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1 Introduction

Firms can expose themselves to fluctuations in demand by choosing specific pricing

strategies. In this study, our aim is to better understand how price discriminatory

tactics can make airlines vulnerable to aggregate demand risk. Given the large number

of bankruptcies in this industry, there is reason to believe that airlines are particularly

sensitive to movements in the business cycle. However, while many of the traditional,

legacy airlines, including United Airlines, U.S. Airways, and Delta Airlines, have been

forced to file bankruptcy, a select group, known as low-cost carriers (LCCs) have been

able to stay profitable. The success of these LCCs has been impressive considering the

extreme profit volatility that most airlines have had to endure during the post-regulation

era.

While differences in cost likely play an important role in the variation in profits across

airlines, we focus on a different potential explanation for the volatile nature of airline

profits. We argue that price discrimination is a pricing strategy that accentuates profit

variation over the business cycle. Price discrimination is a risky tactic in the sense that it

exposes the firm to aggregate-demand movements and therefore induces greater revenue

fluctuations. We find that relative to LCCs, legacy carriers price discriminate to a large

degree, inducing high volatility in revenues. As legacy airlines generally have higher cost

levels than LCCs, our results imply that legacy carriers’ large revenue variation has been

a major contributor to the large number of bankruptcies.

Price discrimination is a well-known strategy that airlines use to try to increase

profits. It involves charging higher prices to those consumers with a lower price elasticity

of demand, or equivalently, with a higher willingness-to-pay for an airline ticket. In this

manner, airlines are able to increase the average markup of prices to marginal cost, and

thus, increase their profits. In order to price discriminate, however, airlines must be able

to identify and separate consumers with different willingness-to-pay, which they do by

offering tickets with various types of restrictions so that consumers separate themselves

through the ticket choices that they make (this type of self-selection is referred to as

second-degree price discrimination). In this paper we present empirical evidence that

suggests price discrimination in the airline industry is highly pro-cyclical. During booms

it is easier for airlines to price discriminate between consumers, while in business cycle
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troughs it is much more difficult. This results in pro-cyclical average markups, and hence

pro-cyclical airline profits. Furthermore, it suggests that airlines which rely more heavily

on price discrimination strategies should expect more volatile profits over the business

cycle.

To help understand this aspect of airline pricing behavior, we develop a simple the-

oretical model of second-degree price discrimination based on Mussa and Rosen (1978).

The model shows that as long as consumers have diminishing marginal utility of in-

come, profit-maximizing behavior on the part of firms will result in the degree of price

discrimination covarying positively with aggregate income, and thus the business cycle.

Specifically, during booms in the cycle, the difference between incentive compatible prices

charged to high- and low-income consumers is expected to increase, while during troughs

in the cycle the difference is expected to decrease.

One significant obstacle to overcome in the empirical analysis is the fact that price

discrimination is difficult to identify and measure. We do not have access to data with

enough information about consumer and ticket characteristics to identify precise in-

stances of price discrimination and to directly study how price discrimination evolves

over time. Instead, we adopt the strategy of the previous literature and use price dis-

persion at the airline-route level to proxy for price discrimination. In particular, we look

at how various measures of price dispersion are correlated with the business cycle, while

controlling for variation in price dispersion that is likely due to other factors, such as

competition and cost.

Using a relatively long panel dataset on ticket prices, which spans almost two full

business cycles, we find evidence that price dispersion is highly procyclical, corroborat-

ing the mechanism delineated in the simple pricing model. We interpret this finding

as evidence that during booms in the business cycle airlines are able to exploit larger

differences in willingness-to-pay between different types of consumers (i.e. business and

leisure travelers), which allows them to raise the markup charged to more price inelastic

consumers. This story is consistent with the highly procyclical nature of profits in the

airline industry as seen in Figure 1.

In addition, this finding suggests that the business cycle induces significant fluctu-

ations in airline profits, over and above variations in cost. As markups are tied to the
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degree to which an airline can successfully price discriminate, recessions significantly

hinder this profitable pricing mechanism, while booms accentuate it. This story is con-

sistent with the observation that the airlines with the highest within-route variance in

price dispersion are the same airlines that have the highest variability in profits as seen

in Figure 2. Thus, our analysis suggests that those airlines that rely more on price dis-

crimination techniques will face greater profit risk stemming from the business cycle. It

is apparent from Figure 2 that the four largest LCCs (Southwest, JetBlue, Frontier, and

AirTran) are characterized by low price dispersion as well as low profit volatility in our

sample. This suggests that firms relying more on price discrimination techniques have

had more variable profits.

This study is related to numerous microeconomic studies on pricing strategies and

business cycle conditions. For instance, Rotemberg and Saloner (1986) theorize that,

during booms firms may be less likely to collude since the benefits of cheating are higher,

causing firms to cut prices. Another set of theories, based on switching costs and brand

loyalty, show that during booms new customers may enter the market causing demand

to become more elastic and firms to lower prices (see Bils (1989), Klemperer (1995), and

Stiglitz (1984)). A third theory, put forth by Greenwald, Stiglitz, and Weiss (1984) and

analyzed by Chevalier and Scharfstein (1996), shows that during recessions cash-strapped

firms may forego offering low prices to attract new customers in order to generate a higher

cash flow.

This study also provides potentially interesting insights to macroeconomists who have

had a longstanding interest in the cyclicality of markups. In macroeconomic models of

perfect competition, fluctuations in aggregate demand do not shift the labor demand

schedule. Thus, in order to generate movements in employment, the models rely on

outward shifts in the labor supply curve (see Hall 1980). To generate labor demand

shifts, models of imperfect competition (for example, Rotemberg and Woodford (1992),

Goodfriend and King (1997)) were developed which introduced an endogenous variable,

the markup of price over marginal cost.1 In particular, a countercyclical markup will act

in a similar manner to a positive productivity shock during booms in the business cycle,

1Including labor hoarding in the framework as in Burnside, Eichenbaum, and Rebelo (1993) has also
been a way to explain procyclical labor productivity.
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shifting the labor demand curve out and raising real wages.2 Our estimates provide some

evidence against this hypothesis, at least as an exhaustive possibility.

Although our empirical analysis is confined to one industry, the model indicates

that the procyclicality of markups is likely to occur in many other industries as well.

Specifically, as diminishing marginal utility of income is inclusive to a broad class of

utility specifications, procyclical markup variation should occur in industries in which

firms have market power and can successfully price discriminate. Researchers have found

many other industries in which firms have been successful at price discrimination such as

hotels, stadiums, restaurants, theaters (Leslie 2004), yellow-page advertising (Busse and

Rysman 2005), cement (Miller and Osborne 2010) and personal computers (Aizcorbe

and Shapiro 2010).

The paper is structured as follows: Section 2 reviews the theoretical framework by

which price discrimination can lead to procyclical markup variation. Section 3 discusses

possible effects of cost on price dispersion. Section 4 contains a detailed discussion of

the data. In Section 5 we perform a fixed-effects, panel estimation of the relationship

between price dispersion and various proxies for the business cycle. Finally, Section 6

contains concluding remarks.

2 Theoretical Framework

Price dispersion at the flight level is a common characteristic of the airline industry,

and one of the leading explanations for such dispersion is the practice of price discriminat-

ing among different types of consumers. It is well known that airlines implement second-

and third-degree price discrimination in which they segment heterogeneous groups of

consumers and charge them distinct prices for essentially the same product. Advance-

purchase requirements, non-refundable tickets, and Saturday-night layovers are a few

examples of restrictions that airlines use to identify passengers with different price elas-

ticities of demand. Since high-income or business consumers tend to place a high value

on their time, they are more likely to purchase more expensive tickets without such re-

2Other research in this area includes Gali (1994), Edmunds and Veldkamp (2006), and Jaimovich
(2007).
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strictions. By making use of these techniques, airlines are able to separate price-sensitive

travelers from price-insensitive travelers.

According to a 1993 Gallup Survey, 49% of air travel in the U.S. was for business, and

those respondents cited a rise in new business activity or improved financial conditions in

their respective firms as the primary reason for increased business travel (Busse, 2002).3

This suggests that when aggregate demand conditions are good, high-income or business

consumers have higher demand for air travel, and are also more likely to pay higher

prices for tickets characterized by less restrictions and preferred flight times. Thus, during

periods of high aggregate demand, carriers will likely experience both a higher proportion

of price inelastic travelers demanding tickets, and an increase in the willingness-to-pay for

those price inelastic consumers. If the fraction of tickets sold to price inelastic consumers

increases and the difference in ticket prices between price inelastic consumers and price

elastic travelers increases in periods of high aggregate demand, then both the average

markup and price dispersion will follow the business cycle.

We illustrate this relationship between price discrimination and the business cycle

with a simple model of monopoly pricing. With the model we derive the precise con-

dition on preferences that ensures a positive correlation between price discrimination

and the business cycle. While an oligopolistic model would prove more realistic, it also

complicates the analysis and moves away from the scope of the empirical study—the

effect of aggregate conditions on airline pricing patterns. Furthermore, in the empirical

analysis we control for variations in competition over time, and thus any effect of the

business cycle on prices, in a dynamic sense, will be measured in a setting where the

degree of competition is held fixed. One could extend our theoretical framework to an

oligopolistic game by adding a horizontal dimension on the consumer’s valuation of the

product (e.g. brand) as in spatial models such as Schmalensee (1978), Salop (1979)

and Brito (2003). Such brand differentiation would allow firms to compete in price and

also have some degree of market power. One should therefore think of the theoretical

model below as a market in which brand preference is strong enough to allow firms to

price above marginal cost, and that consumers’ preferences over brand are distributed

3On the flip side, respondents who indicated less business travel attributed it to decreasing business
activity or bad financial conditions in their respective firms.
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independently of income.

2.1 Consumers

We consider a model with multiple types of consumers, where consumers differ in their

level of income, yi. A type i consumer with income, yi, solves the following maximization

problem:

max
d∈{0,1}

d · xv + u(m) (1)

subject to:

yi = m + d · p

where xv is valuation of the ticket where v ∈ 1, 2 indicates its attributes. For instance,

v = 2 indicates a ticket that has an advance purchase requirement or saturday-night

stayover requirement, while v = 1 indicates a less restrictive ticket. It follows that with

positive time costs, the net quality of v = 1 will be higher than that of v = 2 such

that x1 > x2. The variable m represents the numeraire commodity and d represents the

consumer’s decision to buy or not buy the good. Note that u(·) is the functional form

representing the manner in which the consumer values the numeraire commodity relative

to the discrete good. It follows that the indirect utility function for the case in which

the consumer purchases the discrete good (d = 1) is given by:

U = xv + u(yi − p). (2)

As in Tirole (1988), we make the assumption that a consumer’s income is very large

relative to the valuation, xv, and subsequently to the equilibrium price charged. This

allows us to take a Taylor expansion around p∗ = 0 which, under the assumption that

yi − p ≈ yi, yields:

U = xv + u(yi)− u′(yi)p. (3)

It follows that for a given consumer to be better off consuming the good, it must be

the case that xv + u(yi)− u′(yi)p ≥ u(yi), which means demand for the good is:
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di(pv) =

{
1 if pv ≤ xv

u′(yi)

0 if pv > xv

u′(yi)

(4)

2.2 Firm behavior

To simplify the firm’s problem we assume two types of consumers: a high income

consumer with income yh and a low income consumer with income yl. The firm’s problem

in the two-consumer-type case is to maximize profits given consumer demand derived

above. The firm has the option to separate the market by offering different types of

tickets. To obtain a separating equilibrium, the firm must be able to separate the market

and also find it profit-maximizing to do so. It follows from Mussa and Rosen (1978) that

prices must satisfy:

p∗1 = bhx1 − (bh − bl)x2 (5)

p∗2 = blx2. (6)

where bh = 1
u′(yh)

and bl = 1
u′(yl)

. As the high-income consumer values x2 more than

the low-income consumer, the firm must lower the price of x1 to dissuade the high-

income consumer from deviating and purchasing x2. Specifically, the bound is lowered

by the extra utility the high-income consumer would have received over the low-income

consumer by consuming x2, (bh− bl)x2. This lowering of the price ensures that the high-

income consumer does not purchase x2 instead of x1 (this ensures that the equilibrium is

incentive compatible). In either case, the firm will find it profit-maximizing to separate

the market as long as the number of low-income consumers is sufficiently large (see Tirole

(1988)).

Note that the price range between the high and low price ticket (a simple measure of

price dispersion) will be:

D = p1 − p2 = bh(x1 − x2). (7)

An interesting result is that the level of dispersion does not depend on the low-income

consumer’s marginal utility of income; only the high-income consumer. This outcome is

7



attributable to the incentive compatibility constraint. In particular, if the firm is able

to raise the price charged to a low-income consumer (without exceeding the low-income

consumer’s reservation price), then the firm can safely transfer this price rise on to the

high-income consumer (without providing an incentive to the high-income consumer to

choose the low-quality ticket). It follows that the elasticity of price dispersion relative

to a change in aggregate income is:

εD,y =
∂D

∂y

y

D
=

[
−u′′(yh)

u′(yh)
yh

]
(8)

which is simply the coefficient of relative risk aversion (CRA). As long as the CRA is

positive (i.e. diminishing marginal utility of income), price dispersion will widen with

an increase in aggregate income. Thus, under very general conditions on the consumer’s

utility of income, price dispersion will follow aggregate income.4

To show the linkage between price dispersion and markups we first denote the average

markup as:

µ̄ = αh ∗ µ1 + (1− αh) ∗ µ2 (9)

where αh is the proportion of high-income consumers purchasing tickets and µv = pv−cv

is the markup charged on ticket of type v with marginal cost cv. Assuming that marginal

costs do not covary with aggregate demand, it follows from (8) and (9) that the ratio

of the markups charged to each type of consumer, µ1

µ2
, will rise with aggregate demand,

and so will the average markup.

Overall, the model indicates that, ceterus paribus, procyclical price dispersion is

indicative of a procyclical average markup. It is this relationship between price dispersion

and aggregate demand that we will explore in the airline ticket price data. In particular,

we will study the cyclicality of markups in the airline industry using price dispersion as a

proxy for average markups. If the model assumptions are reasonable, then we expect to

find a positive correlation between price dispersion and aggregate demand. This linkage

4It is also relevant to note from (7) that dispersion will also be procyclical if x1−x2 follows aggregate
income. Thus, price dispersion will be cyclical if time costs are also cyclical. This implies that the effect
of aggregate income on price dispersion will be pronounced if nonrestrictive tickets become more valuable
during booms in the cycle.
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of price dispersion and markup variation, however, is dependent on the assumption that

marginal cost does not vary with the business cycle. We address this issue in the following

section.

3 Capacity and Marginal Cost

There are two issues we need to address before proceeding. First, if the carrier

is constrained by capacity, then as more flights reach full capacity, the expense of an

additional passenger becomes very large as either a bigger aircraft or an extra flight is

needed to supply the extra seat-mile. Eden (1990) shows that effect can induce price

dispersion to rise in periods of peak demand when full capacity is reached. Second, wages

of crew and maintenance workers are apt to rise during booms in the cycle, which would

cause marginal costs to rise. Thus, even if price dispersion is procyclical, markups may

not necessarily be. We address these two possibilities in this section.

3.1 Effective Capacity Cost

In discussing the effect of capacity constraints on pricing, it is useful to decompose

marginal cost into its two primary components, which we refer to as the passenger cost

and the capacity cost. If the aircraft is not operating at full capacity, then marginal

cost is simply equal to the passenger cost; the cost of adding an additional passenger

to the airplane. This cost is mostly made up of the extra fuel required to transport

the additional weight of the passenger, while other, lesser components include the in-

flight costs of serving the additional passenger ( i.e. meals, snacks, etc.). However, if

the airplane is operating at full capacity, then marginal cost is equal to the direct cost

of an additional passenger as well as the more substantial cost of an additional flight.

This cost is incurred regardless of whether or not seats on the airplane are filled with

passengers, while the passenger cost is only incurred on seats that are sold. This implies

that marginal cost at the route level is given by,
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cij =





βij, if capacity is not reached

βij + λij, if capacity is reached

where βij is the passenger cost of serving an additional passenger one mile on route j by

carrier i, and λij is the cost of an additional flight (in seat-miles).

If airlines price according to stochastic demand concerns, then aggregate demand

could alter the firm’s expected probability of selling a ticket, and subsequently alter

the “effective” capacity cost. In particular, if ex-ante the carrier is uncertain about the

level demand for a flight, then under price-setting commitments and costly capacity,

profit-maximizing behavior induces a distribution of prices rather than a single price.

The intuition is that if the firm were allowed to change price after the realization of the

state, then it would set a low price in the low-demand state and a high price in the

high-demand state. However, because the firm must commit to a menu of prices ex-ante,

its profit maximizing strategy is to assign multiple prices to specified quantities of the

good.5 That is, if a firm must pay costs irrespective of whether or not its output is sold,

then it has a large incentive to set higher prices on goods that are less likely to be sold.6

Eden (1990) formalized a model in a setting of perfect competition where there is

uncertainty regarding the number of agents who will show up to exchange goods in the

marketplace. In such a setting, goods are characterized by the probability that they will

be sold, and in equilibrium firms face a tradeoff between price and the probability of

sale. In the model, equilibrium prices are given by the condition,

5It should be pointed out that more a subtle factor is also needed to induce such pricing behavior by
firms. The firm’s ex-post optimal price must be positively correlated with the level of demand (Dana
1999, 2001). That is, if the firm’s optimal price in the high-demand state is larger than it’s optimal
price in the low-demand state, then it should use multiple prices to achieve some of the benefits that it
would have if it were able to adjust price in response to demand. If instead, the ex-post optimal price
is constant or decreasing in demand, the firm’s optimal strategy will be to set one price.

6Prescott (1975), was the first study to address this issue in the economics literature. His paper was
more focussed on the theory of unemployment, and his model was more of an example rather than a
formal model of pricing.
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ps = β +
λ

prob(sale)s︸ ︷︷ ︸
λeff

s

(10)

where ps is the price of the sth good, β is an operating cost that the firm must pay for

each good that it sells, λ is the unit capacity cost, and prob(sale) is the probability that

good s is sold. The second term on the right-hand side of the equation can be interpreted

as an “effective” capacity cost of good s, λeff
s . In competitive equilibrium, it is the case

that firms are indifferent between selling a high-priced good with low probability and

selling a low-priced good with high probability. Dana (1999) extended Eden’s model to

monopoly and oligopoly market structures. In this setting, the monopolist sets a higher

price for a good that sells only in high demand states since its effective cost is higher.7

Under this setting, where the carrier commits to prices ex-ante, the highest priced

tickets—tickets with the highest effective capacity cost—are not purchased until demand

rises sufficiently high to purchase all of the low priced tickets. Thus, if the carrier is pric-

ing solely with stochastic demand concerns, then peaks in aggregate demand will induce

higher price dispersion through the higher effective capacity cost of the remaining seats

on crowded aircrafts. In this case, it could be argued that procyclical price dispersion is

not evidence of a procyclical markup, it is evidence that the effective capacity cost rises

during periods of peak demand due to low available capacity.

While we believe that carriers do take effective capacity cost into account, we discount

its prominence in affecting price dispersion at the business cycle frequency. If stochastic

demand pricing was causing price dispersion to follow the business cycle, then aircraft

capacity utilization should covary positively with the business cycle. Figure 5 shows that

the mean aircraft capacity utilization rate has been steadily increasing over the course of

the sample period, and is not necessarily positively correlated with the business cycle.8

7Indirect evidence found by Stavins (1996) is consistent with stochastic demand pricing. Stavins
found that even controlling for advance purchase requirements, ticket prices increase as the number of
days to departure decreases.

8As a robustness check, we estimate an instrumental-variable fixed-effects regression, similar in fash-
ion to the estimator discussed in the next section. We estimated two simple regressions. First we
estimated the univariate regression: ln(util)ijt = α + β1Y GAPt + γij + εijt, where utilijt is the uti-
lization rate (fraction of occupied seats) for carrier i on route j in quarter t. Second we estimated a
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Rather, there is significant seasonal variation in this variable, indicating that effective

capacity concerns are likely important at high frequency levels, but not necessarily at

middle and low frequency levels. Overall, this figure makes it apparent that, at the

business cycle frequency, carriers are more likely altering capacity as opposed to letting

aircraft utilization vary. This is consistent with the findings by Puller, Sengupta and

Wiggins (2010).9

3.2 Marginal Cost

Marginal cost may vary over the business cycle for many reasons. For instance,

wages of pilots and flight attendants may rise during booms, as may the price of fuel.

For this reason, in our empirical analysis below we proxy for variations in marginal

cost using a measure of the carrier’s average variable cost. Numerous studies, such as

Caves, Christensen, and Trethaway (1984) and Gillen, Oum, and Tretheway (1985, 1990),

have found that the carriers’ passenger output displays constant-returns-to-scale in firm

size. This finding suggests that average variable cost may be a valid approximation to

marginal cost in this context. The BTS’s P-52 database defines a measure called the

“total aircraft operating cost,” which includes fuel, crew wages, maintenance, aircraft

leasing, and depreciation.10 This variable measures the tangible cost to the carrier of

operating in a given quarter.

Figure 4 plots this variable as a proportion of total seat-miles for four carriers in

our sample. The figure shows that cost per seat-mile is correlated across firms, and has

generally increased through the course of the sample period. As expected, Southwest and

JetBlue, the two largest LCCs in our sample, have lower cost levels than do the two legacy

regression controlling for competition: ln(util)ijt = α + β1Y GAPt + β2 ln ĤHIij + γij + εijt, where
HHIjt is the Herfindahl Index associated with route j in quarter t (measured using passenger shares).
The coefficient β1 is estimated to be -0.44 with a standard error of 0.04 in the first specification and
-0.43 with standard error 0.03 in the second. This negative coefficient indicates that utilization moves
countercyclically.

9For robustness purposes, in our empirical analysis that follows we include aircraft utilization as a
control for effective capacity cost.

10As described in the next section, in the fixed-effects specification we decompose this variable between
its fuel component and its other components because fuel is relatively much more volatile.
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carriers, US Airways and United. This differentiation in cost between legacies and LCCs

is ubiquitous across the entire airline industry. The large rise and fall in costs in 2008

can be attributed to the spike in oil prices that occurred during that summer. Overall,

including a proxy for marginal cost in the empirical specification removes any variation

in price dispersion induced by tangible cost variations. This leaves the estimation of the

effect of the business cycle on prices in line with that of the simple model where marginal

cost is assumed to be constant.

4 Data

Our study focuses on domestic, direct, coach-class airline tickets over the period

1993q1 to 2009q4. Our sample includes nine major domestic airlines, often referred to

as “legacy carriers,”11 as well as a number of low-cost carriers12 (LCCs) and regional

carriers. Ticket prices represent 10-percent of all domestic tickets issued by airlines and

are obtained from the DB1B database. In addition to ticket prices, the DB1B includes

other quarterly itinerary information, such as origin and destination airports, passenger

quantities, number of stops (plane changes), and fare class.13 Tickets less then $20 are

believed to be frequent-flyer tickets and are eliminated.

The data is a panel, where an observation is a flight conducted by a specific air-

line, between an origin and destination airport (route), in a specific time period (year

and quarter). For example, an American Airlines direct, coach-class ticket, from Dallas

(DFW) to San Francisco (SFO) in the first quarter of 1999 is considered an observation in

our data. The direct ticket data include both one-way flights and round-trip flights. The

DB1B contains numerous itineraries and fares for the same flight by the same carrier,

11The legacy carriers in our sample include United, US Airways, Delta, American, Alaskan, TWA,
Continental, Northwest, and America West.

12The list of LCCs, obtained from Ito and Lee (2003), includes Air South, Access Air, AirTran,
American Trans Air, Eastwind, Frontier, JetBlue, Kiwi, Morris Air, National, Pro Air, Reno, Southwest,
Spirit, Sun Country, ValuJet, Vanguard, and Western Pacific. For a more detailed discussion of LCCs
see Goolsbee and Syverson (2008).

13There are three different sub-components to the DB1B data set. They are market data, coupon
data, and ticket data; and we combine variables from all three. For further reference, see the BTS’s
website http://www.transtats.bts.gov.
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reflecting the quarterly frequency of the data, as well as the many different fares found

within the same fare class, on the same flight, at a given point in time. Thus, the data

comprise distributions of prices for carrier-route itineraries.14 Price dispersion is mea-

sured using three separate proxies: the interquartile range, the Gini coefficient, and the

90th and 10th price percentiles estimated separately. The interquartile range and Gini

coefficient are advantageous in that they summarize dispersion with one statistic, while

the price percentiles have the advantage that they provide more detailed information

about the tails of the distribution.

The median Gini coefficient in our entire sample is 0.225, and is 0.217 for legacy

carriers and 0.171 for LCCs. To get a better handle on the dynamics of price dispersion,

we present a few graphical examples of the pricing patterns seen in the data. Figure 3

plots price percentiles of three routes along with a plot of the output gap.15 The top

two panels correspond to routes operated by two legacy carriers, American Airlines and

Delta Airlines, while the bottom panel consists of a route operated by Southwest Airlines.

It is noteworthy that in the legacy carrier panels, the higher price percentiles seem to

closely follow the output gap. The top portion of the price distribution rises and falls

with the boom in the late 1990s and then begins to gradually fall as aggregate demand

deteriorates. In contrast, we do not see the same relationship in the Southwest panel, as

none of the percentiles of the price distribution seem correlated with the output gap. In

the next section we conduct a more systematic analysis using panel data methods in an

effort to confirm these observations.

5 Estimation

We utilize the same empirical strategy as in Gerardi and Shapiro (2009) to study

the relationship between price dispersion and the business cycle. Since the data is a

panel of airline-route observations, it is possible to assess the effects of business cycle

variations on price dispersion while holding fixed time-invariant, route-specific factors,

14See Appendix B for more details on the construction of the dataset, and Gerardi and Shapiro (2009)
for an even more detailed description.

15The output gap is defined as the log difference between the actual nominal GDP and the CBO’s
measure of potential output.
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as well as any route-specific variation in the degree of competition and carrier-specific

variation in fuel and other operating costs. We use a fixed-effects panel estimator, which

exploits the times-series variation along a specific route in the estimation routine. We

use two different approaches in measuring the effect of business cycle variations on price

dispersion.

The model reviewed in Section 2 predicts that high-income consumers’ price elasticity

of demand will be more sensitive to business cycle variations than that of low-income

consumers. Specifically, equation (8) predicts that a rise in aggregate income will induce

a rise in price dispersion. This relationship can be formulated by the following empirical

specification:

DISPijt = θ0 + β1 ∗ Y GAPt + β3 ∗ ln ĤHIjt + β4 ∗ ln UTILijt + γ′ ∗Xit + γij + εijt. (11)

where i indexes the carrier, j the route, and t the time period. In this specification,

the output gap, Y GAPt is used to proxy for the business cycle, as measured by the

Congressional Budget Office (CBO). Carrier-route fixed effects are represented as γij,

and ĤHIjt is the market concentration of the route as measured by the Herfindahl

index and is instrumented using the same variables as in Borenstein and Rose (1994)

and Gerardi and Shapiro (2009).16 We control for costs on a specific carrier i with the

vector Xit, which includes the logarithm of the carrier’s average fuel cost per gallon,

ln FUELit, as well as the remaining operating cost per seat-mile, ln COSTit, measured

by the BTS for a specific carrier. To control for effective capacity cost variations, we

include the logarithm of the utilization rate of carrier i on route j in period t.17

The second specification takes the form:

DISPijt = θ0 + β1 ∗ URjt + β2 ∗ ln ĤHIjt + β4 ∗ ln UTILijt + γ′ ∗Xit + γij + εijt. (12)

16See the appendix for a description of the instruments .
17It is important to note that since this variable is endogenous, the estimate on β4 will be biased

downwards. For this reason, we do not report the estimate of β4. No results changed when we did not
include the utilization rate in the regression.
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where the average unemployment rate of the two endpoint states on the route, URjt,

is used as an alternative proxy for the business cycle. In both specifications, price dis-

persion, DISPijt, is measured in three different ways: the logarithm of the interquartile

range, the Gini log-odds ratio,18 and the 90th and 10th percentiles, each estimated in

separate regressions. Analyzing the top and bottom of the price distribution separately

provides additional information regarding the source of the change in price dispersion.

Observations are weighted by the total number of passengers on the route over the en-

tire sample period and standard errors are clustered by route in order to control for

autocorrelation as well as correlation between carriers on the same route.

6 Estimation Results

Table 1 contains estimation results for both specifications, using the logarithm of the

interquartile range and the Gini log-odds ratio as the dependent variable. We report

results for all direct routes in our 17-year sample.19 The effect of a rise in the business

cycle—as measured by the output gap—on price dispersion is positive and significant at

the 1-percent significance level. The estimate indicates that a one percentage point rise in

the output gap (i.e. from 0.01 to 0.02) is associated with an increase in the interquartile

range by 1.88 percent and the Gini log odds by 0.012. The results from the second

specification are similar to the first, indicating that a decrease in the unemployment

rate induces an increase in the amount of price dispersion on a given route.20 A one

percentage point fall in the unemployment rate is associated with a 2.5 percent increase

in the interquartile range. These estimated coefficients are suggestive of the existence of

18We measure price dispersion using the Gini log-odds ratio given by given by Glodd
ij = ln

Gij

1−Gij
, which

produces an unbounded statistic. No results change when the log of the Gini coefficient is used instead.
See Hayes and Ross (1998) for further discussion.

19This sample includes 154,333 carrier-route observations when using ln(IQR) as the dependent vari-
able and 155,961 carrier-route observations using the Gini log-odds ratio. The reason for the fewer
observations in the first specification is that observations in which the interquartile range was equal to
zero were necessarily dropped.

20This sample includes 153,706 carrier-route observations when using ln(IQR) as the dependent vari-
able and 155,331 carrier-route observations using the Gini log-odds ratio. We have fewer observations in
this specification because we do no have unemployment information for American Samoa or St. Thomas.
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procyclical markups in the airline industry.

A look at the estimates from the percentile regressions in Table 2 sheds further light

on the manner in which price dispersion follows the business cycle. The estimates show

that an increase in the output gap raises the 90th-percentile price level but has no

significant effect on the 10th-percentile price level. An increase in the output gap by one

percentage point is associated with a 1.35 percent increase in the 90th percentile price,

but is not correlated with the 10th percentile price. Similarly, a fall in the unemployment

rate by 1 percentage point is associated with a 1.6 percent increase in the 90th percentile

price, while there is statistically significant, but small -0.25 percent negative correlation

between the unemployment rate and the 10th percentile price. Thus, the estimates

are consistent with the interpretation that during booms in the business cycle, airlines

increase the extent to which they price discriminate by raising prices to those consumers

with the highest willingness-to-pay for air travel.21

As in Gerardi and Shapiro (2009), we find that the effect of a decrease in competition—

as measured by an increase in market concentration ln ĤHI—on price dispersion is

positive and significant at the 1-percent significance level.22 There also appear to be

interesting dynamics occurring on the cost side. Fuel costs seem to filter into the 10th

percentile prices and 90th percentile prices equally, while other operating costs filter more

into the 90th percentile prices. There are many plausible stories that could explain this

result. One possibility may be that carriers simply find it easier to pass costs on to the

more price inelastic consumers as they are more likely to lose the less elastic consumers

to competition.

Overall, the fixed-effects, panel estimates provide evidence of a positive relationship

between the business cycle and price dispersion in the airline industry. Furthermore,

the results show that variations in the business cycle have a large positive effect on the

upper portion of the price distribution. These results are consistent with the mechanism

outlined by the model delineated in Section 2, whereby carriers raise the markup charged

to those consumers who are least price elastic during booms in the business cycle.

21We also divided the sample into two periods based on the National Bureau of Economic Research
(NBER) business cycle dates. We found positive and significant coefficients in each sample period,
although a larger effect in the first.

22All instruments were relevant at the 1 percent level as measured by the Cragg-Donald statistic.

17



6.1 Carrier and Consumer Heterogeneity

As discussed earlier, legacy carriers, sometimes called “hub-and-spoke carriers” or

network carriers, tend to implement different pricing strategies compared to the LCCs.

For instance, some legacy carriers offer “economy-plus,” which offers passengers more leg

room, separate access through security, and/or early boarding. There is also evidence

from Figure 2 which suggests that LCCs have lower variability in price dispersion over the

cycle. To determine whether these different types of carriers actually price differently

over the business cycle, we divide the sample between legacy carriers and LCCs and

re-estimate the main econometric specification for each sample separately.

The estimates divided by carrier type are reported in the top panel of Table 3 and

show that most of the effects from the business cycle on price dispersion in the full sample

of routes stem from the legacy carriers.23 The effect of the output gap on the interquartile

range is roughly two to three times the magnitude in the sample of legacy carriers (β̂1

= 2.77 compared to the estimated effect in the sample of LCCs β̂1 = 1.03). This is

consistent with the interpretation that the pricing considerations of legacy carriers are

more sensitive to the movements in willingness-to-pay of more price inelastic consumers.

We further explore the relationship between price dispersion and business cycle con-

ditions using a subsample analysis from Gerardi and Shapiro (2009). In that paper, we

attempted to decompose the full sample of routes into those with a heterogeneous con-

sumer base and those with a more homogeneous consumer base. Since routes between

large cities tend to attract both business and leisure travelers, they tend to have a bi-

modal distribution of prices while routes to largely leisure destinations, like islands and

famous beaches, tend to have unimodal price distributions and lower median prices.24

Thus, airlines may have more opportunities to implement price discrimination strategies

on these big-city routes since they include relatively more high-income, business con-

sumers. Furthermore, note that equation (8) implies that dispersion on big-city routes

will be more sensitive to the cycle if the utility over income displays increasing relative

23For ease of view, we do not report estimates on HERFjt or cost variables. No results significantly
changed from the preceding section.

24For a full list of the cities in each sample as well as a detailed description of how these subsamples
are created see Gerardi and Shapiro (2009).
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risk aversion and less sensitive to the cycle if it displays decreasing relative risk aversion.25

The bottom two panels of Table 3 contain estimates of the correlation between the in-

terquartile range of the price distribution for a carrier-route observation and the business

cycle for big-city routes versus leisure routes. The estimates show that price dispersion is

more closely tied with the output and the city-wide unemployment rate for the big-city

route sample than the leisure sample. For instance, in the big-city, legacy carrier sample,

a one percentage point rise in the output gap is associated with a 3.6 percent increase

in the interquartile range, while it is associated with a 1.8 percent increase in the leisure

route sample. For low-cost carriers, the effect is 1.3 percent in the big-city sample and

0.79 percent in the leisure route sample.

7 Conclusion

Our analysis has shown that price dispersion is significantly procyclical in the airline

industry. This result suggests that markups of price over marginal cost are also pro-

cyclical, in line with the recent findings of Nekarda and Ramey (2010). The results are

consistent with a parsimonious theoretical model of second-degree price discrimination,

which shows that as long as firms have the ability to price discriminate and consumers

have diminishing marginal utility of income, price dispersion will follow aggregate de-

mand. Thus, we believe our results can be extrapolated to other industries in which

price discrimination plays an important role. Overall, the analysis suggests price dis-

crimination is a risky strategy in the sense that it accentuates the degree to which the

firm is exposed to fluctuations in aggregate demand. We posit that this may be an addi-

tional reason why low-cost carriers, such as Southwest and JetBlue, which do not price

discriminate to the same extent as legacy carriers, have experienced more profit stability

over the last two decades.

Future work on the issue could involve examining whether other microeconomic mech-

anisms are at work in determining markup cyclicality, as well as looking at industries

with different types of firm pricing strategies. For instance, Miller and Osborne (2010)

find evidence of price discrimination in the cement industry to be based on the spatial

25This can be seen by taking the derivative of 8 with respect to yh.
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location of the consumer. In the healthcare industry, players are involved in a bargain-

ing game over price. Markup cyclicality is therefore likely distinct for certain classes of

industries.
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A Variable Definitions

• lnP (k)ijt - The logarithm of the kth price percentile of carrier i on route j in period

t, obtained from the DB1B.

• ln IQRijt - The logarithm of the interquartile range, given by P (75)ijt - P (25)ijt,

where P (k)ijt is the price percentile of carrier i on route j in period t, obtained

from the DB1B.

• Glodd
ijt - The Gini log-odds ratio, given by Glodd

ijt = ln(
Gij

1−Gij
), where Gijt is the Gini

coefficient of carrier i’s price distribution on route j in period t, calculated using

data from DB1B.

• lnHHIjt - The logarithm of the Herfindahl index of route j in period t, calculated

using passenger shares obtained from the DB1B.

• Y GAPt - The log of nominal GDP in period t minus the log of nominal potential

GDP in period t, as measured by the Congressional Budget Office (CBO).

• URjt - The average metropolitan unemployment rate in period t of the origin and

destination state of route j, obtained from Bureau of Labor Statitics (BLS).

• ln FUELit - The average cost per gallon fuel by carrier i in period t, obtained from

the BTS P-52 database.

• ln COSTit - Total operating costs minus total fuel costs divided by total seat-miles

for carrier i in period t, obtained from the BTS P-52 database.

Instruments

• lnPASSRTEjt - The logarithm of total enplaned passengers on route j in period

t from the T-100 Domestic Segment Databank.

• IRUTHERF - This instrument is identical to one used by Borenstein and Rose

(1994). This variable is the square of the fitted value for MKTSHAREijt from

its first-stage regression, plus the rescaled sum of the squares of all other carrier’s
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shares. See Borenstein and Rose (1994) for a more detailed explanation. It is equal

to ̂MKTSHAREijt

2
+

HERFjt−MKTSHARE2
ijt

(1−MKTSHAREijt)2
∗ (1− ̂MKTSHAREijt)

2.

• GENSP -

√
ENPj1∗ENPj2∑

k

√
ENPk1∗ENPk2

, where k indexes all airlines, j is the observed air-

line, and ENPk1 and ENPk2 are airline k’s average quarterly enplanements at

the two endpoint airports. This instrument is similar to one used by Borenstein

and Rose (1994), with the difference being that Borenstein and Rose use average

daily enplanements, while we use average quarterly enplanements, as a result of

data availability. Data on enplanements were obtained from the T-100 Domestic

Segment Databank.

B Data Construction

In this appendix, we discuss our methods and assumptions involved in constructing

our panel of airline-route ticket observations from the DB1B and T-100 Domestic Seg-

ment databases maintained by the BTS at their online website, Transtats. There are

three different sub-components to the DB1B data set. They are market data, coupon

data, and ticket data, and we combine variables from all three sources.26

We use only domestic, coach-class itineraries and keep only tickets containing direct

flights.27 Direct flights typically account for 30 percent of the itineraries in the DB1B

over the course of our sample, with no apparent trend.

The BTS includes a variable that describes the reliability of each ticket price (“dollar

cred”). The variable takes on a value of 0 if the fare is of questionable magnitude, based

on a set of limits defined by the BTS, and it takes a value of 1 if it is credible. We drop

all tickets for which this variable takes a value of zero.

The DB1B also provides limited information regarding the fare class of each ticket.

Each ticket is labeled as either coach-class, business-class, or first-class, and we eliminated

all first-class and business-class itineraries. Unfortunately, the DB1B does not have any

26For further reference, see the BTS’s website http://www.transtats.bts.gov.
27The sample of direct flights encompasses both non-stop flights and flights in which there is a stop

but no change of plane.
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direct way of identifying frequent-flyer tickets, but there are indirect methods that have

been used in the previous literature, and we follow these in our analysis. First, we drop

all fares coded as 0. Next, we dropped all fares that are less than or equal to $20 ($10

for one-way tickets).

In addition to eliminating frequent-flyer tickets and higher-class tickets, we also elimi-

nate tickets in which the operating and ticketing carriers are different due to code sharing

arrangements. Code sharing is a practice where a flight operated by an airline is jointly

marketed as a flight for one or more other airlines. Due to the uncertainty regarding

the actual airline who is setting the price schedule in such an arrangement, we decided

to eliminate these itineraries. Code sharing first appears in the data in 1998:Q1. On

average, approximately 80 percent of the original number of direct tickets in the DB1B

is retained in the analysis.

After filtering the ticket data for each quarter of the DB1B, we combined tickets from

all 55 quarters and collapsed the data into airline-route observations. For example, if

we had 10,000 United Airline tickets between Boston and Los Angeles in 1993:Q1, we

calculated summary statistics (such as the Gini coefficient), and collapsed the data into

a single observation corresponding to a United Airlines flight between Boston and Los

Angeles in 1993:Q1.

The merge between the DB1B and T-100 Segment databases was not exact (around

45 percent matched). First, since the DB1B does not provide complete coverage for

all airlines and routes, there are a number of direct routes in the T-100 data that we

do not find in the DB1B (especially low-volume routes). Second, the DB1B does not

allow us to distinguish between a non-stop, direct ticket and a ticket that involves a

stop without a plane change. For example, if a passenger takes a flight from Boston to

Orlando that stops in Atlanta, but does not involve a plane change, his itinerary will

look identical to that of a passenger who flies from Boston to Orlando without any stops.

For this reason, we identified some airline routes as direct in the DB1B, that are not non-

stop, and therefore do not have segment information in the T-100 data. While we lose

many airline-route observations during the merge as a result, we believe that this merge

actually provides a nice filter, since we would ideally like to use only non-stop, direct

flights. Thus, by merging data between the DB1B and the T-100, we likely eliminate a
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large proportion of flights that are direct, but not non-stop due to a plane change.

In an effort to eliminate possible coding errors, we drop certain airline-route observa-

tions from the data that we believe do not have adequate coverage to calculate reliable

price dispersion statistics. We drop any airline-route observation that does not have at

least 100 passengers in the DB1B. Furthermore, for each airline route observation, we

calculate the average number of passengers over time in both the DB1B and the T-100

Segment databases. If the number of passengers on an airline route in a given quarter

falls below 25 percent of its mean over time in one of the databases, but not in the other,

then we drop the observation from our data, on the basis that its value is most likely

measurement error. However, if the number of passengers on an airline route in a given

quarter falls below 25 percent of its mean in both the DB1B and the T-100 Segment

databases, then we keep the observation in our data.

Finally, we addressed the issue of “double counting.” Since we defined a route as a

directional trip in our data, any round-trip ticket would count twice. For example, a

round-trip fare from Boston to San Francisco would appear twice in the data — once as

BOS-SFO and once as SFO-BOS. Since this would have no effect on the consistency of

our estimates, but a significant effect on the size of our standard errors, we chose to drop

one of the directions. Of course, the drawback of this assumption is that some one-way

fares were dropped from the data as a result. In our judgment, the first issue outweighed

the second issue.
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Table 1: Full Sample Estimates

ln(IQR) Glodd

YGAP 1.882*** 1.219***

(0.210) (0.104)

-UR 2.535*** 1.714***

(0.279) (0.152)

ln ĤERF 0.232*** 0.227*** 0.069*** 0.066***

(0.040) (0.040) (0.023) (0.023)

ln FUEL 0.103*** 0.087*** -0.030*** -0.040***

(0.012) (0.013) (0.008) (0.008)

ln COST 0.194*** 0.168*** 0.465*** 0.449***

(0.059) (0.055) (0.029) (0.028)

Observations 154333 153632 155961 155254

Notes: All regressions include carrier-route-specific dummies. Standard errors are in parentheses and

are clustered by route to account for both autocorrelation and correlation between carriers on the same

route. One, two, and three asterisks indicate significance at the 10-percent, 5-percent, or 1-percent

significance level, respectively.



Table 2: Full Sample Estimates: Percentiles

ln(90) ln(10)

YGAP 1.349*** 0.033

(0.108) (0.062)

- UR 1.590*** -0.246**

(0.148) (0.100)

ln ĤERF 0.279*** 0.276*** 0.211*** 0.211***

(0.027) (0.027) (0.014) (0.014)

ln FUEL 0.073*** 0.060*** 0.112*** 0.110***

(0.009) (0.010) (0.005) (0.005)

ln COST 0.306*** 0.286*** -0.017 -0.019

(0.032) (0.031) (0.015) (0.014)

Observations 155961 155254 155961 155254

Notes: All regressions include carrier-route-specific dummies. Standard errors are in parentheses and

are clustered by route to account for both autocorrelation and correlation between carriers on the same

route. One, two, and three asterisks indicate significance at the 10-percent, 5-percent, or 1-percent

significance level, respectively.



Table 3: Panel Estimates by Carrier and Route Type

Legacy Carriers Low-Cost Carriers

Full Sample

YGAP 2.772*** 1.030***

(0.222) (0.173)

- UR 2.961*** 1.867***

(0.309) (0.268)

Observations 105562 104920 40941 40926

Big-City Routes

YGAP 3.616*** 1.312***

(0.394) (0.332)

- UR 3.684*** 2.112***

(0.550) (0.468)

Observations 34807 34807 8276 8276

Leisure Routes

YGAP 1.839*** 0.791*

(0.367) (0.408)

- UR 1.996*** 1.361**

(0.517) (0.560)

Observations 20877 20235 10244 10229

Notes: The dependent variable is the logarithm of the interquartile range. All regressions include carrier-

route-specific dummies. Standard errors are in parentheses and are clustered by route to account for

both autocorrelation and correlation between carriers on the same route. One, two, and three asterisks

indicate significance at the 10-percent, 5-percent, or 1-percent significance level, respectively.



Figure 1: Operating Profits
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Notes: Total operating profits are taken from the BTS’s P-12 database and includes profits for carriers

with annual operating revenues of $20 million or more. The output gap is the difference between

actual and potential output as measured by the Congressional Budget Office (CBO) and the Bureau of

Economics Analysis.



Figure 2: Profit Variance and Price Dispersion Volatility
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Notes: Depicted are the ten largest carriers in terms of passengers per quarter. We also included two

large LCCs, Frontier and AirTran. The within-route interquartile range (IQR) of prices was calculated

as the average (weighted by passengers for each carrier), of which we calculated the variance for each

carrier. This figure uses domestic operating profits from the BTS’s P-12 database.



Figure 3: Pricing Dynamics
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Notes: Depicted are 10th, 30th, 50th, 70th and 90th price percentiles for three airline-route observations.

The output gap is also depicted as a dashed line.



Figure 4: Aircraft Operating Costs
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Figure 5: Aircraft Utilization Rate
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