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1 Introduction

The last decade has witnessed a surge in commodity prices and a widespread financialization

of commodity products. The upward movements and the increased volatility of the commodity

prices have been largely attributed to strong demand by China and other emerging markets as

well as massive capital flows into the commodity markets by institutional investors, portfolio

managers and speculators. While the importance of commodity price movements for the economic

policy and investors’ sentiment has generated a substantial research interest, the behavior and the

determination of commodity prices is not yet fully understood. The main objective of this paper

is to develop a structural model of commodity price determination that reflects the empirical

properties (high persistence and conditional heteroskedasticity) of commodity prices. In order to

achieve this goal and to gain further understanding into the fundamental factors that drive the

observed behavior of commodity prices, we modify the structure of the speculative storage model

from one where prices adjust almost instantaneously to harvest shocks to a setup where they

change slowly and infrequently. More specifically, we depart from the assumption that market

prices are determined in a perfectly competitive environment and extend the basic speculative

storage model by explicitly introducing intermediate goods speculators with a staggered pricing

rule. One appealing aspect of this approach is its ability to mimic some important characteristics

of the actual commodity prices such as high persistence and conditional heteroskedasticity, which

can be generated even in the absence of correlated harvest shocks.

The speculative storage model for commodity prices can be dated back to Gustafson (1958) who

defines a set of optimal storage rules that state how much grain should be carried over into the next

period given the current year supply. Moreover, by introducing intertemporal storage arbitrage

and supply shocks, Gustafson (1958) incorporates rational expectations. This line of research is

further elaborated in Muth (1961). Samuelson (1971) develops a model for commodities which de-

termines the behavior of the prices as the solution to a stochastic dynamic programming problem.

Furthermore, Beck (1993) builds upon the work by Muth (1961) and provides a theoretical basis

for treating the variance of storable commodities as serially correlated which suggests that com-

modity prices may exhibit conditional heteroscedasticity. The presence of storage is instrumental

in ensuring that the price variance in one period directly affects inventory variance which in turn is

transmitted to next period’s price variation. Williams and Wright (1991) provide a comprehensive
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discussion of the basic storage model and its extensions, and summarize the time series properties

of storable commodities. Williams and Wright (1991) put an emphasis on the complex non-linear

storage behavior resulting from the fact that aggregate storage cannot be negative.

Deaton and Laroque (1992, 1995, 1996) develop a partial equilibrium structural model of com-

modity price determination and apply numerical methods to test and estimate the model param-

eters, confronting for the first time the storage model with the documented behavior of actual

prices. Their analysis suggests that the introduction of speculative inventories and serially corre-

lated supply shocks do not appear to generate sufficient persistence in commodity prices although

they prove to be successful in replicating the substantial volatility observed in the actual data.

More recently, numerous studies have focused on modifying the storage model in order to

accommodate the persistence of commodity prices. Chambers and Bailey (1996) relax the iid

assumption on harvest shocks, and study the price fluctuations of storable commodities, assum-

ing that shocks are either time dependent or that the model exhibits periodic disturbances. Ng

and Ruge-Murcia (2000) incorporate additional features into the storage model in an attempt to

generate a higher degree of persistence in commodity prices. In particular, Ng and Ruge-Murcia

(2000) allow for serially correlated shocks assuming that harvest follows a first-order moving aver-

age (MA(1)) process. They also examine the ability of production lags and heteroskedastic supply

shocks, multi-period forward contracts and convenience yields to generate an increased persistence

in commodity prices. Cafiero, Bobenrieth, Bobenrieth, and Wright (2011) demonstrate that the

competitive storage model can give rise to high levels of serial correlation observed in commodity

prices if more precise numerical methods are employed. Moreover, estimates for seven commodities

supported the specification of the speculative storage model with positive constant marginal costs

and no deterioration, which is in line with Gustafson (1958).

Furthermore, Cafiero, Bobenrieth, Bobenrieth, and Wright (2011) use a maximum likelihood

framework to estimate the storage model with stock-outs, which is extended to include unbounded

harvests and free disposal. Their results produce more accurate small sample estimates of the struc-

tural parameters of the model compared to the previous studies based on the pseudo-maximum

likelihood procedure. Miao and Funke (2011) add shocks to the trends of output and demand.

Evans and Guthrie (2007) include transaction cost frictions into the speculative storage model.

One important finding that emerges from their analysis is that these frictions tend to have ex-

planatory power for the dynamic behavior of spot and futures commodity prices. In a competitive
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equilibrium framework, the model of Evans and Guthrie (2007) is able to capture the serial cor-

relation and GARCH characteristics of commodity prices. Finally, Arseneau and Leduc (2012)

embed the speculative storage model into a general equilibrium framework. Their main result is

that the interaction between storage and interest rates in general equilibrium increases the impact

of competitive storage on commodity prices and leads to higher persistence than the one observed

in the storage model with fixed interest rate.

In spite of this extensive literature for understanding the determinants and the dynamic pat-

terns of commodity prices, reproducing the documented high persistence and conditional het-

eroskedasticity of actual prices within a well-articulated structural model proved to be a chal-

lenging task. In this paper, we address the issues regarding the commodity price dynamics in a

unified fashion by embedding a staggered pricing mechanism into the speculative storage model.

While Arseneau and Leduc (2012) also suggest to “introduce staggered price setting on the part

of the final goods producing firm” in a general equilibrium framework as a possible extension for

future research, our paper is the first to implement this approach and assess the properties of the

model-generated commodity prices against the observed data.

In an attempt to depart from the assumption of perfect competition at both the production and

storage activity, Newbery (1984), Williams and Wright (1991), and McLaren (1999) investigate

the effects of market power on the storage behavior. Our model differs from their work along

the dimension that the final bundler does not store the good and the storage is only done by

intermediate risk neutral speculators. The final bundler only bundles intermediate prices in order

to set the final price. Finally, Mitraille and Thille (2009) examine the market power in production

with competitive storage by analyzing the effects that competitive storage has on the behavior

of a monopolist. Using his market power, the monopolist can influence speculative activity by

manipulating prices and consequently affect the distribution of prices. One of the findings of

Mitraille and Thille (2009) is that stockouts occur less frequently under monopoly.

The focus of this paper is on the improved ability of the storage model with staggered prices

to account for the empirical features of commodity prices. The main impact of staggered prices

in our model is to dampen the movements in prices as well as the market power of intermediate

speculators to affect prices. This leads to gradual adjustments and persistent responses of prices

following a harvest shock. In addition to generating sufficient persistence in commodity prices, the

staggered pricing approach allows us to match other important moments in the unconditional and
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conditional distributions of the commodity prices.

Nominal price rigidity is often incorporated in dynamic general equilibrium models with two

widely used nominal price rigidity specifications in the literature. On one hand, the partial adjust-

ment model developed by Calvo (1983), Rotemberg (1987), and Rotemberg (1996) allows for only

a randomly chosen fraction of firms to adjust their prices according to some constant hazard rate

in any given period. On the other hand, the staggered price setting rule adopted by Taylor (1980)

and Blanchard and Fisher (1989) permits all firms to optimize their prices after a fixed number of

periods.

In this paper, we assume that the pricing decisions are staggered as in Calvo (1983) and use

a similar modeling framework as the one developed in McCandless (2008). Our results confirm

the importance of staggered prices for commodity price dynamics and suggest that the staggered

pricing mechanism appears to be consistent with the behavior of the actual data. Moreover, we

show how our model can be used to analyze the response of commodity prices to harvest shocks

which provides a framework for economic and policy evaluation.

The remainder of the paper is organized as follows. The competitive storage model with

staggered prices as well as the statistical characterizations of this model are presented in Section 2.

Section 3 studies the practical implications of our staggered price speculative storage model using

simulated data. Section 4 contains a brief description of the data and the estimation method used

in the paper, and presents the main empirical results. Section 5 concludes.

2 Competitive Storage Model with Staggered Prices

This section introduces the model setup and characterizes the equilibrium and statistical behavior

of the model-generated commodity prices.

2.1 Model and Equilibrium Price Behavior

The rational expectations model determines the optimal inventory decisions by risk- neutral spec-

ulators. The basic version of the model developed by Deaton and Laroque (1992, 1995, 1996)1

incorporates competitive storage into the consumer demand and supply dynamics and establishes

the concept of stationary rational expectations equilibrium (SREE). The model with serial correla-

1For brevity, we denote hereafter the basic speculative storage model of Deaton and Laroque by DL.
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tion in harvest shocks is tested by Ng and Ruge-Murcia (2000). In their paper, Ng and Ruge-Murcia

(2000) consider an MA(1) specification for the model harvest shocks. Our model complements and

extends the original DL model by embedding a staggered price setting into the speculative storage

model. Regarding the harvest shock specification, we consider both (i) iid harvest shocks and (ii)

MA(1) harvests shocks.

Our modified model has three types of commodity market participants: final consumers, inter-

mediate risk neutral speculators and a bundler2 who bundles the commodities in order to set the

final price. In the absence of storage, the behavior of final consumers is characterized by a linear

inverse demand function

pt = P (zt) = a+ bzt,

where a and b < 0 are parameters to be estimated and zt denotes the harvest in period t.

Let the harvest zt be given by

zt = z̄ + ut,

where z̄ is constant (perfectly inelastic) and ut is a random disturbance term which is assumed

either to be iid or to follow an MA(1) process

ut = et + ρet−1,

where et is iid(0, σ2). If ρ = 0, we have the case of iid shocks as in DL, and when ρ > 0, we have

MA(1) shocks as in Ng and Ruge-Murcia (2000). In this paper, we investigate both cases and

show that when we add staggered prices, the case for ρ = 0 gives better results compared to the

case of non-staggered prices and ρ > 0.

Intermediate risk neutral speculators or inventory holders know the current year harvest and

demand the commodity to transfer to the next period. They will do so whenever they expect to

make a profit above the storage and interest cost. The depreciation rate of storage is denoted

by δ. A simple form of proportional deterioration is considered which means that if in period t

the speculators store I units of the commodity, they have at their disposal (1 − δ)I units at the

beginning of the next period. Moreover, speculators have to pay the real interest rate on the value

2In the literature, it is common to use the term “monopolist” instead of the term “bundler” that we use in this
paper. The reason that we prefer the latter is the following: in the staggered pricing literature, the final goods
producer maximizes his profit by setting the price. In this paper, we do not consider any profit maximization and
any type of price setting for the final goods producer. Instead, we use the final goods prices set as in (2.6).
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of their storage. Let r denotes the constant exogenous real interest rate. The sum of harvest and

inherited inventories, denoted by xt, is referred to as the amount on hand and is given by

xt = (1− δ)It−1 + zt.

The relationship between the amount of storage and its net profit can be summarized as{
It > 0 if (1− δ)/(1 + r)Et[pt+1] = pt,
It = 0 otherwise,

where Et denotes the expectation given the information at time t.

The condition for non-negative inventories is the crucial source of non-linearity in the model.

This specification does not allow the market participants to borrow commodities that have not yet

been grown. In addition, intermediate speculators benefit from market power that reflects their

ability to affect the price. In this framework, we assume that there is a continuum of intermediate

speculators (of unit mass indexed by k ∈ [0, 1]) and final big players in the market. Final players

collect all the commodities from intermediate speculators and bundle intermediate speculators’

prices into the final price in order to sell the commodity to consumers. Since we only have a few

big players in the market, they are best described by an oligopolistic environment. In reality, the

price level of many commodities is influenced either through the formation of cartels by producers

or through government intervention by imposing export control agreements or keeping strategic

stock reserves. Although some of those cartels brake up in the long run, as discussed in Gilbert

(1987), all of them have a strong influence on commodity prices, at least in the short-run. Hence,

the introduction of these final big players who bundle prices tends to generate persistence in

commodity prices over consecutive periods.

For simplicity, we assume that there exists a bundler who bundles all intermediate speculators’

prices into a single one. Each period t, a fraction 1− γ (0 < 1− γ < 1) of the speculators are able

to exploit their market power and get to reset the prices of their commodities P ∗t (k). The rest,

who did not benefit from their market power to affect prices, keep their prices at the same level as

the last period: P ∗t (k) = P ∗t−1(k). Given this staggered pricing rule, along with the assumptions

that speculators are risk neutral and have rational expectations, intermediate speculators’ current

and expected future prices must satisfy

P ∗t (k) = max

{
p(xt), (1− γ)

1− δ
1 + r

Et[P ∗t+1(k)] + γP ∗t (k)

}
. (2.1)
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The first term in the brackets represents the price if the harvest is sold to consumers in period t and

no inventories are carried over to the next period. The second term is known as the intertemporal

Euler equation. This is the value of one unit stored if 1 − γ of the speculators benefit form their

market power to affect the price. This, in turn, happens if the speculators expect to cover their

costs (after depreciation) from buying the commodity at time t. Since the current period bundler

prices are not yet determined, it is important to stress that speculators, who do not reset their

prices, use their own current prices and not the market ones in order to determine P ∗t (k) in (2.1).

Finally, the bundler will bundle all intermediate prices together according to the following

pricing rule (see McCandless (2008))

P 1−ψ
t = γP 1−ψ

t−1 + (1− γ)P ∗t (k)1−ψ,

where Pt denotes the bundler final price of the good, the parameter ψ is the gross markup of the

intermediate goods speculators and P ∗t (k) represents the price for intermediate goods speculators

who can set their prices. Since all intermediate goods speculators who can fix their prices are

assumed to have the same markup over the same marginal costs, P ∗t (k) is the same for all inter-

mediate risk neutral speculators who adjust their prices. Prices for intermediate speculators who

cannot set their prices are the same as the previous period prices denoted by Pt−1.

In order to simplify the bundler’s pricing rule, we use the log-linearized version of this equation

so that the final price becomes

p̃t = γp̃t−1 + (1− γ)p̃∗t (k), (2.2)

where p̃t and p̃∗t denote the logarithm of Pt and P ∗t , respectively.

After completing the description of our model, we elaborate on some important implications

of equation (2.1). As implied by this equation, the intermediate risk neutral speculators’ price

follows a non-linear first-order Markov process with a kink at the price above which we do not

have inventories. In the case of iid shocks, the kink is determined by

p̂ = (1− γ)
1− δ
1 + r

Ep(z) + γp̂.

This implies that

p̂ =
1− δ
1 + r

Ep(z) (2.3)
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which coincides with the kink given in DL.

However, as in Chambers and Bailey (1996), the price kink p̂ in the case of correlated harvests

shocks is no longer constant and varies with the current harvest. This is due to the fact that with

serially correlated harvest shocks, speculators form their price forecasts using all the information

contained in the current shock.

Under some regularity conditions, most notably r + δ > 0 and that z has a compact support,

DL establish the existence of a solution to (2.1) when γ = 0 and shocks are independent. Indeed,

to show the existence of the demand function for non-independent shocks, it is enough to prove the

independent case conditioning on time t. In our case, we proceed by following a similar approach

to proving that such an equilibrium exists. Assume that the demand xt always lies in a subset

X = [z,+∞) of the real numbers and that the harvest shock zt belongs to a compact set Z = [z, z̄].

Definition 2.1 Assume that γ ∈ [0, 1). A staggered stationary rational expectation equilibrium

(SSREE) is a price function f : X× Z→ R which satisfies the following equation

pt = f(xt, zt) = max

{
p(xt), (1− γ)

1− δ
1 + r

Etf(zt+1 + (1− δ)It, zt+1) + γf(xt, zt)

}
where

It = xt − p−1(pt) = xt − p−1(f(xt, zt)). (2.4)

This defines the price function

P ∗t (k) = f(xt, zt),

where f(xt, zt) is the unique, monotone decreasing in its first argument, solution to the functional

equation. Since this price function is non-linear, numerical techniques similar to the ones adopted

by DL and Michaelides and Ng (2000) are used to solve for f(xt, zt)

f(xt, zt) = max

{
p(xt), (1− γ)

1− δ
1 + r

Etf((zt+1 + (1− δ)It), zt+1) + γf(xt, zt)

}
.

In the case of independent shocks, we can remove the time subscript and the shocks in f .

When γ = 0 and the shocks are iid, we have the same model as considered by DL. Hence, the

equilibrium is simply called SREE. In the following theorem we show that the staggered station-

ary rational expectation equilibrium (SSREE) coincides with the stationary rational expectation

equilibrium (SREE) derived from the basic DL speculative storage model.
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Theorem 2.1 If shocks are iid, then SSREE=SREE.

Proof See Appendix A. �

Remark 2.1 Theorem 2.1 shows that pt = P ∗t . This allows us to use all of the results for the

process pt, that are available in the literature, for the process P ∗t .

We next show that the final demand for the bundler in our staggered speculative model is

different form the one in DL. It proves useful to compare the price processes in the speculative

storage model with and without staggered prices for the market participants who can reset their

prices. In the basic speculative storage model of DL, the market participants cannot hold nega-

tive inventories. If prices are expected to increase or decrease by less than the cost of carrying

the commodity from one period to another, inventories are zero. If inventories are positive, the

expected price next period is equal to the current price plus the storage costs. The final price of

the commodity in the basic speculative storage model satisfies

pt = max

{
p(xt),

1− δ
1 + r

Etpt+1

}
.

Hence, {
pt = 1−δ

1+r
Etpt+1 if It > 0;

pt = p(xt) if It = 0.

However, as stated in the description of our speculative storage model with staggered prices, the

intermediate risk neutral speculators price function satisfies

P ∗t = max

{
p(xt), (1− γ)

1− δ
1 + r

EtP ∗t+1 + γP ∗t

}
.

In this case, {
P ∗t = (1− γ)1−δ

1+r
EtP ∗t+1 + γP ∗t , if It > 0;

P ∗t = p(xt) if It = 0.
(2.5)

It can be easily seen from (2.5) that the prices for intermediate risk neutral speculators who can

adjust them satisfy the same equation as the one that speculators face in the basic storage model

of DL.

Since the final price process in the speculative storage model with staggered prices is given by

p̃t = γp̃t−1 + (1− γ)p̃∗t (k), (2.6)
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one can infer that the demand of the bundler (the final demand) will be different from the demand

presented by DL in the basic speculative storage model. We expect the final demand for speculative

storage model with staggered prices to be in between the DL demand and the regular market

demand. Moreover, we expect this demand to be more inelastic than the one derived from the

basic speculative storage model. This is more consistent with the commodity elasticities estimated

from actual data.

2.2 Statistical Characterization

Under the assumption of iid harvests shocks, the final log-price process satisfies equation (2.6).

The bundler price can then be written as

Pt = Pt−1
γ P ∗t

1−γ. (2.7)

The persistence of commodity prices is then simply an outcome of the staggered prices which

is extensively discussed in the literature on staggered pricing. Here, we provide an alternative

explanation. From the logarithmic form of the relation (2.7), we have by induction that

p̃t+1 = (1− γ)
t∑
i=0

γip̃∗t+1−i

which in turn yields

Pt+1 =

(
t∏
i=0

P ∗t+1−i
γi

)1−γ

.

This shows that Pt+1 shares overlapping terms prices in previous periods which gives rise to high

persistence.

Next, we show that the final prices of the bundler exhibit conditional heteroskedasticity which

is another salient characteristic of the observed commodity prices. Note that from (2.7), we have

Et−1(P 2
t ) = Pt−1

2γEt−1(P ∗t
2(1−γ)) (2.8)

and

(Et−1Pt)2 = Pt−1
2γ(Et−1(P ∗t

1−γ))2. (2.9)
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Combining (2.8) and (2.9) and assuming that the shocks are iid, the conditional variance of the

final prices is given by

Vart−1(Pt) = Pt−1
2γ
[
E
(
f(z + (1− δ)It−1)2(1−γ)

)
− (E(f(z + (1− δ)It−1)1−γ)2

]
. (2.10)

In the absence of inventories in the previous period, It−1 = 0, the variance reduces to

Vart−1(Pt) = Pt−1
2γVar

(
f(z)1−γ

)
. (2.11)

From (2.10) and (2.11), we can see that the variance is time-varying and, as a result, the final

commodity prices derived from our model exhibit conditional heteroskedasticity. In addition, it is

worth noting that the variance also depends on the value of γ.

It is interesting to point out that the form of the conditional variance in (2.11) bears strong

resemblance to modeling the conditional heteroskedaticity in interest rate models (see, for instance,

Brenner, Harjes, and Kroner (1996)). In these models, there is a parameter that allows the volatility

of interest rates to depend on the level of the process. Similarly, higher values of the parameter γ

in equation (2.11) indicate that the volatility of commodity prices is more sensitive to their past

level which generates volatility clustering.

3 Model Comparisons Using Simulated Data

In this section we examine the statistical properties of the simulated data from our commodity

price model with staggered pricing. In order to assess the qualitative and quantitative implications

of our model, we compare it to the basic speculative storage model of DL and the modified version

of the speculative model of Ng and Ruge-Murcia (2000). The model of Ng and Ruge-Murcia

(2000) extends the DL model by adding serially correlated harvest shocks that follow an MA(1)

process, as well as gestation lags, heteroskedastic supply shocks, multi-period forward contracts

and convenience yields.

In our simulations, we calibrate the models using the parameter values estimated by Deaton

and Laroque (1996) for a set of 12 commodities. These parameters (a, b, δ), presented in Table 1,

are the same as the parameters used by Ng and Ruge-Murcia (2000). The data are simulated

using iid harvest shocks or MA(1) harvest shocks with an MA parameter ρ = 0.8. We denote our

speculative storage model with staggered prices by ADG.
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Table 2 presents the results for the first-order autocorrelation of the simulated prices from the

different models. The first column of Table 2 reports the autocorrelations from the actual data

used in Deaton and Laroque (1996), the second column shows the results from the basic DL model

(ρ = 0) and the third column contains the results obtained using DL model with MA(1) shocks

(ρ = 0.8). The highest autocorrelation for the simulated prices from the DL model is for Maize

(0.413 for the basic DL model and 0.644 for the specification with MA(1) harvest shocks). For all

other commodities, the serial correlation in the simulated prices is well below the persistence in

the actual prices.

The last two columns of Table 2 report the results from our model. For all commodities, the

autocorrelation coefficients of the simulated prices based on the ADG model are much higher than

those of the DL model specifications and are very close to the autocorrelations obtained from

actual data. Once we account for staggered pricing, the additional effect of serially correlated

harvest shocks is minimal.

Furthermore, Table 3 lends additional support to our ADG model with staggered prices. In this

table, we compare the autocorrelation coefficients for the model by Ng and Ruge-Murcia (2000)

with gestation lags, overlapping contracts and convenience yields to those computed from our ADG

model in columns 4 and 5 of Table 2.

Ng and Ruge-Murcia (2000) add gestations lags to the DL basic specification in an attempt

to reduce the number of periods where the intertemporal price link between periods with and

without production is severed. Consequently, this increases the serial correlation in prices. For

this purpose, Ng and Ruge-Murcia (2000) assume that there are odd and even periods and that

harvest takes place in the even periods. Hence, the random disturbance term of the harvest process

has a variance that could differ if the period is odd (σ1) or even (σ2). The highest autocorrelations

are reached for a value of σ2
σ1

= 1.8. This model is denoted by GS. The results from the GS

specification are reported in column 2 of Table 3.

Ng and Ruge-Murcia (2000) also show, in contrast to the earlier literature on storage where

contracts are absent and stockholders are free to roll-over their inventories, that a model with

overlapping contracts can partially explain the high serial correlation in prices. Column 3, denoted

by OV in Table 3 reports the corresponding autocorrelation coefficients.

Finally, Ng and Ruge-Murcia (2000) add a convenience yield to the DL model. Since inventory

holders might derive convenience from holding inventories, Ng and Ruge-Murcia (2000) introduce
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both a speculative and a convenience motive for inventory holding. Hence, since the convenience

yield partially compensates inventory holders for the expected loss when the basis is below carrying

charges, their model with convenience yield generates a smaller number of stock-outs and, as a

result, the demand for inventories for convenience purposes strengthens the intertemporal link

resulting in a higher persistence of prices. Results for c = 50 are reported in column 4 of Table 3.

The model is denoted by CY.

Overall, the results in Table 3 suggest that the different specifications of Ng and Ruge-Murcia

(2000) cannot generate autocorrelation coefficients greater than 0.640 and they are below the

autocorrelation coefficients from our ADG model and the actual data across all commodities.

4 Empirical Application

This section presents new empirical results from estimating the structural parameters of our pro-

posed model using monthly data for four agricultural commodities..

4.1 Data

The data set employed in this empirical application consists of prices for four agricultural com-

modities: sugar, soybeans, soybean oil, and wheat. The commodity prices are obtained from the

Commodity Research Bureau and are available at daily frequency for the period March 1983 –

July 2008. The trading characteristics of these commodities are summarized in Table 4.

The spot price is approximated by the price of the nearest futures contract. Monthly commod-

ity price series are constructed from daily data by averaging the daily prices in the corresponding

month. The monthly frequency is convenient for studying the persistence and conditional het-

erosekdasticity in commodity prices. The real commodity prices are obtained by deflating the

nominal spot prices by the CPI (seasonally adjusted) index obtained from the Bureau of Labor

Statistics (BLS). Each deflated price series is then further normalized by dividing by the sample

average. By performing this additional normalization, each series has a historical mean of one

which allows us to conduct easier comparisons of the estimated parameters across various price

series.

13



4.2 Estimation Method: Simulated Method of Moments

This section provides a brief description of the simulated method of moments (SMM) which is

used for estimating the model parameters. The main advantage of SMM lies in its flexibility of

the choice of moment conditions that allow us to identify the staggered pricing parameter γ. See

Pakes and Pollard (1989), Lee and Ingram (1991) and Duffie and Singleton (1993) for a detailed

description of the method and its asymptotic properties, and Michaelides and Ng (2000) for an

investigation of its finite-sample properties in the context of the speculative storage model.

The SMM estimator requires repeatedly solving the model for given values of the structural

parameters. For this reason, we present some computational details regarding the solution of

the model. The function f(x) is approximated using cubic splines and 100 grid of points for x.

This function is calculated using an iterative procedure, starting with an initial value f0(x) =

max[p(xt), 0]. As in DL, the interest rate r is not estimated but it is fixed at 5 percent per annum

or 0.41 percent (r = 1.05
1
12 − 1 = 0.0041) per month. In addition, we calibrate the depreciation

rate δ and set it equal to 0.04 per month. One reason to calibrate δ is that the SMM estimator

tends to over-estimate δ as indicated by Michaelides and Ng (2000). Finally, the harvest shocks z

are discretized using a discrete approximation of a standard normal random variable with z taking

one of the following 10 values: (±1.755,±1.045,±0.677,±0.386,±0.126), with equal probability of

0.1.

It is worth noting that the prices used for estimation of ADG model parameters represent the

prices of intermediate risk neutral speculators, not the final prices that are given by the data set

described above. Hence, we first retrieve the prices of intermediate risk neutral speculators from

the final prices given by the time series of commodity prices using the equation

Pt
∗ =

(
Pt

Pt−1
γ

) 1
1−γ

. (4.1)

Let θ = (a, b, γ)′ denote the vector of structural parameters of the model. Sample paths of

commodity prices can be simulated from the assumed structural model for a candidate value of

θ. In what follows, we simulate one sample path of prices P̃t(θ) of length TH, where H = 20

and T is the sample size of the observed prices Pt. The SMM estimator of θ is then obtained by

minimizing the weighted distance (using an optimal weighting matrix) between the moments of

the observed data Pt (empirical moments) and simulated data P̃t(θ) (theoretical moments). Let
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m(Pt) and m(P̃t(θ)) denote the set of moments from the observed and simulated data. Then, the

SMM estimator θ̂ is defined as

θ̂ = ArgminθDT (θ)V −1T DT (θ), (4.2)

where

DT (θ) =
1

T

T∑
t=1

m(Pt)−
1

TH

TH∑
t=1

m(P̃t(θ)),

and VT denotes a consistent estimator of

V = lim
T→∞

Var

(
1√
T

T∑
t=1

m(Pt)

)
.

The vector of moments

m(Pt) = [Pt, (Pt − P̄ )i, (Pt − P̄ )(Pt−1 − P̄ )]′, for i = 2, 3, 4, (4.3)

is chosen to capture the dynamics and the higher-order unconditional moments of actual commod-

ity prices. The long-run variance V is estimated using the Parzen window

w(x) =

{
1− 6x2 + 6|x|3 if |x| ≤ 1/2,
2(1− |x|3) if 1/2 ≤ |x| ≤ 1

(4.4)

with four lags.

Under some regularity conditions, Lee and Ingram (1991) and Duffie and Singleton (1993) show

that the SMM estimator is asymptotically normally distributed

√
T (θ̂ − θ0)→ N(0,ΩH), (4.5)

where ΩH =
(
1 + 1

H

)(
E
[
∂m(P̃t(θ0))

∂θ

]′
V −1E

[
∂m(P̃t(θ0))

∂θ

])−1
. The derivatives ∂m/∂θ are computed

numerically and ΩH is replaced by a consistent estimator in constructing the standard errors of

the parameter estimates.

4.3 Empirical Results

The estimation results for the ADG model parameters are presented in Table 5. The standard

errors of the estimated parameters, based on the asymptotic approximation described above, are

reported in parentheses below the parameter estimates. The standard errors for the staggered
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price parameter γ are low for all of the four commodities indicating that γ is well identified and

significantly different from zero. The mean of γ for the four commodities is equal to 0.85. The

parameter estimates for b satisfy the constraint b < 0. For most of the cases, the standard errors

of the estimated parameters a and b are relatively low.

In this paper, we argue that the high persistence and the conditional heteroskedasticity in

commodity prices appear to be primarily driven by the staggered price parameter γ. To illustrate

this, we simulate 200 price series, each of length of 300 observations. The set of parameters used

to conduct the simulations is (a, b, δ) = (.7,−3, .04) and r = .0041. We compute the first-order

autocorrelation for each series and then calculate the average over the Monte Carlo replications.

We repeat the same exercise for four different values of γ, γ = (0, 0.3, 0.6, 0.9). In the first

three columns of Table 7 we report the first-order autocorrelation for the actual data, ADG and

DL models, respectively. Table 6 shows that incorporating staggered prices into the speculative

storage model does increase the first-order autocorrelation of the prices and makes it comparable

to the sample autocorrelation of the actual data. More specifically, as γ increases from γ = 0

(which represents the case for the DL model) to γ = 0.9, the first-order autocorrelation increases

from 0.6 to 0.9.

To visualize the differences between the two models, Figure 1 plots the actual price of soy-

bean, the simulated prices generated by our ADG model with iid harvest shocks and estimated

parameters (a, b, γ) = (0.352,−4.787, 0.909), and the simulated prices generated by DL model

with estimated parameters (a, b, δ) = (0.723,−0.394, 0.130). It is clear from the graph that our

staggered price model generates more persistent data with volatility clustering which is closer to

the actual price dynamics of soybean prices presented in Figure 1. Also, in Figure 2 we trace the

dynamic responses of the simulated commodity prices following a negative harvest shock. The

gradual adjustment of the commodity prices from the ADG model stands in sharp contrast with

the stronger but short-lived impact of the harvest shock on commodity prices in the DL model.

Next, in order to reveal the advantages of our ADG model in matching the dynamics in the

first two conditional moments of the data, we simulate 200 series of prices, each of length of 300

observations, using the parameters estimated from ADG model (reported in Table 5). We repeat

the same exercise, using the same values for the parameters a and b but setting γ = 0, which

represents the case for the DL model. We filter the simulated prices from both the DL and ADG

models using an AR(1) model and then fit a GARCH(1,1) model to each of the pre-filtered series
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using the following equations:

Pt = a0 + a1Pt−1 + εt

εt = σtzt

σ2
t = κ+ αε2t−1 + βσ2

t−1.

Figures 3 and 4 plot the distribution of the parameter estimates β̂ and α̂ for the ADG and

DL models. The figures clearly suggest that the ADG model provides an improvement over DL

model by better capturing the conditional heteroskedasticity. In fact, the medians for β̂ and α̂,

generated by ADG model, are much closer to the parameters (denoted by bullets) estimated from

actual data. Table 7 summarizes the results by reporting the means of the autocorrelations and

the GARCH parameters for the ADG and DL models against the statistics from the actual data.

Overall, the results lend strong support to the staggered pricing feature of the modified speculative

storage model of commodity price determination.

5 Conclusion

The main objective of this paper is to propose a model which is able to reproduce the statistical

characteristics of the actual commodity prices. Our modified speculative storage model embeds a

staggered price feature into the DL storage model. The staggered pricing rule is incorporated by

introducing intermediate good speculators and a final goods bundler. We examine the empirical

relevance of the structural modification by comparing our model performance with several models

in the literature, namely DL and the extended DL version of Ng and Ruge-Murcia (2000). Our

analysis suggests that the proposed model outperforms the existing models along several dimensions

such as matching the serial correlation and GARCH dynamics of the observed commodity prices.

We also estimate the vector of structural parameters for the ADG model with uncorrelated harvest

shocks using monthly data for four agricultural commodity prices. The results tend to suggest

that the staggered price parameter is large and it proves to be instrumental in generating the

documented persistence and conditional heteroskedasticity of commodity prices.
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A Appendix: Proof of Theorem 2.1

First, we state the assumptions for the theorem.

Assumptions: Assume that

A.1 r + δ > 0.

A.2 The harvest shocks z belong to a compact set Z = [z, z̄];

A.3 The function p−1 : (q0, q1)→ R is continuous and strictly decreasing such that

lim
q→q0

p−1(q) = +∞.

Furthermore, we have that z ∈ p−1(p0, p1) and p(z) ∈ R+ \ {0}.

Following Deaton and Laroque (1992), for any function g on the set X = [z,+∞) we introduce

a function G on Y = {(q, x)|x ∈ X , p(x) ≤ q < q1} which has the form

G(q, x) = (1− γ)
1− δ
1 + r

Eg(z + (1− δ)(x− p−1(q))) + γq. (A.1)

If γ = 0, then G is the same as in Deaton and Laroque (1992). Let GDL denote the function when

γ = 0:

GDL(q, x) =
1− δ
1 + r

Eg(z + (1− δ)(x− p−1(q))).

It can be seen that G = (1− γ)GDL + γp.

Theorem 2.1 aims to find a function f such that

f(x) = max{G(f(x), x), p(x)}, ∀x ∈ X, (A.2)

where we also have f = g. To prove the theorem, we use the following lemma.

Lemma A.1 For a given g, the unique solution f : X→ R to (A.2) equals fDL, where fDL is the

unique solution to the same problem when γ = 0.
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Proof For each x, f(x) is the solution to the following equation for q

max{G(q, x)− q, p(x)− q} = 0. (A.3)

It can be seen that

G(q, x)− q = (1− γ)GDL(q, x) + γq − q = (1− γ)(GDL(q, x)− q).

Thus, the solution q is a solution to

max{(1− γ)(GDL(q, x)− q), p(x)− q} = 0. (A.4)

But this is equivalent to solving3

max{GDL(q, x)− q, p(x)− q} = 0, (A.5)

which gives the desired result. �

This lemma shows that for any g, there is a unique f which is the solution to (A.2). Therefore,

we can introduce an operator T and denote f with Tg.

Proof of Theorem 2.1 From Lemma A.1 it follows that T is the same as the operator introduced

in Deaton and Laroque (1992). It is shown in Deaton and Laroque (1992) that T is an operator

from the set of non-increasing and continuous functions on X to itself and has a unique fixed point

f , i.e., f = Tf . It then follows that this unique fixed point is the unique SSREE or SREE. This

completes the proof of Theorem 2.1. �

3For a positive number θ and two real numbers a, b, we have that max{a, b} = 0⇔ max{θa, b} = 0.

19



References

Arseneau, D., and S. Leduc (2012): “Commodity Price Movements in a General Equilibrium

Model of Storage,” preprint.

Beck, S. E. (1993): “A Rational Expectations Model of Time Varying Risk Premia in Commodi-

ties Futures Markets: Theory and Evidence,” International Economic Review, 34(1), 149–168.

Blanchard, O., and S. Fisher (1989): Lectures on Macroeconomics, Lipsey Lectures. MIT

Press, Cambridge.

Brenner, R. J., R. H. Harjes, and K. F. Kroner (1996): “Another Look at Models of the

Short-Term Interest Rate,” The Journal of Financial and Quantitative Analysis, 31(1), 85–107.

Cafiero, C., E. S. Bobenrieth, J. R. Bobenrieth, and B. D. Wright (2011): “The

empirical relevance of the competitive storage model,” Journal of Econometrics, 162(1), 44 –

54.

Calvo, G. A. (1983): “Staggered prices in a utility-maximizing framework,” Journal of Monetary

Economics, 12(3), 383 – 398.

Chambers, M. J., and R. E. Bailey (1996): “A Theory of Commodity Price Fluctuations,”

Journal of Political Economy, 104(5), 924–957.

Deaton, A., and G. Laroque (1992): “On the Behaviour of Commodity Prices,” The Review

of Economic Studies, 59(1), 1–23.

(1995): “Estimating a Nonlinear Rational Expectations Commodity Price Model with

Unobservable State Variables,” Journal of Applied Econometrics, 10(S), S9–40.

(1996): “Competitive Storage and Commodity Price Dynamics,” Journal of Political

Economy, 104(5), 896–923.

Duffie, D., and K. J. Singleton (1993): “Simulated Moments Estimation of Markov Models

of Asset Prices,” Econometrica, 61(4), 929–952.

20



Evans, L., and G. Guthrie (2007): “Commodity Price Behavior With Storage Frictions,”

preprint.

Gilbert, C. L. (1987): “International commodity agreements: Design and performance,” World

Development, 15(5), 591–616.

Gustafson, R. L. (1958): “Implications of Recent Research on Optimal Storage Rules,” Journal

of Farm Economics, 40(2), 290–300.

Lee, B.-S., and B. F. Ingram (1991): “Simulation estimation of time-series models,” Journal

of Econometrics, 47(23), 197 – 205.

McCandless, G. T. (2008): The ABCs of RBCs: An Introduction to Dynamic Macroeconomic

Models. Harvard University Press, Cambridge, Massachusetts.

McFadden, D. (1989): “A Method of Simulated Moments for Estimation of Discrete Response

Models Without Numerical Integration,” Econometrica, 57(5), 995–1026.

McLaren, J. (1999): “Speculation on Primary Commodities: The Effects of Restricted Entry,”

The Review of Economic Studies, 66(4), 853–871.

Miao, Y. W. W., and N. Funke (2011): “Reviving the Competitive Storage Model: A Holistic

Approach to Food Commodity Prices,” IMF Working Paper.

Michaelides, A., and S. Ng (2000): “Estimating the rational expectations model of speculative

storage: A Monte Carlo comparison of three simulation estimators,” Journal of Econometrics,

96(2), 231 – 266.

Mitraille, S., and H. Thille (2009): “Monopoly behaviour with speculative storage,” Journal

of Economic Dynamics and Control, 33(7), 1451 – 1468.

Muth, J. F. (1961): “Rational Expectations and the Theory of Price Movements,” Econometrica,

29(3), 315–335.

Newbery, D. M. (1984): “Commodity Price Stabilization in Imperfect or Cartelized Markets,”

Econometrica, 52(3), 563–78.

21



Ng, S., and F. J. Ruge-Murcia (2000): “Explaining the Persistence of Commodity Prices,”

Computational Economics, 16, 149–171.

Pakes, A., and D. Pollard (1989): “Simulation and the Asymptotics of Optimization Estima-

tors,” Econometrica, 57(5), 1027–1057.

Rotemberg, J. (1987): “The New Keynesian Microfoundations,”NBER Macroeconomics Annual,

Volume 2, The MIT Press, 69–116.

Rotemberg, J. J. (1996): “Prices, output, and hours: An empirical analysis based on a sticky

price model,” Journal of Monetary Economics, 37(3), 505 – 533.

Samuelson, P. A. (1971): “Stochastic Speculative Price,” Proceedings of the National Academy

of Sciences of the United States of America, 68(2), 335–337.

Taylor, J. B. (1980): “Aggregate Dynamics and Staggered Contracts,” Journal of Political

Economy, 88(1), 1–23.

Williams, J. C., and B. D. Wright (1991): Storage and Commodity Markets. Cambridge

University Press.

22



Table 1: Parameter estimates from the DL model.

Commodity a b δ
Cocoa 0.162 -0.221 0.116
Coffee 0.263 -0.158 0.139
Copper 0.545 -0.326 0.069
Cotton 0.642 -0.312 0.169
Jute 0.572 -0.356 0.096
Maize 0.635 -0.636 0.059
Palm oil 0.461 -0.429 0.058
Rice 0.598 -0.336 0.147
Sugar 0.643 -0.626 0.177
Tea 0.479 -0.211 0.123
Tin 0.256 -0.170 0.148
Wheat 0.723 -0.394 0.130

Table 2: First-order autocorrelations for the DL and ADG models.

Commodity Actual DL DL ADG ADG
ρ = 0 ρ = 0.8 ρ = 0 ρ = 0.8
γ = 0 γ = 0 γ = 0.8 γ = 0.8

Cocoa 0.834 0.352 0.609 0.7715 0.8446
Coffee 0.804 0.219 0.576 0.7811 0.8501
Copper 0.838 0.335 0.619 0.8918 0.9074
Cotton 0.884 0.173 0.564 0.8626 0.9053
Jute 0.713 0.289 0.589 0.8817 0.9072
Maize 0.756 0.413 0.644 0.9246 0.9180
Palm oil 0.730 0.397 0.637 0.9079 0.9050
Rice 0.829 0.237 0.579 0.8700 0.9078
Sugar 0.621 0.266 0.583 0.8860 0.9184
Tea 0.778 0.213 0.571 0.8332 0.8893
Tin 0.895 0.238 0.567 0.7547 0.8462
Wheat 0.863 0.250 0.602 0.8834 0.9198
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Table 3: First-order autocorrelations for the Ng and Ruge-Murcia (2000) and ADG models.

Commodity Actual GL OV CY ADG ADG
ρ = 0 ρ = 0.8
γ = 0.8 γ = 0.8

Cocoa 0.834 0.511 0.462 0.522 0.7715 0.8446
Coffee 0.804 0.433 0.385 0.530 0.7811 0.8501
Copper 0.838 0.526 0.394 0.608 0.8918 0.9074
Cotton 0.884 0.365 0.337 0.473 0.8626 0.9053
Jute 0.713 0.486 0.365 0.545 0.8817 0.9072
Maize 0.756 0.620 0.418 0.623 0.9246 0.9180
Palm oil 0.730 0.640 0.438 0.625 0.9079 0.9050
Rice 0.829 0.398 0.334 0.475 0.8700 0.9078
Sugar 0.621 0.427 0.370 0.424 0.8860 0.9184
Tea 0.778 0.428 0.302 0.509 0.8332 0.8893
Tin 0.895 0.428 0.355 0.472 0.7547 0.8462
Wheat 0.863 0.411 0.368 0.505 0.8834 0.9198

Table 4: Description of commodity price data.

Description Exchange Contract size Contract month

Foodstuffs
SB : Sugar No.11/World raw NYBOT 112,000 lbs. H,K,N,V
Grains and Oilseeds
S : Soybean/No.1 Yellow CBOT 5,000 bu. F,H,K,N,Q,U,X
BO : Soybean Oil/Crude CBOT 60,000 lb. F,H,K,N,Q,U,V,Z
W : Wheat/No.2 Soft red CBOT 5,000 bu. H,K,N,U,Z

Notes: This table provides a brief description about each commodity. The first column presents
the symbol description and the second one lists the futures exchange where the commodity is
traded. In this table, CBOT refers to Chicago Board of Trade, NYBOT: New York Board of
Trade. The third column states the contract size and the last column provides the contract

months denoted by: F = January, G = February, H = March, J = April, K = May, M = June,
N= July, Q = August, U = September, V = October, X = November and Z = December.
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Table 5: Parameter estimation of the ADG model using SMM.

Commodity a b γ

W 0.4227 -4.6606 0.9476
(0.0102) (0.2929) (0.0086)

BO 0.7860 -2.1265 0.7621
(0.0177) (0.1354) (0.0237)

S 0.7209 -2.7562 0.8524
(0.0454) (0.3256) (0.0343)

SB 0.2264 -5.6592 0.9474
(0.0195) (0.4351) (0.0099)

Table 6: First-order autocorrelations for simulated price series.

γ = 0 γ = 0.3 γ = 0.6 γ = 0.9

Auto. corr. 0.6122 0.7899 0.9172 0.9838

Table 7: First-order autocorrelation, and β and α parameters from a GARCH(1,1) model.

Auto. corr. β α
Com. Actual ADG DL Actual ADG DL Actual ADG DL
W 0.9648 0.9899 0.6387 0.6977 0.6719 0.4834 0.2283 0.3006 0.5138
BO 0.9679 0.9550 0.5989 0.7903 0.5160 0.4089 0.1473 0.4709 0.5804
S 0.9697 0.9765 0.6180 0.3413 0.5674 0.4476 0.3410 0.4194 0.5483
SB 0.9620 0.9902 0.6680 0.9018 0.6781 0.4852 0.0798 0.2977 0.5126

25



Figure 1: Actual and simulated data for soybean prices. The simulated data is from models with
staggered pricing (ADG) and without staggered pricing (DL).
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Figure 2: Impulse response function based on simulated data for soybean prices.
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Figure 3: Distribution of β̂ for simulated data from models with and without staggered pricing.
The dashed line is based on data from the ADG model and the solid line is based on data from
the DL model. The estimate of β from actual data is denoted by a circle on the horizontal axis.
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Figure 4: Distribution of α̂ for simulated data from models with and without staggered pricing.
The dashed line is based on data from the ADG model and the solid line is based on data from
the DL model. The estimate of α from actual data is denoted by a circle on the horizontal axis.
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