility subject to its budget constraint:

max
c

c1−σ − 1

1− σ
s.t. c = w + π,

where π is the total profits.

3.2 Final Good Sector

The final good producer maximizes profit taking as given the prices of inputs (pj)
1
j=0 and

the price of the final good which is normalized to 1.

max
xj

(∫ 1

0

x
ε−1
ε

j dj

) ε
ε−1

−
∫ 1

0

pjxjdj

The solution to this problem gives the individual demand function for each intermediate

j:

xj = Bp−εj , (3.1)

where B =
(∫ 1

0
x
ε−1
ε

j dj

) ε
ε−1

.

3.2.1 Intermediate Goods Sector

In each industry, the incumbent, the informal incumbent and the potential entrant play the

game described earlier, taking as given the demand for their product, the wage w and the

price of the final good.

Stage 3: In stage 3, the incumbent’s technology Ai, and the potential entrant’s entry
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decision and technology Ae have all been determined. If there is no entry in stage 2, the

incumbent and the informal incumbent play a two firm Bertrand game. In a two firm

Bertrand game, the firm with lower marginal cost will capture the entire market and charge

a price which is no greater than the higher marginal cost. Since A0 > A, the incumbent

necessarily has a better technology than the informal incumbent, and therefore charges a

price no greater than the informal incumbent’s marginal cost w
A

and solves the following

problem:

max
p
Bp−ε(p− w

Ai
)

s.t. p ≤ w

A

The fact that the demand is inelastic implies that the incumbent wants to charge a price as

high as possible, or equivalently, produce as little as possible, hence,

p =
w

A
(3.2)

If, instead, the potential entrant has entered, the incumbent, the informal incumbent and

the potential entrant play a three firm Bertrand Game.8 Similar to the two firm Bertrand

game, in a three firm Bertrand game, the firm with the lowest marginal cost will capture the

entire market and charge a price which is no greater than the second lowest marginal cost.

If the potential entrant does enter, it must have a better technology than the incumbent

and the informal incumbent, since otherwise, the potential entrant cannot make any profit

in stage 3 to cover the entry cost in stage 2, and therefore, would never have entered. Since

the incumbent has a better technology than the informal incumbent, conditional upon entry,

the potential entrant charges a price no greater than the incumbent’s marginal cost w
Ai

and

8If the incumbent and the potential entrant have the same technology, I assume that the incumbent will
capture all the market demand.
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solves the following problem in stage 3:

max
p
Bp−ε(p− w

Ae
)

s.t. p ≤ w

Ai

Since the demand is price inelastic, the price constraint again holds with equality, i.e.,

p =
w

Ai
(3.3)

Stage 2: In the second stage, the potential entrant makes its entry decision. If the profit the

potential entrant can make after entry is higher than the entry cost, the potential entrant will

enter, otherwise, it will not enter. Conditional upon entry, the potential entrant maximizes

profit taking as given the demand function, the wage w, the price of the final good and the

incumbent’s technology Ai. Therefore, the potential entrant’s problem in stage 2 is:

max
Ae,p

[Bp−ε(p− w

Ae
)− φed(A,Ae)]

s.t. p =
w

Ai

A ≤ Ae ≤ Af

It is easy to show that this maximization problem is strictly concave, and therefore has a

unique solution. Let πe(Ai, B, w) be the value of this maximization problem. The potential

entrant makes the entry decision by comparing πe(Ai, B, w) and κ. If πe(Ai, B, w) ≤ κ, the

potential entrant will not enter, and if πe(Ai, B, w) > κ, the potential entrant will enter. For

future reference, it is easy to show that πe is decreasing in Ai. To see this, note that the

price p the potential entrant charges is w
Ai

and inelastic demand implies that πe(Ai, B, w) is

increasing p, hence decreasing in Ai.

Stage 1 : Because πe(Ai, B, w) is decreasing in Ai, the incumbent can alter its choice
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of Ai to influence the potential entrant’s entry decision. In particular, in order to end up

with positive profit, the incumbent must choose Ai, s.t πe(Ai, B, w) − κ ≤ 0. Otherwise

the potential entrant will enter and the incumbent will have zero sales. Let πB be the

incumbent’s maximum profit when it chooses Ai so as to prevent entry. Then, πB is given

by:

πB = max
Ai,p

Bp−ε(p− w

Ai
)− φid(A0, A

i)

s.t. πe(Ai, B, w)− κ ≤ 0

p =
w

A

A0 ≤ Ai ≤ Af

If πB ≥ 0, then it is optimal for the incumbent to update its technology, in which case, the

potential entrant does not enter, and I will say entry is “blocked”.9 Otherwise, it is not

profitable for the incumbent to update its technology, in which case, the incumbent have

zero sales and the potential entrant enters, and I will say entry is not “blocked”.

Definition 1: (Symmetric Equilibrium) A symmetric, sub-game perfect equilibrium is a

set of prices (w, p, pe, pi), allocations (c, x), technologies (Ai, Ae) and entry decision E such

that:

(i) E solves the representative entrant’s entry problem. In particular, E = 1 reflects entry

and E = 0 reflects no entry;

(ii) When E = 0, (Ai, pi) solves the incumbent’s problem, and p = pi;

(iii) When E = 1, (Ae, pe) solves the entrant’s problem, and p = pe.

(iv) c solves the representative consumer’s problem;

(v) x solves the final good producer’s problem;

(vi) Markets clear.

9It could also be the case that entry is blocked even if the incumbent does not update its technology.
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There are two types of symmetric equilibria: equilibrium with entry and equilibrium

without entry. From now on, I refer to them as the symmetric equilibrium without entry,

and the symmetric equilibrium with entry.

4 The Limited Competition Economy

To understand the results that follow it is useful to first consider a simpler economy which

is the economy just described except without potential entrants. This economy will serve

as a useful benchmark. In this economy, the incumbent only faces competition in their own

market from the informal incumbent. Moreover, because the informal incumbent can only

use an inferior technology, this competition is rather limited. For this reason, I will refer to

this as the limited competition economy.

In the limited competition economy, the incumbent solves the following problem:

max
A,p

Bp−ε(p− w

A
)− φid(A0, A)

s.t. p ≤ w

A

A0 ≤ A ≤ Af

As noted earlier, the incumbent will necessarily set p = w
A

. It is easy to show that the

incumbent’s objective function is strictly concave in A for given values of B and w, hence,

if the solution is interior, it is unique and determined by the first order condition.

Substituting p = w
A

into the incumbent’s first order condition for A yields:

BAεw1−ε

(A)2
− φi∂d(A0, A)

∂A
= 0 (4.1)

In a symmetric equilibrium, xj = A for all j. This implies that B = A. Substituting xj = A

for all j, B = A and p = w
A

into the final good producer’s first order condition gives w = A.
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Substituting w = A and B = A into (4.1) yields:

1− A

A
φi
∂d(A0, A)

∂A
= 0 (4.2)

Let ALC be the incumbent’s technology in the symmetric equilibrium of the limited

competition economy. Since d is strictly convex in A, the left of (4.2) is strictly decreasing

in A, and crosses zero at most once. It follows that if ALC is interior, it is unique and

determined by (4.2), otherwise, it is either A0 or Af . The incumbent’s profit can then by

derived, which is ALC−A−φid(A0, A
LC). For the existence of the symmetric equilibrium in

the limited competition economy, this profit must be nonnegative. In what follows, I assume

that this is always true.

If ALC = Af , then, the economy with limited competition will adopt the frontier tech-

nology. Since my focus is on how the lack of competition can retard technology adoption,

this case is of limited interest, and in what follows, I will assume that ALC < Af .

For future reference, note that when the entry cost is infinite in the economy with po-

tential entrants, the incumbent knows for sure that the potential entrant will not enter, and

can behave as if there are no potential entrants, hence the economy with infinite entry cost

has the same equilibrium as the limited competition economy.

5 Symmetric Equilibrium

This section analyze the symmetric equilibrium defined earlier. The first part of this section

focuses on the symmetric equilibrium without entry, and the second part focuses on the

symmetric equilibrium with entry.
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5.1 Symmetric Equilibrium Without Entry

5.1.1 Existence and Uniqueness

This section establishes the existence and uniqueness of the symmetric equilibrium without

entry as a function of the parameters φi, φe and κ. In general, one would not expect such

an equilibrium to exist for all combinations of these three parameters. For example, if φi is

infinity, and φe and κ are both 0, the potential entrants will enter for sure and a symmetric

equilibrium without entry cannot exist. However it is easy to show that such an equilibrium

does exist for a large set of φi, φe and κ. In particular, it is intuitive that such an equilibrium

will exist for a given φi if φe and κ are sufficiently large. To see this, note that given φi and

κ, if φe is sufficiently large, the potential entrant needs to pay a higher cost to adopt any

technology, making it easier for the incumbent to block entry. Similarly, given φi and φe, if

κ is sufficiently big, the potential entrant needs to pay a higher cost to overcome entry, also

making it easier for the incumbent to block entry. This analysis is formalized in Proposition

1.

Proposition 1: Holding φi constant, if φe and κ are sufficiently large,10 the symmetric

equilibrium without entry exists and is unique.

Proof: See Appendix.

To guarantee existence, it is not necessary to have both κ and φe to be large. In fact,

as long as one of them is large enough, the symmetric equilibrium without entry exists. For

example, for a given φi and φe = ∞, the symmetric equilibrium without entry exists even

when κ = 0. Similarly, for a given φi and κ =∞, the symmetric equilibrium without entry

exists even when φe = 0. This implies that the set of κ that guarantees existence depends on

the value of φi and φe, and the set of φe that guarantees existence depends on the value of

φi and κ. In particular, the proof of Proposition 1 shows that for a given pair of φi and φe,

10Please see the cutoff value of φe and κ in the proof of Proposition 1.
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there exists a κC such that when κ is greater than κC
11, the symmetric equilibrium without

entry exists.

Although it is easy to establish existence, it takes some work to establish uniqueness.

The issue comes from the strategic complementarity between the technology choices of the

incumbents. To see it, note that the potential entrant j′s profit πej (A
i
j, B, w) is decreasing

in the incumbent j′s technology Aij, and increasing in B, where B =
(∫ 1

0
x
ε−1
ε

j dj

) ε
ε−1

is the

constant in the demand function. Let Ai−j be the technology adopted by the incumbents in

all of the other industries. It follows that πej (A
i
j, B, w) is also increasing in Ai−j, since the

incumbent j′s demand Bp−εj is increasing in Ai−j. More importantly, holding Ai−j constant, in

an symmetric equilibrium without entry, the incumbent j will upgrade to a technology which

equalizes the potential entrant j′s profit and the entry cost. Hence as Ai−j increases, it takes

a higher A for the incumbent j to block entry. In other words, if everyone else has adopted

a higher A then it is also necessary for the incumbent j to adopt a higher A. This implies

that the technology adoption choices among incumbents are strategic complements. Cooper

and John (1998) then suggests the possibility of multiple symmetric equilibria without entry.

However, if Aij is not very responsive to the change in Ai−j, the strategic effects will not be

sufficiently strong to produce multiple equilibria. This is guaranteed by large enough φe.12

The idea behind this is intuitive. Increases in φe make it more costly for the potential entrant

to adopt a better technology. This retards the response of the potential entrant j′s choice of

technology to the changes in Ai−j, and therefore, retards the response of the incumbent j′s

choice of technology to the changes in Ai−j. Hence, if φe is sufficiently large, Aij is not very

responsive to the change in Ai−j, and the symmetric equilibrium without entry is unique. In

what follows, I will assume that existence and uniqueness hold.

Corollary 1: If φe ≥ φi, there exists a symmetric equilibrium without entry for any

11Please refer to the proof of Proposition 1 for the expression of κC .
12it is not necessary to have φe > φi to guarantee the uniqueness. In fact, even when φi = φe, the

symmetric equilibrium without entry is unique in all the examples provided in section 6.
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κ ≥ 0, and there does not exist a symmetric equilibrium with entry for any κ ≥ 0.

Proof: See Appendix.

To understand Corollary 1, note that when φe ≥ φi, the incumbent can always make

greater profit than the potential entrant. Because the potential entrant faces a higher adop-

tion cost for any technology and also needs to pay the entry cost, Hence, a symmetric

equilibrium with entry cannot exist, and in contrast, a symmetric equilibrium without entry

exists.

5.1.2 Characterizing the Symmetric Equilibrium Without Entry

This subsection analyzes some properties of the symmetric equilibrium without entry. Let

ANE be the technology adopted by the incumbent in the symmetric equilibrium without

entry. The following proposition summarizes several properties of ANE holding φi and φe

constant.

Proposition 2: There exists κLC
13, s.t if κ ≥ κLC , ANE = ALC , and if κC ≤ κ < κLC ,

ANE > ALC .

Proof: See Appendix.

Proposition 2 describes the effects of entry barriers on the technology adopted in the

symmetric equilibrium without entry. κLC in this Proposition is the level of entry barriers

such that when the incumbent adopts ALC , the potential entrant is indifferent between to

enter and not to enter. As noted in section 4, if the entry cost is infinite, the incumbent does

not need to worry about the existence of the potential entrant, and therefore will upgrade to

ALC . By continuity, this is true for sufficiently large entry costs, and κLC is the cutoff value.

However, if the entry cost is sufficiently low, the incumbent has to upgrade to a technology

better than ALC in order to block entry, since otherwise, the potential entrant will enter and

steal the market. This implies that even if there is no entry, the entry threat can still lead

13Please refer to the proof Lemma 1 in the appendix for the expression of κLC .
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to a better technology in the economy,

In the limited competition economy, the incumbent experiences relatively little competi-

tion since the informal incumbent’s technology is low and fixed. But, when there are potential

entrants, competition becomes intense. Proposition 2 has proved that the technology in the

economy with potential entrants is at least as good as that in the economy without potential

entrants. This reflects one of the key features of the model: the lack of competition leads to

adoption of less productive technologies.

The next proposition summarizes the comparative statics of the parameters φi, φe and κ

on technology adopted in the symmetric equilibrium without entry.

Proposition 3: (Comparative Statics) If κ ≥ κLC , ANE is decreasing in φi, and does

not depend on κ and φe. If κC ≤ κ < κLC , ANE is decreasing in φe and κ, and does not

depend on φi.

Proof: See Appendix.

The intuition behind proposition 3 is straightforward. To begin with, note that when

κ ≥ κLC , ANE = ALC , in which case κ and φe are irrelevant for the choice of technology.

However, larger φi does decrease ANE, since larger φe implies higher adoption costs. When

κC ≤ κ < κLC , as φe increases, the potential entrant’s profit decreases, hence, the incumbent

can block entry by upgrading to a less productive technology. Similarly, as κ increases, the

potential entrant’s net profit of entry decreases, hence the incumbent can also block entry

by upgrading to a less productive technology.

It may seem puzzling that φi has such different effects on the technology adopted when

κ is in different ranges. However, the intuition behind this result is simple. To see it, note

that when making the choice of technology, the incumbent considers both the size of the

adoption cost and the threat of entry. When κ ≥ κLC , the incumbent does not need to

worry about the entry threat, hence it chooses the technology solely depending upon the

size of the adoption cost. But when 0 ≤ κ < κLC , the incumbent must take into account
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the fact that the potential entrant may enter, and hence, upgrades to a larger A, thereby

incurring a higher cost. In particular, to maximize profit, the incumbent upgrades to the

lowest possible technology to block entry, which is the technology that gives the potential

entrant zero value of entry. This technology is solely determined by the potential entrant’s

maximization problem, and therefore does not depend on φi.

Proposition 3 implies that the relation between entry barriers and technology adoption is

characterized by threshold effects. This follows from the fact that ANE does not depend on κ

when κ ≥ κLC and is decreasing in κ when κC ≤ κ ≤ κLC . This finding has implications for

empirical studies, since they often impose a linear relationship. This finding also has policy

implications. In countries with entry barriers below the threshold κLC , a small reduction

in entry barriers leads to adoption of more productive technologies. But in countries with

entry barriers above the threshold, a small reduction in the entry barriers has no effect on

technology adoption. Observing such an outcome, one might be tempted to conclude that

reducing barriers is not beneficial for technology adoption. But in fact, the correct conclusion

may simply be that entry barriers have not been reduced enough.

5.1.3 Welfare in the Symmetric Equilibrium without Entry

It is also of interest to examine the effects of the entry cost κ on welfare. In this static

economy, consumption is one appropriate measure of welfare. When κ ≥ κLC , consumption

equals ALC−φid(A0, A
LC) in the symmetric equilibrium without entry, and does not change

with the entry cost.

When κC ≤ κ < κLC , consumption c equals ANE − φid(A0, A
NE). From Proposition 3,

ANE is decreasing in κ. It follows that consumption is decreasing in κ if c is increasing in

ANE, and is increasing in κ if c is decreasing in ANE. The derivative of c with respect to

ANE is:

∂c

∂ANE
= 1− φi∂d(A0, A

NE)

∂ANE
(5.1)
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Since d is strictly convex in ANE, ∂c
∂ANE

is strictly decreasing in ANE. Let κW be the value

of κ which induces the ANE such that ∂c
∂ANE

= 0. ∂ANE

∂κ
< 0 and ∂2c

∂(ANE)2
< 0 then imply

∂c
∂ANE

> 0 if κ > κW , and ∂c
∂ANE

< 0 if κ < κW . Comparing (4.2) and (5.1), it is easy

to see that ∂c
∂ANE

|ANE=ALC > 0, hence, κW is smaller than κLC . If κW is also smaller than

κC , consumption is always increasing in ANE, and therefore is always decreasing in κ in

the symmetric equilibrium without entry. In this case, reducing barriers to entry increases

welfare, since more productive technologies are used.

However, if κW > κC , consumption is increasing in ANE when κ ∈ [κW , κLC ], and

is decreasing in ANE when κ ∈ [κC , κW ). Hence, consumption is decreasing in κ when

κ ∈ [κW , κLC ], and is increasing in κ when κ ∈ [κC , κW ). The intuition behind this is simple.

When κ ∈ [κW , κLC ], as κ decreases, the incumbent adopts a better technology, hence output

increases and consumption increases. But, when κ ∈ [κC , κW ), the entry cost is so low that

as κ decreases, to block entry, the incumbent has to adopt a technology so costly that the

increase in output by using this technology is smaller than the increase in the cost of adopting

this technology, hence consumption decreases. Note that cost to technology adoption can be

viewed as investment in the current model, and therefore this result can also be interpreted

as when κ ∈ [κC , κW ), to compete with its rival, the incumbent has to overinvest.

In the context of this model, taking all costs as given, social planner will always choose

a technology to maximize consumption. The above results then imply that the equilibrium

technology could be either less than the socially optimal level, or greater than or equal to

the socially optimal level.14 This happens because the incumbent’s objective, blocking entry

so as to maximize profit, is different from the social planner. In particular, when the entry

cost is small enough, the incumbent even over upgrades to block entry.

14This has the same spirit as Mankiw and Whinston (1986), which demonstrates that when there are
fixed set-up costs upon entry, imperfect competition and business-stealing effect, the number of firms in a
free-entry equilibrium could be greater than, less than or equal to the socially optimal level.
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5.2 Symmetric Equilibrium With Entry

The symmetric equilibrium without entry exists if φe and κ are sufficiently large. In contrast,

a symmetric equilibrium with entry exists if φe and κ are small. For example, if φe and κ

are both 0, the potential entrant will enter and a symmetric equilibrium with entry does

exist. In fact, Proposition 4 proves that when φe and κ are sufficiently small, the symmetric

equilibrium with entry exists and is unique. Because as φe or κ becomes smaller, it is more

profitable for the potential entrant to enter, or equivalently, less profitable for the incumbent

to block entry. The uniqueness of this equilibrium is guaranteed by the convexity of the cost

functions.

Proposition 4: Holding φi constant, If φe and κ are sufficiently small, the symmetric

equilibrium with entry exists and is unique.

Proof: See appendix.

In the symmetric equilibrium with entry, it is not profitable for the incumbent to block

entry, and therefore, the incumbent does not update its technology and does not produce.

Let AE be the technology adopted by the potential entrants in the symmetric equilibrium

with entry. Proposition 5 summarizes the comparative static in this equilibrium.

Proposition 5: AE is decreasing in φe, and does not depend on κ and φi.

Proof: See Appendix.

The intuition behind Proposition 5 is simple. Bigger φe increases the potential entrant’s

adoption cost, hence leads to adoption of less productive technology. Conditional on entry,

the entry cost is treated as sunk cost by the potential entrant, this is why it has no effect

on the potential entrant’s choice of technology. Once the incumbent’s monopoly power is

broken, φi is irrelevant, hence it does not affect AE. In the symmetric equilibrium with entry,

consumption equals AE−φed(A,AE)−κ. Since AE does not depend on κ, it is obvious that

welfare is decreasing in κ. This is because more resources are used to overcome the barriers

to entry.
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Since the existence of the symmetric equilibria depends on the size of the entry barriers,

a natural question to ask is whether the type of equilibrium switches when the entry cost

changes while all the other parameters are constant. It turns out that by choosing different

pair of φi and φe, varying κ can produce three cases. In the first case, only the symmetric

equilibrium without entry exists. This happens when φe is large enough relative to φi. In

particular, Corollary 1 proves that as long as φe ≥ φi, the symmetric equilibrium with entry

does not exist and the symmetric equilibrium without entry exists for any κ.

In the second case, the symmetric equilibrium switches from one to another while κ

varies, but there is a range of κ in which no symmetric equilibrium exists. In the third

case, not only the symmetric equilibrium switches, but also they can exist at the same time

in some range of κ. This happens because of the general equilibrium effects in the model.

To see it, recall that the price the potential entrant charges is the ratio between the wage

rate and the incumbent’s technology, and it is easy to derive that the wage rate is A in the

symmetric equilibrium without entry and is A0 in the symmetric equilibrium with entry. It

follows that if there is entry in all the other industries, the potential entrant j can charge a

price of pej = w
Aij

= A0

Aij
, and if entry can be blocked in all the other industries, the potential

entrant j can charge a price of pej = w
Aij

= A
Aij

. Hence, for any Aij, the potential entrant j

can charge a higher price if there is entry in all the other industries, and therefore makes

higher profits in this case. This implies that when there is entry in all the other industries,

it is more profitable for the potential entrant j to enter as well. Similarly, when entry can

be blocked in all the other industries, it is also more profitable for the incumbent j to block

entry. This complementarity between the potential entrants as well as the complementarity

between the incumbents may produces the coexistence of the symmetric equilibrium with

entry and the symmetric equilibrium without entry for some combinations of φi and φe.
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6 Numerical Examples

Two natural questions emerge from the analysis in section 5. One is how large is the quanti-

tative effects of entry barriers on technology adoption, and the other one is how the primitives

in the model affect the quantitative effects. To explore those two questions, I perform several

numerical experiments in this section.

6.1 Quantitative Effects of Entry Barriers on Technology Adop-

tion

To do the experiments, functional forms and parameter values need to be specified. I nor-

malize the technology frontier Af to 1. Following Parente and Prescott (1994), I pick

d(A,A′) = (A′)γ−Aγ
γ(Af )γ−1 . This cost function is derived from d(A,A′) =

∫ A′
A

( s
Af

)γ−1ds, which

implies that it takes few resources to update from A to A′ as the technology frontier in-

creases. As a benchmark, I set γ = 2, A0 = 20%Af , and A = 10%A0. Following Parente and

Prescott (1999), ε is set to be 0.9. The sensitivity test on these parameters are performed

later. I set φi = φe and then calibrate this value so that when the entry cost κ is 0, the

technology adopted is 90% of the frontier technology. Note that from Corollary 1, when

φi = φe, the symmetric equilibrium with entry does not exist and the symmetric equilibrium

without entry exists for all κ ≥ 0. Hence, κC is equal to 0 in all the experiments performed

in this section.15

Figure 1 illustrates how the technology adopted changes with the entry cost to GDP

ratio in the benchmark experiment. Based on figure 1, the relationship of entry cost and

technology adopted described in Proposition 2 and Proposition 3 also holds when replacing

the entry cost by entry cost to GDP ratio. In particular, when the entry cost to GDP ratio is

bigger than 0.29, the technology adopted by the incumbent does not change with entry cost,

15The symmetric equilibrium without entry is unique for all the experiments performed in this section.
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Figure 1: Benchmark Experiment

and when the entry cost to GDP ratio is smaller than 0.29, the technology adopted by the

incumbent is decreasing in the entry cost. In this example, κW = 0, implying that welfare

is always decreasing in the entry cost. Figure 1 also illustrates the size of the quantitative

effects of entry barriers on TFP. Based on the figure, if the relative entry cost is reduced by

6 times from the threshold, TFP will increase by 2 times. Panel A of table III in Djankov

et. al (2002) shows that the entry cost varies from 1.7% of GDP per capita in the U.S to 5

times of GDP per capita in Dominican Republic, and 6 times of difference in the entry cost

to GDP ratio is not large at all. For example, the entry cost to GDP ratio is about 15 times

larger in Argentina and is about 50 times larger in India than that in the U.S.

6.2 The Effects of the Primitives

This section explores how the primitives in the model affect the size of the quantitative

effects of entry barriers on the technology adopted. To begin with, A0 has little impact on
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the quantitative effects. To see this, note that when κC ≤ κ < κLC , A0 does not affect the

equilibrium technology ANE, since A0 only affects the incumbent’s adoption cost, and ANE

does not depend on the incumbent’s adoption cost.16 When κ ≥ κLC , A0 may affect ANE,

which equals ALC in this case. However, the function d used in this section implies that the

marginal cost of upgrading does not depend on A0, hence A0 does not affect ALC as long as

ALC is interior, which is true for all the examples in this section.

I now turn to analyze how the demand elasticity ε affects the quantitative effects of entry

barriers on technology adoption. Thus far the analysis has assumed that 0 < ε < 1, i.e.,

the demand for intermediates is price inelastic. In fact, under some reasonable conditions,

the theoretical findings in section 5 also hold when the demand is price elastic. Hence,

the numerical experiments here will cover both the elastic case and the inelastic case. In

particular, I perform the following experiments. I set values for A0, A and γ to be the same

values as those in the benchmark experiment. I then choose different values for ε, and for

each ε, I set φi = φe and recalibrate them so that when κ = 0, the technology adopted is

90% of the frontier technology.

Figure 2 illustrates the results from the experiments on ε. Panel (a) shows the cases

when 0 < ε < 1, while panel (b) shows the cases when ε > 1. Three patterns emerge from

figure 2. First, the size of the quantitative effects is smaller when the demand is price elastic.

The intuition behind this is simple. The incumbent faces two types of competition. One is

from the potential entrant in the same industry and the other is from the producers in other

industries. If the intermediates are good substitutes, the incumbent faces intense competition

from the producers in other industries, and therefore will adopt a better technology even

when the entry barriers are high. As a result, the effects of entry barriers on technology

adoption is much smaller when the demand is price elastic. This implies that entry barriers

are more harmful in countries with monopolists facing inelastic demand.

16This is similar to the argument that φi does not affect ANE when κC ≤ κ < κLC .
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From panel (b) of figure 2, when the demand is price elastic, an increase in ε leads to an

increase in ALC and a decrease in κLC . Although only two curves are shown in figure 2(b), it

turns out that when ε is greater than 1.5, κLC = 0 and ALC = 0.9. The intuition behind this

pattern is similar to the intuition behind the first pattern. As ε increases, competition among

incumbents becomes more intense, hence, ALC increases. The increase in ALC then leads to

the decrease in κLC , since as ALC increases, the incumbent can block entry by adopting ALC

even if entry barrier is slightly lower. To see this, recall that κLC is the level of entry barriers

such that when the incumbent adopts ALC , the potential entrant is indifferent between to

enter and not to enter.

The third pattern is that when the demand is inelastic, as ε increases, ALC decreases,

κLC increases, and ANE increases for any given entry cost when 0 ≤ κ < κLC . The intuition

behind this is provided as follows. To begin with, when ε increases, φi increases, and therefore

ALC decreases. Although the decrease in ALC is one reason for the increase in κLC , it is

not the main reason. In fact, the main reason is that increases in ε lead to increases in

the potential entrant’s profit after entry. To see this, recall that the potential entrant must

charge a price less than what the incumbent charges if it were to enter. As ε increases, the

demand becomes more elastic, which implies that when the potential entrant undercut the

incumbent’s price, the demand responds more to this reduction in price, and therefore the

potential entrant’s revenue increases, or equivalently, the potential entrant’s profit increases.

It follows that κLC needs to be larger so that when κ ≥ κLC , the incumbent can block entry

by adopting ALC . Moreover, when 0 ≤ κ < κLC , as ε increases, the incumbent has to adopt

a higher A to block entry at any κ, since the potential entrant’s profit is increasing in ε and

decreasing in the incumbent’s technology.

Figure 3 illustrates how A affects the quantitative effects of entry barriers on technology

adoption. Similar to the experiments on ε, as A changes, I recalibrate φi and φe so that

when κ = 0, the technology adopted is 90% of the frontier technology.
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Figure 2: Effects of ε

(a) Inelastic

(b) Elastic
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Figure 3: Effects of A

Figure 3 shows that when A increases, ANE increases for any given entry cost, and κLC

decreases. This pattern is caused by the general equilibrium effects. Recall that in the

symmetric equilibrium without entry, the wage rate equals A. Hence, as A increases, it is

more costly to hire labor. It follows that when κ ≥ κLC , the incumbent substitutes labor

with a better technology, and therefore ALC increases. Moreover, when 0 ≤ κ < κLC ,

the potential entrant substitutes labor with a better technology, and therefore forces the

incumbent to adopt a better technology to block entry. The decrease in κLC is again caused

the increase in ALC .

The sensitivity test for γ is illustrated in figure 4. Similar to the earlier experiments,

as γ changes, I recalibrate φi and φe. Figure 4 shows that γ has no effects on ANE when

0 ≤ κ < κLC . This happens because γ affects the incumbents’ and the potential entrants’

adoption costs in the same way. However, an increase in γ does lead to an increase in ALC

and a decrease in κLC . To understand this, note that as γ increases, function d becomes less
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Figure 4: Effects of γ

convex, and therefore at the margin, it is less costly for the incumbent to adopt a better

technology in the limited competition economy, As noted before, the decrease in κLC is due

to the increase in ALC .

To summarize, the numerical examples show that the quantitative effects of entry barriers

on technology adoption could be large, and the demand elasticity of the intermediates is the

key parameter for the size of this quantitative effects. In particular, the quantitative effects

are large when the demand is inelastic and are small when the demand is elastic.

7 Conclusion

This paper has developed a new model to link barriers to entry and technology adoption.

In the model, if entry barriers are infinitely large, a small reduction in the barrier will not

change the firm’s incentive for technology adoption. However, if the entry barriers are below

the threshold, a small reduction in the barrier will force the incumbent to adopt a better
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technology, because the incumbent fears of being replaced by a new firm and losing its

monopoly power. Simple calculations based on the model suggests that entry barriers could

be a quantitatively important reason for the cross-country differences in TFP and the size

of the quantitative effect depends on the demand elasticity. Moreover, the calculations have

shown that entry barriers are more harmful in the economy with monopolists facing inelastic

demand.

This paper has clearly presented the mechanism through which barriers to entry reduce

the technology adopted. But, more serious works are needed to evaluate the quantitative

effect of these barriers on productivity. Except the demand elasticity, the quantitative effects

of entry barriers on technology adoption may also depend on the development of financial

market. In particular, the quantitative effect could be manifested by the financial market

imperfection, since it is hard to finance the large entry cost in the economy with less developed

financial market.17 Moreover, since different industries face different size of set-up cost, one

can imagine that barriers to entry may have uneven effects on different industries. These

subjects are left for future research.

17This is related to Erosa and Hidalgo (2008), which find that there are large cross-industry productivity
differentials in poor countries and the share of employment in the sectors that need more external financing
is positively correlated with the financial market development.
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A Proof of Lemma 1

Lemma 1: For any φi and φe, conditional upon the existence of the symmetric equilibrium

without entry, there exists κLC , s.t if κ ≥ κLC , ANE = ALC , and if κ < κLC , ANE > ALC .18

Proof: ANE in Lemma 1 describes the technology adopted by the incumbent in the

symmetric equilibrium without entry. κLC in Lemma 1 has the form of κLC(φi, φe) =

max[A1−ε(ALC)ε(1−ALC

Aej
)−φed(A,Aej), 0], whereAej is determined by A1−ε(ALC)1+ε

(Aej)
2 −φe ∂d(A,A

e
j)

∂Aej
=

0.

This lemma can be proved as follows. Step 1 proves that when κ ≥ κLC , the symmetric

equilibrium without entry exists and is unique. Moreover, the incumbent adopts ALC in

the this equilibrium. Step 2 shows that when κ < κLC , the incumbent adopts a technology

better than ALC in the symmetric equilibrium without entry conditional upon existence.

Step 1: As noted in section 4, when the entry cost is infinity, the incumbent adopts the

same technology in the symmetric equilibrium without entry as in the symmetric equilibrium

of the limited competition economy. By continuity, this is true as long as κ is large enough so

that entry can be blocked when the incumbent upgrade to ALC . In particular, what follows

shows that this is true as long as κ ≥ κLC .

Suppose all incumbents upgrade to ALC in the symmetric equilibrium without entry. It

follows that B = ALC and w = A. Conditional upon entry, the potential entrant j solves

the following problem:

πej = max
Aej ,p

e
j

B(pej)
−ε(pej −

w

Aej
)− φed(A,Aej)

s.t. pej ≤
w

ALC

0 ≤ Aej ≤ Af

The first order condition for Aej is given by:

w
B(pej)

−ε

(Aej)
2
− φe

∂d(A,Aej)

∂Aej
= 0 (A.1)

Inelastic demand implies that the price constraint binds. Substituting pej = w
ALC

, B = ALC

18When φi is sufficiently small or φe is sufficiently large, κLC may be zero. In this case, ANE is always
equal to ALC .
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and w = A into the first order condition yields:

A1−ε(ALC)1+ε

(Aej)
2

− φe
∂d(A,Aej)

∂Aej
= 0 (A.2)

The potential entrant’s net profit is then given by

πej − κ = A1−ε(ALC)ε(1− ALC

Aej
)− φed(A,Aej)− κ (A.3)

where Aej is determined by the above first order condition. When κ ≥ κLC , it is easy to

derive πej − κ ≤ πej − κLC ≤ 0.

This proves that when κ ≥ κLC , the incumbent can block entry when upgrading to ALC ,

and therefore adopts ALC in the symmetric equilibrium without entry. The uniqueness of

this equilibrium is guaranteed by the uniqueness of ALC .

Step 2: This part shows that when κ < κLC , the incumbent chooses a technology better

than ALC in the symmetric equilibrium without entry. This is proved by contradiction.

When κ < κLC , it is easy to show πej − κ > πej − κLC = 0. Hence, entry can not be

blocked when the incumbent upgrades to ALC . Suppose the symmetric equilibrium without

entry exists when κ < κLC and the incumbent adopts Ai < ALC in such an equilibrium. It

follows that B = Ai, w = A and πej (A
i, Ai, w) ≤ κ.

The incumbent j solves:

πBj = max
Aij ,p

i
j

[pijB(pij)
−ε − w

B(pij)
−ε

Aij
− φid(A0, A

i
j)]

s.t. πej (A
i
j, B, w)− κ ≤ 0

pij =
w

A

The derivative of the incumbent’s objective function with respect to Aij is:

w
B(pij)

−ε

(Aij)
2
− φi

∂d(A0, A
i
j)

∂Aij
(A.4)

Substituting B = Ai, w = A and pij = w
A

into the above expression and evaluating it at
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Aij = Ai gives,
A

Ai
− φi ∂d

∂Ai
>

A

ALC
− φi ∂d

∂Ai
|(Ai=ALC) = 0 (A.5)

The inequality is derived because Ai < ALC and A
Ai
− φi ∂d

∂Ai
is a decreasing function of Ai.

The equality is derived because of (4.2). From section 3, the potential entrant j′s profit is

decreasing in Aij, i.e.,
∂πej (A

i
j ,A

i,w)

∂Aij
< 0. Hence πej (A

i
j, A

i, w) < κ for any Aij > Ai. Let η be a

small number. It follows that πej (A
i+η, Ai, w)−κ < 0, i.e., the no entry constraint is satisfied

when Aij = Ai + η. From (A.5), πBj is decreasing around Ai, hence the incumbent can make

more profit by adopting Ai+η instead of adopting Ai. This contradicts with the assumption

that Ai is the technology adopted by the incumbent in the symmetric equilibrium without

entry. It follows that the incumbent will not adopt a technology worse than ALC in the

symmetric equilibrium without entry. Put differently, if a symmetric equilibrium without

entry exists when κ < κLC , the incumbent will adopt a technology which is better than ALC .

QED

B Proof of Proposition 1

The proof of Lemma 1 has showed that for any φe and φi, if κ ≥ κLC , the symmet-

ric equilibrium without entry exists and is unique. This part will prove that for any φi,

if φe ≥ φ̄e(φi), there exists κC(φi, φe) ≤ κLC(φi, φe), such that when κC ≤ κ < κLC ,

the symmetric equilibrium without entry exists and is unique. κC(φi, φe) has the form

of κC(φi, φe) = max[A1−ε(Aimax)
ε(1 − Aimax

Aej
) − φed(A,Aej), 0], where Aej is determined by

A1−ε(Aimax)
1+ε

(Aej)
2 − φe ∂d(A,A

e
j)

∂Aej
= 0, and Aimax is determined by Aimax − A − φid(A0, A

i
max) = 0.

φ̄e(φi) has the expression of φ̄e(φi) = ( ε
ε+1

)2 A1−ε

(ALC)1−ε ∂d(A,A)
∂A

|
(A= ε+1

ε ALC )

.

Suppose there exists a symmetric equilibrium without entry and in this equilibrium the

incumbent adopts Ai, then, B = Ai and w = A. The potential entrant j solves:

πej = max
Aej ,p

e
j

B(pej)
−ε(pej −

w

Aej
)− φed(A,Aej)

s.t. pej ≤
w

Aij

0 ≤ Aej ≤ Af
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As noted earlier, pej = w
Aij

. Plugging this into the first order condition for Aej yields:

A1−εAi(Aij)
ε

(Aej)
2

− φe
∂d(A,Aej)

∂Aej
= 0 (B.1)

The potential entrant’s profit is given by:

πej (A
i
j, A

i, w) = A1−εAi(Aij)
ε−1(1−

Aij
Aej

)− φed(A,Aej) (B.2)

Since 0 < ε < 1, it is easy to show that
∂πej
∂Aij

< 0. In the symmetric equilibrium without entry

Aij = Ai, hence

πej (A
i, Ai, w) = A1−ε(Ai)ε(1− Ai

Aej
)− φed(A,Aej) (B.3)

where Aej is determined by:

A1−ε(Ai)1+ε

(Aej)
2

− φe
∂d(A,Aej)

∂Aej
= 0 (B.4)

If a symmetric equilibrium without entry exists, then in this equilibrium πej (A
i, Ai, w) ≤ κ.

Next I will use four steps to prove the existence and uniqueness. In particular, step 1

proves that the technology adopted by the incumbent in the symmetric equilibrium without

entry can not be an Ai s.t πej (A
i, Ai, w) < κ. Step 2 proves that any technology Ai which

satisfies πej (A
i, Ai, w) = κ and Ai > ALC can be supported as a symmetric equilibrium

without entry as long as the incumbent makes nonnegative profit by adopting such Ai . Step

3 proves the uniqueness of the Ai defined in step 2. Step 4 proves that when κC ≤ κ < κLC ,

the incumbent indeed makes nonnegative profit by adopting the technology defined in the

second step.

Step 1: Suppose that there is a symmetric equilibrium without entry in which all the

incumbents adopt Ai such that πej (A
i, Ai, w) < κ. Continuity then implies that there exists

a small number η, such that πej (A
i − η, Ai, w)− κ < 0.
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The incumbent in jth industry solves:

πBj = max
Aij ,p

i
j

[pijB(pij)
−ε − w

B(pij)
−ε

Aij
− φid(A0, A

i
j)]

s.t. πej (A
i
j, B, w)− κ ≤ 0

pij ≤
w

A

Since demand is inelastic, pij = w
A

. The derivative of the objective function with respect to

Aij is:

B(A)εw1−ε

(Aij)
2
− φi

∂d(A0, A
i
j)

∂Aij
(B.5)

Substituting B = Ai and w = A into the above expression and evaluating it at Aij = Ai

gives,
A

Ai
− φi∂d(A0, A

i)

∂Ai
<

A

ALC
− φi∂d(A0, A

i)

∂Ai
|Ai=ALC = 0 (B.6)

The inequality holds because from Lemma 1, when κ < κLC , the incumbent adopts a better

technology than ALC in the symmetric equilibrium without entry. The equality holds because

of (4.2). Since πej (A
i, Ai, w) − κ < 0 and πej (A

i − η, Ai, w) − κ < 0, (B.6) implies that the

incumbent j can make more profit by choosing Aij = Ai−η instead of choosing Aij = Ai. This

contradicts with the assumption that Ai is the technology adopted by the incumbent in the

symmetric equilibrium without entry. Therefore, the incumbent will not adopt a technology

Ai such that πej (A
i, Ai, w) < κ in the symmetric equilibrium without entry.

Step 2: Let ANE denote the technology which satisfies πej (A
NE, ANE, w) − κ = 0 and

ANE > ALC . It follows that entry can be blocked if all the incumbents upgrade to ANE.

Hence, in order to prove that the symmetric equilibrium without entry exists and in such

equilibrium the incumbents upgrade to ANE, I only need to prove that when incumbents

in all the other industries upgrade to ANE, the incumbent j will also upgrade to ANE and

makes nonnegative profit. The proof follows.

The incumbent j solves:

πBj = max
Aij ,p

i
j

[pijB(pij)
−ε − w

B(pij)
−ε

Aij
− φid(A0, A

i
j)]

s.t. πej (A
i
j, B, w)− κ ≤ 0

pij ≤
w

A
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Inelastic demand implies pij = w
A

. The derivative of the objective function with respect to

Aij is:

B(A)εw1−ε

(Aij)
2
− φi

∂d(A0, A
i
j)

∂Aij
(B.7)

As in the first step, the following inequalities hold for all Aij > ANE:

B(A)εw1−ε

(Aij)
2
− φi

∂d(A0, A
i
j)

∂Aij
<
B(A)εw1−ε

(ANE)2
− φi

∂d(A0, A
i
j)

∂Aij
|Aij=ANE

=
A

ANE
− φi∂d(A0, A

i)

∂Ai
|Aij=ANE <

A

ALC
− φi∂d(A0, A

i)

∂Ai
|Aij=ALC = 0 (B.8)

The first inequality is derived since B(A)εw1−ε

(Aij)
2 −φi ∂d(A0,Aij)

∂Aij
is a decreasing function in Aij. The

first equality is derived by substitutingB = ANE and w = A into B(A)εw1−ε

(ANE)2
−φi ∂d(A0,Aij)

∂Aij
|Aij=ANE .

The second inequality holds because A
ANE
−φi ∂d(A0,Ai)

∂Ai
|Aij=ANE is a decreasing function in ANE

and ANE > ALC . The second equality holds because of (4.2).

Since πej (A
NE, ANE, w)−κ = 0 and

∂πej (A
i
j ,A

NE ,w)

∂Aij
< 0, πej (A

i
j, A

NE, w)−κ > 0 if Aij < ANE

and πej (A
i
j, A

NE, w)−κ < 0 if Aij > ANE. (B.8) then implies that the incumbent j′s profit is

decreasing in Aij when Aij ≥ ANE, and therefore the incumbent j wants to adopt a technology

level as low as possible. But to block entry, the incumbent j must adopt a technology at

least as good as ANE, and therefore will indeed choose Aij = ANE. This proves that if all

the other incumbents choose ANE, the incumbent j will also choose ANE. Hence as long

as the incumbent makes nonnegative profit when adopting ANE, the symmetric equilibrium

without entry exists and in such an equilibrium, the incumbent upgrades to ANE.

Step 3: To prove the uniqueness of the symmetric equilibrium without entry when κC ≤
κ < κLC , I only need to prove the uniqueness of ANE.

Evaluating the left of (B.4) at Aej = ε+1
ε
Ai gives:

(
ε

ε+ 1
)2A1−ε(Ai)ε−1 − φe

∂d(A,Aej)

∂Aej
|Aej= ε+1

ε
Ai

< (
ε

ε+ 1
)2A1−ε(ALC)ε−1 − φe

∂d(A,Aej)

∂Aej
|Aej= ε+1

ε
ALC < 0 (B.9)
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The first inequality holds because the first expression is decreasing in Ai, and when κ < κLC ,

the incumbents’ equilibrium technology is bigger than ALC . The second inequality holds

because φe > φ̄e. Since the left of (B.4) is decreasing in Aej , (B.9) implies that Aej <
ε+1
ε
Ai.

Applying envelop theory to (B.3) gives

∂πej (A
i, Ai, w)

∂Ai
= A1−ε(Ai)ε−1ε(1− ε+ 1

ε

Ai

Aej
) < 0 (B.10)

The inequality holds because Aej <
ε+1
ε
Ai. (B.10) then implies that πej (A

i, Ai, w) is a de-

creasing function of Ai, and therefore ANE is unique.

Step 4: From step 1 and step 2, the symmetric equilibrium without entry is determined

by πej (A
NE, ANE, w)− κ = 0, i.e.,

A1−ε(ANE)ε(1− ANE

Aej
)− φed(A,Aej)− κ = 0 (B.11)

where Aej is determined by the potential entrant’s first order condition (B.4). From (B.10),

the left of (B.11) is decreasing in ANE. Applying implicit function theorem to (B.11) and

(B.4) gives ∂ANE

∂κ
< 0.

In the symmetric equilibrium without entry, the incumbent’s profit is πBj = ANE − A−
φid(A0, A

NE). It is easy to derive:

∂πBj
∂ANE

= 1− φi∂d(A0, A
NE)

∂ANE

When ANE = ALC , comparing the above expression with (4.2), it is easy to derive that
∂πBj
∂ANE

|ANE=ALC > 0. Because I assume that the incumbent makes nonnegative profit when

adopting ALC , it follows that the incumbent’s profit is nonnegative when κ = κLC . As κ

decreases from κLC , ANE increases, and πBj increases first, and then at some point πBj begins

to decrease. This implies that there is a Aimax, such that when ANE ≤ Aimax, π
B
j ≥ 0.

Let κ1 be the value of κ which induces ANE = Aimax.
∂ANE

∂κ
< 0 implies that πBj ≥ 0 if

κ ≥ κ1. Let κC = max[κ1, 0]. Then, if κ ≥ κC , πBj ≥ 0. Since the incumbent has nonnegative

profit when κ = κLC , it follows that κC ≤ κLC when κLC > 0, and κC = κLC = 0 when

κLC = 0. κLC = 0 is not a very interesting case, so in this paper, I will assume κLC > 0.

The above proof only considers the case in which both the incumbent’s and the potential
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entrant’s choice of technology are interior. If either of them is a corner solution, it is easy

to generalize the above proof and all the results still hold. QED

C Proof of Corollary 1

Since κ ≥ 0, φe ≥ φi, A0 > A and d is strictly decreasing in its first argument, the incumbent

can always adopt the same technology as the potential entrant and makes more profit than

the potential entrant. This implies that entry can always be blocked, and a symmetric

equilibrium with entry can never exist.

Based on the proof of Proposition 1, to prove Corollary 1, I only need to show that

κC = 0 when φe ≥ φi. From step 4 of the proof of Proposition 1, this is the same as to prove

that for any κ ≥ 0, the incumbent can always make nonnegative profit by adopting ANE,

where ANE satisfies πej (A
NE, ANE, w)− κ = 0. The proof is as follows.

πej (A
NE, ANE, w) − κ = 0 implies that ∀κ ≥ 0, when all the incumbents adopt ANE,

the potential entrant j makes 0 profit after paying the entry cost. Hence the incumbent j

will make nonnegative profit by adopting the same technology Aej as the potential entrant

j. From step 2 of the proof of Proposition 1, ANE is the incumbent j′s optimal choice if all

the other incumbents choose ANE. This implies that the incumbent j makes more profit by

adopting ANE than adopting Aej , and therefore makes nonnegative profit by adopting ANE.

This proves that for any κ, a symmetric equilibrium without entry exists when φe ≥ φi.

Note that if φe > φ̄e, this equilibrium is also unique. QED

D Proof of Proposition 2

The proof of proposition 1 shows that the symmetric equilibrium without entry exists when

κC ≤ κ < κLC . Proposition 2 then follows directly from Lemma 1.

E Proof of Proposition 3

The equilibrium in the limited competition economy is determined by:

1− Ai

A
φi
∂d(A0, A

i)

∂Ai
= 0 (E.1)
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From the above equation, it is clear to see that the first part of proposition 3 is true.

When κC ≤ κ < κLC , from the proof of proposition 1, the symmetric equilibrium without

entry can be represented by:

F (Ai, Aej) = 0 (E.2)

G(Ai, Aej) = 0 (E.3)

where the two functions F and G are defined by:

F (Ai, Aej) = A1−ε(Ai)ε(1− Ai

Aej
)− φed(A,Aej)− κ (E.4)

G(Ai, Aej) =
A1−ε(Ai)1+ε

(Aej)
2

− φe
∂d(A,Aej)

∂Aej
(E.5)

Straightforward calculations allows one to derive and sign the partial derivatives of the F

and G functions as follows: FAi < 0 as derived in the proof of proposition 1, FAej = 0,

GAi = (1 + ε)A
1−ε(Ai)ε

(Aej)
2 > 0, GAej

= −2A
1−ε(Ai)1+ε

(Aej)
3 − φe ∂

2d(A,Aej)

∂(Aej)
2 < 0, Fκ = −1 < 0, Gκ = 0,

Fφi = 0, Gφi = 0, Fφe = −d(A,Aej) < 0 and Gφe = −∂d(A,Aej)

∂Aej
< 0.

Standard analysis implies that comparative statics results are given by:

∂Ai

∂κ
= −

FκGAej
−GκFAej

FAiGAej
− FAejGAi

= −
FκGAej

FAiGAej

< 0 (E.6)

∂Ai

∂φi
= −

FφiGAej
−GφiFAej

FAiGAej
− FAejGAi

= −
FφiGAej

FAiGAej

= 0 (E.7)

∂Ai

∂φe
= −

FφeGAej
−GφeFAej

FAiGAej
− FAejGAi

= −
FφeGAej

FAiGAej

< 0 (E.8)

QED

41



F Proof of Proposition 4

Proof: Conditional upon entry, the potential entrant j solves:

max
Aej ,p

e
j

[pejB(pej)
−ε − w

B(pej)
−ε

Aej
− φed(A,Aej)]

s.t. pej ≤
w

Aij

0 ≤ Aej ≤ Af

As noted earlier, the potential entrant j will necessarily set pej = w
Aij

. It is easy to show that

the above objective function is strictly concave in Aej for given values of B, w and Aij, hence,

if the solution for Aej is interior, it is unique and determined by the first order condition.

Substituting pej = w
Aij

into the incumbent’s first order condition for Aej yields:

B(Aij)
εw1−ε

(Aej)
2

− φe
∂d(A,Aej)

∂Aej
= 0

In the symmetric equilibrium with entry, Aej = Ae and Aij = A0 for all j. Similar to that in

the symmetric equilibrium without entry, in the symmetric equilibrium with entry, B = Ae

and w = A0. Plugging those conditions into the above first order condition gives:

1− Ae

A0

φe
∂d(A,Ae)

∂Ae
= 0 (F.1)

Let AE be the entrant’s technology in the symmetric equilibrium with entry. Similar to the

argument in section 4, the strict convexity of d implies that if AE is interior, it is unique and

determined by (F.1), otherwise, it is Af .19

There are two additional conditions that must be satisfied to guarantee the existence

of the symmetric equilibrium with entry. The first condition is that the potential entrant’s

profit is nonnegative, i.e., AE −A0 − φed(A,AE)− κ ≥ 0. The second condition is that it is

not optimal for the incumbent to block entry, i.e., πBj ≤ 0.

For a given positive φi, when φe = 0 and κ = 0, it is easy to see that the symmetric

equilibrium with entry exists. To see this, note that since the adoption cost is zero, the

19Note that AE must be greater than A0, since otherwise, entry can be blocked.
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potential entrant operates at the technology frontier automatically and has profit Af − A0,

hence the first condition is satisfied. Moreover, it is impossible for the incumbent to block

entry. Since the best the incumbent can do is to adopt the frontier technology too. However,

when both firms adopt frontier technology, they both make 0 profits at the third stage, and

therefore the incumbent has losses because it has to pay the updating cost. It follows that

the second condition is satisfied. This proves that the symmetric equilibrium with entry

exists for a given positive φi if φe = 0 and κ = 0.

Now, suppose only κ = 0, then, continuity implies that there is a φ̂e such that the

symmetric equilibrium with entry exists for all φe < φ̂e. For a given φe < φ̂e, since the

symmetric equilibrium with entry exists when κ = 0, continuity then implies that there is

a κ̂, such that the symmetric equilibrium with entry exists for all κ < κ̂. This proves the

existence of the symmetric equilibrium with entry. The uniqueness of this equilibrium is

guaranteed by the uniqueness of AE. QED

G Proof of Proposition 5

If the symmetric equilibrium with entry exists, it is determined by (F.1). From (F.1), it is

easy to see that AE is decreasing in φe and does not depend on κ and φi. QED
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