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1 Introduction

The basic fiscal policy prescription in dynamic, stochastic, frictionless economies is tax-smoothing.

Labor taxes should be essentially constant and any kind of shock should be absorbed by proper

debt management. This result comes from the seminal work of Lucas and Stokey (1983) and Chari

et al. (1994) and forms the heart of dynamic Ramsey policy.

In this paper, I show that if we differentiate between risk aversion and intertemporal elastic-

ity of substitution and use the recursive preferences of Epstein and Zin (1989) and Weil (1990),

the conventional normative tax-smoothing result breaks down. Optimal policy generates large

surpluses and deficits by prescribing high taxes in good times and low taxes in bad times. Fur-

thermore, in contrast to standard Ramsey results, labor taxes are persistent independent of the

stochastic properties of exogenous shocks and capital income should be subsidized.

The coefficients of intertemporal elasticity of substitution and risk aversion are two parameters

that are a priori important in shaping dynamic policy. They control the desirability of taxing

in the current versus future periods and the aversion towards shocks that hit the government

budget. Unfortunately, time-additive expected utility renders the analysis of the implications of

these two parameters on optimal policy impossible. Moreover, since the temporal dimension of

risk is ignored, questions about the implications of long-run fiscal risks on current tax and debt

policies can be answered only in a limited way.

More crucially, optimal fiscal policy revolves around the proper choice of taxes and government

securities to maximize welfare. To determine the desirability of debt securities, a plausible model of

returns is needed. Conventional Ramsey analysis uses time-additive expected utility, a specification

which is notorious for its difficulty in generating realistic asset prices, casting therefore doubts

on the merits of standard tax-smoothing prescriptions. The failure to match risk premia has

made the empirically more successful recursive preferences the norm in the literature that merges

macroeconomics and finance.1 It is natural to speculate that any model that prices better risk

will alter the qualitative and quantitative nature of fiscal policy. However, little is known about

recursive utility and optimal fiscal policy even in the simplest Ramsey setup. This is the task of

the current paper.

Consider first an economy without capital as in Lucas and Stokey (1983). Linear taxes and

state-contingent debt are used in order to finance an exogenous stream of stochastic government

expenditures. A benevolent planner chooses under commitment the policy that maximizes the

utility of the representative household. There are two basic results with time-additive expected

utility: First, the labor tax should be constant if period utility features constant elasticities. Even

when elasticities are not constant, the volatility of the labor tax is quite small. Second, whenever

the labor tax varies, it inherits the stochastic properties of the exogenous shocks. Thus, optimal

1The literature is vast. See indicatively Tallarini (2000), Bansal and Yaron (2004), Piazzesi and Schneider (2007),
Hansen et al. (2008), Gourio (2012), Rudebusch and Swanson (2012), Petrosky-Nadeau et al. (2013) and Ai and
Bansal (2016) among others.
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labor taxes do not constitute a distinct source of persistence in the economy.

As I argued earlier, both of these classic results are overturned in the same economy with

recursive preferences. There is a simple, yet powerful intuition for that. Assume that risk aversion

is greater than the inverse of the intertemporal elasticity of substitution. In that case, the house-

hold sacrifices smoothing over time in order to have a smoother consumption profile over states,

becoming effectively averse to volatility in future utilities. As a response, the planner attenuates

utility volatility by taxing less in bad times, offsetting therefore the effects of an adverse fiscal

shock, and taxing more in good times, mitigating the benefits of a favorable fiscal shock.

What is the mechanism behind this intuition? The entire action is coming from the pricing

of state-contingent claims with recursive utility. The planner hedges fiscal risk by issuing state-

contingent debt against low spending shocks, to be paid by surpluses, and buys assets against

high spending shocks, that are used to finance government deficits. With recursive utility the

planner “over-insures,” that is, he sells more debt against low spending shocks relative to the

expected utility benchmark. Consequently, taxes are higher in good times when spending is low,

in order to repay the high levels of maturing debt. The reason for over-insurance is simple: by

issuing more debt against good times the planner depresses future utilities. This reduction in

utility is priced with recursive preferences, raising the stochastic discount factor. Thus, the price

of state-contingent claims that the planner sells rises, making state-contingent debt against good

times cheaper. So more revenue can be raised from debt issuance and the planner can relax the

budget constraint, which is welfare-improving. Similarly, by purchasing more assets and taxing

less against high spending shocks, the planner raises utility and therefore decreases the stochastic

discount factor, relaxing again the government budget constraint.

Hence, the planner is trading off some tax volatility for more beneficial prices of state-contingent

debt. The additional curvature of the utility function with respect to the “long-run”, as captured

by future utilities, amplifies fiscal insurance, depressing ultimately risk premia. Optimal policy

prescribes high returns for bond-holders when government spending is low, paid for with high

taxes. In contrast, optimal policy prescribes capital losses for bond-holders when spending is

high, allowing large deficits with low taxes. In fact, at high levels of government debt, the over-

insurance efforts of the government can lead to a positive conditional covariance of the stochastic

discount factor with the returns on the government debt portfolio, implying a negative conditional

risk premium of government debt. The economics behind this remarkable result make sense:

“good” times with low spending shocks can become “bad” times with very high tax rates. Thus,

the household is happy to accept a negative premium for a risky security that pays well when

distortionary taxes are high.

With recursive preferences a tax rate at a future period affects the entire sequence of one-period

stochastic discount factors up to that period, due to the forward-looking nature of future utilities.

As a result, the planner does not choose future tax rates independently from the past, but designs

persistent policies in order to properly affect the entire sequence of prices of state-contingent claims.
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Furthermore, it is cheaper on average to issue debt and postpone taxation, leading optimally to

back-loading of tax distortions.

Recursive utility introduces non-trivial complications to the numerical analysis of the Ramsey

problem. Value functions appear in the constraints since they affect the pricing of the government

debt portfolio, hindering the contraction property, introducing non-convexities and complicating

the calculation of the state space. A separate contribution of the paper is to deal with these issues

and provide a numerical solution of the optimal taxation problem. In a series of numerical exercises

I demonstrate the volatility and persistence of the tax rate and analyze the implications for the

debt-to-output ratio.

As a final exercise, I quantify the optimal use of debt returns and tax revenues for the absorption

of fiscal shocks and contrast it to the empirical findings of Berndt et al. (2012). Berndt et al. (2012)

measure how fiscal shocks are absorbed by reductions in debt returns (the debt valuation channel

or else fiscal insurance) or by increases in tax revenues (the surplus channel) in post-war U.S.

data and find evidence of limited but non-negligible fiscal insurance. In contrast, optimal policy

in an expected utility economy prescribes that the majority of fiscal risk should be absorbed by

reductions in returns. Turning to a recursive utility economy, the debt valuation channel is even

more prominent and can surpass 100%; fiscal insurance compensates for the fact that taxes actually

decrease when an adverse fiscal shock hits. Thus, if we evaluate actual policy from the normative

lens of an economy that generates a higher market price of risk, the following conclusion emerges:

actual fiscal policy is even worse than we thought.

The basic insights of optimal fiscal policy with recursive utility hold also in an economy with

capital as in the setups of Chari et al. (1994) and Zhu (1992). The planner still over-insures and sets

high and persistent labor taxes against good shocks. Furthermore, in contrast to the essentially

zero ex-ante capital tax result of Chari et al. (1994) and Zhu (1992), there is an incentive to

introduce an ex-ante capital subsidy. The reason is simple: the planner again mitigates fiscal

shocks and manipulates prices by using essentially a state-contingent subsidy to capital income in

bad times and a state-contingent capital tax in good times. Bad times are weighed more though

due to high marginal utility and a high marginal product of capital. Thus, the weighted average

of the state-contingent intertemporal distortions becomes negative, leading to an ex-ante subsidy.

Related literature. The main reference on optimal taxation with time-additive expected utility

for an economy without capital is Lucas and Stokey (1983). The respective references for an

economy with capital are Chari et al. (1994) and Zhu (1992). The models I examine reduce to

the models analyzed in these studies, if I equate the risk aversion parameter to the inverse of the

intertemporal elasticity of substitution parameter. Furthermore, the economy with capital reduces

to the deterministic economy of Chamley (1986), if I shut off uncertainty.2

2It is worth noting that Chamley demonstrated the generality of the zero capital tax result at the deterministic
steady state by using the preferences of Koopmans (1960). See Chari and Kehoe (1999) for a comprehensive survey
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Related studies include Farhi and Werning (2008), who analyze the implications of recursive

preferences for private information setups and Karantounias (2013), who analyzes optimal taxation

in an economy without capital, in a setup where the household entertains fears of misspecification

but the fiscal authority does not. Of interest is also the work of Gottardi et al. (2015), who study

optimal taxation of human and physical capital with uninsurable idiosyncratic shocks and recursive

preferences.3

Other studies have analyzed the interaction of fiscal policies and asset prices with recursive

preferences from a positive angle. Gomes et al. (2013) build a quantitative model and analyze

the implications of fiscal policies on asset prices and the wealth distribution. Croce et al. (2012a)

show that corporate taxes can create sizeable risk premia with recursive preferences. Croce et al.

(2012b) analyze the effect of exogenous fiscal rules on the endogenous growth rate of the economy.

None of these studies though considers optimal policy.

Another relevant line of research is the analysis of optimal taxation with time-additive expected

utility and restricted asset markets as in Aiyagari et al. (2002), Farhi (2010), Shin (2006), Sleet

and Yeltekin (2006), Bhandari et al. (2016) or with time-additive expected utility and private

information as in Sleet (2004). In the study of Aiyagari et al. (2002), who provide the foundation

of the tax-smoothing results of Barro (1979), the lack of insurance markets causes the planner to

allocate distortions in a time-varying and persistent way. However, the lack of markets implies

that the planner increases the tax rate when government spending is high. Instead, the opposite

happens in the current paper.4 More generally, with incomplete markets as in Aiyagari et al.

(2002), the planner would like to allocate tax distortions in a constant way across states and dates

but he cannot, whereas with complete markets and recursive preferences he could in principle

follow a constant distortion policy, but does not find it optimal to do so.

The paper is organized as follows. Section 2 lays out an economy without capital and section

3 sets up the Ramsey problem and its recursive formulation. Section 4 is devoted to the analysis

of the excess burden of distortionary taxation, a multiplier that reflects how tax distortions are

allocated across states and dates. The implications for labor taxes are derived in section 5. Detailed

numerical exercises are provided in section 6. Section 7 analyzes government debt returns and

optimal fiscal insurance. Section 8 extends the analysis to an economy with capital and considers

the optimal ex-ante capital tax. Section 9 discusses the case of preference for late resolution of

uncertainty. Finally, section 10 concludes and an Appendix follows. A separate Online Appendix

provides additional details and robustness exercises.

of optimal fiscal policy.
3There is an extensive literature that studies optimal risk-sharing with recursive utility. See Anderson (2005)

and references therein.
4Furthermore, with incomplete markets as in Aiyagari et al. (2002), it is typically optimal to front-load distortions

in order to create a buffer stock of assets, furnishing a tax rate with a negative drift. In contrast, in the current
analysis the tax rate exhibits a positive drift, in order to take advantage of cheaper state-contingent debt. It is
interesting to observe that Sleet (2004) also obtains a positive drift in the tax rate in a setup with private information
about the government spending needs.
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2 Economy without capital

I start the analysis of optimal fiscal policy with recursive utility in an economy without capital as

in Lucas and Stokey (1983). In a later section, I extend the analysis to an economy with capital

as in Chari et al. (1994) and Zhu (1992) and I derive the implications for capital taxation.

Time is discrete and the horizon is infinite. There is uncertainty in the economy stemming

from exogenous government expenditure shocks g. Shocks take values in a finite set. Let gt ≡
(g0, g1, ..., gt) denote the partial history of shocks up to time t and let πt(g

t) denote the probability

of this history. The initial shock is assumed to be given, so that π0(g0) = 1.

The economy is populated by a representative household that is endowed with one unit of time

and consumes ct(g
t), works ht(g

t), pays linear labor income taxes with rate τt(g
t) and trades in

complete asset markets. Leisure of the household is lt(g
t) = 1− ht(gt). The notation denotes that

the relevant variables are measurable functions of the history gt. Labor markets are competitive,

which leads to an equilibrium wage of unity, wt(g
t) = 1. The resource constraint in the economy

reads

ct(g
t) + gt = ht(g

t),∀t, gt. (1)

2.1 Preferences

The representative household ranks consumption and leisure plans following a recursive utility

criterion of Kreps and Porteus (1978). I focus on the isoelastic preferences of Epstein and Zin

(1989) and Weil (1990) (EZW henceforth), that are described by the utility recursion

Vt = [(1− β)u(ct, 1− ht)1−ρ + β(EtV
1−γ
t+1 )

1−ρ
1−γ ]

1
1−ρ , (2)

where u(c, 1 − h) > 0. The household derives utility from a composite good that consists of

consumption and leisure, u(c, 1−h), and from the certainty equivalent of continuation utility, µt ≡
(EtV

1−γ
t+1 )

1
1−γ
. Et denotes the conditional expectation operator given information at t with respect

to measure π. The parameter 1/ρ captures the constant intertemporal elasticity of substitution

between the composite good and the certainty equivalent, whereas the parameter γ represents risk

aversion with respect to atemporal gambles in continuation values. These preferences reduce to

standard time-additive expected utility when ρ = γ. This is easily seen by applying the monotonic

transformation vt ≡ V 1−ρ
t −1

(1−β)(1−ρ)
, since the utility recursion (2) becomes

vt = U(ct, 1− ht) + β

[
Et[1 + (1− β)(1− ρ)vt+1]

1−γ
1−ρ

] 1−ρ
1−γ − 1

(1− β)(1− ρ)
, (3)
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where U(c, 1−h) ≡ u1−ρ−1
1−ρ . Recursion (3) implies that the household is averse to volatility in future

utility when ρ < γ, whereas it loves volatility when ρ > γ.5 Thus, when ρ < γ, recursive utility

adds curvature with respect to future risks, a feature that is typically necessary to reproduce asset-

pricing facts.6 For that reason, I assume ρ < γ for the main body of the paper, unless otherwise

specified. In a later section I consider also the case of ρ > γ.

When ρ = 1, recursion (2) becomes Vt = u1−β
t µβt . Using the transformation vt ≡ lnVt

1−β we get

vt = lnu(ct, 1− ht) +
β

(1− β)(1− γ)
lnEt exp

[
(1− β)(1− γ)vt+1

]
, (4)

which for γ > 1 has the interpretation of a risk-sensitive recursion with risk-sensitivity parameter

σ ≡ (1− β)(1− γ).7

It will be useful to define

mt+1 ≡
(
Vt+1

µt

)1−γ

=
V 1−γ
t+1

EtV
1−γ
t+1

, t ≥ 0, (5)

with m0 ≡ 1. For ρ = 1, the corresponding definition is mt+1 = exp[(1−β)(1−γ)vt+1]
Et exp[(1−β)(1−γ)vt+1]

. Note

that mt+1 is positive since Vt+1 is positive, and that Etmt+1 = 1. So mt+1 can be interpreted as

a change of measure with respect to the conditional probability πt+1(gt+1|gt), or, in other words,

a conditional likelihood ratio. Similarly, define the product of the conditional likelihood ratios as

Mt(g
t) ≡

∏t
i=1mi(g

i),M0 ≡ 1. This object is a martingale with respect to π, EtMt+1 = Mt, and

has the interpretation of an unconditional likelihood ratio, EMt = 1. I refer to πt · Mt as the

continuation-value adjusted probability measure.

5Define the monotonic function H(x) ≡
[(

1 + (1 − β)(1 − ρ)x
) 1−γ

1−ρ − 1
]
/[(1 − β)(1 − γ)]. Recursion (3) can be

written as vt = Ut + βH−1(EtH(vt+1)). H(x) is concave for ρ < γ and convex for ρ > γ. The aversion or love of
utility volatility correspond respectively to preference for early or late resolution of uncertainty. They contrast to
the case of ρ = γ, which features neutrality to future risks and therefore indifference to the temporal resolution of
uncertainty.

6See for example Tallarini (2000), Bansal and Yaron (2004), Piazzesi and Schneider (2007) and Epstein et al.
(2014).

7More generally, in the case of risk-sensitive preferences, the period utility function is not restricted to be
logarithmic and the recursion takes the form vt = Ut + β

σ lnEt exp(σvt+1), σ < 0. There is an intimate link
between the risk-sensitive recursion and the multiplier preferences of Hansen and Sargent (2001) that capture the
decision maker’s fear of misspecification of the probability model π. See Strzalecki (2011) and Strzalecki (2013) for
a decision-theoretic treatment of the multiplier preferences and an analysis of the relationship between ambiguity
aversion and temporal resolution of uncertainty respectively.
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2.2 Competitive equilibrium

Household’s problem. Let {x} ≡ {xt(gt)}t≥0,gt stand for the sequence of an arbitrary random

variable xt. The representative household chooses {c, h, b} to maximize V0({c}, {h}) subject to

ct(g
t) +

∑
gt+1

pt(gt+1, g
t)bt+1(gt+1) ≤ (1− τt(gt))ht(gt) + bt(g

t), (6)

the non-negativity constraint for consumption ct(g
t) ≥ 0 and the feasibility constraint for labor

ht(g
t) ∈ [0, 1], where initial debt b0 is given. The variable bt+1(gt+1) stands for the holdings at

history gt of an Arrow claim that delivers one unit of consumption next period if the state is gt+1

and zero units otherwise. This security trades at price pt(gt+1, g
t) in units of the history-contingent

consumption ct(g
t).

The household is also facing a no-Ponzi-game condition that takes the form

lim
t→∞

∑
gt+1

qt+1(gt+1)bt+1(gt+1) ≥ 0 (7)

where qt(g
t) ≡

∏t−1
i=0 pi(gi+1, g

i) and q0 ≡ 1. In other words, qt stands for the price of an Arrow-

Debreu contract at t = 0.

Government. The government taxes labor income and issues state-contingent debt in order to

finance the exogenous government expenditures. The dynamic budget constraint of the government

takes the form

bt(g
t) + gt = τt(g

t)ht(g
t) +

∑
gt+1

pt(gt+1, g
t)bt+1(gt+1).

When bt > 0, the government borrows from the household and when bt < 0, the government lends

to the household.

Definition 1. A competitive equilibrium with taxes is a stochastic process for prices {p}, an

allocation {c, h, b} and a government policy {g, τ, b} such that: 1) Given prices {p} and taxes {τ},
the allocation {c, h, b} solves the household’s problem. 2) Prices are such that markets clear, i.e.

the resource constraint (1) holds.

2.3 Household’s optimality conditions

The labor supply decision of the household is governed by

Ul(g
t)

Uc(gt)
= 1− τt(gt), (8)
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which equates the marginal rate of substitution between consumption and leisure with the

after-tax wage. The first-order condition with respect to an Arrow security equates its price to the

household’s intertemporal marginal rate of substitution,

pt(gt+1, g
t) = βπt+1(gt+1|gt)

(
Vt+1(gt+1)

µt

)ρ−γ
Uc(g

t+1)

Uc(gt)

= βπt+1(gt+1|gt)mt+1(gt+1)
ρ−γ
1−γ

Uc(g
t+1)

Uc(gt)
, (9)

where the second line uses the definition of the conditional likelihood ratio (5). The transver-

sality condition is

lim
t→∞

∑
gt+1

βt+1πt+1(gt+1)Mt+1(gt+1)
ρ−γ
1−γUc(g

t+1)bt+1(gt+1) = 0. (10)

The stochastic discount factor St+1 with EZW utility is

St+1 ≡ β

(
Vt+1

µt

)ρ−γ
Uc,t+1

Uct
= βm

ρ−γ
1−γ
t+1

Uc,t+1

Uct
. (11)

The stochastic discount factor features continuation values, scaled by their certainty equivalent

µt, when ρ 6= γ. Besides caring for the short-run (Uc,t+1/Uct), the household cares also for the

“long-run,” in the sense that the entire sequence of future consumption and leisure – captured

by continuation values – directly affects St+1. Increases in consumption growth at t + 1 reduce

period marginal utility and therefore the stochastic discount factor in the standard time-additive

setup. When ρ < γ, increases in continuation values act exactly the same way; they decrease the

stochastic discount factor, because the household dislikes volatility in future utility. This is the

essence of the additional “curvature” that emerges with recursive utility.8

3 Ramsey problem

The Ramsey planner maximizes at t = 0 the utility of the representative household over the set

of competitive equilibrium allocations. Competitive equilibrium allocations are characterized by

resource constraints, budget constraints and optimality conditions that involve equilibrium prices

and taxes. I follow the primal approach of Lucas and Stokey (1983) and use the optimality

conditions to replace after-tax wages and prices with the respective marginal rates of substitution.

As a result, I formulate a policy problem where the planner chooses allocations that satisfy the

resource constraint (1) and implementability constraints, i.e. constraints that allow the allocation

8Bansal and Yaron (2004) and Hansen et al. (2008) have explored ways of making the continuation value channel
quantitatively important in order to increase the market price of risk.
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to be implemented as a competitive equilibrium.

3.1 Implementability constraints

The household’s dynamic budget constraint (6) holds with equality. Use (8) and (9) to elimi-

nate labor taxes and equilibrium prices from the constraint to get a sequence of implementability

constraints:

Proposition 1. The Ramsey planner faces the following implementability constraints:

Uctbt = Uctct − Ultht + βEtm
ρ−γ
1−γ
t+1 Uc,t+1bt+1, t ≥ 0

where ct ≥ 0, ht ∈ [0, 1] and (b0, g0) given. Furthermore, the transversality condition (10) has

to be satisfied. The conditional likelihood ratios mt+1 = V 1−γ
t+1 /EtV

1−γ
t+1 , t ≥ 0, are determined by

continuation values that follow recursion (2).

Complete markets allow the collapse of the household’s dynamic budget constraint to a unique

intertemporal budget constraint. However, maintaining the dynamic budget constraint is conve-

nient for a recursive formulation, as we will see in the next section.

Definition 2. The Ramsey problem is to maximize at t = 0 the utility of the representative

household subject to the implementability constraints of proposition 1 and the resource constraint

(1).

3.2 Recursive formulation

I follow the methodology of Kydland and Prescott (1980) and break the Ramsey problem in two

subproblems: the problem from period one onward and the initial period problem. Let zt denote

debt in (period) marginal utility units, zt ≡ Uctbt.
9 I represent the policy problem for t ≥ 1

recursively by keeping track of g – the exogenous shock– and z, the variable that captures the

commitment of the planner to his past promises. Note that z is a forward-looking variable that

is not inherited from the past. This creates the need to specify Z(g), the space where z lives.

The set Z(g) represents the values of debt in marginal utility units that can be generated from

an implementable allocation when the shock is g and is defined in the Appendix.10 Let V (z1, g1)

denote the value function of the planner’s problem from period one onward, where z1 ∈ Z(g1) and

assume that shocks follow a Markov process with transition probabilities π(g′|g).

9In the interest of brevity, I sometimes skip the “marginal utility units” qualification and refer to z simply as
debt. The meaning is always clear from the context.

10A separate Online Appendix provides the sequential formulation of the Ramsey problem.
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Bellman equation. The functional equation that determines the value function V takes the

form

V (z, g) = max
c,h,z′

g′

[
(1− β)u(c, 1− h)1−ρ + β

[∑
g′

π(g′|g)V (z′g′ , g
′)1−γ] 1−ρ

1−γ
] 1

1−ρ

subject to

z = Ucc− Ulh+ β
∑
g′

π(g′|g)
V (z′g′ , g

′)ρ−γ[∑
g′ π(g′|g)V (z′g′ , g

′)1−γ
] ρ−γ

1−γ
z′g′ (12)

c+ g = h (13)

c ≥ 0, h ∈ [0, 1] (14)

z′g′ ∈ Z(g′). (15)

The planner is maximizing welfare by choosing consumption, labor (and thus effectively the

labor tax), and next period’s state-contingent debt in marginal utility units, z′g′ , subject to the

government budget constraint (12) (expressed in terms of allocations), and the resource constraint,

(13). The nature of the Ramsey problem is fundamentally changed because, in contrast to time-

additive utility, continuation values matter for the determination of the market value of the gov-

ernment debt portfolio, and therefore show up in constraint (12). As such, the dynamic tradeoff

of taxing at the current period versus postponing taxation by issuing debt is altered, since the

planner has now to take into account how new debt issuance affects equilibrium prices through the

“long-run.” This tradeoff is at the heart of next section.

Initial period problem. The value of z1 that was taken as given in the formulation of the

planner’s problem at t ≥ 1 is chosen optimally at t = 0. In this sense, z is a pseudo-state variable,

i.e. a jump variable that is treated as a state variable in order to capture the commitment of the

planner to the optimal plan devised at the initial period. The initial period problem is stated in

the Online Appendix.

4 Recursive utility and the excess burden of taxation

4.1 Overview of the mechanism

How does the government tax across states and dates and how does it manage its state-contingent

debt in a welfare-maximizing way? To fix ideas, I provide here an overview of the mechanism

that is supported by the analysis of the optimality conditions and the numerical analysis of later

sections.
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The government is absorbing spending shocks through its debt portfolio. It achieves that

by selling claims to consumption against low spending shocks (good times) and by purchasing

claims to consumption against high spending shocks (bad times). In the standard time-additive

setup, the size of sales and purchases of state-contingent claims is such that the tax rate remains

essentially constant across states and dates, leading to the typical tax-smoothing result. Note that

consumption is high (low), and therefore the stochastic discount factor is low (high) when spending

shocks are low (high). So the price of claims sold is low and the price of claims bought is high.

The government has similar motives to use state-contingent debt in order to hedge fiscal risks

in a recursive utility economy. The difference is that there is a novel instrument to affect the

stochastic discount factor, lifetime utilities, which allows the government to make debt cheaper,

amplifying fiscal hedging: the government “over-insures” by selling more claims to consumption

against low shocks relative to the time-additive benchmark. Issuance of more debt against low

spending shocks reduces continuation utilities and, therefore, increases the stochastic discount

factor more than in the time-additive case, increasing the price of claims sold. Consequently, the

current revenue from selling claims to the private sector against a low spending shock next period

increases, allowing the relaxation of the government budget and less taxation at the current period.

More claims sold against a low shock next period implies that higher taxes have to be levied in the

future at that state, in order to repay debt. A similar mechanism holds for high spending states:

the government insures against fiscal risk by purchasing more claims to consumption against high

spending shocks relative to the time-additive economy. These actions increase the household’s

utility, depressing therefore the stochastic discount factor and the price of claims bought. More

assets (or less debt) against high shocks implies less taxes contingent on these states of the world.

The mechanism is intuitive and makes economic sense. It simply says that the planner should

mitigate the effects of fiscal shocks by taxing more in good times and less in bad times. By doing

that, state-contingent debt against good times becomes cheaper and state-contingent assets against

bad times become more profitable, due to the additional curvature of recursive utility. Furthermore,

this mechanism leads on average to back-loading of tax distortions over time, due to the reduced

interest rate cost of debt. Lastly, persistence of optimal tax rates is optimal independent of the

persistence of exogenous shocks: the planner changes smoothly the tax rate over time in order to

take full advantage of the forward-looking nature of continuation utilities.

4.2 Preliminaries: expected utility and the excess burden

Consider now the specifics of the mechanism. For the analysis of the problem it is easier to use

the transformed value function, v(z, g) ≡ V (z,g)1−ρ−1
(1−β)(1−ρ)

, that corresponds to recursion (3). The entire

action is coming from Φ, the multiplier on the implementability constraint of the transformed

problem.

11



The envelope condition is vz(z, g) = −Φ ≤ 0, since Φ is non-negative, Φ ≥ 0.11 So Φ captures

the cost of an additional unit of debt in marginal utility units. Increases in debt are costly because

they have to be accompanied with an increase in distortionary taxation (Φ = 0 when lump-sum

taxes are available).12

I refer to Φ as the excess burden of distortionary taxation and interpret it as an indicator of

tax distortions. In order to build intuition about its role, consider first the time-additive expected

utility world of Lucas and Stokey (1983) where ρ = γ. The optimality condition with respect to

new debt z′g′ takes the form

−vz(z′g′ , g′) = Φ. (16)

Optimality condition (16) has a typical marginal cost and marginal benefit interpretation. The

left-hand side captures the marginal cost of issuing more debt against g′ next period. Selling more

claims to consumption at g′ is costly because the planner has to increase distortionary taxation

in order to repay debt. However, by issuing more debt for next period, the planner can relax the

government budget and tax less at the current period. The marginal benefit of relaxing the budget

constraint has shadow value Φ, which is the right-hand side of (16).

By using the envelope condition, condition (16) implies that Φ′g′ = Φ,∀g′, for all values of

the state (z, g). Thus, in a time-additive expected utility economy, the planner sells and buys

as many state-contingent claims as necessary, in order to equalize the excess burden of taxation

across states and dates. This is the formal result that hides behind the tax-smoothing intuition in

typical frictionless Ramsey models. Furthermore, the constant excess burden is also the source of

Lucas and Stokey’s celebrated history-independence result, since optimal allocations and tax rates

can be written solely as functions of the exogenous shocks and the constant Φ.

4.3 Pricing with recursive utility and the excess burden

Turn now to the recursive utility case. New debt issuance at g′ is governed by the following

optimality condition:

−vz(z′g′ , g′)︸ ︷︷ ︸
MC of increasing z′

g′

= Φ ·
[

1︸︷︷︸
EU term

+ (1− β)(ρ− γ)vz(z
′
g′ , g

′)η′g′︸ ︷︷ ︸
EZW term: price effect of increasing z′

g′

]
, (17)

11I am implicitly assuming that the government has access to lump-sum transfers, so that the dynamic imple-

mentability constraint takes the form zt ≤ Uctct − Ultht + βEtm
ρ−γ
1−γ
t+1 zt+1.

12 Φ would also be zero if the government had sufficient initial assets that could support the first-best allocation.
This case is ruled out here in order to have an interesting second-best problem.
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where

η′g′ ≡ V ′ρ−1
g′ z′g′ − µρ−1

∑
g′

π(g′|g)m
′ ρ−γ
1−γ
g′ z′g′ . (18)

Equivalently, by using the definition of m′g′ , we can rewrite the variable η′g′ as η′g′ = V ′ρ−1
g′ z′g′ −∑

g′ π(g′|g)m′g′V
′ρ−1
g′ z′g′ .

13 So η′g′ stands for the conditional innovation of V ′ρ−1
g′ z′g′ under πt ·Mt and

takes positive and negative values with an average of zero,
∑

g′ π(g′|g)m′g′η
′
g′ = 0.

For ρ = 1, η′g′ simplifies to the state-contingent debt position in marginal utility units relative

to the value of the government debt portfolio, η′g′ = z′g′ −
∑

g′ π(g′|g)m′g′z
′
g′ . For that reason, I call

η′g′ the government’s relative debt position in marginal utility units.

Interpretation. As in the time-additive case, the left-hand side of (17) denotes the marginal cost

of issuing more debt against g′ next period. The right-hand side of (17) measures the utility benefit

(captured by the multiplication with the current multiplier Φ) coming from the government’s

marginal revenue from debt issuance (the expression inside the brackets). The first term in the

brackets captures the same direct increase in revenue as in the time-additive setup, coming from

selling more debt. The second term is novel and is coming from the change in prices due to the

increased debt position: an increase in debt reduces utility, which increases the stochastic discount

factor, (ρ− γ)vz > 0 for ρ < γ. This increase in prices, which is multiplied with η′g′ , was absent in

the time-additive setup, since the “long-run” was not priced.14

How the planner is going to use this novel price effect of recursive utility depends on the relative

debt position η′g′ , according to (17). To see clearly the mechanism, turn into sequence notation,

collect the terms that involve vz, and use the envelope condition in order to rewrite (17) in terms

of the inverse of Φ (assuming that Φ is not zero),15

1

Φt+1

=
1

Φt

+ (1− β)(ρ− γ)ηt+1, t ≥ 0, (19)

where ηt+1 ≡ V ρ−1
t+1 zt+1−µρ−1

t Etm
ρ−γ
1−γ
t+1 zt+1 = V ρ−1

t+1 zt+1−Etmt+1V
ρ−1
t+1 zt+1. Consider fiscal shocks

ĝ and g̃ at t+ 1 such that ηt+1(ĝ) > 0 > ηt+1(g̃). Then, (19) implies that Φt+1(ĝ) > Φt > Φt+1(g̃)

13In definition (18) recall that m′g′ stands for the conditional likelihood ratio, µ for the certainty equivalent and
V ′g′ is shorthand for V (z′g′ , g

′). I use the non-transformed value function V in (18) (which is equal to [1+(1−β)(1−
ρ)v]

1
1−ρ ) as a matter of convenience; it allows a more compact exposition of the first-order conditions.

14The second term in the brackets of the right-hand side of (17) would be absent also in a deterministic economy,
since η′g′ ≡ 0,∀g′ in that case. This would imply again a constant excess burden of taxation. Thus, apart from
the level of the constant Φ, there is no essential difference between a deterministic world and a stochastic but
time-additive world with ρ = γ.

15Otherwise, write the optimality condition as Φt+1 = Φt/
[
1 + (1 − β)(ρ − γ)ηt+1Φt

]
. Thus, if Φt = 0, then

Φt+i = 0, i ≥ 0, so the first-best is an absorbing state.
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for ρ < γ. So, in contrast to the time-additive setup, the excess burden of taxation, and therefore

the tax rate, varies across states and dates and is higher at states of the world next period, against

which the relative debt position is positive, and lower at states of the world, against which the

relative debt position is negative.16

What is happening here? Exactly the story that we highlighted in the overview of the mech-

anism. The increase in prices due to the additional curvature of recursive utility is beneficial at

states of the world against which the planner issues relatively more debt. In other words, the plan-

ner should optimally increase taxes at states of the world next period, against which it is cheaper

today to issue debt. The opposite happens for states of the world against which the relative debt

position is small.

Two comments are due. First, note that is not just the debt position (adjusted by marginal

utility – and continuation utility when ρ 6= 1) but the debt position relative to (a multiple of) the

market value of the debt portfolio, Etm
ρ−γ
1−γ
t+1 zt+1, that matters for the increase or decrease of the

excess burden of taxation across states and dates. The reason for this is coming from the state

non-separabilities that emerge with recursive utility. In particular, an increase of z′g′ may increase

the price of the respective claim at g′ by reducing utility, but reduces also the certainty equivalent

and decreases therefore the rest of the prices of state-contingent claims at ḡ, ḡ 6= g′. This is why

the relative position ηt+1 captures the net effect of price manipulation through the continuation

utility channel.

Second, in the overview of the mechanism we stressed that the government is using state-

contingent debt to hedge fiscal shocks by selling claims against low spending shocks and purchasing

claims (or selling less claims) against high spending shocks. Thus, we expect to have bt+1(gL) >

bt+1(gH) for gH > gL. Assume that ρ = 1 < γ and that the same ranking of debt positions holds

also for debt in marginal utility units, i.e. zt+1(gL) > zt+1(gH). Then, ηt+1(gL) > 0 > ηt+1(gH),

which implies that Φt+1(gL) > Φt > Φt+1(gH). Consequently, the excess burden, and therefore

the tax rate, increases for low fiscal shocks and decreases for high fiscal shocks, leading to larger

surpluses and deficits. We are going to see explicitly this fiscal hedging when we solve the model

numerically.

To conclude this section, the following proposition summarizes the results about the excess

burden of taxation.

Proposition 2. 1. The excess burden is constant across states and dates when ρ = γ.

2. Assume ρ < γ and let ĝ and g̃ be shocks at t+ 1 such that ηt+1(ĝ) > 0 > ηt+1(g̃). Then, the

law of motion of the excess burden (19) implies that Φt+1(ĝ) > Φt > Φt+1(g̃).

16The varying excess burden has also implications for the size of zt over time. It is tempting to deduce that the
planner is not only increasing the excess burden for a high-debt state next period (ηt+1 > 0), but also issues more
state-contingent debt for next period. Formally, the deduction would be Φt+1 = −vz(zt+1, g) > Φt = −vz(zt, g)⇒
zt+1 > zt, which is a statement about the concavity of v at g. This statement cannot be made in general due to
the non-convexities of the Ramsey problem, but it turns out to be numerically true.
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3. (Fiscal hedging and the excess burden) Let gH > gL and assume that ρ = 1 < γ. If zt+1(gL) >

zt+1(gH), then Φt+1(gL) > Φt > Φt+1(gH).17

4.4 Dynamics of the excess burden of taxation

The relative debt position ηt captures the incentives of the planner to increase or decrease the

excess burden, given the past shadow cost of debt and tax promises, Φt−1. This fact introduces

dependence on the history of shocks. To understand the role of the past, consider a change in debt

at time t. This change will affect continuation values at t but also at all previous periods, because

utilities are forward-looking: the household at t− i, i = 1, 2, ..., t is taking into account the entire

future stream of consumption and leisure when it prices Arrow claims. As a result, all past prices

of state-contingent claims pi(si+1, s
i), i = 0, 1, 2, .., t−1 change with a change in continuation values

at time t. This is why the excess burden depends on the sum of the past relative debt positions

{ηi}ti=1, which can be seen by solving (19) backwards. Furthermore, we have:

Proposition 3. (Persistence and back-loading of the excess burden)

The inverse of Φt is a martingale with respect to the continuation-value adjusted measure πt ·Mt

for ρ S γ. Therefore, Φt is a submartingale with respect to πt ·Mt, Etmt+1Φt+1 ≥ Φt. As a result,

EtΦt+1 ≥ Φt − Covt(mt+1,Φt+1), (20)

so if Covt(mt+1,Φt+1) ≤ 0, Φt is a submartingale with respect to π, EtΦt+1 ≥ Φt.

Proof. Take conditional expectation in (19) to get

Etmt+1
1

Φt+1

=
1

Φt

Etmt+1 + (1− β)(ρ− γ)Etmt+1ηt+1 =
1

Φt

,

since Etmt+1 = 1 and Etmt+1ηt+1 = 0. Thus 1/Φt is a martingale with respect to πt · Mt.

Furthermore, since the function f(x) = 1/x is convex for x > 0, an application of the conditional

version of Jensen’s inequality leads to Etmt+1
1

xt+1
≥ 1

Etmt+1xt+1
. Set now xt = 1/Φt and use

the martingale result to finally get Etmt+1Φt+1 ≥ Φt. Inequality (20) is derived by using the

submartingale result and the fact that Etmt+1Φt+1 = Covt(mt+1,Φt+1) + EtΦt+1, since Etmt+1 =

1.

The martingale result about the inverse of the excess burden of taxation implies persistence

independent of the stochastic properties of exogenous shocks, in contrast to the standard time-

17Clearly, the corresponding statement for ρ 6= 1 < γ is: if V ρ−1
t+1 (gL)zt+1(gL) > V ρ−1

t+1 (gH)zt+1(gH), then
Φt+1(gL) > Φt > Φt+1(gH).
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additive Ramsey results.18 Furthermore, the submartingale result shows that the planner wants

on “average” to back-load tax distortions, in the sense that the excess burden exhibits a positive

drift with respect to the continuation-value adjusted measure, independent of ρ ≶ γ. In order

to determine the drift with respect to the actual measure that generates uncertainty, π, we need

to determine the covariance of the excess burden with the change of measure mt+1. Consider

without loss of generality the case of ρ = 1 < γ. Then, high fiscal shocks, since they reduce

utility, are associated with a higher conditional probability mass and therefore a higher mt+1,

leading to a positive correlation of mt+1 with spending. Furthermore, we expect the excess burden

to be negatively correlated with spending. As a result, we expect Covt(mt+1,Φt+1) ≤ 0 and

therefore proposition 3 implies a positive drift in Φt with respect to π. More intuitively, since

the average excess burden of taxation is increasing according to the utility-adjusted beliefs that

do not assign a lot of probability mass on states of the world with a high excess burden, it will

still be increasing on average according to the data-generating process, which puts more weight on

exactly these contingencies of a high excess burden. We will explore further the persistence and

the back-loading of tax distortions in the numerical exercises section.

5 Optimal labor income taxation

The following proposition exhibits the exact relationship of the excess burden of taxation with the

labor tax.

Proposition 4. (Labor tax) The optimal labor tax is

τt = Φt
εcc,t + εch,t + εhh,t + εhc,t

1 + Φt

(
1 + εhh,t + εhc,t

) , t ≥ 1.

where εcc ≡ −Uccc/Uc > 0 and εch ≡ Uclh/Uc, i.e. the own and cross elasticity of the period

marginal utility of consumption, and εhh ≡ −Ullh/Ul > 0 and εhc ≡ Ulcc/Ul, the own and cross

elasticity of the period marginal disutility of labor. When Ucl ≥ 0, then εch, εhc ≥ 0 and τt ≥ 0. 19

Proof. Let Ω(c, h) ≡ Uc(c, 1 − h)c − Ul(c, 1 − h)h stand for consumption net of after-tax labor

income, in marginal utility units. This object is in equilibrium equal to the primary surplus in

marginal utility units. Let λ denote the multiplier on the resource constraint of the Ramsey

problem with the transformed value function v. The first-order necessary conditions with respect

to (c, h) are

18In the Online Appendix I discuss why the martingale property is not sufficient to establish convergence results
of the inverse of the excess burden with respect to π.

19The labor tax formula holds also for the deterministic and stochastic time-additive case for any period utility
U that satisfies the standard monotonicity and concavity assumptions, i.e. without being restricted to U = (u1−ρ−
1)/(1− ρ), u > 0.
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c : Uc + ΦΩc = λ (21)

h : Ul − ΦΩh = λ, (22)

where Ωi, i = c, h denotes the respective partial derivative. Combine the first-order conditions

(21)-(22) to get the optimal wedge in labor supply, Ul
Uc
·

1−Φ
Ωh
Ul

1+Φ Ωc
Uc

= 1. Associate the derivatives

Ωi, i = c, h to elasticities as Ωc/Uc = 1− εcc− εch and Ωh/Ul = −1− εhh− εhc. Use the labor supply

condition Ul/Uc = 1− τ and rewrite the optimal wedge as τ = −Φ(Ωc/Uc + Ωh/Ul)/(1−ΦΩh/Ul).

The result follows.

The formula in proposition 4 expresses the optimal labor tax in terms of the excess burden

of taxation Φt and the elasticities of the period marginal utility of consumption and disutility of

labor. Ceteris paribus, the labor tax varies monotonically with the excess burden of taxation, a

fact which justifies the interpretation of Φt as an indicator of tax distortions.20 Period elasticities

in the optimal tax formula reflect the sensitivity of the surplus in marginal utility units to shocks.

They capture the sensitivity of labor supply to changes in the tax rate and the pricing effects of

the period marginal utility channel in the stochastic discount factor – the only pricing effect in the

time-additive case. Assume for example that Ucl = 0. The optimal tax formula shows that the

larger εcc, the larger the tax rate, ceteris paribus. The reason is simple. A large tax rate reduces

consumption and increases marginal utility, increasing therefore the discounted value of surpluses

and relaxing the government budget. This is essentially the only type of interest rate manipulation

with time-additive utility.21

When ρ = γ, we have Φt = Φ, and the labor tax varies only due to variation in period elastici-

ties. Thus, when elasticities are constant, optimal policy prescribes perfect tax-smoothing. With

recursive utility though, even in the constant period elasticity case, the labor tax varies monoton-

ically with the non-constant excess burden of taxation. Consider for example the composite good

u

u(c, 1− h) =

[
c1−ρ − (1− ρ)ah

h1+φh

1 + φh

] 1
1−ρ

, (23)

20We have ∂τ
∂Φ |εi,j constant = εcc+εch+εhh+εhc[

1+Φ(1+εhh+εhc)]2
> 0, as long as the numerator is positive. Ucl ≥ 0 is sufficient for

that.
21Similarly, (22) implies that a reduction in labor (through an increase in the tax rate) is –by increasing tax

revenues– beneficial when εhh is high, i.e. when the Frisch elasticity of labor supply is small. Thus, the labor tax
formula in proposition 4 contains the standard static Ramsey prescription of taxing more labor when it is supplied
inelastically.
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which implies a period utility function with constant elasticities, U = c1−ρ−1
1−ρ − ah

h1+φh

1+φh
.22 We get

the following proposition:

Proposition 5. (Labor tax with power utility and constant Frisch elasticity)

1. The labor tax follows the law of motion

1

τt+1

=
1

τt
+

(1− β)(ρ− γ)

ρ+ φh
ηt+1, t ≥ 1. (24)

2. Tax rates across states and dates:

• Let ρ < γ. Let ĝ and g̃ be shocks at t + 1 such that ηt+1(ĝ) > 0 > ηt+1(g̃). Then,

τt+1(ĝ) > τt > τt+1(g̃).

• Let ρ = 1 < γ and assume that shocks take two values, gH > gL. If zt+1(gL) > zt+1(gH),

then τt+1(gL) > τt > τt+1(gH).23

3. (Persistence and back-loading of the labor tax) The inverse of the labor tax is a martingale

with respect to πt ·Mt for ρ S γ. Therefore, τt is a submartingale with respect to πt ·Mt,

Etmt+1τt+1 ≥ τt and

Etτt+1 ≥ τt − Covt(mt+1, τt+1).

If Covt(mt+1, τt+1) ≤ 0, then Etτt+1 ≥ τt.

Proof. The labor tax formula in proposition 4 specializes to

τt =
Φt(ρ+ φh)

1 + Φt(1 + φh)
, t ≥ 1. (25)

The formula shows that the crucial parameter for the period elasticities channel is ρ (and not

γ), whereas both ρ and γ affect the Ramsey outcome through the law of motion of Φt, (19). Taking

inverses in (25) delivers 1
τt

= 1+φh
ρ+φh

+ 1
ρ+φh

1
Φt

, so 1/τt is an affine function of 1/Φt. Use then (19)

to get the law of motion of the labor tax (24). Notice the resemblance of (24) to (19), a fact

that leads to the same conclusions about the variation of tax rates across states and dates and

(sub)martingale properties as in proposition 3.

When we have a period utility function with a power subutility of consumption and constant

Frisch elasticity, period elasticities are constant and the labor tax behaves exactly as the excess

22It is assumed that parameters are such so that c1−ρ−(1−ρ)ah
h1+φh

1+φh
> 0, so that u > 0 is well defined. For ρ = 1,

the utility recursion becomes Vt = exp
[
(1− β)

(
ln c− ah h

1+φh

1+φh

)
+ β lnµt

]
. If we want to drop these restrictions on

preference parameters, we can just consider risk-sensitive preferences with the particular period utility U .
23Same comment applies as in footnote 17.
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burden of taxation, following the elegant law of motion (24). The entire analysis of section 4 about

the variation of the excess burden across states and dates, the positive drift and persistence, can

be recast word by word in terms of the labor tax and will not be repeated.

6 Numerical exercises

In this section I provide various numerical exercises in order to highlight three main results of

the paper: a) the planner’s “over-insurance” that leads to higher tax rates when fiscal shocks are

favorable and smaller tax rates when fiscal shocks are adverse, b) the volatility and back-loading

of tax distortions, c) the persistence of tax distortions independent of the persistence of exogenous

shocks. In a nutshell, the tax rate behaves like a random walk with a positive drift in the short

and medium-run, with an increment that is negatively correlated with fiscal shocks.

6.1 Solution method

The numerical analysis with recursive preferences is highly non-trivial. There are three compli-

cations: At first, the state space where z lives is endogenous, i.e. we have to find values of debt

in marginal utility units that can be generated at a competitive equilibrium. Second, the con-

traction property is impaired due to the presence of the value functions in the implementability

constraint, a fact which makes convergence of iterative procedures difficult. Third, there are novel

non-convexities in the implementability constraint due to recursive utility. I illustrate here the gist

of the numerical method and provide additional details in the Online Appendix.

The way I proceed is as follows. I generate feasible values of z and calculate the respective

utility by assuming that the planner follows a constant-Φ policy, i.e. I assume that the planner

ignores the prescriptions of optimal policy and just equalizes the excess burden of taxation over

states and dates. By varying Φ, I can generate a set of values of z, which I use as a proxy of the

state space. The respective value functions are used as a first guess in the numerical algorithm.

I implement a double loop: In the inner loop, I fix the value function in the constraint and solve

the Bellman equation using grid search. The inner loop is convergent. In the outer loop, I update

the value function in the constraint and repeat the inner loop. Although there is no guarantee of

convergence of the double loop, this procedure works fairly well. After convergence, I add a final

step to improve precision: I employ the output of the double loop as a first guess, fit the value

functions with cubic splines and use a continuous optimization routine.

6.2 Calibration

I use the utility function of proposition 5 that delivers perfect tax-smoothing in the time-additive

economy and a standard calibration. In particular, let ρ = 1 and consider the utility recursion
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vt = ln ct − ah
h1+φh
t

1 + φh
+

β

(1− β)(1− γ)
lnEt exp

(
(1− β)(1− γ)vt+1

)
, (26)

where γ > 1. The frequency is annual and Frisch elasticity is unitary, (β, φh) = (0.96, 1).

The atemporal risk aversion is γ = 10.24 I assume that shocks are i.i.d. in order to focus on

the persistence generated endogenously by optimal policy. Expenditures shocks take two values,

gL = 0.072 and gH = 0.088, with probability π = 0.5. These values correspond to 18% and 22% of

average first-best output respectively, or 20.37% and 24.28% of output in the second-best expected

utility economy. So the standard deviation of the share of government spending in output is small

and about 2%. I set ah = 7.8125 which implies that the household works on average 40% of its

available time if we are at the first-best, or 35.8% of its time in the second-best, time-additive

economy. Initial debt is zero and the initial realization of the government expenditure shock is

low, g0 = gL.

6.3 Expected utility plan

The time-additive expected utility case of γ = 1 corresponds to the environment of Lucas and

Stokey (1983). The Ramsey plan is history-independent and the tax rate is constant and equal to

22.3%. The planner issues zero debt against low shocks, bL = 0, and insures against high spending

by buying assets, bH < 0. The level of assets corresponds to 3.81% of output. Thus, the debt-to-

output ratio has mean −1.91% and standard deviation 1.91%. Whenever there is a low shock, the

planner, who has no debt to repay (bL = 0), runs a surplus τhL − gL > 0 and uses the surplus to

buy assets against the high shock. The amount of assets is equal to bH = (τhH − gH)/(1 − βπ).

When the shock is high, the planner uses the interest income on these assets to finance the deficit

τhH − gH < 0.25

6.4 Fiscal hedging, over-insurance and price manipulation

Turning to recursive utility, the left panel in figure 1 plots the difference between the policy

functions for z′ next period when g′ is low and high respectively. The graph shows that the

24The range of the risk-aversion parameter varies wildly in studies that try to match asset-pricing facts. For
example, Tallarini (2000) uses a risk aversion parameter above 50 in order to generate a high market price of risk,
whereas Bansal and Yaron (2004) use low values of risk aversion in environments with long-run risks and stochastic
volatility. Note that the plausibility of the size of atemporal risk aversion cannot be judged independently from the
stochastic processes that drive uncertainty in the economy, since they jointly bear implications for the premium for
early resolution of uncertainty. See Epstein et al. (2014) for a thoughtful evaluation of calibration practices in the
asset-pricing literature from this angle.

25Note that if the initial shock was high, g0 = gH , we would have bH = 0 and bL > 0. The planner insures against
adverse shocks by running a deficit when government expenditures are high, which is financed by debt contingent
on a low expenditure shock. When shocks are low, the planner runs a surplus to pay back the issued debt.
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Figure 1: The left panel depicts the difference z′L − z′H . The difference starts decreasing at high values of z,
because the probability of a binding upper bound increases. The right panel compares positions for recursive and
time-additive utility. For both graphs the current shock is low, g = gL. A similar picture emerges when g = gH .

government hedges fiscal shocks by issuing more debt in marginal utility units for the low shock

and less for the high shock, z′L > z′H . Thus, as highlighted in the overview of the mechanism,

propositions 2 and 5 imply that tax distortions decrease when fiscal shocks are high, Φ′L > Φ > Φ′H
and τ ′L > τ > τ ′H . The right panel in figure 1 plots the difference in the policy functions in the

recursive utility and the expected utility case, z′i − zEU
i , i = L,H, in order to demonstrate the

“over-insurance” property of the optimal plan: against gL, the planner is issuing more debt than

he would in the time-additive economy. Similarly, debt against gH is less than its respective value

in an economy where ρ = γ. So the planner is actively taking larger positions in absolute value.26

To see the price manipulation that takes place with recursive utility, figure 2 contrasts the

optimal stochastic discount factor S(g′ = gi, z, g), i = L,H, (top and bottom left panels), to the

induced stochastic discount factor that pertains to a sub-optimal constant-Φ policy, that ignores

the beneficial pricing effects of continuation values (top and bottom right panels). By contrasting

the left to the right panels, we see how the planner, by issuing more debt against gL and increasing

the respective tax rate, manages to increase the pricing kernel and therefore the price of a claim to

consumption, making debt cheaper. Note that the increase in the stochastic discount factor due

to the continuation value part is naturally reinforced by an increase in the period marginal utility

26A virtually identical graph would emerge if we compared the optimal policy functions z′i with the positions that
would be induced in a recursive utility economy with a planner that follows a sub-optimal, constant excess burden
policy.
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Figure 2: The left panels decompose the optimal stochastic discount factor to its period marginal utility and
continuation value part, when the current shock is low, g = gL. The right panels perform the same exercise
assuming that a sub-optimal, constant-Φ policy is followed. A similar picture emerges when g = gH .

part due to decreased future consumption. Similarly, by issuing less debt or buying more assets

against a high fiscal shock, and taxing consequently less, the planner is decreasing the pricing

kernel for bad states of the world.

6.5 Persistence and negative correlation with spending

Consider a simulation of 10, 000 sample paths that are 2, 000 periods long. Table 1 highlights the

persistence that propositions 3 and 5 hinted at. The median persistence of the tax rate is very

high (0.998), despite the fact that government expenditure shocks are i.i.d., which contrasts to

the standard history-independence result of Lucas and Stokey (1983). As expected, the change in

the tax rates is strongly negatively correlated with government expenditures (−0.99) and therefore

with output.27

6.6 Back-loading and volatility of distortions

Figure 3 plots the mean, standard deviation, the 5th and the 95th percentile of the tax rate and

the debt-to-output ratio. It shows that there is a positive drift in the tax rate with respect to the

27The theory predicts that changes in tax rates are affected by the relative debt position, which is highly negatively
correlated with fiscal shocks. In contrast, the level of the tax rate is affected by the cumulative relative debt position∑
i ηi, leading overall to a small correlation with government expenditures.

22



Table 1: Statistics of tax rate sample paths.

Recursive utility
short samples long samples

Autocorrelation 0.9791 0.9980

Correlation of ∆τ with g -0.9999 -0.9984

Correlation of ∆τ with output -0.9977 -0.9762

Correlation of τ with g -0.1098 -0.0346

Correlation of τ with output -0.1793 -0.2418

The table reports median sample statistics across 10,000 sample paths of the tax rate. For the time-additive
case the respective moments are not well defined since the tax rate is constant. For the recursive utility case
the median sample statistics are calculated for short samples (the first 200 periods) and long samples (2,000
periods).
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Figure 3: Ensemble moments of the tax rate and the debt-to-output ratio.

data-generating process, which is mirrored also in the debt-to-output ratio. This back-loading of

distortions reflects the submartingale results of propositions 3 and 5. The increase in the mean

tax rate is slow (about 60 basis points in 2,000 periods) but the standard deviation rises to almost

1.5 percentage points. So the distribution of the tax rate is “fanning-out” over time. Similarly,

the mean and the standard deviation of the debt-to-output rise to 11 and 32 percentage points

23



Table 2: Moments from the stationary distribution.

Stationary distribution
τ in % b/y in %

Mean 30.86 181.97

St. dev. 4.94 104.28

98th pct 40.6 397.3

St. dev. of change 0.17 12.72

Autocorrelation 0.9994 0.9926

Correlations (τ, b, g)
Corr(∆τ, g) -0.6183 Corr(∆b, g) -0.7639 Corr(∆τ, b) 0.0476

Corr(∆τ,∆g) -0.4383 Corr(∆b,∆g) -0.9070 Corr(∆τ,∆b) 0.7228

Corr(τ, g) -0.0219 Corr(b, g) -0.0653 Corr(τ, b) 0.9933

The simulation is 60 million periods long. The first 2 million periods were dropped. Remember that in the
expected utility case the tax rate is 22.3% and that the debt-to-output ratio has mean -1.91% and a standard
deviation of 1.91%.

respectively at t = 2, 000.28

6.7 Long-run

The martingale property of the inverse of the excess burden may introduce non-stationarities in

the long-run. The asymptotic behavior of taxes and debt depends on two objects: the behavior

of the relative debt position ηt+1 in the long-run and the upper bounds of the state space. For

example, if the relative debt position converges to zero, then the excess burden, and therefore the

tax rate, would converge to a constant. Furthermore, if there is always back-loading of taxes with

respect to the physical measure (which is not necessarily the case since propositions 3 and 5 involve

πt ·Mt), there will be progressively high accumulation of debt and at some point fiscal hedging

may become limited, due to an upper bound on debt issuance.

Recall that the proper state variable of the commitment problem is debt in marginal utility

units. Consequently, even if there is a natural upper bound in terms of debt (the maximal present

discounted value of surpluses), there may not be an upper bound in terms of debt in marginal utility

units. To see that, consider a situation where the tax rate is so large that consumption decreases

to zero. Then marginal utility goes to infinity and debt in marginal utility units may inherit the

same behavior.29 Computation obviously requires an upper bound. If this is occasionally binding,

28See the Online Appendix for additional simulations with either higher risk aversion or higher shock volatility.
29The exact behavior depends heavily on the upper bounds of the surplus in marginal utility units, Ucc − Ulh.

See the Online Appendix.
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the positive drift of the tax rate breaks down and its distribution becomes stationary.30

For the particular period utility function of the quantitative exercise, I prove in the Online

Appendix that there are no positive convergence points for Φt (which concern essentially the

asymptotic behavior of ηt+1). Since this is the case, my choices on the size of the state space

are driven by computational considerations. The computational exercise has upper bounds that

correspond to a debt-to-output ratio close to 600%.31 Table 2 reports moments of interest from the

stationary distribution. The tax rate has mean 30.8% and standard deviation close to 5 percentage

points. This tax rate is pretty high: it supports debt-to-output ratios that have mean 182% with

a standard deviation of 105 percentage points. The conditional volatility of the tax rate and the

debt-to-output ratio are small but the unconditional volatility is large due to the extremely high

persistence in the long-run.32

7 Optimal debt returns and fiscal insurance

In this section I am taking a deeper look at the theory of debt management with recursive utility.

I focus on the use of the return of the government debt portfolio as a tool of fiscal insurance.33

To that end, I measure optimal fiscal insurance in simulated data by using the decomposition of

Berndt et al. (2012) (BLY henceforth) and contrast it to their empirical findings.

BLY devised a method to quantify fiscal insurance in post-war US data by log-linearizing the

intertemporal budget constraint of the government.34 Let the government budget constraint be

30What breaks down is the martingale result of proposition 3. The optimality condition with respect to z when
there is an upper bound on z becomes Φt+1(1 + (1 − β)(1 − γ)ηt+1Φt) ≤ Φt. If 1 + (1 − β)(1 − γ)ηt+1Φt > 0,
we get 1

Φt+1
≥ 1

Φt
+ (1 − β)(1 − γ)ηt+1, which implies that 1/Φt is a submartingale (and not a martingale) with

respect to πt ·Mt. Therefore, the convexity of function f in the proof of proposition 3 is not sufficient anymore to
infer Etmt+1Φt+1 ≥ Φt (we need also f to be monotonically increasing and it is actually decreasing). The same
reasoning applies to the tax rate in proposition 5.

31The larger the upper bounds, the larger the non-convexities associated with recursive utility, which lead to
non-convergence issues. It turns out that the particular upper bounds are rarely visited (the 98th percentile of the
debt-to-output ratio is about 400%). This is a numerical statement that may not hold for other parameterizations. In
the Online Appendix I provide several robustness exercises with respect to the size of the state space. Furthermore,
I consider different period utility functions, for which the existence of a stationary distribution is more probable,
without having to rely on ad-hoc upper bounds.

32In the Online Appendix I provide instructive sample paths and moments from a persistent shock specification: I
use the government spending shocks of Chari et al. (1994) (see also next section). There are two big differences with
persistent shocks: first, the unconditional volatility is similar to the baseline case, but the volatility of the change of
the tax rate (∆τ) is more than doubled. Second, the speed at which the stationary distribution is reached is much
higher. The mean and the standard deviation of the tax rate increase by 4 and 5 percentage points respectively in
2, 000 periods (in contrast to the lower medium-run numbers displayed in figure 3). Overall, there is more action
both in the tax rate and in debt when shocks are persistent.

33See Hall and Sargent (2011) for the careful measurement of the return of the government debt portfolio and
Hall and Krieger (2000) for an analysis of optimal debt returns in the Lucas and Stokey (1983) setup. Marcet and
Scott (2009) contrast fiscal insurance in complete and incomplete markets.

34Their exercise follows the spirit of Campbell (1993) – who worked with the household’s budget constraint– and
Gourinchas and Rey (2007) –who employed the country’s external constraint.
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Table 3: Returns on government debt portfolio, R(g′, g, z).

Expected utility at zEU Recursive utility at zEU Recursive utility at E(z)

R− 1 in % gL gH gL gH gL gH

gL 5.96 -27.92 6.95 -41.15 5.30 -15.61

gH 49.47 1.68 69.52 0.81 25.96 3.10

Rows denote current shock. The value of z in the expected utility case is (zL, zH) = (0.7795, 0.5399). The
average value of z with recursive utility is E(z) = 2.2626.
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Figure 4: The top panels contrast the optimal R(g′, g, z) to the sub-optimal return coming from a constant Φ
policy. The bottom panels plot the respective conditional risk premia, where I also include the expected utility
risk-premia for comparison.

written as

bt+1 = Rt+1 · (bt + gt − Tt), (27)

where Rt+1 ≡ bt+1(gt+1)/
∑

gt+1
pt(gt+1, g

t)bt+1(gt+1), the return on the government debt port-

folio, constructed in the model economy by the state-contingent positions bt+1, and Tt ≡ τtht,

the tax revenues. By construction, we have
∑

gt+1
pt(gt+1, g

t)Rt+1(gt+1) = 1. BLY log-linearize

(27) and derive a representation in terms of news or surprises in the present value of government
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expenditures, returns and tax revenues,35

Igt+1 = − 1

µg
IRt+1 +

1

µg
ITt+1, (28)

where

Igt+1 ≡ (Et+1 − Et)
∞∑
i=0

ρiBLY∆ ln gt+i+1 (29)

IRt+1 ≡ (Et+1 − Et)
∞∑
i=0

ρiBLY lnRt+i+1

ITt+1 ≡ (Et+1 − Et)
∞∑
i=0

ρiBLYµT∆ lnTt+i+1,

and (µg, µT , ρBLY) approximation constants. Decomposition (28) captures how a fiscal shock is

absorbed: a positive surprise in the growth rate of spending, Igt+1, is financed by either a negative

surprise in (current or future) returns, IRt+1, or by a positive surprise in (current or future) growth

rates of tax revenues, ITt+1. BLY refer to these types of fiscal adjustment as the debt valuation

channel and the surplus channel respectively. The decomposition can be written in terms of fiscal

adjustment betas,

1 = −βR
µg

+
βT
µg
, where βR ≡

Cov(Igt+1, I
R
t+1)

V ar(Igt+1)
, βT ≡

Cov(Igt+1, I
T
t+1)

V ar(Igt+1)
. (30)

The fraction of fiscal shocks absorbed by debt returns and tax revenues are −βR/µg and βT/µg

respectively. Fiscal insurance refers to the reduction of returns in light of a positive fiscal shock,

βR < 0.

7.1 Returns and risk premia

For the fiscal insurance exercise I use the Chari et al. (1994) specification of fiscal shocks that

captures well the dynamics of government consumption in post-war U.S. data. I set initial debt to

50% of first-best output. The utility function and the calibration of the rest of the parameters is

the same as in the previous section.

Table 3 provides the conditional returns of the government debt portfolio implied by the Ramsey

plan in the expected and recursive utility economy. It shows the essence of debt return manage-

35See Berndt et al. (2012) for the derivations and the Online Appendix for the definition of the approximation
constants.
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ment, i.e. the reduction of the return on government debt in bad times in exchange of an increase

in return in good times. For example, in the expected utility economy bond-holders suffer capital

losses of -28% when there is a switch from a low to a high fiscal shock. They still buy government

debt because they are compensated with a high return of 49% when there is a switch back to a

low shock. The gains and losses to the bond-holders at the same value of the state variable z

with recursive utility are much larger (-41% and 69% respectively), due to the “over-insurance”

property. On average though, the government issues larger quantities of debt with recursive utility,

which actually makes the size of conditional returns necessary to absorb fiscal shocks smaller. This

can be seen in the third part of table 3, which displays the conditional returns for EZW utility at

the average debt holdings, E(z).

Figure 4 takes a closer look at the returns of the government portfolio. The top panels demon-

strate the desire of the government to increase the returns of the debt portfolio for good shocks and

decrease it for bad shocks, by contrasting the optimal returns with recursive utility with the sub-

optimal returns that are induced by a constant-Φ policy. The bottom panels plot the conditional

premium of government debt over the risk-free rate for recursive utility (following either optimal

or sub-optimal policy) and for expected utility. What is interesting to observe is the fact that for

large levels of debt, when over-insurance becomes even more pronounced, the optimal conditional

risk premium of government debt becomes negative.36

The reason for government debt becoming a hedge is simple: the risk premium over the risk-free

rate RF
t can be expressed as EtRt+1/R

F
t − 1 = −Covt(St+1, Rt+1). Debt returns are high when

fiscal shocks are low. But optimal policy with recursive utility prescribes large tax rates at exactly

these states of the world. As a result, at some point tax rates at good shocks become so high

that both consumption and continuation values of agents fall (despite shocks being favorable),

and therefore St+1 increases. This leads to a positive covariance of the stochastic discount factor

with government returns and a negative risk premium. In other words, optimal policy converts

“good” times (with low g) to “bad” times with high tax rates (and “bad” times with high g to

“good” times with low tax rates). Thus, the household is happy to accept a negative risk premium

for a security that pays well when tax rates are so high.37

7.2 Fiscal insurance

Table 4 reports the correlations and the standard deviations of news to government spending, debt

returns and tax revenues at the stationary distribution and table 5 reports the respective fiscal

adjustment betas and fiscal insurance fractions. For both the expected and the recursive utility

36The unconditional risk premium remains positive. See the Online Appendix for additional information on
average returns and the market price of risk.

37We can see also the change in the ranking of the discount factors in figure 2. For large enough debt we have
S(gL, z, g) > S(gH , z, g), whereas for low enough debt the opposite holds. With either expected utility, or a sub-
optimal constant Φ policy and recursive utility, this does not happen and we always have S(gL, z, g) < S(gH , z, g)
and a positive conditional risk premium.
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Table 4: News to expenditures, returns and revenues.

Expected utility Recursive utility

Ig IR IT Ig IR IT

Ig 0.91 0.98

IR -1 8.60 -0.79 7.52

IT 1 -1 1.37 -0.74 0.53 2.44

Standard deviations (on the diagonal, multiplied by 100) and correlations of the news variables at the
stationary distribution. Calibration of shocks as in Chari et al. (1994).

Table 5: Fiscal insurance.

Expected utility Recursive utility

Valuation channel Surplus channel Valuation channel Surplus channel

Beta -9.46 1.51 -6.05 -1.85

Current -9.65 5.28 -6.20 -0.64

Future 0.19 -3.77 0.15 -1.21

Fraction in % 87.85 13.99 180.93 -55.16

Current 89.67 49.08 185.13 -19.13

Future -1.82 -35.09 -4.20 -36.03

Fiscal adjustment betas and fiscal insurance fractions. The approximation constants are (µg, µT , ρBLY) =
(10.7654, 11.7654, 0.958) and (µg, µT , ρBLY) = (3.3462, 4.3462, 0.9525) in the time-additive and recursive
utility case respectively. The R2 in the expected utility case is almost 100% for both regressions. For the
recursive utility economy the R2 is 62.44% and 55.07% for the return and revenues regression respectively.
The current return beta comes from regressing lnRt+1 − Et lnRt+1 on news to spending. Similarly, the
current tax revenue beta comes from regressing current news to the growth in tax revenues on news to
spending.

case news to optimal returns are pretty volatile and negatively correlated to fiscal shocks. What is

important to notice is that news to the growth rate in tax revenues (IT ) are positively correlated

with news to fiscal shocks in the expected utility case (absorbing therefore part of the fiscal shock)

but negatively correlated in the recursive utility case.

Turning to fiscal insurance fractions, about 87% of fiscal risk is absorbed by the debt valuation

channel and about 13% by the surplus channel in the expected utility economy. Thus, the debt

valuation channel is prominent in the absorption of shocks. Fiscal insurance motives are amplified

with recursive utility: the planner is reducing even more returns in the face of adverse shocks, to

the point where the tax rate is actually reduced, explaining the negative correlation we saw in table

4. As a result, the reliance on the debt valuation channel is even larger and the surplus channel

becomes essentially inoperative. The fraction of fiscal risk absorbed by reductions in the market

value of debt is about 180% (predominantly by a reduction in current returns), which allows the

29



government to reduce the growth in tax revenues, leading to a surplus channel of −55%.38

Is actual fiscal insurance even worse than we thought? BLY measure fiscal insurance

on post-war U.S. data. They focus on defense spending in order to capture the exogeneity of

government expenditures and show that 9% of defense spending shocks has been absorbed by

a reduction in returns (mainly through future returns) and 73% by an increase in non-defense

surpluses. Thus, there is some amount of fiscal insurance in the data; smaller though than what

optimal policy in an expected utility economy would recommend. The current exercise shows that

in environments that can generate a higher market price of risk, governments debt returns have to

be used to a much greater extent as a fiscal shock absorber. Thus, if we were to evaluate actual

fiscal policy through the normative prescriptions of the recursive utility economy, the following

conclusion emerges: actual fiscal policy is even worse than we thought.

8 Economy with capital

Consider now an economy with capital as in Zhu (1992) and Chari et al. (1994) and recursive

preferences. Let s capture uncertainty about government expenditure or technology shocks, with

the probability of a partial history denoted by πt(s
t). The resource constraint in an economy with

capital reads

ct(s
t) + kt+1(st)− (1− δ)kt(st−1) + gt(s

t) = F (st, kt(s
t−1), ht(s

t)), (31)

where δ denotes the depreciation rate, kt+1(st) capital measurable with respect to st and F a

constant returns to scale production function. The representative household accumulates capital,

that can be rented at rental rate rt(s
t), and pays capital income taxes with rate τKt (st). The

household’s budget constraint reads

ct(s
t) + kt+1(st) +

∑
st+1

pt(st+1, s
t)bt+1(st+1) ≤ (1− τt(st))wt(st)ht(st) +RK

t (st)kt(s
t−1) + bt(s

t),

38The fractions do not add to 100% due to the approximation error coming from log-linearizing (27). The same
issue emerges with actual fractions from post-war U.S. data (see Berndt et al. (2012) and the respective table in the
Online Appendix that reproduces their results). Furthermore, two robustness exercises are provided in the Online
Appendix. At first, in order to apply the log-linear methodology of Berndt et al. (2012), I excluded negative debt
realizations that amount to 4.4% of the stationary distribution. In the Online Appendix I use a linear approximation
of (27) that allows me to include this type of observations. The size of the valuation and surplus channel for both
expected and recursive utility remains essentially the same. Second, one may think that the stark contrast between
expected and recursive utility is coming from the much larger debt and taxes in the latter case, a fact which is
reflected in the very different approximation constants across the two economies. In order to control that, I calculate
in the Online Appendix the expected utility fiscal insurance fractions by setting initial debt equal to the mean of
the recursive utility economy. This leads to similar approximation constants with the recursive utility case, so
any difference in the fiscal channels is stemming from the endogenous reaction of returns and tax revenues. The
valuation and surplus channel in the expected utility economy become 83% and 17% respectively, so the difference
between expected and recursive utility is even starker.
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where RK
t (st) ≡ (1− τKt (st))rt(s

t) + 1− δ, the after-tax gross return on capital.

I provide the details of the competitive equilibrium and the analysis of the Ramsey problem

in the Appendix and summarize here the main results. In short, the completeness of the markets

allows the recasting of the household’s budget constraint in terms of wealth, Wt ≡ bt + RK
t kt,

making therefore wealth in marginal utility units, zt ≡ UctWt, the relevant state variable for the

optimal taxation problem. With this interpretation of zt, the dynamic implementability constraint

remains the same as in an economy without capital. The recursive formulation of the Ramsey

problem has (z, k, s) as state variables. The excess burden of taxation Φ captures now the shadow

cost of an additional unit of wealth in marginal utility units, Φ = −vz(z, k, s), where v denotes the

value function. As expected, the excess burden of taxation is not constant anymore across states

and dates. In particular, we have:

Proposition 6. The law of motion of Φt in an economy with capital remains the same as in (19),

with ηt+1 defined as in (18), denoting now the relative wealth position in marginal utility units,

with an average of zero, Etmt+1ηt+1 = 0. Let ŝ and s̃ denote states of the world at t+ 1 for which

ηt+1(ŝ) > 0 > ηt+1(s̃). Then Φt+1(ŝ) > Φt > Φt+1(s̃), when ρ < γ. Propositions 3, 4 and 5 go

through, so the same conclusions are drawn for the dynamics of the excess burden and the labor

tax as in an economy without capital.

Proposition 6 generalizes our previous results about the excess burden of taxation and the labor

tax. Recall that in an economy without capital the planner was taxing more events against which he

was issuing relatively more debt in order to take advantage of the positive covariance between debt

in marginal utility units and the stochastic discount factor, through the channel of continuation

values. Market completeness makes state-contingent wealth in marginal utility units the relevant

hedging instrument in an economy with capital. Note also that we allowed technology shocks in

the specification of uncertainty in this section, in addition to the typical government expenditure

shocks. We expect that the planner hedges adverse shocks, which are high fiscal shocks and low

technology shocks with low wealth positions, and favorable shocks, i.e. low fiscal shocks or high

technology shocks with high wealth positions. If this is the case, the planner decreases the labor

tax for high spending shocks and low technology shocks, mitigating again the effects of shocks.

The opposite happens for favorable shocks.

8.1 Capital taxation

Capital accumulation affects through continuation values the pricing of state-contingent claims, a

fact which alters the incentives for taxation at the intertemporal margin. In particular, the optimal

accumulation of capital is governed by (details in the Appendix),
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EtS
?
t+1(1− δ + FK,t+1) = 1, where S?t+1 ≡ βm

ρ−γ
1−γ
t+1

λt+1/Φt+1

λt/Φt

, (32)

where λt stands for the multiplier on the resource constraint (31) in the recursive formulation

of the second-best problem.

I call S?t+1 the planner’s stochastic discount factor. The discount factor S?t+1 captures how

the planner discounts the pre-tax capital return 1− δ + FK,t+1 at the second-best allocation. S?t+1

contrasts to the market stochastic discount factor, St+1 ≡ βm
ρ−γ
1−γ
t+1 Uc,t+1/Uc,t, which prices after-tax

returns, EtSt+1R
K
t+1 = 1. In a first-best world with lump-sum taxes available, we identically have

S?t+1 ≡ St+1. At the second-best, the difference in the two discount factors St+1 − S?t+1 is useful in

summarizing the optimal wedge at the intertemporal margin, in the form of the ex-ante tax rate

on capital income.

In particular, as is well known from Zhu (1992) and Chari et al. (1994), only the non-state

contingent ex-ante capital tax τ̄Kt+1(st) can be uniquely determined by the second-best allocation.

This tax is defined as τ̄Kt+1 ≡
(
EtSt+1(1− δ + FK,t+1)− 1

)
/EtSt+1FK,t+1, which by (32) becomes

τ̄Kt+1 =
Et
[
St+1 − S?t+1

]
(1− δ + FK,t+1)

EtSt+1FK,t+1

. (33)

Thus, the sign of the ex-ante capital tax is determined by the numerator in (33), i.e. the non-

centered covariance of the two discount factors with the pre-tax capital return. The difference

St+1−S?t+1 can be expressed in terms of differences in the inverse of the excess burden of taxation

and differences in the own and cross elasticity of the marginal utility of consumption, which leads

to the following proposition about capital taxation.39

Proposition 7. (Capital taxation criterion) The ex-ante tax rate on capital income τ̄Kt+1, t ≥ 1 is

positive (negative) iff

Etζt+1

[( 1

Φt

− 1

Φt+1

)
︸ ︷︷ ︸
change in 1/Φt

+
(
εcc,t+1 + εch,t+1 − εcc,t − εch,t

)︸ ︷︷ ︸
change in period elasticities

]
> (<) 0,

with weights ζt+1 ≡ St+1(1− δ + FK,t+1)/EtSt+1(1− δ + FK,t+1). If εcc + εch is constant, then any

capital taxation comes from variation in the excess burden Φt.

Proof. See Appendix.

The ex-ante capital tax furnishes by construction the same present discounted value of tax

39As it was the case with the labor tax in footnote 19, the capital tax criterion applies also for the deterministic
and stochastic time-additive case for any standard U .
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revenues as any vector of feasible state-contingent capital taxes. As such, it averages intertemporal

distortions across states next period, with weights ζt+1 that depend on the stochastic discount

factor and the pre-tax capital return. The distortions at each state next period depend on both

the change in the elasticity of the marginal utility of consumption (the time-additive part) and

the change in the excess burden of taxation (the novel recursive utility part).

Time-additive economy. Assume that we are either in a deterministic economy or in a stochas-

tic but time-additive economy with ρ = γ. In both cases Φt is constant and the capital taxation

criterion of proposition 7 depends only on the change in period elasticities. For the deterministic

case, capital income is taxed (subsidized) if the sum of the own and cross elasticity is increasing

(decreasing). A necessary and sufficient condition for a zero capital tax at every period from pe-

riod two onward is a constant sum of elasticities, εcc + εch, which implies that S?t+1 = St+1. If the

period utility function is such so that the elasticities are not constant for each period, then there

is zero tax on capital income only at the deterministic steady state, where the constancy of the

consumption-labor allocation delivers constant elasticities. This delivers the steady-state results

of Chamley (1986) and Judd (1985). In the stochastic case of Chari et al. (1994) and Zhu (1992),

the sign of the ex-ante capital tax depends on the weighted average of the change in elasticities.40

Recursive utility. The full version of the capital tax criterion in proposition 7 applies when

ρ 6= γ. To focus on the novel effects of recursive utility, consider the case of constant period

elasticities and assume that ρ < γ. For an example in this class, let the composite good be

u(c, 1− h) =
[
c1−ρ − (1− ρ)v(h)

] 1
1−ρ , v′, v′′ > 0, (34)

that delivers a period utility U = (u1−ρ − 1)/(1− ρ), which is separable between consumption

and leisure and isoelastic in consumption.41 Chari et al. (1994) and Zhu (1992) have demonstrated

that these preferences deliver a zero ex-ante capital tax from period two onward. This is easily

interpreted in terms of proposition 7, since εcc = ρ and εch = 0.

With recursive preferences though, even in the constant period elasticity case, there is a novel

source of taxation coming from the willingness of the planner to take advantage of the pricing

effects of continuation values. By using the law of motion of the excess burden of taxation (19) to

substitute ηt+1 for the change in 1/Φt, the criterion becomes

τ̄Kt+1 > (<) 0 iff Etζt+1ηt+1 > (<) 0, when ρ < γ. (35)

40Variation in εcc + εch is a necessary condition for a non-zero ex-ante capital tax, but is not sufficient anymore
since the weighted average can still in principle deliver a zero tax.

41The same comments as in footnote 22 apply. The constant Frisch elasticity case is obviously a member of this
class.
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Thus, the capital taxation criterion depends on the weighted average of the relative wealth

positions ηt+1. To understand the logic behind the criterion, note that the change in the excess

burden of taxation determines the sign of distortions at the intertemporal margin. States where

there are positive relative wealth positions (ηt+1 > 0), make the planner increase the excess burden

of taxation, Φt+1 > Φt. This raises the labor tax and leads to a planner’s discount factor that

is smaller than the market discount factor, S?t+1 < St+1, which we can think of as introducing a

state-contingent capital tax.42 To understand the intuition, a positive state-contingent capital tax

reduces capital accumulation and therefore utility. In a recursive utility world this increases the

price of the respective Arrow claim and the value of state-contingent wealth. This appreciation

of the value of wealth is beneficial when wealth positions are relatively large (ηt+1 > 0). In the

opposite case of ηt+1 < 0 the planner is decreasing the labor tax and has the incentive to put a

state-contingent capital subsidy (S?t+1 > St+1). The ex-ante capital tax depends on the weighing

of the positive versus the negative intertemporal distortions.

8.2 Ex-ante subsidy

To gain more insight about the sign of the ex-ante capital tax, we need to understand the behavior

of the weights ζt+1. Consider the separable preferences in (34) and let ρ = 1 < γ. Then, by using

the property that Etmt+1ηt+1 = 0 and the definition of ζt+1, the capital tax criterion simplifies to

τ̄Kt+1 > (<) 0 iff CovM
t

(
c−1
t+1 · (1− δ + FK,t+1), zt+1

)
> (<) 0.

Thus, we can express the criterion in terms of the conditional covariance (with respect to the

continuation-value adjusted measure M) of the marginal utility weighted pre-tax capital return

with the wealth positions in marginal utility units, zt+1.43 Assume for example that the only

shocks in the economy are fiscal shocks and that they take two values, gH > gL. We expect

that the negative income effect of a fiscal shock reduces consumption and makes the household

work more, leading to a smaller capital-labor ratio. As a result, we expect marginal utility and

the marginal product of capital to increase when adverse fiscal shocks hit the economy. Thus,

if the government hedges fiscal shocks by taking smaller positions against high shocks, z′H < z′L,

the covariance will be negative, leading to an ex-ante capital subsidy.44 Intuitively, the planner

42The difference in the two discount factors for the separable preferences (34) can be written as
St+1−S?t+1

St+1
=

(1−β)(γ−ρ)ηt+1

1/Φt+1−ρ . See the Appendix for details.
43A more complicated covariance criterion emerges when γ > ρ 6= 1 : τ̄Kt+1 > (<) 0 iff CovM

t

(
V ρ−1
t+1 · Uc,t+1 · (1−

δ + FK,t+1), V ρ−1
t+1 zt+1

)
> (<) 0.

44The covariance is CovM = Etmt+1c
−1
t+1

(
1 − δ + FK,t+1)ηt+1. Let subscripts denote if we are at the high or

low shock and suppress time subscripts. By assumption we have cH < cL, FK,H > FK,L, ηH < 0 and ηL > 0.

Therefore, c−1
H (1 − δ + FK,H) > c−1

L (1 − δ + FK,L). The covariance is CovM = c−1
L (1 − δ + FK,L)πLmLηL +

c−1
H (1 − δ + FK,H)πHmHηH . But c−1

L (1 − δ + FK,L)ηL < c−1
H (1 − δ + FK,H)ηL, since ηL > 0. Therefore, CovM <
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mitigates the effects of fiscal shocks by using a state-contingent capital subsidy at gH and a state-

contingent capital tax at gL. But since adverse fiscal shocks are weighed more, we have an ex-ante

subsidy to capital income. The Online Appendix provides a detailed example in an economy with

a simplified stochastic structure (deterministic except for one period) that confirms this analysis.

9 Discussion: the case of ρ > γ

Consider now the case of ρ > γ. The direction of inequalities in propositions 2, 5 and 6 is obviously

reversed.

Proposition 8. (Desire to smooth over dates stronger than desire to smooth over states) Assume

that ρ > γ, so that the household loves volatility in future utility. Then, Φt+1(ĝ) < Φt < Φt+1(g̃)

when ĝ, g̃ are such so that ηt+1(ĝ) > 0 > ηt+1(g̃). Similarly, in proposition 5 we have τt+1(ĝ) <

τt < τt+1(g̃) when ηt+1(ĝ) > 0 > ηt+1(g̃). The same reversion of the direction of inequalities for

Φt holds also in an economy with capital, as in proposition 6. Proposition 7 goes through, but the

direction of inequalities is reversed in (35): τ̄Kt+1 > (<) 0 iff Etζt+1ηt+1 < (>) 0.

Proposition 8 shows that the planner varies the excess burden over states and dates in the

opposite way when ρ > γ. The underlying logic remains the same. Increases in continuation

utility increase the stochastic discount factor when the household loves volatility in future utility

(instead of decreasing it). Issuance of additional state-contingent debt reduces the stochastic

discount factor, making debt relatively more expensive. Thus, the planner finds it optimal to

“under-insure” in comparison to expected utility, selling less claims against good times and buying

less claims against bad times. This is accompanied with smaller taxes in good times and higher

taxes in bad times, amplifying the effects of fiscal shocks. Following the discussion in the previous

section, there is an ex-ante capital tax instead of a subsidy, since bad times (which are weighed

more) carry now a higher excess burden.

The martingale and submartingale results of propositions 3, 5 and 6 hold also for ρ > γ, so

the persistence and back-loading results with respect to πt · Mt go through. The back-loading

with respect to the physical measure goes through as well: the excess burden of taxation is now

positively correlated with government spending. But the agent loves volatility in utility, and

therefore places more probability mass on high-utility, low-spending shocks. Thus, we have again

Covt(mt+1,Φt+1) ≤ 0 and a positive drift with respect to the data-generating process.45

c−1
H (1− δ + FK,H)

[
πLmLηL + πHmHηH

]
= 0, since Emη = 0.

45In the Online Appendix I provide a full-blown quantitative exercise by setting ρ = 1 and γ = 0 for the constant
Frisch utility function (26) with the same i.i.d. specification of shocks as in the baseline exercise. These are the
RINCE preferences of Farmer (1990). The correlation of tax rates with government spending is highly positive and
the autocorrelation of the tax rate close to unity, whereas the positive drift is small and discernible only in the
long-run for this parametrization.
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10 Concluding remarks

Dynamic fiscal policy revolves around the proper use of government debt returns in order to

minimize the welfare loss of distortionary taxation. Consequently, empirically successful models

of returns are a crucial ingredient in the determination of the optimal government debt portfolio

and the resulting tax policy. Standard time-additive utility fails to capture basic asset-pricing

facts, casting doubts on the conventional Ramsey policy prescriptions. This paper uses recursive

preferences, a more promising preference specification for matching asset-pricing data, and re-

evaluates the basic tenets of optimal fiscal policy.

I show how the tax-smoothing prescriptions of the dynamic Ramsey literature cease to hold

with recursive utility. Optimal labor taxes become volatile and persistent. The planner mitigates

the effects of fiscal shocks by taxing more in good times and less in bad times. Debt returns

should be used to an even greater degree as a fiscal shock absorber, indicating that actual fiscal

policy is even worse than we thought. Lastly, there is a novel incentive for the introduction of an

intertemporal wedge, that can lead to ex-ante capital subsidies.

I have differentiated between time and risk attitudes in otherwise standard, complete markets

economies of the dynamic Ramsey tradition. An analysis beyond the representative agent frame-

work as in Werning (2007), Bassetto (2014) or Bhandari et al. (2015), or an exploration of different

timing protocols like lack of commitment, are worthy directions for future research.
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A Economy without capital

A.1 State space

At first, define

A(g1) ≡
{

(z1, V1)|∃{ct, ht}t≥1, {zt+1, Vt+1}t≥1,with ct ≥ 0, ht ∈ [0, 1]

such that:

zt = Ω(ct, ht) + βEtm
ρ−γ
1−γ
t+1 zt+1, t ≥ 1

Vt =
[
(1− β)u(ct, 1− ht)1−ρ + βµt(Vt+1)1−ρ] 1

1−ρ , t ≥ 1

ct + gt = ht, t ≥ 1

where mt+1 defined as in (5)

and the transversality condition holds, lim
t→∞

E1β
t

(
Mt+1

M1

) ρ−γ
1−γ

zt+1 = 0.
}

The set A(g1) stands for the set of values of z and V at t = 1 that can be generated by an
implementable allocation when the shock is g1. From A(g) we get the state space as Z(g) ≡
{z|∃(z, V ) ∈ A(g)}.

A.2 Transformed Bellman equation

Let v(z, g) ≡ V (z,g)1−ρ−1
(1−β)(1−ρ)

. The Bellman equation takes the form

v(z, g) = max
c,h,z′

g′
U(c, 1− h) + β

[∑
g′ π(g′|g)

(
1 + (1− β)(1− ρ)v(z′g′ , g

′)
) 1−γ

1−ρ
] 1−ρ

1−γ
− 1

(1− β)(1− ρ)

subject to the transformed implementability constraint

z = Ucc− Ulh+ β
∑
g′

π(g′|g)
[1 + (1− β)(1− ρ)v(z′g′ , g

′)]
ρ−γ
1−ρ[∑

g′ π(g′|g)[1 + (1− β)(1− ρ)v(z′g′ , g
′)]

1−γ
1−ρ
] ρ−γ

1−γ
z′g′

and to (13)-(15). Recall that m′g′ ≡
V (z′

g′ ,g
′)1−γ∑

g′ π(g′|g)V (z′
g′ ,g
′)1−γ =

[
1+(1−β)(1−ρ)v(z′

g′ ,g
′)
] 1−γ

1−ρ

∑
g′ π(g′|g)

[
1+(1−β)(1−ρ)v(z′

g′ ,g
′)
] 1−γ

1−ρ
.

B Economy with capital

B.1 Competitive equilibrium

A price-taking firm operates the constant returns to scale technology. The firms rents capital
and labor services and maximizes profits. Factor markets are competitive and therefore profit
maximization leads to wt = FH(st) and rt = FK(st).
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The first-order condition with respect to an Arrow security is the same as in (9). The labor
supply condition is Ul/Uc = (1− τ)w. The Euler equation for capital is

1 = β
∑
st+1

πt+1(st+1|st)
(
Vt+1(st+1)

µt(Vt+1)

)ρ−γ
Uc(s

t+1)

Uc(st)
RK
t+1(st+1). (B.1)

Conditions (9) and (B.1) deliver the no-arbitrage condition
∑

st+1
pt(st+1, s

t)RK
t+1(st+1) = 1.

The transversality conditions are

lim
t→∞

E0β
tM

ρ−γ
1−γ
t Uctkt+1 = 0 and lim

t→∞
E0β

t+1M
ρ−γ
1−γ
t+1 Uc,t+1bt+1 = 0

B.2 Ramsey problem

Define wealth as Wt(s
t) ≡ bt(s

t) +RK
t (st)kt(s

t−1). Note that

∑
st+1

pt(st+1, s
t)Wt+1(st+1) =

∑
st+1

pt(st+1, s
t)[bt+1(st+1) +RK

t+1(st+1)kt+1(st)]

=
∑
st+1

pt(st+1, s
t)bt+1(st+1) + kt+1(st),

by using the no-arbitrage condition. The household’s budget constraint in terms of Wt becomes

ct(s
t) +

∑
st+1

pt(st+1, s
t)Wt+1(st+1) = (1− τt(st))wt(st)ht(st) +Wt(s

t).

Eliminate {τt, pt} and multiply with Uct to get UctWt = Uctct − Ultht + βEtm
ρ−γ
1−γ
t+1 Uc,t+1Wt+1,

which leads to the same implementability constraint for zt ≡ UctWt. At t = 0 we have Uc0W0 =

Uc0c0−Ul0h0 +βE0m
ρ−γ
1−γ
1 z1, where W0 ≡

[
(1− τK0 )FK(s0, k0, h0) + 1− δ

]
k0 + b0, and (k0, b0, τ

K
0 , s0)

given.

B.3 Transformed Bellman equation with capital

Let v(z, k, s) ≡ V (z,k,s)1−ρ−1
(1−β)(1−ρ)

. The Bellman equation takes the form

v(z, k, s) = max
c,h,k′,z′

s′
U(c, 1− h) + β

[∑
s′ π(s′|s)

(
1 + (1− β)(1− ρ)v(z′s′ , k

′, s′)
) 1−γ

1−ρ
] 1−ρ

1−γ
− 1

(1− β)(1− ρ)

subject to
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z = Ucc− Ulh+ β
∑
s′

π(s′|s) [1 + (1− β)(1− ρ)v(z′s′ , k
′, s′)]

ρ−γ
1−ρ[∑

s′ π(s′|s)[1 + (1− β)(1− ρ)v(z′s′ , k
′, s′)]

1−γ
1−ρ
] ρ−γ

1−γ
z′s′ (B.2)

c+ k′ − (1− δ)k + gs = F (s, k, h) (B.3)

c, k′ ≥ 0, h ∈ [0, 1] (B.4)

The values (z′s′ , k
′) have to belong to the proper state space, i.e. it has to be possible that they

can be generated by a competitive equilibrium with taxes that starts at (k, s).

B.4 First-order necessary conditions

c : Uc + ΦΩc = λ (B.5)

h : −Ul + ΦΩh = −λFH (B.6)

k′ : λ = β
∑
s′

π(s′|s)m
′ ρ−γ
1−γ
s′ vk(z

′
s′ , k

′, s′)[1 + (1− β)(ρ− γ)η′s′Φ] (B.7)

z′s′ : vz(z
′
s′ , k

′, s′) + Φ
[
1 + (1− β)(ρ− γ)vz(z

′
s′ , k

′, s′)η′s′
]

= 0. (B.8)

Ω and Ωi, i = c, h are defined as in the proof of proposition 4. The relative wealth position η′s′ is
defined as in (18) (with a value function V that also depends on capital now), so we again have∑

s′ π(s′|s)m′s′η′s′ = 0. The envelope conditions are

vz(z, k, s) = −Φ (B.9)

vk(z, k, s) = λ(1− δ + FK). (B.10)

The envelope condition (B.9) together with (B.8) delivers the same law of motion of Φt as in
(19), leading to the same results as in proposition 3. Combine (B.5) and (B.6) and use the fact
that (1 − τ)FH = Ul/Uc to get the same labor tax results as in propositions 4 and 5. Turn into
sequence notation, use the law of motion of Φt (19) to replace 1 + (1 − β)(ρ − γ)ηt+1Φt in (B.7)
with the ratio Φt/Φt+1 and the envelope condition (B.10) to eliminate vk to finally get (32).

B.5 Proof of proposition 7

The first-order condition with respect to consumption for t ≥ 1 is Uct + ΦtΩct = λt. Thus, 1/Φt +

Ωct/Uct = λt/(ΦtUct) > 0. Write the planner’s discount factor as S?t+1 = St+1
λt+1/(Φt+1Uc,t+1)

λt/(ΦtUct)
=

St+1
1/Φt+1+Ωc,t+1/Uc,t+1

1/Φt+Ωct/Uct
, t ≥ 1. Remember that Ωc/Uc = 1− εcc − εch. Thus,

St+1 − S?t+1 =

1
Φt
− 1

Φt+1
+ εcc,t+1 + εch,t+1 − εcc,t − εch,t

1
Φt

+ 1− εcc,t − εch,t
· St+1, t ≥ 1. (B.11)

The denominator is positive. Use (B.11) in the numerator of (33), simplify and normalize ζt+1 so
that Etζt+1 = 1 to get the criterion for capital taxation.
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A Initial period problem

A.1 Economy without capital

The problem at t = 0 is

V̄0(b0, g0) ≡ max
c0,h0,z1,g1

[
(1− β)u(c0, 1− h0)1−ρ + β

[∑
g1

π1(g1|g0)V (z1,g1 , g1)1−γ] 1−ρ
1−γ
] 1

1−ρ

subject to

Uc0b0 = Ucc0 − Ulh0 + β
∑
g1

π1(g1|g0)
V (z1,g1 , g1)ρ−γ[∑

g1
π1(g1|g0)V (z1,g1 , g1)1−γ

] ρ−γ
1−γ

z1,g1

c0 + g0 = h0 (A.1)

c0 ≥ 0, h0 ∈ [0, 1], (A.2)

z1,g1 ∈ Z(g1) (A.3)

where (b0, g0) given. The notation z1,g1 denotes the value of the state variable z1 at g1. The overall

value of the Ramsey problem V̄ (.) and the initial period policy functions (c0, h0, z1) depend on the

initial conditions (b0, g0).

A.2 Economy with capital

The problem at t = 0 in an economy with capital is

V̄0(b0, k0, s0, τ
K
0 ) ≡ max

c0,h0,k1,z1,s1

[
(1− β)u(c0, 1− h0)1−ρ + β

[∑
s1

π1(s1|s0)V (z1,s1 , k1, s1)1−γ] 1−ρ
1−γ
] 1

1−ρ

subject to

Uc0
[(

(1− τK0 )FK(s0, k0, h0) + 1− δ
)
k0 + b0

]
= Ucc0 − Ulh0

+β
∑
s1

π1(s1|s0)
V (z1,s1 , k1, s1)ρ−γ[∑

s1
π1(s1|s0)V (z1,s1 , k1, s1)1−γ

] ρ−γ
1−γ

z1,s1 (A.4)

c0 + k1 − (1− δ)k0 + g0 = F (s0, k0, h0) (A.5)

c0, k1 ≥ 0, h0 ∈ [0, 1], (A.6)

where (b0, k0, s0, τ
K
0 ) given. Same comments apply for the dependence on the initial conditions.
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A.3 Optimality conditions at t = 0

Consider the economy with capital. Let Φ0 and λ0 denote the respective multipliers on the ini-

tial period implementability and resource constraint of the transformed problem and recall the

definition of Ω in the text. The initial period optimality conditions are:

c0 : Uc0 + Φ0

[
Ωc0 − Ucc,0W0

]
= λ0 (A.7)

h0 : −Ul0 + Φ0

[
Ωh0 + Ucl,0W0 − Uc0(1− τK0 )FKH,0k0

]
= −λ0FH0 (A.8)

k1 : λ0 = β
∑
s1

π(s1|s0)m
ρ−γ
1−γ
1,s1

vk(z1,s1 , k1, s1)
[
1 + (1− β)(ρ− γ)η1,s1Φ0

]
(A.9)

z1,s1 : vz(z1,s1 , k1, s1)

+Φ0

[
1 + (1− β)(ρ− γ)vz(z1,s1 , k1, s1)η1,s1

]
= 0, (A.10)

where W0 =
[
(1− τK0 )FK(s0, k0, h0) + (1− δ)

]
k0 + b0, the household’s initial wealth, and η1,s1

the household’s relative wealth position in marginal utility units at s1. The initial period first-

order conditions for an economy without capital for the variables (c0, h0, z1,g1), are (A.7), (A.8)

and (A.10) with W0 = b0, FH0 = 1, FKH ≡ 0.

Using the same steps as in the labor tax proposition we get the optimal labor tax at t = 0,

τ0 = Φ0

εcc + εch + εhh + εhc + (1− τK0 )FKH
FH

k0 − (εcc + εhc)c
−1
0 W0

1 + Φ0

(
1 + εhh + εhc − εhcc−1

0 W0

) ,

which simplifies to

τ0 = Φ0
εcc + εch + εhh + εhc − (εcc + εhc)c

−1
0 b0

1 + Φ0

(
1 + εhh + εhc − εhcc−1

0 b0

) ,

in an economy without capital. All elasticities in the two formulas are evaluated at the t = 0

allocation.

B Martingales and (non)-convergence

Note that the ratioMt/Φt is a martingale with respect to π: Et(Mt+1/Φt+1) = MtEtmt+1(1/Φt+1) =

Mt/Φt, since 1/Φt is a martingale with respect to π ·M . Therefore, by the martingale convergence

theorem, the non-negative ratio Mt/Φt converges almost surely with respect to π to a finite ran-

dom variable. Furthermore, since Mt is by construction a non-negative martingale with respect to

π, it converges to the non-negative random variable M∞ almost surely. Thus, we know that the

product of Mt and 1/Φt converges and that Mt converges. However, we cannot make a general

claim about the convergence of 1/Φt, unless we restrict the analysis to the case of an absorbing
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state. Why? If M∞ > 0, then we could infer that 1/Φt converges almost surely with respect to π.

Alas, the martingale Mt typically converges to zero, so we cannot make this claim.

To understand better the issue of M∞ = 0, we can follow similar steps as Aiyagari et al. (2002)

(who worked with the risk-adjusted measure) and show that if M∞(ω̃) > 0 for a sample path

ω̃, then the increment has to converge to unity, mt(ω̃) → 1, so V 1−γ
t (ω̃) → Et−1V

1−γ
t (ω̃). The

logic is simple: lnMt(ω̃) =
∑t

i=1 lnmi(ω̃) → lnM∞(ω̃) > −∞ (since M∞(ω̃) > 0) and therefore

lnmt(ω̃) → 0. Thus, we can infer that if Prob(ω̃|mt(ω̃) → 1) = 0, then M∞ = 0 almost surely

(otherwise mt → 1 on a set of positive measure). Actually, this result can be strengthened to the

following statement: if it is not the case that mt → 1 almost surely, then M∞ = 0 almost surely.

The proof of this is coming from the work of Ian Martin who generalized the Kakutani theorem on

multiplicative martingales. See Martin (2012, Theorem 1). Thus, as long as there is some positive

probability that there is variation in continuation values at the limit so that mt+1 9 1, we run

into the case of M∞ = 0.1

To conclude, the martingale property of the inverse of the excess burden of taxation does not

provide sufficient information for establishing convergence results with respect to π. Additional

information (like properties of the utility function etc) and a careful numerical analysis is needed.

C Computational details

C.1 Solution method

State space. Combine the first-order conditions with respect to consumption and leisure to get

the optimal wedge in labor supply as Ul
Uc
·

1−Φ
Ωh
Ul

1+Φ Ωc
Uc

= 1. Using the optimal wedge and the resource

constraint, we can express the optimal consumption-labor allocation as functions of the shock g and

Φ, c(g,Φ) and h(g,Φ). Let U?(g,Φ) ≡ U(c(g,Φ), 1 − h(g,Φ)) and Ω?(g,Φ) ≡ Ω(c(g,Φ), h(g,Φ)).

U? stands for the period utility at g when the excess burden of taxation is Φ and Ω? the respective

government surplus in marginal utility units. For the utility function in the baseline exercise we

have Ω? = 1− ahh(g,Φ)1+φh .

To generate values of z, fix Φ to a particular value. Given a constant value of Φ we get a

history-independent allocation which allows us to solve easily for the the utility recursion v?(g,Φ) =

U?(g,Φ) + β
(1−β)(1−γ)

ln
∑

g′ π(g′|g) exp((1 − β)(1 − γ)v?(g′,Φ)). For each given Φ we get also the

induced conditional likelihood ratio m(g′|g) = exp((1 − β)(1 − γ)v?(g′,Φ))/
∑

g′ π(g′|g) exp((1 −
β)(1− γ)v?(g′,Φ)). The induced debt positions z for a given Φ are

z = (I − βΠ̃)−1Ω?,

1In the quantitative exercise the likelihood ratio Mt does indeed converge to zero. In Aiyagari et al. (2002) we
typically have convergence of the risk-adjusted measure to zero.
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where boldface variables denote column vectors and Π̃ ≡ Π ◦M, where Π the transition matrix

of the shocks and M the matrix of m(g′|g). The symbol ◦ denotes element by element (or else

Hadamard) multiplication.

The induced values of z can be generated – by construction – in a competitive equilibrium

and are a “nice” subset of the true state space. I vary Φ in the set [0, Φ̄]. The zero value of

Φ corresponds to the first-best allocation, so the induced z′s are the level of government assets

necessary to finance government expenditures without having to resort to distortionary taxation.

I will talk further about the choice of Φ̄ in the next section. Let Zi denote the state space for

the low and high shock, i = L,H. For the lower and upper bounds of Zi I use the minimum and

maximum value of the debt position at i generated by a Φ in [0, Φ̄] (which just correspond to Φ = 0

and Φ = Φ̄, because the implied z’s are an increasing function of Φ).

Initial estimate of the value function. For each Φ, I can associate the induced z to an induced

v?, which provides an initial guess for the value function, v0(z, gi), z ∈ Zi. At first, I form a grid

of points for Zi, i = L,H and perform value function iteration with grid search. There may be

convergence issues because updating the value function in the constraint hinders the contraction

property. To avoid that I have two loops:

• Inner Loop: Given the value function in the constraint, iterate on the Bellman equation till

convergence (I use also policy function iteration to increase speed).

• Outer Loop: Update the value function in the constraint and repeat the inner loop.

The procedure is stopped when the value function in the constraint is approximately equal

to the value function in the Bellman equation. The inner loop entails standard value function

iteration and is convergent. There is no guarantee of convergence of the double loop. In the outer

loop I use damping in order to improve convergence properties.

Final estimate of the value function. I use grid search (with the constant-Φ first guess v?)

in order to avoid non-convexity issues and the possibility of a local optimum. This procedure

provides a first estimate of the value functions. For improved precision, I use the output of the

double-loop procedure as an initial guess and fit the value functions at the two shocks with cubic

splines. At the final stage the value function in the constraint is updated every period. I use 167

breakpoints and 500 points for each Zi and apply regression. More grid points are allocated at the

upper half of each state space in order to capture better the curvature of the value functions. A

continuous optimization routine is used, with initial guesses the policy functions that came from

the grid search.
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Figure C.1: The graphs plot from left to right the equilibrium surplus in marginal utility units as function of
consumption c for ρ = 0.5, 1, 2. For ρ = 0.5 the maximizer is interior. That point corresponds to τ → τ̂ and Φ→∞.
For ρ = 1, the upper bound corresponds to c = 0 and τ → 1,Φ → ∞. For ρ > 1 there is no upper bound in the
surplus in marginal utility units when consumption approaches zero.

C.2 Size of the state space

There are several considerations about the size of the state space and the choice of the upper

bound Φ̄, that we now turn to.

C.2.1 Upper bounds for z and the surplus in marginal utility units

To understand the maximum amount of debt in marginal utility units, we have first to understand

the behavior of the surplus in marginal utility units. If this is unbounded, then the present

discounted value of surpluses (where the discounting involves also continuation utilities coming

from the richer pricing kernels) will be unbounded. Define F (c) ≡ Ω(c, c+g), that is, the surplus in

marginal utility units as function of equilibrium consumption. Assume for simplicity that Ucl ≥ 0.

By recalling the elasticity formulas that were used in the proof of the labor tax proposition 4 and

using the fact that 1− τ = Ul/Uc, we have

F ′(c) = Ωc + Ωh = Uc
[
1− εcc − εch − (1− τ)(1 + εhh + εhc)

]
Then,
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Figure C.2: The panels depict z, the corresponding debt ratio and the tax rate that are induced by a constant-Φ
policy. The top row corresponds to the baseline exercise of ρ = 1. The middle row corresponds to ρ = 0.5 and
the bottom row to ρ = 2. For ρ 6= 1, I have considered a risk-sensitive recursion. Recall that the maximum Φ is
infinity for the first two rows with a respective tax rate of τ̂ and the upper bounds of z that are not attained. For
the bottom row, the maximum excess burden is Φ = 1/(ρ− 1) = 1 and z is unbounded.

F ′(c) < 0⇒ τ < τ̂ ≡ εcc + εch + εhh + εhc
1 + εhh + εhc

But we know from proposition 4 that the optimal labor tax is τ = Φ(εcc+εch+εhh+εhc)
1+Φ(εhh+εhc

, so τ < τ̄

for any finite Φ. Thus, the tax rate would never be so high (and the consumption so low) so

that F ′(c) > 0 (the discussion is obviously about the correct side of the Laffer curve in terms of

the surplus in marginal utility units). Obviously, the value of F at the level of consumption that

corresponds to τ̂ , if finite, is a candidate for an upper bound of the surplus in marginal utility

units.

Consider now the period utility function of proposition 5, i.e. power utility with constant

Frisch elasticity. We have τ̂ = ρ+φh
1+φh

. Before analyzing the behavior of F (c), let’s examine the

excess burden of taxation and the implied tax rate. From the first-order condition with respect

to consumption in the Ramsey problem we have c−ρ(1 + Φ(1 − ρ)) = λ > 0 (time subscripts are

omitted). The positivity of the multiplier λ implies a positivity restriction on 1 + Φ(1 − ρ) > 0.

This restriction is not binding for ρ ≤ 1, so the excess burden of taxation could in principle diverge

to infinity. For ρ > 1, this restriction imposes an upper bound for Φ, Φ < 1
ρ−1

. Consider also the
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Figure C.3: Positions z induced by a constant-Φ policy for different ρ. I use a risk-sensitive recursion for ρ 6= 1.
The shock takes three values: low (L), medium (M) and high (H). The differences zL− zM (blue line) and zM − zH
(red line) are depicted.

tax rate, τ(Φ) = Φ(ρ+φh)
1+Φ(1+φh)

. For ρ < 1 we have limΦ→∞ τ(Φ) = ρ+φh
1+φh

= τ̂ < 1. For ρ = 1, we have

limΦ→∞ τ(Φ) = τ̂ = 1. For ρ > 1, we have limΦ→1/(ρ−1) τ(Φ) = 1 < τ̂ .

Turn now to the surplus in marginal utility units. We have F (c) = c1−ρ − ah(c + g)1+φh ,

with F ′(c) = c−ρ[1 − ρ − (1 − τ)(1 + φh)]. Obviously, for ρ < 1 we could have F ′(c) > 0 and

the consumption ĉ corresponding to the upper bound is interior. The respective excess burden

approaches infinity and the tax rate approaches τ̂ . For ρ = 1, the upper bound corresponds

to c = 0, taking the value F (0) = 1 − ahg
1+φh . This corresponds to a tax rate that becomes

asymptotically 100% (and Φ → ∞). For ρ > 1 there is no upper bound, since the surplus in

marginal utility units approaches infinity when c → 0 (and τ → 1). Clearly, even when there is

an upper bound, it will not be attained. Figure C.1 depicts the three cases.

Figure C.2 considers the induced z by a constant-Φ policy, together with the respective debt

ratios and tax rates. The top row considers the baseline exercise for ρ = 1 (where there is an

upper bound that corresponds to a tax rate converging to 100%). The middle and bottom row

consider the cases of ρ = 0.5 (where there is an upper bound), and the unbounded case of ρ = 2

respectively. Without loss of generality (concerning the discussion about bounds), I have considered

risk-sensitive preferences for the cases of ρ 6= 1 (by setting σ = (1− β)(1− γ)).
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C.2.2 Upper bounds and candidate convergence points

The previous section showed that there may not be a natural upper bound for z, or if there is, it

may not be attained. For any type of computation though we need to make a choice for Φ̄. An issue

of concern may be that there is a positive convergence point for the excess burden that cannot be

reached because the upper bound we chose is not large enough. The following proposition shows

that this is not the case for the baseline exercise with logarithmic utility, ρ = 1.

Proposition C.1. Consider the utility function of the baseline exercise and the i.i.d. shock spec-

ification. If the excess burden of taxation does converge, then it necessarily has to converge to

zero.

Proof. Assume that Φt converges along a sample path to the value Φ (which may depend on the

sample path). Recall that Ω?(g,Φ) = 1 − ahh(g,Φ)1+φh . Use the implicit function theorem in

the two-equation system formed by the optimal wedge equation and the resource constraint to

get ∂h/∂g = h/(h + φhc) > 0 and ∂c/∂g = −φhc/(h + φhc) < 0. Thus, ∂Ω?/∂g = −ah(1 +

φh)h
φh∂h/∂g < 0. Therefore, the surplus in marginal utility units is always larger for the smaller

shock for any value of Φ. As a result, debt in marginal utility units is always higher for the lower

shock, since for a constant Φ we have z(g,Φ) = Ω?(g,Φ) + β
1−β

∑
g′ π(g′)m(g′)Ω?(g′,Φ) (m(g′)

stand for the conditional likelihood ratio induced by the constant Φ. It does not depend on the

current g due to the i.i.d. assumption). But then for any Φ > 0 the planner will always increases

the excess burden of taxation for low shocks, since Φ′g′ = Φ/(1 + (1−β)(1− γ)η′g′Φ), contradicting

the premise of a constant Φ. Only in the case of a zero η′g′ , ∀g′, i.e. only if there was a Φ > 0

such that z is equal across shocks, would it be possible to have a constant Φ. This cannot be the

case, as proved earlier. The only option of having a constant Φ would be to have Φ = 0, which

implies that the second-best allocation converges to the first-best. In that case, the first-best is

an absorbing state, and the government is using the interest income on accumulated assets to

finance government spending. Note that the i.i.d. assumption in the proposition was used only to

guarantee that debt in marginal utility units varies across shocks as Ω? does. Persistent shocks

could also be allowed as long as the implied z’s do vary across shocks.

The heart of the proof in proposition C.1 is the following: at any positive candidate convergence

point Φ, the induced z policies have to be the same across shocks, because otherwise they would

imply a non-zero relative debt position ηt+1. A non-zero relative debt position would make the

planner change the excess burden of taxation across states of the world. The proof shows that

the induced z positions do vary across shocks for any given Φ when ρ = 1. The left panel in

figure C.3 confirms that. It plots the differences in z, zL − zM and zM − zH , when the shock

takes three values: low (L), medium (M) and high (H). As was proved in the proposition, these

differences are always positive, showing that the z functions never cross (and they are also ranked,

zL > zM > zH). Thus, we should not worry about positive convergence points for the baseline
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case. The main considerations for the selection of an upper bound Φ̄ are computational, which are

highly non-trivial and the subject of the next section.

Different parameterizations. To complete the discussion, it is useful to consider what happens

for ρ 6= 1. For simplicity, consider again risk-sensitive preferences. The middle and the right panel

in Figure C.3 plot the differences in the z functions for ρ = 0.5 and ρ = 2 respectively.2 The

middle panel shows that z functions do not cross for ρ = 0.5, so the only consideration for the

selection of the upper bound is again computational. The right panel considers the most interesting

case of ρ > 1. As we showed before, there is no upper bound in this case (marginal utility goes

too quickly to infinity when consumption approaches zero). However, the graph shows that the

ranking of the constant-Φ suboptimal positions z changes when the excess burden of taxation is

high. At high levels of Φ, the position against the low shock can become smaller than the position

against the high shock (the difference in the graph becomes negative). In other words, fixing Φ,

when government spending increases, consumption falls and marginal utility increases so much

that debt in marginal utility units increases. This happens for levels of Φ that correspond to high

levels of debt (above 1000% debt-to-output ratio as shown in figure C.2). Another crucial point

about the right panel is the following: the differences in z do not cross the x-axis at the same value

of Φ. This means that there is no candidate convergence point when shocks take more than two

values.3

Consequently, the analysis for ρ = 2 suggests two things: first, the upper bound Φ̄ should be

large enough in order to include the points where the suboptimal z functions cross. Second, for

such an upper bound, we can conjecture the following: if the optimal policy functions for z behave

– with respect to their ranking – in a similar way as the suboptimal ones plotted in the graph, then

a stationary distribution may exist without having to resort to an ad-hoc bound: there will be a

positive drift in the excess burden with respect to the physical measure for low levels of debt, and

a negative drift in the excess burden for very high levels of debt in the long-run (when the ranking

of the policy functions changes, the covariance term in proposition 3 in the text becomes negative).

Overall, we do not expect the short- and medium-run results to be substantially different than

what the baseline analysis suggests. The long-run results though may be very different, especially

when sufficient debt is accumulated.

To conclude, the above analysis suggests an easy procedure that can be used also for different

utility functions like the balanced growth preferences of Chari et al. (1994): derive the induced z

positions from a suboptimal constant-Φ policy and construct a state space that is large enough to

2In the EZW case, the object that determines the variation in the relative debt position ηt is the continuation-
and-marginal-utility adjusted debt position. So we would consider plots of V ρ−1t zt, that are induced by a constant-Φ
policy.

3If the shock took two values, then the point where the difference becomes zero would be a fixed point of the
law of motion for the excess burden of taxation, since it implies a zero relative debt position η. But this would just
be an artifact of an arbitrary restriction on the number of realizations of shocks.
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Figure C.4: The market value of the government portfolio is a convex function of the positions z′i, i = L,H in the
recursive utility case. The graph in the right plot the policy functions for z′i for the baseline state space (Φ̄ = 0.5)
and the enlarged ones.

Table C.1: Upper bounds of state space for the baseline exercise.

Φ̄ = 0.5 Φ̄ = 0.55 Φ̄ = 0.58

τ̄ ≡ Φ̄(ρ+φh)

1+Φ̄(1+φh)
in % 50 52.38 53.70

z̄L (b/y in %) 7.8819 (593.53) 8.5708 (640.93) 8.9546 (666.89)

z̄H (b/y in %) 7.8391 (554.56) 8.5288 (598.27) 8.9129 (622.11)

The lower bounds of the state space are (zL, zH) = (−6.2355,−6.2911), which correspond to asset-to-output
ratios that are 510.06% and 492.23% respectively.

include points where these functions cross each other for different values of the shocks (if they do).

The entire discussion is based on the assumption that the computation of the Ramsey problem

is a feasible task. The next section considers particular problems that may emerge.
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C.2.3 Non-convexities and robustness checks for the baseline exercise

Non-convexities. The upper bounds of the state space have to be chosen in a judicious way

and may require some experimentation in order to make the computation of the problem feasible

and the numerical results credible. The main difficulty is coming from novel non-convexities in the

implementability constraint that may lead to jumps in policy functions or even to non-convergence

issues. The non-convexities come from the surplus in marginal utility units, Ω ≡ Ucc − Ulh, – a

standard potential non-convexity in the time-additive setup–, and from the market value of the

government portfolio ωt ≡ Etm
ρ−γ
1−γ
t+1 zt+1. For the particular utility function in the baseline exercise,

Ω is concave in (c, h). Furthermore, the market value of the government portfolio is linear in zi

in the time-additive case. Thus, the particular Ramsey problem we solve is actually convex when

γ = ρ = 1. However, with recursive utility, ρ = 1 < γ, even when we have a concave Ω, ω becomes

a convex function of zi as figure C.4 shows (we need concavity of ω to guarantee a convex constraint

set). Non-convexities in ω become stronger when a) the state space is increased b) the deviation

from expected utility is larger, i.e. the difference of γ − ρ > 0 and c) the size/volatility of shocks

is increased, since all these factors increase the quantitative importance of continuation values in

the determination of ω.

I generated the state space by picking an upper bound that corresponds to Φ̄ = 0.5. The

respective tax rate is 50% and the maximum debt-to-output ratio is pretty large, of the order of

550 − 600%. In order to check the robustness of the results, I recalculated the problem for state

spaces that correspond to Φ̄ = 0.55, 0.58. Table C.1 reports the respective upper bounds. The

right graph in figure C.4 shows the corresponding policy functions. What is interesting to observe

is that when the state space becomes larger, the planner is taking larger positions against low

shocks next period, z′L, and smaller positions against large shocks, z′H , even if he is at parts of

the state space, for which he was not originally constrained. Thus, the fiscal hedging and the

overinsurance of the planner are even stronger and the policy functions change in a non-trivial

way. For large state spaces, the non-convexities become stronger and the policy functions start

having small jumps (which become larger for larger state spaces), leading to convergence issues.

Medium-run. Table C.2 reports ensemble moments of 10000 sample paths of 2000 period length

of the tax rate and the debt-to-output ratio for the baseline case of Φ̄ = 0.5 (that correspond to

figure 3 in the text) and for the enlarged state spaces. The same realization of shocks was used

across the three simulations. The ensemble moments for this sample length across the three

different state spaces show small differences of 1-2 basis points for the mean and 5-10 basis points

for the standard deviation of the tax rate. The mean debt-to-output ratio may differ up to 40

basis points and the standard deviation up to 90 basis points. We conclude that medium term

statistics are robust to small increases in the state space.
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Table C.2: Ensemble moments for larger state spaces.

t=200 t=500 t=1000 t=1500 t=2000

Φ̄ = 0.5 (baseline)

Tax rate in %

Mean 22.38 22.47 22.62 22.76 22.93

Standard deviation 0.43 0.69 0.99 1.25 1.48

95th percentile 23.12 23.68 24.34 24.96 25.54

5th percentile 21.66 21.4 21.08 20.88 20.73

Debt-to-output ratio in %

Mean -0.57 1.57 4.72 7.75 11.37

Standard deviation 9.68 15.37 21.83 27.44 32.40

95th percentile 15.17 27.51 42.32 55.98 68.39

5th percentile -16.51 -22.21 -29.05 -33.45 -36.78

Φ̄ = 0.55

Tax rate in %

Mean 22.37 22.46 22.60 22.74 22.91

Standard deviation 0.43 0.71 1.02 1.3 1.55

95th percentile 23.12 23.68 24.37 25.03 25.67

5th percentile 21.66 21.37 21.03 20.81 20.63

Debt-to-output ratio in %

Mean -0.78 1.19 4.24 7.27 10.96

Standard deviation 9.75 15.64 22.49 28.53 33.89

95th percentile 15.33 28.19 43.43 58.10 71.55

5th percentile -16.74 -22.77 -30.12 -35.01 -38.78

Φ̄ = 0.58

Tax rate in %

Mean 22.37 22.46 22.60 22.74 22.91

Standard deviation 0.43 0.70 1.01 1.28 1.52

95th percentile 23.12 23.68 24.35 25.00 25.63

5th percentile 21.66 21.39 21.05 20.83 20.67

Debt-to-output ratio in %

Mean -0.72 1.28 4.32 7.32 10.97

Standard deviation 9.70 15.49 22.18 28.07 33.29

95th percentile 15.12 27.83 42.83 57.34 70.52

5th percentile -16.65 -22.54 -29.68 -34.37 -37.98
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Figure C.5: The top panel displays the tax rate and the debt-to-output ratio for the first 250,000 periods of a 60
million long simulation. The lower panel displays the stationary distribution of these variables. The first 2 million
observations were dropped.

Long-run. It remains to be seen if there is a lot of probability mass in the upper parts of

the state space where the policy functions change in a substantial way when the state space is

enlarged. Figure C.5 provides information for the long-run simulation. The upper panels show

how the positive drifts of the tax rate and the debt-to-output ratio break down when the upper

bound of the state space is hit and the lower panels plot the respective stationary distributions.

Figure C.6 contrasts the stationary distributions of the tax rate and the debt-to-output ratio for

the baseline and enlarged state spaces and table C.3 reports the respective moments. The change

in the moments of the tax rate across state spaces is small, whereas for the debt-to-output ratio

is more noticeable. Note that the larger the state space, the more concentrated the distribution is

and the thinner the upper tail of the tax rate and the debt-to-output ratio. It is worth noting that

even in the baseline state space, the 95th percentile of the tax rate is 37.93%. The 95th percentile

of z is 4.42 and falls to 4 for the larger state space (recall from table C.1 that the upper bounds

are 7.9 − 9). We conclude that the upper parts of the state space where policy functions change

in a substantial way, are visited much less than 5% in the stationary distribution.
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Figure C.6: Stationary distributions from a 60 million periods simulation for the three state spaces from left to
right, (Φ̄ = 0.5, 0.55, 0.58). The first 2 million periods were dropped. The same realization of shocks was used
across the different state spaces.
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Table C.3: Moments of stationary distributions for different state spaces.

Φ̄ = 0.5 Φ̄ = 0.55 Φ̄ = 0.58

Tax rate in %

Mean 30.8618 30.6680 30.4484

St. Dev. 4.9355 4.5061 4.3403

95th pct. 37.8903 36.9837 36.5080

98th pct. 40.5975 38.3723 37.6479

99th pct. 50.5929 40.1709 38.7354

Debt-to-output ratio in %

Mean 181.9735 178.0870 173.4902

St. Dev. 104.2824 95.5117 92.1834

95th pct. 334.4611 315.0606 304.9756

98th pct. 397.3001 348.7182 333.2482

99th pct. 551.1968 393.8507 361.4129

Debt in marginal utility units z

Mean 2.3919 2.3376 2.2756

St. Dev. 1.3927 1.2720 1.2256

95th pct. 4.4096 4.1474 4.0110

98th pct. 5.2380 4.5785 4.3675

99th pct. 7.7684 5.1616 4.7275

Moments from the stationary distribution from a 60 million period simulation for the three state spaces from
left to right, (Φ̄ = 0.55, 0.55, 0.58). The first 2 million periods were dropped. The same realization of shocks
was used across the different state spaces.
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Table D.1: Higher risk aversion or higher shock variance.

Expected utility Recursive utility
t=200 t=500 t=1000 t=1500 t=2000

Higher risk aversion (γ = 11)

Tax rate in %

Mean 22.30 22.39 22.49 22.65 22.80 22.99

Standard deviation 0 0.50 0.80 1.15 1.46 1.74

95th percentile 23.25 23.90 24.66 25.39 26.1

5th percentile 21.57 21.26 20.89 20.65 20.48

Debt-to-output ratio in %

Mean -1.907 -0.44 1.92 5.36 8.69 12.74

Standard deviation 1.907 11.12 17.76 25.31 32.02 38.13

95th percentile 17.80 31.82 49.82 66.02 80.61

5th percentile -18.48 -25.12 -33.14 -38.32 -42.22

Higher shock variance

Tax rate in %

Mean 22.29 22.46 22.67 23.00 23.35 23.76

Standard deviation 0 0.65 1.07 1.58 2.07 2.55

95th percentile 23.61 24.56 25.80 27.09 28.41

5th percentile 21.40 21.05 20.67 20.44 20.29

Debt-to-output ratio in %

Mean -2.83 0.05 4.65 11.92 19.44 28.26

Standard deviation 2.83 14.69 23.73 34.75 45.47 55.81

95th percentile 24.33 45.58 73.14 101.54 129.68

5th percentile -23.57 -30.89 -39.31 -44.17 -47.51

Ensemble moments for the case of higher risk aversion (γ = 11) or the case of shocks with a standard
deviation that corresponds to 3% of average first-best output. In order to avoid sample uncertainty, I use
the same realizations of shocks as in table C.2.

D Higher risk aversion or more volatile shocks

It is natural to conjecture that larger risk aversion (fixing ρ to unity) or more volatile fiscal shocks

that need to be insured against, will lead to more pronounced differences from the expected utility

plan. Table D.1 reports the ensemble moments for two experiments of interest. At the upper part

of the table risk aversion is increased to γ = 11, keeping the rest of the calibration the same. At

the lower part, the standard deviation of the shocks is increased, keeping the mean value of the

shocks and the rest of the parameters the same. In particular, I set gL = 0.068 and gH = 0.092
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which correspond now to 17% and 23% of average first-best output, so the standard deviation of

the share of government spending in average first-best output is 3% (instead of the baseline 2%).

In both cases the increase over time of the ensemble moments of the tax rate and the debt

ratio are larger than for the baseline case. For the higher risk aversion case the changes are small

(since we only increased it to γ = 11) but still noticeable. For the higher volatility case (which

still remains comparable to the typical calibration for post war U.S. data), the changes are more

noticeable. For example at t = 2000 the tax rate has a standard deviation of 2.5%.
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E Persistent shocks and fiscal insurance exercise
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Figure E.1: Policy functions for debt next period, given a low or high current shock. The dotted line represents
the market value of the government portfolio ω. The vertical lines denote the position of the optimal initial value
of the state, z1.

E.1 Calibration of shocks, policy functions and some sample paths

Consider now the fiscal insurance exercise. I set b0 = 0.5 × 0.4 = 0.2 that corresponds to 50% of

average first-best output. Let gt = G · exp(xt) where xt = ρgxt−1 + εgt a zero-mean AR(1) process.

As Benigno and Woodford (2006) and Farhi (2010), I follow the standard calibration of Chari et al.

(1994), ρg = 0.89, σg = 0.07, where σg the unconditional volatility, which implies a conditional

volatility of 0.0319. This captures well the dynamics of government consumption in post-war

U.S. data.4 I approximate the process with a symmetric Markov chain πii = 0.945, i = L,H

and (xL, xH) = (−0.07, 0.07). I set G = 0.2 × average first-best labor = 0.08. This leads to

(gL, gH) = (0.0746, 0.0858). The choice of G leads to a share of government expenditures in

first-best output with mean 20.04% and standard deviation 1.2451%. The respective share of

government expenditures in output at the second-best expected utility economy has mean 22.71%

4Chari et al. (1994) use the annualized versions from Christiano and Eichenbaum (1992), who were using quarterly
data for the period 1955:III-1983:IV. I use quarterly data for the period 1950:I- 2005:IV for nominal government
consumption (NIPA Table 3.9.5 line 2) and deflate it with the respective price index (Table 3.9.4 line 2) in order
to get real government consumption. The autocorrelation in linearly-detrended data is 0.9694 and the standard
deviation 7.0157%, which leads to an annualized persistence parameter 0.8831 ' 0.89, so I stick to the numbers of
Chari et al. (1994).

20



0 500 1000 1500 2000

t

22

24

26

28

30

32

34

36

38

%
Tax rate in %

0 500 1000 1500 2000

t

0

50

100

150

200

250

300

350

%

Debt-to-output ratio in %

Figure E.2: Random sample paths of the tax rate and the corresponding debt-to-output ratio for the Chari et al.
(1994) shock specification.
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Figure E.3: Sample paths for an alternating sequence of low and high shocks for the Chari et al. (1994) government
spending specification.

and standard deviation 1.38%.5

5Working with an economy with capital, Chari et al. (1994) were calibrating this parameter in order to get a
share of government spending that is 16.7% in the deterministic steady state. For the period 1950:I- 2005:IV the
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Figure E.4: Sample paths for an alternating sequence of low and high shocks for the baseline exercise.

The rest of the calibration is the same except for a small change in the labor disutility parameter,

which is set to ah = 7.8173 so that the household works 40% at the first best. For the state space

I set Φ̄ = .59 and use 800 points for each state space Zi, i = L,H. For the final step of precision I

fit cubic splines with 267 breakpoints.

Figure E.1 displays the policy functions for the persistent case. The graph shows that the

relative debt position ηi = z′i − ω, i = L,H is becoming large only when there is a switch from a

high to low shock (and the opposite). This is because the persistent shock is weighted heavily in

the market value of debt, ω, and therefore the relative debt position is large only when there is a

transition to the other shock.

Figure E.2 plots sample paths of the tax rate and the corresponding debt ratio, in order to get a

feel of the persistence and volatility of these variables. In order to understand the dynamics of the

optimal plan, consider at t = 1 a sample path of 10 low shocks, followed by a sequence of shocks

that alternates between 15 high and 15 low shocks. Figure E.3 contrasts the expected and recursive

utility plan for this shock realization. The planner is hedging fiscal shocks every period by taking a

large state-contingent position against low shocks and a small against large shocks. Consequently,

at each period that the shock remains low, the change in the tax rate is positive and the tax

share of government consumption in GDP is 16% with standard deviation of 1.14%. If we enlarge the notion of
government purchases to consumption consumption expenditures plus gross investment we get a mean share in
output of 21.2% with standard deviation of 1.95%. For the same period, the model-implied share, i.e. the share
of government consumption to the model notion of output, i.e. government consumption/(non-durable goods plus
services plus government consumption), has mean 23% and standard deviation 1.90%.
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rate is increasing over time till the first switch. The debt position in marginal utility units is also

increasing over time till the first switch, which translates to an increasing debt-to-output ratio.6

When the shock switches to the high value the opposite pattern emerges. The government, which

allocates less distortions on high shocks, starts reducing the tax rate over time. Debt in marginal

utility units drops when the shock becomes high and then starts to decrease slowly reflecting the

decrease of the tax rate. The opposite pattern emerges again when we switch to the low shock.

Remember that in the expected utility case the tax rate would stay constant and that debt in

marginal utility units would fluctuate across two values.7 A similar picture obviously emerges for

the baseline case, as figure E.4 shows. When shocks are i.i.d. though, changes in the tax rate are

generally small. We will see that also in the next section where we contrast moments.

E.2 Moments of interest

1 500 1000 1500 2000

t

20

25

30

35

%

 τ
t

Mean
95 pct
5th pct

1 500 1000 1500 2000

t

0

2

4

6

%

Standard deviation of τ
t

1 500 1000 1500 2000

t

-100

0

100

200

300

%

Debt-output ratio

Mean
95 pct
5th pct

1 500 1000 1500 2000

t

0

20

40

60

80

100

120

%

Standard deviation of debt-output ratio

Figure E.5: Ensemble moments of the simulation with persistent shocks from 30,000 sample paths.

Figure E.5 displays the evolution of moments over time and table E.1 reports the exact numbers.

What is important to note is that the positive drift and the standard deviation of the labor tax and

the debt-to-output ratio are much stronger with persistent shocks and the stationary distribution

6The increase in the debt position in marginal utility units over time is an outcome of the numerical finding that
the value functions are concave in z for each shock, and therefore the absolute value of the slope, Φt, is increasing
in z.

7Even if I used a period utility function that would imply a fluctuating tax rate in the expected utility case (for
a example a utility function with time-varying Frisch elasticity), the tax rate would not change over time unless
there was a switch in the shocks. This is due to the history-independence property.
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Table E.1: Ensemble moments (persistent shocks).

Expected utility Recursive utility
t=200 t=500 t=1000 t=1500 t=2000

Tax rate in %

Mean 24.78 25.26 25.89 26.98 27.87 28.52

St. Dev 0 1.32 2.32 3.72 4.62 5.09

95th pct 27.61 30.07 33.56 35.27 36.13

5th pct 23.26 22.65 22.23 22 21.93

Debt-to-output ratio in %

Mean 51.15 60.02 73.69 97.25 116.21 130.14

St. Dev. 10.17 33.27 53.27 81.92 100.25 109.50

95th pct 118.64 169.33 242.39 281.61 307.51

5th pct 9 -1.40 -9.42 -13.92 -14.81

The table reports the expected utility moments and the ensemble moments with recursive utility that cor-
respond to figure E.5.

Table E.2: Moments from the stationary distribution (persistent shocks).

Stationary distribution
τ in % b/y in %

Mean 30.49 172.15

St. deviation 5.52 117.05

95th pct 38.10 356.86

98th pct 46.94 528.45

St. deviation of change 0.4141 12.48

Autocorrelation 0.9972 0.9943

Correlations (τ, b, g)
Corr(∆τ, g) -0.2649 Corr(∆b, g) -0.3069 Corr(∆τ, b) 0.0547

Corr(∆τ,∆g) -0.5783 Corr(∆b,∆g) -0.8941 Corr(∆τ,∆b) 0.8316

Corr(τ, g) -0.1804 Corr(b, g) -0.2737 Corr(τ, b) 0.9790

The simulation is 10 million periods long. The first million periods was dropped. The maximum tax rate is
57.4% and the maximum debt-to-output ratio 664.06%.

is reached quicker. The mean labor tax is 24.86% at t=1 and becomes 28.5% at t = 2000, and

the standard deviation from almost 0.08% becomes 5% at t = 2000. Similarly the mean and the

standard deviation of the debt-to-output ratio become 130% and 110% respectively at t = 2000.
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Table E.3: Comparison of moments for different shock specifications.

Tax rate in % i.i.d. CCK shocks 2× std(g)

Mean 30.86 30.49 31.26

St. Dev 4.94 5.52 7.76

St. Dev of ∆ 0.17 0.41 0.90
Autocorrelation 0.9994 0.9972 0.9932

The table contrasts the moments of the stationary distribution for the baseline calibration in the text (first
column), the Chari et al. (1994) specification (second column) and the case where the unconditional volatility
of the Chari et al. (1994) shocks is doubled (third column).

Table E.2 reports the moments of the stationary distribution. The correlation Corr(∆τ, g) is

smaller than in the baseline case in the text, due again to the small changes in tax rates when

the shock remains the same. However, the correlation of changes in tax rates and changes in

state-contingent debt remains highly positive, Corr(∆τ,∆b) = 0.83.

Finally, table E.3 contrasts the moments from the baseline i.i.d. exercise to the moments

coming from the persistent specification of Chari et al. (1994). It considers also the moments

from an exercise where the unconditional volatility of the persistent specification is doubled (in

that case government expenditures are larger but they still do not resemble war-peace shocks).

What is interesting to observe is that by having persistent shocks (with a smaller but similar

unconditional volatility as in the baseline case), the unconditional volatility of the tax rate may

increase a little, but the standard deviation of the change in the tax rate, ∆τ , is more than

doubled, reaching 41 basis points. So there is much more action with persistent shocks (which is

why the stationary distribution is reached quicker). If we double also the volatility of the shocks,

the standard deviation of the change in tax rates reaches 90 basis points, and the unconditional

volatility 7.5 percentage points. Consequently, if we increase the risk in the economy (by increasing

the persistence and volatility of shocks), the quantitative effects of recursive utility on the optimal

taxation problem become even more pronounced.

E.3 Returns and risk premia

The return on the government portfolio can be written as

Rt+1 =
bt+1∑

gt+1
pt(gt+1, gt)bt+1(gt+1)

=
b′g′

βω(z, g)/Uc(z, g)
=
Uc(z, g)

βω(z, g)
·

z′g′(z, g)

Uc(z′g′(z, g), g′)
= R(g′, z, g).

Figure E.6 plots the returns for the expected utility case (γ = 1) versus the recursive utility case

(γ = 10). It shows that the government is reducing the return on the government debt when bad
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Figure E.6: The top panel displays the return on the portfolio of government debt for the time-additive case and
the bottom panel for recursive utility. Government expenditure shocks are calibrated as in Chari et al. (1994).
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Figure E.7: Conditional mean and standard deviation of government portfolio returns resulting from the optimal
policy and the constant Φ policy.
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Figure E.8: Conditional covariance of the stochastic discount factor with the returns of the government debt
portfolio.

shocks realize and compensates bond-holders with high returns when government expenditures

become small again. The opposite happens when the government holds liabilities against the

private sector (bt < 0), i.e. it increases the returns on assets in bad times and reduces them in

good times (which can be seen at the left quadrants of each graph in figure E.6).

Figure E.7 contrasts the conditional mean and the standard deviation of the optimal debt

returns to the suboptimal returns induced by constant excess burden policies. It shows how

expected returns fall for large amounts of debt, which leads to the negative risk premium. Figure

E.8 makes the same point by displaying the conditional covariance of the stochastic discount factor

with debt returns. It starts negative and it becomes positive, making the government portfolio a

hedge, when debt is high.

Table E.4 reports moments of the optimal returns, the risk free rate and the market price of risk

in the two economies at the stationary distribution. In the calculation of returns in the recursive

utility economy, I excluded abnormal returns by trimming realizations above the 99.5 percentile

and below the 0.5 percentile. This is because when debt becomes close to zero or when it switches

to negative, returns become abnormally high (of the order of 1000%) or abnormally negative, due

to divisions with numbers that are close to zero, as can been seen at the vertical asymptotes of

figure E.6. The last column in the table excludes situations with assets (i.e. liabilities of the

private sector towards the government), because the BLY methodology accommodates only debt.

The mean and standard deviation of optimal returns do not differ much across the two economies.
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Table E.4: Returns of government portfolio and market price of risk.

Expected utility Recursive utility

no outliers no outliers/no assets

Return in %

Mean 4.2038 4.39 4.3338

St. Dev. 9.4426 8.4874 8.0105

Risk-free rate in %

Mean 4.1658 4.1582 4.1569

St. Dev. 0.10266 0.1122 0.11262

Excess return in %

Mean 0.037972 0.2318 0.1770

St. Dev. 9.4419 8.4875 8.0135

SDF

Mean 0.96001 0.9601 0.9601

St. Dev. 0.0040344 0.0208 0.021

MPR 0.0042025 0.0216 0.0218

Decomposition of variance of log SDF in %

St. Dev of log(SDF) 0.42021 2.1584 2.1758

St. Dev. of ∆ log(ct+1) 0.42021 0.4159 0.4209

St. Dev. of log EZ term - 1.7709 1.7837

The simulation is 10 million periods long and the first million of observations was dropped. Outlier returns
have been excluded from the calculation of the statistics for the recursive utility economy. Outliers are
observations above the 99.5 percentile and below the 0.5 percentile. The probability of negative debt (i.e.
assets) is 4.4% at the stationary distribution. The excluded observations with either outliers or assets are
4.91 % of the sample.

The big differences emerge in the market price of risk, which becomes five times larger, from 0.004

to 0.021, despite the fact that there is limited risk due to small fiscal shocks and the absence of

any other risks like technology shocks. The increase in the market price of risk comes mainly

from an increase in the standard deviation of the recursive utility term. The standard deviation

of consumption growth is about 0.42% in both economies but the recursive utility term has a

standard deviation of 1.77%, leading to an overall standard deviation of the logarithm of the

stochastic discount factor of 2.15%.
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Table E.5: Fiscal insurance in post-war U.S. data from Berndt et al. (2012).

Valuation channel Non-defense surplus channel

Beta -0.3663 2.7962

Current -0.0690

Future -0.2973

Fraction in % 9.61 73.34

Current 1.81

Future 7.8

Fiscal adjustment betas and fiscal insurance fractions in Berndt et al. (2012) (Table 3, page 85). They do
not decompose the surplus channel to current and future news. The empirical correlation of news to defense
spending with news to debt returns and non-defense surpluses is −0.72 and 0.40 respectively.

E.4 Fiscal insurance in Berndt et al. (2012) and log-linear approxima-

tion constants

Table E.5 reproduces the fiscal adjustment betas and fractions of Berndt et al. (2012) for the

reader’s convenience.

The log-linear approximation of Berndt et al. (2012) is based on the assumption of positive

debt and on the assumption that the government is running on average a surplus. The approxima-

tion is around the unconditional means of the logarithmic tax-revenue-to-debt and government-

expenditures-to-debt ratios. Define µτb ≡ exp(E(lnTt/bt)) and µgb ≡ exp(E(ln gt/bt)). The ap-

proximation constants are

µT ≡ µτb
µτb − µgb

µg ≡ µT − 1 =
µgb

µτb − µgb
ρBLY ≡ 1 + µgb − µτb

It is assumed that µτb > µgb and that µτb − µgb < 1. Thus, the government is running on

average a surplus, but this surplus is not large enough to pay back the entire stock of current

liabilities. These two assumptions imply that ρBLY ∈ (0, 1). The constant ρBLY stands effectively

for the value of the newly issued debt as a fraction of current liabilities (and is smaller than unity

since the government is running a primary surplus instead of a deficit). The parameters (µT , µg)

can be interpreted as average tax revenues and government expenditures as fractions of the surplus.

As such, they both decrease when tax revenues are large, which is the case in an economy with

recursive utility.
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Figure E.9: BLY decomposition of fiscal shocks to news in returns and news to revenues for expected and recursive
utility.

E.5 News variables

Expected utility. In order to calculate the news/surprise variables in the decomposition of the

intertemporal budget constraint, we are going to use properties of the history independence of the

Lucas and Stokey (1983) allocation. Assume that we need to calculate the variable

It+1 ≡ (Et+1 − Et)
∞∑
i=0

ρi∆yt+i+1 =
∞∑
i=0

ρi(Et+1 − Et)∆yt+i+1

where yt = y(gt) and gt Markov with transition matrix Π. Let egt denote the column vector

with unity at the position of the shock at t, gt, and zero at the rest of the rows. Collect the values

of y in the column vector y. We have yt = e′gty and Etyt+i = e′gtΠ
iy. After some algebra and using

properties of discounted sums of Markov matrices, we get

I(gt+1|gt) = (e′gt+1
I − e′gtΠ)

[
I + ρ(I − ρΠ)−1(Π− I)

]
· y (E.1)

This formula can be used for the calculation of news in the growth rate of fiscal shocks and

news in the growth rate of tax revenues.

Consider now the case of returns, that are described by a matrix R ≡ [R(g′|g)], where R
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denotes now the logarithmic return. Define xt ≡ Et
∑∞

i=0 ρ
iRt+1+i, which satisfies the recursion

xt = EtRt+1 + ρEtxt+1.

We have xt = x(gt), and

x(g) =
∑
g′

π(g′|g)R(g′|g) + ρ
∑
g′

π(g′|g)x(g′),∀g.

This recursion delivers the system

x =


∑

g π(g|1)R(g|1)

...∑
g π(g|N)R(g|N)

+ ρΠx

= (Π ◦R) · 1 + ρΠx,

where 1 the N × 1 unit vector. Thus,

x = (I − ρΠ)−1(Π ◦R) · 1.

Define now yt+1 ≡ Et+1

∑∞
i=0 ρ

iRt+i+1 (this is a different y than the vector defined in (E.1)).

We want to calculate the surprise in returns, IRt+1 ≡ yt+1 − xt. We have yt+1 = Rt+1 + ρEt+1yt+2,

which implies

y(g′|g) = R(g′|g) + ρ
∑
ĝ

π(ĝ|g′)y(ĝ|g′) (E.2)

Let the matrix Y ≡ [y(g′|g)] collect the unknowns y(g′|g). From recursion (E.2) we get that each

j column vector of Y satisfies the system

 y(j|1)

...

y(j|N)

 =

 R(j|1)

...

R(j|N)

+ ρ1e′jΠY′ej, j = 1, ..., N

Putting the N systems together delivers
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Y = R + ρ[1e′1ΠY′e1, ...,1e
′
NΠY′eN ]

In order to solve for Y, we need to use the vec operator. After a lot of algebra we get

vec(Y) = vec(R) + ρ · A vec(Y)⇒ vec(Y) = [IN2×N2 − ρA]−1 vec(R),

where

A ≡


e′1Π⊗ [1N×1,0N×1, ...,0N×1]

e′2Π⊗ [0N×1,1N×1, ...,0N×1]

...

e′NΠ⊗ [0N×1,0N×1, ...,1N×1]


The matrix A is a partitioned matrix of dimension N2×N2 with blocks of dimension N ×N2.

Recursive utility. The previous formulas cannot be used for the recursive utility economy

because of the dependence on the state z. To calculate the surprise in returns, It+1 ≡ yt+1 − xt,
we need to solve numerically for the functions x and y from the following two recursions:

x(z, g) =
∑
g′

π(g′|g)R(g′, z, g) + ρ
∑
g′

π(g′|g)x(z′g′(z, g), g′)

y(g′, z, g) = R(g′, z, g) + ρ
∑
i

π(i|g′)y(i, z′g′(z, g), g′)

Similar calculations are necessary for the news in tax revenues. To conclude, figure E.9 plots

sample paths of news to spending and news to returns and surpluses. News to tax revenues

are positively correlated with news to spending for expected utility and negatively correlated for

recursive utility.

E.6 Linear approximation

In order to be able to use the log-linear methodology of Berndt et al. (2012), I ignored observations

with negative debt that had probability 4.4% at the stationary distribution. In this section, I

approximate the government budget constraint linearly, which allows the inclusion of bt < 0. The

right-hand-side of equation (28) in the text can be approximated as
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Table E.6: News to expenditures, returns and revenues (linear).

Expected utility Recursive utility

Ig IR IT Ig IR IT

Ig 0.0175 0.0169

IR -0.9848 0.0158 -0.5673 0.0552

IT 1 -0.9848 0.0024 -0.6796 0.3602 0.0163

Standard deviations (on the diagonal– not multiplied with 100) and correlations of the news variables in the
linear approximation.

Table E.7: Fiscal insurance (linear).

Expected utility Recursive utility

Valuation channel Surplus channel Valuation channel Surplus channel

Beta -0.8869 0.1398 -1.8482 -0.6557

Current -0.9191 0.0204 -1.9145 -0.0106

Future 0.0322 0.1194 0.0663 -0.6451

Fraction in % 88.69 13.98 184.82 -65.57

Current 91.91 2.04 191.45 -1.06

Future -3.22 11.94 -6.63 -64.51

Fiscal adjustment betas and fiscal insurance in the linear approximation. The approximation constants are
(B̄, ρlinear) = (0.1730, 0.9597) and (B̄, ρlinear) = (0.5539, 0.9579) for the expected and recursive utility case
respectively.

bt+1 = const. + B̄Rt+1 + R̄[bt + gt − Tt]

where B̄ ≡ b̄+ ḡ− T̄ , and (R̄, b̄, T̄ , ḡ) = (E(R), E(b), E(T ), E(g)), the respective unconditional

means. Thus, B̄ stands for the average market value of new debt that the government has to issue

in order to finance the primary deficit, gt − Tt, and past obligations, bt. Ignore the constant and

rewrite the budget constraint as

bt = Tt − gt − ρlinearB̄Rt+1 + ρlinearbt+1,

where ρlinear ≡ R̄−1. Solve forward, take expectations and use an asymptotic condition to get
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bt = Et

∞∑
i=0

ρilinear

(
Tt+i − gt+i

)
− Et

∞∑
i=1

ρilinearB̄Rt+i

Update one period, take expectation with respect to information at t and calculate the news

(surprises) as

bt+1 − Etbt+1 + (Et+1 − Et)
∞∑
i=1

ρilinearB̄Rt+1+i = (Et+1 − Et)
∞∑
i=0

ρilinear

(
Tt+i+1 − gt+1+i

)
Use the fact that a surprise in debt is a (scaled) surprise in returns, bt+1 −Etbt+1 = B̄(Rt+1 −

EtRt+1), to finally get

Ig,linear
t+1 = −IR,linear

t+1 + IT,linear
t+1 ,

where

Ig,linear
t+1 ≡ (Et+1 − Et)

∞∑
i=0

ρilineargt+i+1

IR,linear
t+1 ≡ (Et+1 − Et)

∞∑
i=0

ρilinearB̄Rt+i+1

IT,linear
t+1 ≡ (Et+1 − Et)

∞∑
i=0

ρilinearTt+i+1.

Thus, news in the present value of spending can be decomposed as news in returns and news

in tax revenues, furnishing the same interpretation as in the text, without restricting attention

to the case of positive debt. We get 1 = −βlinear
R + βlinear

T , where βlinear
i , i = R, T the respective

fiscal adjustment betas. The valuation channel (in %) is −100 · βlinear
R and the surplus channel is

100·βlinear
T . Table E.7 compares fiscal insurance in the expected utility case and the recursive utility

case using the linear approximation and delivers the same result as the BLY log-linear method:

the valuation channel absorbs a much larger fraction of the shocks in the recursive utility economy

(185%) and the surplus channel is negative (−65%). The size of the two channels is similar to

the one reported in the text, so the exclusion of negative debt was not affecting the results in

any substantial way. The only difference is in the decomposition of the surplus channel in terms

of a current and future channel. In the linear decomposition, the future surplus channel (which

calculates surprises in levels) is much more active than in the log-linear decomposition (which
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Table E.8: Effect of approximation constants.

Expected utility (log-linear) Expected utility (linear)

Valuation channel Surplus channel Valuation channel Surplus channel

Beta -3.0074 0.6096 -0.8364 0.1671

Current -3.3491 2.1988 -0.9286 0.0243

Future 0.3417 -1.5892 0.0922 0.1428

Fraction in % 83.49 16.92 83.64 16.71

Current 92.98 61.04 92.86 2.43

Future -9.49 -44.12 -9.22 14.28

Fiscal insurance fractions in the expected utility case when initial debt is equal to the mean of the stationary
distribution of debt with recursive preferences. We set b0 = 0.6063 fot the log-linear exercise (where return
outliers and assets are excluded) and b0 = 0.5771 in the linear exercise here (where only return outliers
are excluded). The corresponding approximation constants are (µg, µτ , ρBLY) = (3.6022, 4.6022, 0.9595)
(log-linear case) and (B̄, ρlinear) = (0.5048, 0.9599) (linear case). These are similar to the approximation
constants in the recursive utility case.

calculates surprises in growth rates).

E.7 Effect of approximation constants

The level of average debt in the expected utility case is effectively determined by the level of initial

debt. In contrast, in the recursive utility economy, long-run debt does not depend on the initial

conditions and assumes pretty high levels. As a result, the approximation constants in either the

log-linear (µg, µT , ρBLY) or in the linear approximation (B̄, ρlinear) are very different when we switch

to the recursive utility case. This could lead to the concern that the expected utility numbers are

somehow biased, due to low initial debt. Table E.8 performs the following thought experiment:

it calculates the valuation and surplus channel for an expected utility economy with initial debt

equal to the mean of the stationary distribution of the economy with recursive preferences (which

started with low initial debt). This choice of initial debt leads to approximation constants in the

expected utility economy that are similar to the approximation constants in the recursive utility

economy. Still, the levels of the valuation and the surplus channel with expected utility do not

change substantially. With high initial debt, the valuation channel is about 83% and the surplus

channel about 17% (contrasting to 87% and 13% with low initial debt in the text). Thus, the

same conclusions are drawn, i.e. the planner uses much more actively the valuation channel in an

economy with recursive preferences.
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F Example in an economy with capital

F.1 Analysis
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Figure F.1: Paths of the excess burden of taxation and the labor tax for the high-shock and low-shock history.

Consider a simplified stochastic structure – deterministic except for one period. Let govern-

ment expenditures take two values gL < gH . Assume that government expenditures are low with

certainty except for t = 2. At t = 2 we have g2 = gH with probability π and g2 = gL with

probability 1 − π. I use superscripts for the endogenous variables in order to denote if we are at

the high-shock history (g2 = gH) or at the low-shock history (g2 = gL). For example, cit, i = H,L,

denotes consumption at period t ≥ 2 when the shock at t = 1 is high or low respectively. Let the

utility function be the same as in the numerical exercise section without capital. The calibration

is provided in the next section.

The deterministic setup after the second period serves as an example of a case where the excess

burden of taxation stays permanently at the values it assumes at t = 2. In particular, since there

is no uncertainty before and after t = 2, we have Φ1 = Φ0 and Φi
t = Φi

2, i = H,L, t ≥ 2. Turning to

the issue of fiscal hedging, we find that the planner is taking a larger wealth position in marginal

utility units at the low shock, zH2 < zL2 . As a result, he transfers distortions permanently towards

the low-shock history and away from the high-shock history, so ΦH
2 < ΦL

2 . The left panel in figure

F.1 plots the respective paths for the excess burden of taxation and the right panel the labor tax

dynamics. Recall that this utility function implies a constant labor tax for t ≥ 1 in the time-
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Figure F.2: Left panels depict the labor, consumption and capital paths for the expected utility case (γ = 1)
for the high- and low-shock history. Right panels depict the respective paths for recursive utility (γ = 10), which
converge to two different steady states depending on the realization of the shock at t = 2.

additive case. With recursive utility, despite the fact that government expenditures revert to a low

value with certainty after t = 2, the labor tax becomes permanently low when there is an adverse

shock at t = 2 and permanently high when there is favorable shock at t = 2.

The planner keeps the the tax rate permanently low or high, because any change in the tax

rate in future periods will affect the price of claims at t = 2, due to the forward-looking nature of

continuation utility. Consider for example the high shock-history. If the planner increased the tax

rate at any period t ≥ 3, he would decrease the utility of the agent at t = 2, leading therefore to

a higher price of the claim contingent on g2 = gH . This is not optimal though, since the planner

is hedging the bad shock with a small position, zH2 < zL2 , and therefore wants to have a low price,

i.e. a high state-contingent return on his negative relative wealth position.

Turning to the capital tax, in the time-additive economy there is a zero ex-ante capital tax at

t = 2 and a zero capital tax for t ≥ 3.8 For the recursive utility case, the capital tax will be zero

8The presence of initial wealth (which would be absent if we had zero initial debt, full depreciation and an initial
tax rate on capital income of 100%) alters the taxation incentives for labor income at t = 0 and capital income at
t = 1. In particular, the planner has an incentive to increase initial consumption in order to reduce initial wealth in
marginal utility units. By subsidizing initial labor income and taxing capital income at t = 1, he is able to achieve
that. The labor subsidies at the initial period are τ0 = −17.69% for the time-additive case and τ0 = −17.76% for
the recursive utility case. Following Chari et al. (1994), I do not impose an upper bound on capital taxes. At t = 1
they take the values τK1 = 365.31% and τK1 = 365.74% for the time-additive and recursive utility case respectively.
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for t ≥ 3 since the economy becomes deterministic and the utility function belongs to the constant

elasticity class. For t = 2, the ex-ante tax rate will not be zero and its sign depends on the fiscal

hedging of the government, as discussed in the text. Figure F.2 plots the time paths for labor,

consumption and capital for the two histories. Consumption (labor) at t = 2 is lower (higher) when

the expenditure shock is high, putting therefore a larger weight on the state-contingent “subsidy”.

As a result, we have an ex-ante subsidy, that takes the value of −0.5536% in this illustration. In

addition, it is worth noting that, since the change in the labor tax is permanent, we have two

different steady states depending on what value government expenditures took at t = 2. For the

high-shock history, which is associated with a lower labor tax, the steady state entails higher labor,

consumption and capital, whereas for the low-shock history, which is associated with a higher labor

tax, the steady state involves lower labor, consumption and capital.

F.2 Computational details

The production function is F = kαh1−α. The parameters for the illustration are (β, γ, φh, α, δ, τ
K
0 , b0) =

(0.96, 10, 1, 1/3, 0.08, 0.3, 0) with a total endowment of time normalized to unity. The parameter

ah is set so that the household works 0.4 of its time at the first-best steady state. The size of gL is

set so that the share of government expenditures in the first-best steady state output is 0.22. The

high shock is gH = 2 · gL and π = 0.5. The economy features a low shock for each period except

for t = 2, which is the reason why I use a relatively large gH .

For the utility function of the example we have Ω(c, h) = 1 − ahh
1+φh and τt = τ(Φt) =

Φt(1 + φh)/(1 + Φt(1 + φh)), which holds only for t ≥ 1 due to the presence of initial wealth W0.

The procedure to solve the problem involves a double loop for the determination of Φi
2, i = H,L

and Φ0.

• Inner loop: Fix Φ0 and make a guess for (ΦH
2 ,Φ

L
2 ). Given these two values of the excess

burden of taxation, the problem from period t = 3 onward for both histories behaves as a

deterministic Ramsey taxation problem, but with different Φ’s depending on the high- or

low-shock history. In order to solve it, modify the return function as Chari et al. (1994) do,

by defining Ū(c, 1 − h; Φ) ≡ U(c, 1 − h) + ΦΩ(c, h). For the high-shock history, for t ≥ 3

solve the Bellman equation,

vCCK(k) = max
c,h,k′

Ū(c, 1− h; ΦH
2 ) + βvCCK(k′)

subject to c + k′ − (1 − δ)k + gL = kαh1−α, with the return function Ū(c, 1 − h; ΦH
2 ) =

ln c− ah h
1+φh

1+φh
+ ΦH

2 (1− ahh1+φh). For the low-shock history, for t ≥ 2, solve the same Bell-

The desire to disentangle the effect of the initial conditions from the effect of uncertainty is the reason why I let
the shock materialize at t = 2.
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man equation but with the return function Ū(c, 1− h; ΦL
2 ).

To determine the wealth positions zi2 and the respective innovations that allow the update

of the guesses for Φi
2, proceed as follows: Fix kH3 and consider the respective Euler equation:

1

cH2
= β

1

cH3

[
1− δ + α

(kH3
hH3

)α−1]
Given kH3 and the policy functions we found from solving the Bellman equation, the right-

hand side is known, determining therefore cH2 . Furthermore, use the intratemporal wedge

condition for g2 = gH to get hH2 =
[

(1−τH2 )(1−α)

ahc
H
2

] 1
α+φh k

α
α+φh
2 , where τH2 = τ(ΦH

2 ). Plug the

expression for labor in the resource constraint at g2 = gH , cH2 + kH3 − (1 − δ)k2 + gH =

kα2 (hH2 )1−α to get one equation in the unknown k2 and use a non-linear solver to determine

it. Furthermore, use the policy functions for t ≥ 3 to determine vH3 and zH3 . Utilities are

calculated with the original period utility function (and not with the modified Ū). Finally,

use (cH2 , h
H
2 ) to get vH2 = U(cH2 , 1 − hH2 ) + βvH3 and zH2 = Ω(cH2 , h

H
2 ) + βzH3 . Use now the

policy functions for the low-shock history to determine vL2 and zL2 at k2. Having the utility

values and the wealth positions at t = 2 allows us to calculate the induced likelihood ratios

mi
2, i = H,L, the market value of the wealth portfolio ω1 = πmH

2 z
H
2 + (1 − π)mL

2 z
L
2 and

therefore the relative wealth positions ηi2 = zi2 − ω1, i = H,L, given the guess for Φi
2. Use

the innovations ηi2 to update the guess for Φi
2, Φi

2 = Φ0

1+(1−β)(1−γ)ηi2Φ0
, i = H,L and iterate till

convergence.

• Outer loop: After we reach convergence for Φi
2, calculate the rest of the allocation for t = 0, 1

given the initial Φ0. In particular, the Euler equation for k2 is

1

c1Φ0

= βπmH
2

1

cH2 ΦH
2

[
1− δ + α

(
k2

hH2

)α−1 ]
+ β(1− π)mL

2

1

cL2 ΦL
2

[1− δ + α

(
k2

hL2

)α−1 ]
.

The right-hand side is known, which delivers c1. Express now labor at t = 1 as h1 =[
(1−τ1)(1−α)

ahc1

] 1
α+φh k

α
α+φh
1 , τ1 = τ(Φ0) and use this expression to solve for k1 from the resource

constraint. Calculate furthermore z1 = Ω(c1, h1)+βω1. The initial period requires a different

treatment due to the presence of initial wealth W0 = b0 +
[
(1− τK0 )α(k0/h0)α−1 + 1− δ

]
k0.

Use the Euler equation for capital to get the initial value of the multiplier λ0, λ0 = β
c1

[1− δ+

α(k1/h1)α−1]. Then use the first-order conditions for (c0, h0), (A.7)-(A.8) and the resource

constraint at t = 0 to get a system in three unknowns (c0, h0, k0) to be solved with a non-

linear solver. Update Φ0 by calculating the residual in the initial budget constraint, I ≡
Ω(c0, h0) + βz1 − 1

c0
W0. If I > (<)0 decrease (increase) Φ0 and go back to the inner loop to
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redetermine Φi
2, i = H,L given the new Φ0. Stop when the initial budget constraint holds,

I = 0.

The solution method for the outer loop is based on a fixed value kH3 , which delivers in the

end an initial value of capital k0. I experimented with kH3 so that the endogenous initial capital

corresponds to 0.9 of the first-best steady state capital. .

There is plethora of methods for solving the Bellman equation. I use the envelope condition

method of Maliar and Maliar (2013). I approximate the value function with a 5th degree polynomial

in capital and I use 100 grid points. Furthermore, since the steady-state capital depends on Φi
2,

I re-adjust the bounds of the state space for each calculation of the value function in order to

focus on the relevant part of the state space. For the high-shock history, I set the lower bound

as K = 0.95 · min(kH3 , k
H
ss) and the upper bound K̄ = 1.05 · max(kH3 , k

H
ss). In the same vain, for

the low-shock history, I set K = 0.95 · min(k2, k
L
ss) and K̄ = 1.05 · max(k2, k

L
ss). The variables

kiss, i = H,L denote the respective steady states.
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G Sequential formulation of Ramsey problem

Readers accustomed to optimal taxation problems with complete markets may wonder how the

excess burden of taxation can be time-varying when there is a unique intertemporal budget con-

straint. I employ here a sequential formulation of the problem and show the mapping between the

optimality conditions of the two formulations in order to make clear where this result is coming

from. In short, the time-varying Φt in the recursive formulation reflects the shadow value of addi-

tional “implementability” constraints in the sequential formulation of the problem that arise even

in a complete markets setup.9 The benefit of the recursive formulation of the commitment prob-

lem, besides illuminating obviously that z is the relevant state variable, is the succinct summary of

the effects of continuation values in terms of a varying marginal cost of debt. This allows a clean

comparison with the time-additive expected utility case. There are obvious similarities in spirit

with the optimal risk-sharing literature with recursive preferences, which expresses risk-sharing

arrangements in terms of time-varying Pareto weights (see for example Anderson (2005)).10

I consider an economy with capital. The specialization of the analysis to an economy without

capital is obvious. Let Xt ≡ M
ρ−γ
1−γ
t , X0 ≡ 1. Let v refer to the ρ-transformation of the utility

criterion. The Ramsey problem is

max v0({c}, {h})

subject to

∞∑
t=0

βt
∑
st

πt(s
t)Xt(s

t)Ω(ct(s
t), ht(s

t)) = Uc0W0 (G.1)

ct(s
t) + kt+1(st)− (1− δ)kt(st−1) + gt(s

t) = F (st, kt(s
t−1), ht(s

t)) (G.2)

Xt+1(st+1) = mt+1(st+1)
ρ−γ
1−γXt(s

t), X0 ≡ 1 (G.3)

vt(s
t) = U(ct(s

t), 1− ht(st))

+β

[∑
st+1

πt+1(st+1|st)
[
1 + (1− β)(1− ρ)vt+1(st+1)

] 1−γ
1−ρ
] 1−ρ

1−γ − 1

(1− β)(1− ρ)
, t ≥ 1 (G.4)

9These constraints describe utility recursions and the law of motion of M
ρ−γ
1−γ

t . In the case of the multiplier pref-
erences of Hansen and Sargent (2001), it is natural to think of the utility recursions as implementability constraints
since they correspond to optimality conditions of the malevolent alter-ego of the household, that minimizes the
household’s utility subject to a penalty. See Karantounias (2013). This minimization procedure would also emerge
naturally if we expressed recursive utility as the variational utility of Geoffard (1996).

10Note also that recursive utility adds z as a state variable to the optimal taxation problem, whereas z can be
ignored in the time-additive case. The reason is that z is necessary for the determination of the Ramsey plan only
though its shadow cost, Φ. When the excess burden of taxation is constant, the return function of the second-best
problem can be augmented in such a way, so that z becomes redundant as a state variable. See Lucas and Stokey
(1983) or Zhu (1992) and Chari et al. (1994).
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where W0 ≡ RK
0 k0 + b0, (b0, k0, s0, τ

K
0 ) given, and mt+1 =

[
1+(1−β)(1−ρ)vt+1

] 1−γ
1−ρ

Et

[
1+(1−β)(1−ρ)vt+1

] 1−γ
1−ρ

.

Assign multipliers Φ̄, βtπtλt, β
tπtνt and βtπtξt on (G.1), (G.2), (G.3) and (G.4) respectively.

The derivative of the utility index with respect to ct+i can be calculated recursively from the

relationship ∂Vt
∂ct+i

= ∂Vt
∂µt

∂µt
∂Vt+1

∂Vt+1

∂ct+i
, i ≥ 1. Similarly for labor. This leads to ∂V0

∂ct
= (1−β)V ρ

0 β
tπtXtUct

and ∂V0

∂ht
= −(1−β)V ρ

0 β
tπtXtUlt. For the ρ-transformation that we use here we have ∂v0

∂ct
= βtπtXtUct

and ∂v0

∂ht
= −βtπtXtUlt. The first-order necessary conditions are

ct, t ≥ 1 : Xt(s
t)Uc(s

t) + Φ̄Xt(s
t)Ωc(s

t) + ξt(s
t)Uc(s

t) = λt(s
t) (G.5)

ht, t ≥ 1 : −Xt(s
t)Ul(s

t) + Φ̄Xt(s
t)Ωh(s

t)− ξt(st)Ul(st) = −λt(st)FH(st) (G.6)

kt+1(st), t ≥ 0 : λt(s
t) = β

∑
st+1

πt+1(st+1|st)λt+1(st+1)[1− δ + FK(st+1)] (G.7)

Xt(s
t), t ≥ 1 : νt(s

t) = Φ̄Ωt(s
t) + β

∑
st+1

πt+1(st+1|st)mt+1(st+1)
ρ−γ
1−γ νt+1(st+1) (G.8)

vt(s
t), t ≥ 1 : ξt(s

t) = (1− β)(ρ− γ)Xt(s
t)φt(s

t) +mt(s
t)
ρ−γ
1−γ ξt−1(st−1), (G.9)

where

φt(s
t) ≡ Vt(s

t)ρ−1νt(s
t)− µt(st)ρ−1

∑
st

πt(st|st−1)mt(s
t)
ρ−γ
1−γ νt(s

t),

and ξ0 ≡ 0. The optimality conditions with respect to the initial consumption-labor allocation are

(A.7) and (A.8).

I will show now the mapping between the sequential formulation and the recursive formulation

and in particular the relationship between the time-varying Φt and ξt. Solve at first (G.8) forward

to get

νt = Φ̄Et

∞∑
i=0

βi
Xt+i

Xt

Ωt+i

and therefore νt = Φ̄UctWt = Φ̄zt, i.e. νt – the shadow value to the planner of an increase in

Xt– is equal to wealth (in marginal utility terms) times the cost of taxation Φ̄. Thus, φt –the

“innovation” in the multiplier νt– is equal to a multiple of ηt, φt = Φ̄ηt. Furthermore, define the

scaled multiplier ξ̃t ≡ ξt/Xt, ξ̃0 ≡ 0 and note that it follows the law of motion
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ξ̃t = (1− β)(ρ− γ)φt + ξ̃t−1

= (1− β)(ρ− γ)
t∑
i=1

φi = (1− β)(ρ− γ)
t∑
i=1

ηiΦ̄

Turn now to the multiplier in the text which, when solved backwards, delivers Φt = Φ0/(1+(1−
β)(ρ− γ)

∑t
i=1 ηiΦ0), where Φ0 is the multiplier on the initial period implementability constraint.

Thus, by setting Φ0 = Φ̄ we have

Φt =
Φ̄

1 + ξ̃t
, (G.10)

or, in terms of the non-scaled ξt, Φt = Φ̄Xt/(Xt + ξt). Therefore, the time-varying excess

burden of taxation captures the shadow value of continuation utilities that determine intertemporal

marginal rates of substitution. Consider now the multipliers λt in the sequential formulation and

their relationship to their counterparts in the recursive formulation, λRt . (G.5) can be written as

Uct + Φ̄Xt
Xt+ξt

Ωct = λt
Xt+ξt

. Recall that the optimality condition with respect to consumption in the

recursive formulation is Uct + ΦtΩct = λRt . Use then (G.10) to get that λt = (Xt + ξt)λ
R
t . Thus,

λt+1

λt
=

Xt+1 + ξt+1

Xt + ξt

λRt+1

λRt
=
Xt+1

Xt

Φ̄Xt
Xt+ξt

Φ̄Xt+1

Xt+1+ξt+1

λRt+1

λRt

= m
ρ−γ
1−γ
t+1

λRt+1

λRt

Φt

Φt+1

.

Thus, (G.7) delivers the same condition as equation EtS
?
t+1(1− δ + FK,t+1) = 1 in the text.
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Figure H.1: The graph denotes the fiscal hedging the the “under-insurance” in comparison to expected utility,
when there is preference for late resolution of uncertainty.

H Preference for late resolution of uncertainty

Assume the same utility function as in the numerical exercise in the main text and set γ = 0 < ρ =

1. Let the rest of the preference parameters and the shocks be the same as in the baseline exercise

with no persistence. The left graph of figure H.1 shows that the planner still hedges adverse shocks

by selling more claims against good times and less claims against bad times. But debt becomes

now more expensive in good times, due to the love of future utility volatility. Therefore, the

planner issues less debt against good times (and taxes less) and more debt against bad times (and

taxes more), effectively “under-insuring” with respect to expected utility. This is displayed in the

right graph of figure H.1. Table H.1 displays the positive correlation of changes in tax rates with

government spending and figure H.2 displays the ensemble moments of the tax rate and the debt

ratio. Note that the positive drift is very small for this parametrization.

In the computational section I highlighted the non-convexities in the implementability con-

straint budget that emerge with recursive utility. These non-convexities disappear in the case of

ρ > γ as figure H.3 shows. This allows also the increase of the upper bounds of the state space. I

build the state space with Φ̄ = 3, which corresponds to a tax rate of 85.41% and to upper bounds

(z̄L, z̄H) = (18.6064, 18.5773). These upper corresponds to values of debt that are 10.99 and 9.8

multiples of output. In (very) long simulations we noted that the upper bound is not innocuous,

in the sense that the tax rate tends to put most of its mass towards it, as can been seen in figure

4(a). Figure 4(b) plots the stationary distributions of the tax rate and debt, which exhibit large
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Figure H.2: Ensemble moments of 10,000 sample paths of 50,000 period length. The increase in the mean tax
rate is very small for sample paths of this length and the particular calibration.

Table H.1: Statistics of sample paths for late resolution of uncertainty.

Recursive utility
200 periods 2000 periods 50000 periods

Autocorrelation of τ 0.9792 0.9979 0.9999

Correlation of ∆τ with g 1 1 0.9999

Correlation of ∆τ with output 1 0.9999 0.9963

Correlation of ∆b with g -0.6991 -0.6974 -0.6968

Correlation of ∆b with ∆τ -0.6991 -0.6974 -0.6971

Correlation of τ with g 0.1105 0.0353 0.0070

Correlation of τ with output 0.1049 0.0177 -0.0775

Correlation of b with τ 0.0302 0.3656 0.9049

The table reports median sample statistics across 10000 sample paths of variable lengths.

probability mass at the right tails (the debt distribution is actually bimodal). This is in contrast

to the baseline exercise of the paper with aversion to utility volatility, where the upper tails are

thin.
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Figure H.3: The market value of debt ω as function of the state-contingent positions when γ = 0 < ρ = 1.
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Figure H.4: Stationary distributions from a simulation of 60 million periods. The first 20 million periods were
dropped. The first and second moments (in %) are (E(τ),

√
Var(τ)) = (80.38, 4.98) and (E(b/y),

√
Var(b/y)) =

(1014.97, 69.46).
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