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1 Introduction

Moving average (MA) models can parsimoniously characterize the dynamic behavior of many time

series processes. The challenges in estimating MA models are twofold. First, invertible and non-

invertible moving average processes are observationally equivalent up to the second moments. Sec-

ond, invertibility restricts all roots of the moving average polynomial to be less than or equal to

one. This upper bound renders estimators with non-normal asymptotic distributions when some

roots are on or near the unit circle. Existing estimators treat invertible and non-invertible processes

separately, requiring the researcher to take a stand on the parameter space of interest. While the

estimators are super-consistent under the null hypothesis of a moving average unit root, their dis-

tributions are not asymptotically pivotal. To our knowledge, no estimator of the MA model exists

that achieves identification without imposing invertibility and yet enables classical inference over

the whole parameter space.

Both invertible and non-invertible representations can be consistent with economic theory. For

example, if the logarithm of asset price is the sum of a random walk component and a stationary

component, the first difference (or asset returns) is generally invertible, but non-invertibility can

arise if the variance of the stationary component is large. While non-invertible models are not ruled

out by theory, invertibility is often assumed in empirical work because it provides the identification

restrictions without which maximum likelihood and covariance structure-based estimation of MA

models would not be possible when the data are normally distributed.1 Obviously, falsely assuming

invertibility will yield an inferior fit of the data. It can also lead to spurious estimates of the impulse

response coefficients which are often the objects of interest (see Fernández-Villaverde et al. (2007)

for an example regarding the permanent income model). Hansen and Sargent (1991), Lippi and

Reichlin (1993), Fernández-Villaverde et al. (2007), among others, emphasize the need to verify

invertibility because it affects how we interpret what can be recovered from the data.

Indeed, it is necessary in many science and engineering applications to admit parameter values

in the non-invertible range.2 A key finding in these studies is that higher order cumulants are

necessary for identification of non-invertible models, implying that the assumption of Gaussian

errors must be abandoned. Lii and Rosenblatt (1992) approximate the non-Gaussian likelihood

of non-invertible MA models by truncating the representation of the innovations in terms of the

1Invertibility can also help to identify structural models. For example, Komunjer and Ng (2011) use invertibility
to narrow the class of equivalent DSGE models.

2For example, in seismology, an accurate model of the seismic source wavelet, in the form of a moving average
filter, is necessary to recover the earth’s reflectivity sequence. The fact that seismic data typically exhibit non-
Gaussian features suggests the need for a wavelet (moving average polynomial) which is non-invertible. Similarly,
in communication analysis, an accurate modeling of the communication channel by a possibly non-invertible moving
average process is required to back out the underlying message from the observed distorted message.
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observables. Huang and Pawitan (2000) propose least absolute deviations (LAD) estimation using

a Laplace likelihood. This quasi maximum likelihood estimator does not require the errors to be

Laplace distributed, but they need to have heavy tails. Andrews et al. (2006, 2007) consider LAD

and rank-based estimation of all-pass models.3 Meitz and Saikkonen (2011) develop maximum

likelihood estimation of non-invertible ARMA models with ARCH errors. However, there exist no

likelihood based estimators that have classical properties while admitting a moving-average unit

root in the parameter space.

This paper considers estimation of MA models without imposing invertibility. We only require

that the errors are non-Gaussian but we do not need to specify the distribution. Identification is

achieved by appropriate use of third and higher order cumulants. In the MA(1) case, ‘appropriate’

means that multiple third moments are necessary, as a single third moment still does not permit

identification. In general, identification of possibly non-invertible moving-average models requires

using more unconditional higher order cumulants than the number of parameters in the model. We

make use of this identification result to develop a generalized method of moments (GMM) estimator

that is root-T consistent and asymptotically normal without restricting the moving average roots

to be strictly inside the unit circle.

A drawback of identifying the parameters from the higher order sample moments is that a long

span of data is required to precisely estimate the population quantities. This issue is important

because for general ARMA(p, q) models, the number of cumulants that needs to be estimated can

be quite large. Accordingly, we explore the potential of two simulation estimators in providing

bias correction. The first (simulated method of moments, SMM) estimator matches the sample

to the simulated unconditional moments as in Duffie and Singleton (1993). The second is a sim-

ulated minimum distance (SMD) estimator in the spirit of Gourieroux et al. (1993), and Gallant

and Tauchen (1996). Existing simulation estimators of the MA(1) model impose invertibility and

therefore only need the auxiliary parameters from an autoregression to achieve identification. We

show that the invertibility assumption can be relaxed but additional auxiliary parameters involving

the higher order moments of the data are necessary. In the SMD case, this amounts to estimating

an additional auxiliary regression with the second moment of the data as a dependent variable. An

important feature of the SMM and SMD estimators is that errors with non-Gaussian features are

simulated from the generalized lambda distribution. These two simulation-based estimators also

have classical asymptotic properties regardless of whether the MA roots are inside, outside, or on

the unit circle.

The paper proceeds as follows. Section 2 highlights two identification problems that arise in

3All-pass models are special non-causal and/or non-invertible autoregressive and moving average (ARMA) models
in which the roots of the autoregressive polynomial are reciprocals of the roots of the moving average polynomials.
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moving average models. Section 3 presents identification results based on higher order moments

of the data. Section 4 discusses GMM estimation of the MA(1) model while Section 5 develops

simulation-based estimators for more general moving average models. Simulation results and an

analysis of the 25 Fama-French portfolio returns are provided in Section 5. Section 6 concludes.

Proofs are given in the Appendix.

2 Identification Problems in Models with an MA Component

Consider the ARMA (p, q) process:

α(L)yt = θ(L)et, (1)

where L is the lag operator such that Lpyt = yt−p, α(L) = 1− α1L− . . .− αpLp have no common

roots with θ(L) = 1 + θ1L+ . . .+ θqL
q. Here, yt can be the error of a regression model

Yt = x′tβ + yt,

where Yt is the dependent variable and xt are exogenous regressors. In the simplest case when

xt = 1, yt is the demeaned data. The process yt is causal if α(z) 6= 0 for all |z| ≤ 1 on the complex

plane. In that case, there exist constants hj with
∑∞

j=0 |hj | < ∞ such that yt =
∑∞

j=0 hjet−j for

t = 0,±1, . . . Thus, all moving average models are causal. The process is invertible if θ(z) 6= 0 for

all |z| ≤ 1; see Brockwell and Davies (1991). In control theory and the engineering literature, an

invertible process is said to have minimum phase.

Our interest is in estimating moving average models without prior knowledge about invertibility.

The distinction between invertible and non-invertible processes is best illustrated by considering

the MA(1) model defined by

yt = et + θet−1, (2)

with et ∼ iid(0, σ2). The invertibility condition is satisfied if |θ| < 1. In that case, the inverse

of θ(L) has a convergent series expansion in positive powers of the lag operator L. Then, we can

express yt as π(L)yt = et with π(L) =
∑∞

j=0(−θL)j . This infinite autoregressive representation

of yt implies that the span of et and its history coincide with that of yt, which is observed by the

econometrician. When |θ| > 1, the inverse polynomial is
∑∞

j=0(−θL)−j−1, implying that yt is a

function of future values of yt which is not useful for forecasting. This argument is often used to

justify the assumption of invertibility. It is, however, misleading to classify invertible processes

according to the value of θ alone. Consider another MA(1) process yt represented by

yt = θet + et−1. (3)
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Even if θ in (3) is less than one, the inverse of θ(L) = (θ + L) is not convergent. Furthermore,

the errors from a projection of yt on lags of yt have different time series properties depending on

whether the data are generated by (2) or (3).

Identification and estimation of models with a moving-average component are difficult because

of two problems that are best understood by focusing on the MA(1) case. The first identification

problem concerns θ at or near unity. When the MA parameter θ is near the unit circle, the Gaussian

maximum likelihood (ML) estimator takes values exactly on the boundary of the invertibility region

with positive probability in finite samples. This point probability mass at unity (the so-called “pile-

up” problem) arises from the symmetry of the likelihood function around one and the small sample

deficiency to identify all the critical points of the likelihood function in the vicinity of the non-

invertibility boundary; see Sargan and Bhargava (1983), Anderson and Takemura (1986), Davis

and Dunsmuir (1996), Gospodinov (2002), Davis and Song (2011).

The second identification problem arises because covariance stationary processes are completely

characterized by the first and second moments of the observables. The Gaussian likelihood for an

MA(1) model with L(θ, σ2) is the same as one with L(1/θ, θ2σ2). The observational equivalence of

the covariance structure of invertible and non-invertible processes also implies that the projection

coefficients in π(L) are the same regardless of whether θ is less than or greater than one. Thus, θ

cannot be recovered from the coefficients of π(L) without additional assumptions.

This observational equivalence problem can be further elicited from a frequency domain per-

spective. If we take as a starting point yt = h(L)et =
∑∞

j=−∞ hjet−j , the frequency response

function of the filter is

H(ω) =
∑

hj exp(−iωj) = |H(ω)| exp−iδ(ω),

where |H(ω)| is the amplitude and δ(ω) is the phase response of the filter. For ARMA models,

h(z) = θ(z)
α(z) =

∑∞
j=−∞ hjz

j . The amplitude is usually constant for given ω and tends towards zero

outside the interval [0, π]. For given a > 0, the phase δ0 is indistinguishable from δ(ω) = δ0 + aω

for any ω ∈ [0, π]. Recovering et from the second order spectrum

S2(z) = σ2|H(z)|2

is problematic because S2(z) is proportional to the amplitude |H(z)|2 with no information about

the phase δ(ω). The second order spectrum is thus said to be phase-blind. As argued in Lii and

Rosenblatt (1982), one can flip the roots of α(z) and θ(z) without affecting the modulus of the

transfer function. With real distinct roots, there are 2p+q ways of specifying the roots without

changing the probability structure of yt.
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3 Cumulant-Based Identification of Non-Invertible Models

Econometric analysis on identification largely follows the pioneering work of Fisher (1961, 1965)

and Rothenberg (1971) in fully parametric/likelihood settings. These authors recast the identifica-

tion problem as one of finding a unique solution to a system of non-linear equations. For non-linear

models, a sufficient condition is that the Jacobian matrix of the first partial derivatives is full

column rank. However, local identification is still possible if the rank condition fails by exploiting

restrictions on the higher order derivatives.4 To obtain results for global identification, Rothenberg

(1971, Theorem 7) imposed additional conditions to ensure that the optimization problem is well

behaved. In a semi-parametric setting when the distribution of the errors is not specified, identifi-

cation results are limited, but the rank of the derivative matrix remains to be a sufficient condition

for local identification (Newey and McFadden (1994)).5

More precisely, let γ ∈ Γ be a K×1 parameter vector of interest, where the parameter space Γ is

a compact subset of the K dimensional Euclidean space RK . In the case of an ARMA(p, q) model

defined by (1), γ = (α1, ..., αp, θ1, . . . , θq, σ
2)′. Let γ0 be the true value of γ and g(γ) ∈ G ⊂ RL

denote L (L ≥ K) moments which can be used to infer the value of γ0. Identification hinges on a

well-behaved mapping from the space of γ to the space of moment conditions g(·).

Definition 1 Let g(γ) : γ → g(γ) be a mapping from γ to g(·) and G(γ) = ∂g(γ)/∂γ′ with

G0 ≡ G(γ0). Then, γ0 is globally identified if g(·) is injective and is locally identified if the matrix

of partial derivatives G0 has full column rank.

From Definition 1, γ1 and γ2 are observationally equivalent if g(γ1) = g(γ2), i.e., g(·) is not

injective. Subsection 3.1 shows in the context of an MA(1) model that second moments cannot be

used to define a vector g(γ) that identifies γ without imposing invertibility. However, possibly non-

invertible models can be identified if g(γ) is allowed to include higher order moments/cumulants.

Subsection 3.2 generalizes the results to MA(q) and ARMA(p, q) models.

3.1 MA(1) Model

This subsection provides a traditional identification analysis of the zero mean MA(1) model. Let

γ = (θ, σ2)′. The data yt is a function of the true value γ0. For the MA(1) model, E(ytyt−1) = 0

for j ≥ 2. Consider the identification problem using only second moments of yt:

g2(γ) =

(
g21

g22

)
=

(
E(ytyt−1)
E(y2

t )

)
−
(

θσ2

(1 + θ2)σ2

)
.

4See Sargan (1983), Durlauf and Blume (2008), and Dovonon and Renault (2011) for more examples.
5Komunjer (2012) shows that global identification from moment restrctions is possible even when the derivative

matrix has a deficient rank, provided that this happens only over sufficiently small regions in the parameter space.
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The moment vector g2(γ) is the difference between the population second moments and the moments

implied by the MA(1) model. If the assumption that the data are generated by the MA(1) model

is correct, g2(γ) evaluated at the true value of γ is zero: g2(γ0) = 0. Under Gaussianity of the

errors, these moments fully characterize the covariance structure of yt. However, g2(γ) assumes the

same value for γ1 = (θ, σ2)′ and γ2 = (1/θ, θ2σ2)′. For example, if γ1 = (θ = 0.5, σ2 = 1)′ and

γ2 = (θ = 2, σ2 = 0.25)′, g2(γ1) = g2(γ2). Parameters that are not identifiable from the population

moments are not consistently estimable.

The problem that the mapping g2(·) is not injective is typically handled by imposing invertibility,

thereby restricting the parameter space to ΓR = [−1, 1] × [σ2
L, σ

2
H ]. But there is still a problem

because the derivative matrix of g(γ) with respect to γ is not full rank everywhere in ΓR. The

determinant

G(γ) =

(
σ2 θ

2θσ2 (1 + θ2)

)
(4)

is zero when |θ| = 1. This is responsible for the pile-up problem discussed earlier. Furthermore,

|θ| = 1 lies on the boundary of the parameter space. As a consequence, the Gaussian maximum

likelihood estimator and estimators based on second moments are not uniformly asymptotically

normal; see Davis and Dunsmuir (1996). Note, however, that the two problems with the MA(1)

model, namely, inconsistency due to non-identification and non-normality due to a unit root, do

not arise if there is prior knowledge about σ2. We will revisit this observation in Section 4.1.

While the second moments of the data do not identify γ = (θ, σ2)′, would the three non-zero

third moments given by

g3(γ) =

g31

g32

g33

 =

 E(y3
t )

E(y2
t yt−1)

E(yty
2
t−1)

−
(1 + θ3)σ3κ3,

θ2σ3κ3

θσ3κ3


achieve identification? The following lemma provides an answer to this question.

Lemma 1 Consider the MA(1) model yt = et + θet−1 with et = σεt. Suppose that εt ∼ iid(0, 1)

with κ3 = E(ε3
t ). Assume that θ 6= 0, κ3 6= 0 and E|εt|6 <∞. Then,

(a) g(γ) = (g′2, g32)′ is not injective for any γ = (θ, σ2, κ3)′ ∈ Γ.

(b) g(γ) = (g′2, g3j)
′ for j = 1, 2 or 3 cannot locally identify γ when |θ| = 1 for any σ2 and κ3.

In Lemma 1, g3(·) and γ = (θ, σ2, κ3)′ are of the same dimension. Part (a) states that there

always exist γ1, γ2 ∈ Γ that are observationally equivalent in the sense that they generate the

same moments. For example, γ1 = (θ, σ2, κ3)′ and γ2 = (1/θ, θ2σ2, θκ3)′ both imply the same

(E(ytyt−1), E(y2
t ), E(y2

t yt−1))′. Part (b) of Lemma 1 follows from the fact that the determinant of
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the derivative matrix is zero at |θ| = 1. As a result, a single third moment cannot be guaranteed to

identify both κ3 and the parameters of the MA(1) model θ and σ2. Global and local identification

of θ at |θ| = 1 requires use of information in the remaining two third-order moments. In particular,

the derivative matrix of g(γ) = (g′2, g
′
3)′ with respect to γ = (θ, σ2, κ3)′ is of full column rank

everywhere in Γ including |θ| = 1. However, since g(·) is of dimension five, this together with

Lemma 1 implies that γ can only be over-identified if κ3 6= 0. The next subsection describes a

general procedure, based on higher order cumulants, for identifying the parameters of MA(q) and

ARMA (p, q) models.

3.2 MA(q) and ARMA(p, q) Models

The insight from the MA(1) analysis that the parameters of the model cannot be exactly identified

but can be over-identified with an appropriate choice of higher order moments extends to MA(q)

models. But for MA(q) models, the moments of the process are non-linear functions of the model

parameters and verifying global and local identification is more challenging. We capitalize on an

insight from the statistical engineering literature and augment the original parameters of interest

with some nonlinear transformations of these parameters such that the augmented parameter vector

is a solution to a linear system of equations of second and higher order cumulants. As a result,

the identifiability of the MA parameters boils down to a full column rank requirement on a matrix

consisting of population cumulants that can be consistently estimated from the data.

Let c`(τ1, τ2, ..., τ `−1) be the `-th (` ≥ 2) cumulant of a zero-mean stationary and ergodic

process yt. The second- and third order cumulants of yt are given by

c2(τ1) = E(ytyt+τ1),

c3(τ1, τ2) = E(ytyt+τ1yt+τ2).

If τ1 = τ2 = ... = τ ` = τ , c`(τ) = c`(τ , ..., τ) is known as the diagonal slice of the `-th order

cumulant of yt. If yt = h(L)et and et are iid with finite `-th order cumulant η` (noting that

η2 = σ2). Then,

c`(τ1, . . . , τ `−1) = η`

∞∑
i=0

hihi+τ1 · · ·hi+τ`−1
. (5)

The cumulants η` ( ` ≥ 3) measure the distance of the stochastic process from Gaussianity.

Higher order cumulants are useful for identification of possibly non-invertible models because

the Fourier transform of c`(τ1, τ2, ..., τ `−1) is the `-th order polyspectrum

S`(ω1, . . . , ωl−1) = η`H(ω1) . . . H(ωk−1)H

(
−

`−1∑
i=1

ωi

)
. (6)
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Recovery of phase information necessarily requires that et has non-Gaussian features. Provided

that η` exists and is non-zero for ` ≥ 3, one can recover the phase function from any `-th order

spectrum, see Lii and Rosenblatt (1982, Lemma 1), Giannakis and Swami (1992), Giannakis and

Mendel (1989), Mendel (1991), Tugnait (1986), Ramsey and Montenegro (1992).

Establishing that the parameters are identified (that is, can be expressed in terms of the pop-

ulation cumulants) is non-trivial because the mapping from the cumulants to the parameters is

non-linear. One approach in engineering literature is to use the spectrum S2(z) = σ2H(z)H(z−1)

to substitute out H(z−1) in the polyspectra corresponding to c`(τ1, τ2, ..., τ `−1) for a particular

choice of τ1, . . . , τ `−1.6 This generates an identity in time domain that links the population second

and higher order cumulants to the parameters of the model. For the MA(q) model, the diagonal

slice of the third order cumulants implies the following relation between the population cumulants

and the parameters (θ1, . . . , θq, η̃3) where η̃3 = η3/σ
2:

q∑
j=1

θjc3(τ − j)− η̃3

q∑
j=0

θ2
jc2(τ − j) + c3(τ) = 0, −q ≤ τ ≤ 2q, (7)

To establish identification, define θ = (θ1, . . . , θq)
′,

β(θ, η̃3) = (θ1, . . . , θq, η̃3, η̃3θ
2
1, . . . , η̃3θ

2
q)
′,

b =
[
−c3(−q) −c3(−q + 1) · · · −c3(0) −c3(1) · · · −c3(q − 1) −c3(q) 0 0 · · · 0

]′
.

Also let

A =

[
B C
D E

]
, C =

[
C1

C2

]
,

where

B =


0 0 . . . 0

c3(−q) 0 . . . 0
c3(−q + 1) c3(−q) . . . 0

...
...

...
...

c3(q − 1) c3(q − 2) . . . c3(0)

 , E =


0 −c2(q) −c2(q − 1) · · · −c2(1)
0 0 −c2(q) · · · −c2(2)
...

...
... · · ·

...
0 0 0 · · · −c2(q)

 ,

D =


c3(q) c3(q − 1) · · · c3(1)

0 c3(q) · · · c3(2)
...

... · · ·
...

0 0 · · · c3(q)

 ,

C1 =


−c2(q) 0 0 · · · 0
−c2(q − 1) −c2(q) 0 · · · 0
−c2(q − 2) −c2(q − 1) −c2(q) · · · 0

...
...

... · · ·
...

−c2(0) −c2(1) −c2(2) · · · −c2(q)

 ,
6For ` = 3, S3(z) = η3H(z−1)H(z) ∗H(z), where ∗ is the complex convolution operator.
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C2 =

 −c2(1) −c2(0) −c2(1) · · · −c2(q − 1)
...

...
... · · ·

...
−c2(q) −c2(q − 1) −c2(q − 2) · · · −c2(0)

 .
The identities defined by (7) can be expressed as an overidentified system of 3q + 1 equations in

2q + 1 unknowns:

Aβ(θ, η̃3) = b. (8)

Identification of the MA coefficients θ = (θ1, ..., θq)
′ is now reduced to two problems: identification

of β(θ, η̃3), and identification of (θ, η̃3) from β. As the derivative matrix of β with respect to θ has

rank 2q + 1, the first problem reduces to the verification of the column rank of the matrix A.

Lemma 2 Consider the MA(q) process yt = et+θ1et−1 +...+θqet−q . Let c`(τ) denote the diagonal

slice of the `-th order cumulant of yt and assume that c2(q) 6= 0, c3(q) 6= 0 and E|et|6 <∞. Then,

(i) the matrix A has full column rank 2q + 1, and (ii) θ = (θ1, ..., θq)
′ is identifiable.

The rank of the (3q + 1)× (2q + 1) matrix A is the sum of the column rank of the sub-matrix

consisting of B and D, and the rank of the sub-matrix consisting of C and E. The rank of the

first sub-block is determined by the rank of the q× q square matrix D, which is q if c3(q) 6= 0. The

rank of C is determined by the rank of the square matrix C1, which is (q+ 1) if c2(q) 6= 0. The full

rank result follows from the assumption that c2(q) and c3(q) are non-zero. Lemma 2 implies that

β(θ, η̃) is identified. Identifiability of the parameters in MA(q) models follows from identifiability

of β. Primitive conditions for ensuring this identifiability are θ1 6= 0, ..., θq 6= 0 and η3 6= 0.

We can further incorporate information about the fourth order cumulants of yt.
7 This is particu-

larly useful when the signal from the third order moments is weak or zero (i.e., the error distribution

is (near-) symmetric). The equations based on the diagonal slice of c4 are

q∑
i=1

θic4(τ − i)− η̃4

q∑
i=0

θ3
i c2(τ − i) = −c4(τ),

where η̃4 = η4/σ
2, c4(−1) = c4(1, 0, 0) = E(y3

t yt+1)− 3E(y2
t )E(ytyt+1), c4(0) = E(y4

t )− 3[E(y2
t )]

2

and c4(1) = E(yty
3
t+1) − 3E(y2

t )E(ytyt+1). The augmented vector of parameters (θ1, ..., θq, η̃3,

η̃3θ
2
1, ..., η̃3θ

2
q , η̃4, η̃4θ

3
1, ..., η̃4θ

3
q)
′ is identified provided that η3, η4 6= 0.

The Aβ(θ, η̃3) = b approach requires that q is finite and hence does not work for ARMA(p, q)

models. The identification of ARMA(p, q) models raises some additional difficulties due to (i) the

possibility of cancelling roots in the AR and MA polynomials which is itself an identification problem

and (ii) the infinite order MA structure generated by the model. The literature on identification

7The fourth order cumulant is defined as c4(τ1, τ2, τ3) = E(ytyt+τ1yt+τ2yt+τ3) −c2(τ1)c2(τ2−τ3)−c2(τ2)c2(τ3−
τ1) − c2(τ3)c2(τ1 − τ2). Non-diagonal slices of the fourth-order cumulants were considered in Friedlander and Porat
(1990) and Na et al. (1995).
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of possibly non-minimum phase ARMA(p, q) models is quite small and typically proceeds by

assuming that the ARMA model has no common factors (hence, it is irreducible). The following

lemma provides sufficient conditions for identifiability of the parameters of ARMA(p, q) models.

Lemma 3 Assume that the ARMA(p, q) process (1−α1L− . . .−αpLp)yt = (1+θ1L+ ...+θqL
q)et,

where et is a zero-mean iid process, is irreducible and satisfies
∑p

i=0 αiz
i 6= 0 for |z| = 1. Let c`(τ)

denote the diagonal slice of the `-th order cumulant of the MA(p+q) process (1 − α1L − . . . −
αpL

p)(1 + θ1L+ ...+ θqL
q)et and assume that c2(p+ q) 6= 0, c3(p+ q) 6= 0 and E|et|6 <∞. Then,

the parameter vector (α1, ..., αp, θ1, ..., θq)
′ is identifiable from the second and third cumulants of the

process.

The proof of Lemma 3 exploits the results available for identification of moving average models by

introducing an auxiliary process with an MA(p+q) component. Tugnait (1995) used information

in the non-diagonal slices to isolate the smallest number of third and higher order cumulants that

are sufficient for identification of ARMA parameters (but not σ2).

The representation Aβ(θ, η̃3) = b provides a transparent way to see how higher order cumulants

can be used to recover the parameters of the model without imposing invertibility. However, this

approach may not be efficient. For example, it may be possible to replace some equations in

the system by Yule-Walker equations which would help identify the autoregressive parameters.

Furthermore, (5) implies that for an MA(q) process, c3(q, k) = η3θqθk and c3(q, 0) = η3θq. It

immediately follows that θk = c3(q,k)
c3(q,0) . This is the so-called C(q, k) formula. Hence, only q+ 1 third

order cumulants c3(q, τ) for 0 ≤ τ ≤ q are necessary and sufficient for identification of θ1, . . . , θq if

η3 6= 0, which is smaller than the number of equations in the Aβ(θ, η̃3) = b system. See Mendel

(1991) for a survey of the methods used in the engineering literature. The point to highlight is that

once non-Gaussian features are allowed, identification of non-invertible models is possible from the

higher order cumulants of the data.

4 GMM Estimation

The results in Section 3 suggest two estimators within the method of moments framework. In

particular, Lemma 2 implies 3q + 1 orthogonality conditions for identifying η̃3 and θ1, . . . θq of the

MA(q) model. In the MA(1) case, the population orthogonality condition has the form

g(θ, η̃3) =


0 −c2(1) 0

c3(−1) −c2(0) −c2(1)
c3(0) −c2(1) −c2(0)
c3(1) 0 −c2(1)


 θ

η̃3

η̃3θ
2

−

−c3(−1)
−c3(0)
−c3(1)

0

 (9)
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which equals zero at the true values of θ and η̃3. As the equations in (9) do not separately identify

σ2 and η3 (or κ3), additional conditions from the autocovariances need to be appended. It is thus

more convenient to estimate γ = (θ, σ2, κ3)′ from the moment conditions implied by Lemma 1:

gGMM (γ) =


E(ytyt−1)
E(y2

t )
E(y2

t yt−1)
E(y3

t )
E(yty

2
t−1)

−


θσ2

(1 + θ2)σ2

θ2σ3κ3

(1 + θ3)σ3κ3

θσ3κ3

 =


c2(1)
c2(0)
c3(1)
c3(0)
c3(−1)

−


θσ2

(1 + θ2)σ2

θ2η3

(1 + θ3)η3

θη3

 (10)

since E(ytyt−1) = c2(1), E(y2
t ) = c2(0), E(y2

t yt−1) = c3(1), E(y3
t ) = c3(0), E(yty

2
t−1) = c3(−1) and

η3 = σ3κ3. Thus, the moment conditions in (9) are particular linear combinations of the moment

conditions in (10). The conditions in Lemma 2 that c2(1) 6= 0 and c3(1) 6= 0 correspond to the

conditions θ 6= 0 and κ3 6= 0 in Lemma 1.

Given data y ≡ (y1, . . . , yT )′, one can construct ĝMMM (γ), the sample analog of gGMM (γ)

defined in (10).8 Let Ω̂GMM denote a consistent estimate of ΩGMM = limT→∞Var(gGMM (γ0)),

where ΩGMM is positive definite. Then, the optimal GMM estimator of γ = (θ, σ2, κ3)′ is defined

as

γ̂GMM = arg minγ ĝGMM (γ)′Ω̂−1
GMM ĝGMM (γ). (11)

The derivative matrix of gGMM (γ) with respect to γ, GGMM (γ), is of full column rank everywhere

in Γ (even at |θ| = 1) which is sufficient for γ0 to be a unique solution to the system of non-linear

equations characterized by

GGMM (γ)′Ω−1
GMMgGMM (γ) = 0.

The full rank condition, in the neighborhood of γ0, is also necessary for the estimator to be asymp-

totically normal. As a result, this GMM estimator is root-T consistent and asymptotic normal.

Proposition 1 Consider the MA(1) model and suppose that the conditions in Lemma 1 hold. In

addition, assume that γ0 is in the interior of the compact parameter space Γ,
√
T (ĝGMM (γ) −

gGMM (γ0))
d−→N(0,ΩGMM ) and ĜGMM (γ) converges uniformly to GGMM (γ) over γ ∈ Γ. Then,

√
T (γ̂GMM − γ0)

d−→N
(

0,
(
GGMM (γ0)′Ω−1

GMMGGMM (γ0)
)−1

)
.

A potential problem with the GMM estimator is that the number of orthogonality conditions can

be quite large. This is especially problematic for ARMA(p, q) models. Ideally, the orthogonality

8Unreported numerical results revealed that the estimator based on the moment conditions (10) possesses sub-
stantially better finite-sample properties than the estimator based on (9).
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conditions should be selected in an optimal fashion. We only consider the finite-sample properties

of the estimator for the MA(1) model when the orthogonality conditions are both necessary and

sufficient for identification.

4.1 Finite-Sample Properties of the GMM Estimator

To illustrate the finite-sample properties of the GMM estimator, data with T = 500 observations

are generated from an MA(1) model yt = et + θet−1 and et = σεt, where εt is iid(0, 1) and

follows a generalized lambda distribution (GLD) which will be further discussed in Section 5.1.

For now, it suffices to note that GLD distributions can be characterized by a skewness parameter

κ3 and a kurtosis parameter κ4. The true values of the parameters are θ = 0.5, 0.7, 1, 1.5 and 2,

σ = 1, κ3 = 0, 0.35, 0.6 and 0.85, and κ4 = 3. The results are invariant to the choice of σ. Lack of

identification of γ arises when κ3 = 0 and weak to intermediate identification occurs when κ3 = 0.35

and 0.6.

Table 1 presents the mean, the median and the standard deviation of three estimators of θ over

1000 Monte Carlo replications. The first is the GMM estimator of γ = (θ, σ2, κ3)′ which uses (10)

as moment conditions. The second is the infeasible GMM estimator based on (10) but assumes

σ2 is known and estimates only (θ, κ3)′. As discussed earlier, fixing σ2 solves the identification

problem in the MA(1) model, and by not imposing invertibility, |θ| = 1 is not on the boundary of

the parameter space for γ. We will demonstrate that our proposed GMM estimator has properties

similar to this infeasible estimator. The third is the Gaussian quasi-ML estimator of (θ, σ2)′ with

invertibility imposed which is used to evaluate the efficiency losses of the GMM estimator for values

of θ in the invertible region (θ = 0.5 and 0.7).

The results in Table 1 suggest that regardless of the degree of non-Gaussianity, the infeasible

estimator produces estimates of θ that are very precise and essentially unbiased. Hence, fixing σ

solves both identification problems without the need of non-Gaussianity although a prior knowl-

edge of σ is rarely available in practice. By construction, the Gaussian QML estimator imposes

invertibility and works well when the true MA parameter is in the invertible region but cannot

identify the parameter values in the non-invertible region. While for κ3 = 0.35 the identification is

weak and the estimates of θ are somewhat biased, for higher values of the skewness parameter the

GMM estimates of θ are practically unbiased.

Table 1 also presents the empirical probability that the particular estimator of θ is greater than

or equal to one which provides information on how often the identification of the true parameter

fails. The Gaussian QML estimator is characterized by a pile-up probability at unity (which can be

inferred from P (θ̂ ≥ 1) when θ0 = 1) as argued before. Even when κ3 = 0.35, the GMM estimator

correctly identifies if the true value of θ is in the invertible or the non-invertible region with high
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probability. This probability increases when κ3 = 0.85.

Finally, to assess the accuracy of the asymptotic normality approximation in Proposition 1,

Figure 1 plots the density functions of the standardized GMM estimator (t-statistic) of θ for the

MA(1) model with GLD errors and a skewness parameter of 0.85 (strong identification). The

sample size is T = 3000 and θ = 0.5, 1, 1.5 and 2. Overall, the densities of the standardized GMM

estimator appear to be very close to the standard normal density for all values of θ.

5 Simulation-Based Estimation

A caveat of the GMM estimator is that it relies on precise estimation of the higher order uncondi-

tional moments, but finite-sample biases can be non-trivial even for samples of moderate size. This

can be problematic for GMM estimation of ARMA(p, q) models since a large number of higher

order terms needs to be estimated. To remedy these problems, we consider the possibility of using

simulation to correct for finite-sample biases (see Gourieroux et al. (1999) and Phillips (2012)).

Two estimators are considered. The first is a simulation analog of the GMM estimator, and the

second is a simulated minimum distance estimator that uses auxiliary regressions to efficiently in-

corporate information in the higher order cumulants into a parameter vector of lower dimension.

Both estimators can accommodate additional dynamics, kurtosis and other features of the errors.

Simulation estimation of the MA(1) model was considered in Gourieroux et al. (1993), Michaelides

and Ng (2000), Ghysels et al. (2003), Czellar and Zivot (2008), among others, but only for the in-

vertible case. All of these studies use an autoregression as the auxiliary model. For θ = 0.5

and assuming that σ2 is known, Gourieroux et al. (1993) find that the simulation-based estima-

tor compares favorably to the exact ML estimator in terms of bias and root-mean squared error.

Michaelides and Ng (2000) and Ghysels et al. (2003) also evaluate the properties of simulation-based

estimators with σ2 assumed known. Czellar and Zivot (2008) report that the simulation-based es-

timator is relatively less biased but exhibits some instability and the tests based on it suffer from

size distortions when θ0 is close to unity (see also Tauchen (1998) for the behavior of simulation

estimators near the boundary of the parameter space).

5.1 The GLD Error Simulator

The key to identification is errors with non-Gaussian features. Thus, in order for any simulation

estimator to identify the parameters without imposing invertibility, we need to be able to simulate

non-Gaussian errors εt in a flexible fashion so that yt has the desired distributional properties.

There is evidently a large class of distributions with third and fourth moments consistent with

a non-Gaussian process that one can specify. Assuming a particular parametric error distribution
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could compromise the robustness of the estimates. We simulate errors from the generalized lambda

distribution Λ(λ1, λ2, λ3, λ4) considered in Ramberg and Schmeiser (1975). This distribution has

two appealing features. First, it can accommodate a wide range of values for the skewness and

excess kurtosis parameters and it includes as special cases normal, log-normal, exponential, t, beta,

gamma and Weibull distributions. The second advantage is that it is easy to simulate from. The

percentile function is given by

Λ(u)−1 = λ1 + [Uλ3 + (1− U)λ4 ]/λ2, (12)

where U is a uniform random variable on [0, 1], λ1 is a location parameter, λ2 is a scale parameter,

and λ3 and λ4 are shape parameters. To simulate εt, a U is drawn from the uniform distribution and

(12) is evaluated for given values of (λ1, λ2, λ3, λ4). Furthermore, the shape parameters (λ3, λ4) and

the location/scale parameters (λ1, λ2) can be sequentially evaluated. Since εt has mean zero and

variance one, the parameters (λ1, λ2) are determined by (λ3, λ4) so that εt is effectively characterized

by λ3 and λ4. As shown in Ramberg and Schmeiser (1975), the shape parameters (λ3, λ4) are

explicitly related to the coefficients of skewness and kurtosis (κ3 and κ4) of εt (see the Appendix).

A consequence of having to use the GLD to simulate errors is that the parameters λ3 and λ4 of the

GLD distribution must now be estimated along with the parameters of yt, even though these are

not parameters of interest per se. In practice, these GLD parameters are identified from the higher

order moments of the residuals from an auxiliary regression.

5.2 The SMM Estimator

Let yS(γ) = (yS1 , . . . , y
S
T , ..., y

S
TS)′ be data of length TS (S ≥ 1), simulated for a candidate value

of γ. This usually requires drawing errors from a known distribution, and the parameters of this

distribution are ancillary for γ. Let

ĝSMM (γ) =
1

T

T∑
t=1

mSMM,t(y)− 1

TS

TS∑
t=1

mS
SMM,t(y

S(γ)),

where mSMM,t(y) and mS
SMM,t(y

S(γ)) denote vectors of moments based on actual and simulated

data, respectively, at time t. Define the augmented parameter vector of the MA(1) model as

γ = (θ, σ2, λ3, λ4)′. The simulated method of moments (SMM) estimator is

γ̂SMM ≡ arg minγ ĝSMM (γ)′Ω̂−1
SMM ĝSMM (γ), (13)

where Ω̂SMM is a consistent estimate of the long-run asymptotic variance of mSMM,t(y). Identifi-

cation requires that gSMM (·) be injective in the sense of Definition 1.9

9It would seem tempting to estimate λ3 and λ4 separately from (θ, σ2)′, such as using the sample skewness and
kurtosis of the residuals of a long autoregression. But as discussed in Ramsey and Montenegro (1992), the OLS
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It remains to define mSMM,t. In contrast to GMM estimation, we now need moments of the

innovation errors to identify λ3 and λ4. The latent errors are approximated by the standardized

errors from estimation of an AR(p) model

yt = π0 + π1yt−1 + . . .+ πpyt−p + σεt.

The moment conditions given by

mSMM,t(y) =
(
ytyt−1 y2

t y2
t yt−1 y3

t yty
2
t−1 y3

t yt−1 yty
3
t−1 y2

t y
2
t−1 y4

t ε̂3t ε̂4t
)′

(14)

reflect information in the second, third and fourth order cumulants of the process yt, as well as

skewness and kurtosis of the errors.

To establish the consistency and asymptotic normality of the SMM estimator γ̂SMM we need

some additional notation and regularity conditions. Let mSMM (y) = E(mSMM,t(y)), Fe denote

the true distribution of the structural model errors and Λ∗ be the class of generalized lambda

distributions.

Proposition 2 Suppose that in addition to the assumptions in Lemma 1, we have Fe ∈ Λ∗,

E|et|8 < ∞, supγ∈Γ

∣∣∣ĜSMM (γ)−GSMM (γ)
∣∣∣ p−→0 , γ0 is in the interior of the compact parame-

ter space Γ, and
√
T (m̂SMM −mSMM )

d−→ N(0,ΩSMM ). Then,

√
T (γ̂SMM − γ0)

d−→N

(
0,

(
1 +

1

S

)(
GSMM (γ0)′Ω−1

SMMGSMM (γ0)
)−1

)
≡ N

(
0,Avar(γ̂SMM )

)
.

Consistency follows from identifiability of γ and the moment conditions that exploit information

in higher order cumulants play a crucial role. In our procedure, κ3 and κ4 are defined in terms

of λ3 and λ4. Thus, λ3 and λ4 are crucial for identification of θ and σ2 even though they are not

parameters of direct interest.

A key feature of Proposition 2 is that it holds when θ is less than, equal to or greater than one.

In a Gaussian likelihood setting when invertibility is assumed for the purpose of identification, there

is a boundary for the support of θ at the unit circle. Thus, the likelihood-based estimation has non-

standard properties when the true value of θ is on or near the boundary of one. In our setup, this

boundary constraint is lifted because identification is achieved through higher moments instead

of imposing invertibility. As a consequence, the SMM estimator γ̂SMM has classical properties

provided that κ3 and κ4 enable identification.

Consistent estimation of the asymptotic variance of γ̂SMM can proceed by substituting a con-

sistent estimator of ΩSMM and evaluating the Jacobian GSMM (γ̂T,S) numerically. The computed

residuals do not converge in the limit to the true errors when θ(L) is non-invertible, rendering their sample higher
moments also asymptotically biased.

15



standard errors can then be used for testing hypotheses and constructing confidence intervals.10

Alternatively, inference on the MA parameter of interest, θ, can be conducted by constructing

confidence intervals based on inversion of the distance metric test without an explicit computation

of the variance matrix Avar(γ̂SMM ).

5.3 The SMD Estimator

Higher order MA(q) models and general ARMA(p, q) models can in principle be estimated by

GMM or SMM. But as mentioned earlier, the number of orthogonality conditions increases with

p and q. Instead of selecting additional moment conditions, we combine the information in the

cumulants into the auxiliary parameters that are informative about the parameters of interest.

Our simulated minimum distance (SMD) is defined as

γ̂SMD ≡ arg minγ(ψ̂SMD − ψ̃
S

SMD(γ))′Ω̂−1
SMD(ψ̂SMD − ψ̃

S

SMD(γ)), (15)

where ψ̂SMD = arg minψ QT (ψ; y) and ψ̃
S

SMD(γ) = arg minψ QT (ψ; yS(γ)) are the auxiliary pa-

rameters estimated from actual and simulated data, QT (·) denotes the objective function of the

auxiliary model and Ω̂SMD is a consistent estimate of the asymptotic variance of ψ̂SMD.

Our SMD estimator is in the spirit of the indirect inference estimation of Gourieroux et al.

(1993) and Gallant and Tauchen (1996). Their estimators require that the auxiliary model is easy

to estimate and that the mapping from the auxiliary parameters to the parameters of interest is

well defined. We use such a mapping to collect information in the unconditional cumulants into

a lower dimensional vector of auxiliary parameters to circumvent direct use of a large number of

unconditional cumulants. For estimation of ARMA models, we consider least squares estimation

of the auxiliary regressions

yt = π0 + π1yt−1 + . . .+ πpyt−p + σεt, (16a)

y2
t = c0 + c1,1yt−1 + . . .+ c1,ryt−r + c2,1y

2
t−1 + . . .+ c2,ry

2
t−r + vt (16b)

with an appropriate choice of p and r. Equation (16a) has been used in the literature for simulation

estimation of MA(1) models when invertibility is imposed, and often with σ2 assumed known.

We complement (16a) with the regression defined in (16b). The parameters of this regression

parsimoniously summarize information in the higher moments of the data. Compared to the SMM

in which the auxiliary parameters are unconditional moments, the auxiliary parameters ψSMD are

10It should be stressed that despite the choice of a flexible functional distributional form for the error simulator, our
structural model is still correctly specified. This is in contrast with the semi-parametric indirect inference estimator
of Dridi et al. (2007) in partially misspecified structural models which requires an adjustment in the asymptotic
variance of the estimator.
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based on conditional moments. Equation (16b) also provides a simple check for the prerequisite for

identification. If the c coefficients are jointly zero, identification would be in jeopardy.

Let κ̂3 and κ̂4 denote the sample third and fourth moments of the OLS residuals in (16a). The

auxiliary parameter vector based on the data is

ψ̂SMD = (π̂0, π̂1, ..., π̂p, ĉ0, ĉ1,1, ..., ĉ1,r, ĉ2,1, ..., ĉ2,r, κ̂3, κ̂4)′. (16c)

The parameter vector ψSSMD(γ) is analogously defined, except that the auxiliary regressions are

estimated with data simulated for a candidate value of γ. The optimal SMD estimator shares the

same asymptotic properties as the SMM estimator in Proposition 2.

5.4 Finite-Sample Properties of the Simulation-Based Estimators

To implement the SMM and SMD estimators, we simulate TS errors from the generalized lambda

error distribution. Larger values of S (the number of simulated sample paths of length T ) tend to

smooth the objective functions which improves the identification of the MA parameter. As a result,

we set S = 20 although S > 20 seems to offer even further improvement, especially for small T,

but at the cost of increased computational time. The SMM and SMD estimators both use p = 4.

SMD additionally assumes r = 1 in the auxiliary model (16b).

As is true of all non-linear estimation problems, the numerical optimization problem must take

into account the possibility of local minima which arise when the invertibility condition is not

imposed. Thus, the estimation always considers two sets of initial values. Specifically, we draw two

starting values for θ - one from a uniform distribution on (0, 1) and one from a uniform distribution

on (1, 2) – with the starting value for σ set equal to
√
σ̂2
y/(1 + θ2) for each of the starting values

for θ. The starting values for the shape parameters of the GLD λ3 and λ4 are set equal to those of

the standard normal distribution (with κ3 = 0 and κ4 = 3). In this respect, the starting values of

θ, σ, λ3 and λ4 contain little prior knowledge of the true parameters.

MA(1): First, we study the finite-sample behavior of the proposed SMM and SMD estimators

in invertible and non-invertible MA(1) models with data generated from

yt = et + θet−1, et = σtεt,

where εt ∼ iid(0, 1) is drawn from a GLD with zero excess kurtosis and a skewness parameter 0.85

with (i) σt = σ = 1 or (ii) σt = 0.7 + 0.3e2
t−1 (ARCH errors). The sample size is T = 500, the

number of Monte Carlo replications is 1000 and θ takes the values of 0.5, 0.7, 1, 1.5, and 2. Note

that the structural model used for SMM and SMD does not impose the ARCH structure of the
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errors, i.e., the error distribution is misspecified. This case is useful for evaluating the robustness

properties of the proposed SMM and SMD estimators.

Table 2 reports the mean and median estimates of θ, the standard deviation of the estimates for

which identification is achieved and the probability that the estimator is equal to or greater than

one. When the errors are iid drawn from the GLD distribution, the SMM estimator of θ exhibits

only a small bias for some values of θ (for example, θ0 = 2). While there is a positive probability

that the SMM estimator will converge to 1/θ instead of θ (especially when θ is in the non-invertible

region), this probability is fairly small and it disappears completely for larger T (not reported to

conserve space). When the error distribution is misspecified (GLD errors with ARCH structure), the

properties of the estimator deteriorate (the estimator exhibits a larger bias) but the invertible/non-

invertible values of θ are still identified with high probability. However, the SMD estimator provides

a substantial bias correction, efficiency gain and identification improvement. Interestingly, in terms

of precision, the SMD estimator appears to be more efficient than the infeasible estimator in Table

1 for values of θ in the invertible region. The SMD estimator continues to perform well even when

the error simulator is misspecified.

Figure 2 illustrates how identification depends on skewness by plotting the log of the objective

function for the SMD estimator averaged over 1000 Monte Carlo replications of the MA(1) model

with θ = 0.7 and σ = 1. The errors are generated from GLD with zero excess kurtosis and three

values of the skewness parameter: 0, 0.35, 0.6 and 0.85.11 The first case (no skewness) corresponds

to lack of identification and there are two pronounced local minima at θ and 1/θ. As the skewness of

the error distribution increases, the second local optima at 1/θ flattens out and it almost completely

disappears when the error distribution is highly asymmetric.

ARMA(1, 1): In the second simulation experiment, data are generated according to

yt = αyt−1 + et + θet−1, (17)

where et is (i) a standard exponential random variable with a scale parameter equal to one which

is recentered and rescaled to have mean zero and variance 1 or (ii) a mixture of normals random

variable with mixture probabilities 0.1 and 0.9, means -0.9 and 0.1 and standard deviations 2 and

0.752773, respectively. The second error distribution is included to assess the robustness properties

of the simulation-based estimator to error distributions that are not members of the GLD family.

We consider two parameterizations of the model that give rise to a causal process with a non-

invertible MA component. The first parameterization is α = 0.5 and θ = −1.5. The second

11In evaluating the objective function, the values of the lambda parameters in the generalized lambda distribution
are set equal to their true values.
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parameterization, α = 0.5 and θ = −2, produces an all-pass ARMA(1, 1) process which is charac-

terized by θ = −1/α. This all-pass process possesses some interesting properties (see Davis (2010)).

First, yt is uncorrelated but is conditionally heteroskedastic. Second, if one imposes invertibility by

letting θ = −α and scale up the error variance by (1/α)2, the process is iid and the AR and MA

parameters are not separately identifiable. Imposing invertibility in such a case is not innocuous,

and estimation of the parameters of this model is quite a challenging task.

Table 3 presents the finite-sample properties of the SMD and SMM estimators for the ARMA(1,

1) model in (17) using the same auxiliary parameters and moment conditions for the estimation of

MA(1). For comparison, we also include the Gaussian quasi-ML estimator. The SMD estimates

of θ appear unbiased for the exponential distribution and are somewhat downward biased for the

mixture of normals errors. But, overall, the SMD estimator identifies correctly the AR and MA

components with high probability. The performance of the SMM estimator is also satisfactory

but it is dominated by the SMD estimator. The Gaussian QML estimator imposes invertibility

and completely fails to identify the AR and MA parameters when α = 0.5 and θ = −2. Even

with a misspecified error distribution and a fairly parsimonious auxiliary model, the finite-sample

properties of our proposed simulation-based estimators remain quite attractive.

5.5 Empirical Application: 25 Fama-French Portfolio Returns

Non-invertibility can be consistent with economic theory. For example, suppose yt = Et
∑∞

s=0 δ
sxt+s

is the present value of xt = et+ωet−1 (Hansen and Sargent (1991)). The solution yt = (1 + δω)et+

ωet−1 = h(L)et implies that the root of h(z) is −1+δω
ω which can be on or inside the unit circle even

if |ω| < 1. If there is no discounting and δ = 1, yt has a moving average unit root when ω = −0.5

and h(L) is non-invertible in the past whenever ω < −0.5.12

Present value models are used to analyze variables with a forward looking component including

stock and commodity prices. We estimate an MA(1) model for each of the 25 Fama-French portfolio

returns using the Gaussian QML and the proposed SMM and SMD estimators. The data are

monthly returns on the value-weighted 25 Fama-French size and book-to-market ranked portfolios

from January 1952 until August 2013 (from Kenneth French’s website). The portfolios are the

intersections of 5 portfolios formed on size (market equity) and 5 portfolios formed on the ratio of

book equity to market equity. The size (book-to-market) breakpoints are the NYSE quintiles and

are denoted by “small, 2, 3, 4, big” (“low, 2, 3, 4, high”) in Table 4.

Table 4 presents the sample skewness and kurtosis as well as the estimates and the corresponding

standard errors (in parentheses below the estimate) for each estimator and portfolio return. All

12If the moving average polynomial ω(L) is of infinite order, as it would be the case for causal autoregressive

processes, it is still possible for the roots of h(L) = δω(δ)−Lω(L)
δ−L to be inside the unit disk.
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of the returns exhibit some form of non-Gaussianity, which is necessary for identifying possible

non-invertible MA components. The Gaussian QML produces estimates of the MA coefficient that

are small but statistically significant (with a few exceptions in the “big” size category). The SMM

relaxes the invertibility constraint and delivers somewhat higher estimates of the MA parameter

but most of these estimates still fall in the invertible region. By contrast, the SMD estimator

suggests that all of the 25 Fama-French portfolio returns appear to be driven by a non-invertible

MA component. The results are consistent with the finding through simulations that the SMD is

more capable of estimating θ in the correct invertibility space. The SMD estimates are fairly stable

across the different portfolio returns with a slight increase in their magnitude and standard errors

for the “big” size portfolios. Also, a higher precision of the MA estimates is typically associated with

returns that are characterized by larger departures from Gaussianity. Overall, our SMD method

provides evidence in support of non-invertibility in stock returns.

6 Conclusions

This paper proposes generalized and simulation-based method of moments estimation of possibly

non-invertible MA models with non-Gaussian errors. The identification of the structural parameters

is achieved by exploiting the non-Gaussianity of the process through third order cumulants. This

type of identification also removes the boundary problem at the unit circle which gives rise to the

pile-up probability and non-standard asymptotics of the Gaussian maximum likelihood estimator.

As a consequence, the proposed GMM estimator for the MA(1) model is root-T consistent and

asymptotically normal over the whole parameter range, provided that the non-Gaussianity in the

data is sufficiently large to ensure identification.

To accommodate more general models which require many higher order moments that are

analytically intractable or cannot be precisely estimated in finite samples, we develop two simulation

estimators that incorporate information from the higher order cumulants of the data. The efficiency

of the estimators is controlled by the ability of the auxiliary moments in approximating the true data

generating process. Our proposed estimators use an error simulator with a flexible functional form

that encompasses a large class of distributions with non-Gaussian features. Particular attention

is paid to the accurate estimation of the shape parameters of the error distribution which play a

critical role in identifying the structural parameters.
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A Appendix: Proofs

Proof of Lemma 1. The result in part (a) follows immediately by noticing that g(γ1) and g(γ2),

where g = (E(ytyt−1), E(y2
t ), E(y2

t yt−1))′, are observationally equivalent for γ1 = (θ, σ2, κ3)′ and

γ2 = (1/θ, θ2σ2, θκ3)′. For part (b), let us define the derivative matrix of g(γ) = (g′2, g
′
3)′ as

G =



σ2 θ 0
2θσ2 (1 + θ2) 0

2θσ3κ3
3

2
θ2σκ3 θ2σ3

3θ2σ3κ3
3

2
(1 + θ3)σκ3 (1 + θ3)σ3

σ3κ3
3

2
θσκ3 θσ3


with G[1,2,i] for i = 3, 4 or 5 denoting its corresponding 3 × 3 block. Direct calculations of the

determinants give |G|[1,2,3] = (1− θ2)θ2σ5, |G|[1,2,4] = (1− θ2)(1 + θ3)σ5 and |G|[1,2,5] = (1− θ2)θσ5

which are all zero at |θ| = 1.

Proof of Lemma 2. Since c2(q) 6= 0 and c3(q) 6= 0 from the assumptions of Lemma 2, the

triangular matrices C1 and D have column ranks of q + 1 and q, respectively. Therefore, A has a

full column rank of 2q + 1 and the parameter vector β(θ, η) can be obtained as a unique solution

to the system of equations (8). Since the derivative matrix of β(θ, η̃3) given by

1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
...

0 · · · · · · · · · 1
2η̃3θ1 0 · · · 0 θ2

1

0 2η̃3θ2 · · · 0 θ2
2

...
...

...
...

...
0 0 · · · 2η̃3θq θ2

q


is of full column rank, the parameter vector of interest (θ1, ..., θq)

′ is identifiable.

Proof of Lemma 3. The proof follows some of the arguments in the proof of Theorem 1 in

Tugnait (1995). Consider two ARMA (p, q) models α1(L)yt = θ1(L)et and α2(L)yt = θ2(L)et

which can be rewritten as zt = α2(L)θ1(L)et and zt = α1(L)θ2(L)et, where zt = a1(L)a2(L)yt.

Let γ1 = (α1,1, ..., α1,p, θ1,1, ..., θ1,q)
′ and γ2 = (α2,1, ..., α2,p, θ2,1, ..., θ2,q)

′. Note that these are two

MA(p+q) processes for zt, zt = Θ1(L; γ1, γ2) and zt = Θ2(L; γ1, γ2), where Θ1(·) and Θ2(·) denote

MA polynomials of order p+ q.
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As in Lemma 2, we can write

Aβ1(γ1, η) = b (18)

Aβ2(γ2, η) = b,

where A and b are functions of second and third cumulants of zt. But from Lemma 2, there is a

unique solution to the system of equations Aβ(γ, η) = b. Hence, there is a one-to-one mapping

between (A, b) and β(γ, η) and the two ARMA models are identical in the sense that γ1 = γ2.

Therefore, γ = (α1, ..., αp, θ1, ..., θq)
′ is identifiable from the second and third cumulants used in

constructing A and b, provided that c2(p+ q) 6= 0 and c3(p+ q) 6= 0.

Proof of Proposition 1. The results in Section 3 ensure global and local identifiability of γ0.

The consistency of γ̂ follows from the identifiability of γ0 and the compactness of Γ. Taking a mean

value expansion of the first-order conditions of the GMM problem and invoking the central limit

theorem deliver the desired asymptotic normality result.

The GLD Distribution The two parameters λ3, λ4 are related to κ3 and κ4 as follows (see

Ramberg and Schmeiser (1975)):

κ3 =
C − 3AB + 2A3

λ3
2

,

κ4 =
D − 4AC + 6A2B − 3A4

λ4
2

,

where A = 1
1+λ3

− 1
1+λ4

, B = 1
1+2λ3

+ 1
1+2λ4

− 2Beta(1 + λ3, 1 + λ4), λ2 =
√
B −A2, C =

1
1+3λ3

−3Beta(1+2λ3, 1+λ4)+3Beta(1+λ3, 1+2λ4)− 1
1+3λ4

, D = 1
1+4λ3

−4Beta(1+3λ3, 1+λ4)+

6Beta(1 + 2λ3, 1 + 2λ4)− 4Beta(1 + λ3, 1 + 3λ4) + 1
1+4λ4

, and Beta(·, ·) denotes the beta function.
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Table 1: GMM and Gaussian QML estimates of θ from MA(1) model with possibly asymmetric
errors.

θ0 GMM estimator Gaussian QML estimator infeasible GMM estimator

mean med. P (θ̂ ≥ 1) std. mean med. P (θ̂ ≥ 1) std. mean med. P (θ̂ ≥ 1) std.

κ3 = 0

0.5 1.392 1.692 0.578 0.790 0.500 0.502 0.000 0.040 0.489 0.486 0.000 0.071
0.7 1.152 1.117 0.564 0.428 0.700 0.701 0.000 0.033 0.674 0.675 0.000 0.084
1.0 1.057 1.004 0.509 0.279 0.965 0.971 0.063 0.028 0.970 0.974 0.386 0.082
1.5 1.144 1.105 0.547 0.467 0.666 0.667 0.000 0.034 1.473 1.471 1.000 0.073
2.0 1.353 1.600 0.563 0.783 0.500 0.501 0.000 0.040 1.969 1.967 1.000 0.081

κ3 = 0.35

0.5 0.823 0.518 0.223 0.615 0.500 0.500 0.000 0.040 0.488 0.484 0.000 0.071
0.7 0.903 0.773 0.262 0.368 0.699 0.700 0.000 0.033 0.675 0.673 0.000 0.085
1.0 1.057 1.020 0.543 0.264 0.964 0.969 0.053 0.028 0.972 0.976 0.377 0.081
1.5 1.367 1.427 0.808 0.414 0.666 0.667 0.000 0.034 1.475 1.474 1.000 0.073
2.0 1.757 1.950 0.827 0.642 0.500 0.501 0.000 0.040 1.971 1.969 1.000 0.080

κ3 = 0.6

0.5 0.552 0.493 0.034 0.260 0.500 0.501 0.000 0.040 0.488 0.485 0.000 0.071
0.7 0.738 0.690 0.062 0.203 0.699 0.700 0.000 0.033 0.677 0.673 0.000 0.085
1.0 1.042 1.009 0.528 0.237 0.964 0.968 0.048 0.028 0.975 0.982 0.389 0.077
1.5 1.514 1.527 0.964 0.307 0.666 0.667 0.000 0.034 1.478 1.478 1.000 0.069
2.0 1.986 2.039 0.969 0.423 0.500 0.501 0.000 0.040 1.975 1.973 1.000 0.076

κ3 = 0.85

0.5 0.511 0.487 0.003 0.121 0.500 0.500 0.000 0.040 0.489 0.485 0.000 0.069
0.7 0.688 0.674 0.003 0.118 0.699 0.699 0.000 0.033 0.678 0.677 0.000 0.084
1.0 1.012 0.999 0.496 0.187 0.964 0.966 0.046 0.027 0.978 0.987 0.416 0.072
1.5 1.556 1.544 0.997 0.268 0.666 0.667 0.000 0.034 1.482 1.483 1.000 0.063
2.0 2.025 2.043 0.993 0.366 0.500 0.501 0.000 0.040 1.980 1.979 1.000 0.070

Notes: The table reports the mean, median (med.), probability that θ̂ ≥ 1 and standard deviation
(std.) of the GMM, Gaussian quasi-maximum likelihood (QML) and infeasible GMM estimates
of θ from the MA(1) model yt = et + θet−1, where et = σεt and εt ∼ iid(0, 1) are generated
from a generalized lambda distribution (GLD) distribution with a skewness parameter κ3 and no
excess kurtosis. The sample size is T = 500, the number of Monte Carlo replications is 1000
and σ = 1. The GMM estimator is based on the moment conditions (E(ytyt−1) − θσ2, E(y2

t ) −
(1 + θ2)σ2, E(y2

t yt−1) − θ2σ3κ3, E(y3
t ) − (1 + θ3)σ3κ3, E(yty

2
t−1) − θσ3κ3)′. The infeasible GMM

estimator is based on the same set of moment conditions but with σ = 1 assumed known. Both
GMM estimators use the optimal weighting matrix based on the Newey-West HAC estimator with
automatic lag selection.
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Table 2: SMM and SMD estimates of θ from MA(1) model with asymmetric errors.

SMM SMD

mean med. P (θ̂ ≥ 1) std. mean med. P (θ̂ ≥ 1) std.

GLD, σt = σ

θ0 = 0.5 0.488 0.484 0.001 0.054 0.503 0.503 0.000 0.043
θ0 = 0.7 0.693 0.688 0.000 0.083 0.705 0.703 0.002 0.053
θ0 = 1.0 0.949 0.988 0.421 0.137 0.973 0.982 0.406 0.089
θ0 = 1.5 1.563 1.520 0.962 0.280 1.482 1.493 0.980 0.104
θ0 = 2.0 1.903 1.959 0.940 0.337 1.996 1.995 0.988 0.180

GLD+ARCH

θ0 = 0.5 0.437 0.426 0.013 0.064 0.549 0.479 0.062 0.055
θ0 = 0.7 0.648 0.636 0.006 0.099 0.748 0.687 0.143 0.059
θ0 = 1.0 0.929 0.959 0.318 0.160 1.068 1.087 0.790 0.117
θ0 = 1.5 1.573 1.561 0.940 0.274 1.483 1.486 0.983 0.113
θ0 = 2.0 1.861 1.956 0.883 0.374 1.926 1.924 0.978 0.240

Notes: The table reports the mean, median (med.), probability that θ̂ ≥ 1 and standard deviation
(std.) of the SMM estimates of θ from the MA(1) model yt = et + θet−1, where et = σtεt,
εt ∼ iid(0, 1) are generated from a generalized lambda distribution (GLD) distribution with a
skewness parameter κ3 = 0.85 (and no excess kurtosis) and σt = σ = 1 or σ2

t = 0.7 + 0.3e2
t−1. The

sample size is T = 500 and the number of Monte Carlo replications is 1000. The SMM estimator
is based on the moment conditions mSMM,t, defined in (14), and the SMD estimator is based on
the auxiliary parameter vector ψSMD, defined in (16c). The SMM and SMD estimators use the
optimal weighting matrix based on the Newey-West HAC estimator.
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Table 3: SMD, SMM and Gaussian QML estimates of θ and α from an ARMA(1, 1) model with
exponential/mixure of normals errors.

errors/estimator θ α

mean med. std. P (|θ̂| ≥ 1) mean med. std.

exponential errors

θ0 = −1.5 α0 = 0.5

SMD -1.552 -1.489 0.544 0.954 0.493 0.501 0.162
SMM -1.497 -1.480 0.378 0.994 0.496 0.504 0.109
Gaussian QML -0.652 -0.686 0.206 0.000 0.482 0.511 0.217

θ0 = −2 α0 = 0.5

SMD -2.039 -2.001 0.626 0.976 0.483 0.490 0.134
SMM -1.919 -1.958 0.648 0.967 0.473 0.501 0.194
Gaussian QML -0.011 0.010 0.571 0.000 0.011 -0.003 0.567

mixture errors

θ0 = −1.5 α0 = 0.5

SMD -1.501 -1.480 0.415 0.967 0.505 0.516 0.137
SMM -1.277 -1.379 0.671 0.805 0.444 0.512 0.319
Gaussian QML -0.660 -0.688 0.168 0.000 0.487 0.510 0.186

θ0 = −2 α0 = 0.5

SMD -1.728 -1.723 0.498 0.978 0.570 0.580 0.191
SMM -1.537 -1.678 1.015 0.785 0.457 0.516 0.380
Gaussian QML -0.012 -0.003 0.563 0.000 0.009 0.001 0.558

Notes: The table reports the mean, median (med.), standard deviation (std.) and the probability

that P (|θ̂| ≥ 1) of the SMD, SMM and Gaussian QML estimates of θ and α from the ARMA(1,
1) model (1 − αL)yt = (1 + θL)et, where et = σεt and εt is an exponential random variable with
a scale parameter equal to one (exponential errors) or a mixture of normals random variable with
mixture probabilities 0.1 and 0.9, means -0.9 and 0.1 and standard deviations 2 and 0.752773,
respectively (mixture errors). The exponential errors are recentered and rescaled to have mean
zero and variance one. The sample size is T = 500 and the number of Monte Carlo replications is
1000.

28



Table 4: SMD, SMM and Gaussian QML estimates of MA(1) model for stock porfolio returns

skewness kurtosis QML SMM SMD

low 0.039 5.244 0.155
(0.028)

4.711
(0.650)

4.325
(0.470)

2 0.030 6.136 0.160
(0.027)

0.273
(0.028)

4.043
(0.417)

small 3 −0.132 5.889 0.179
(0.032)

0.287
(0.027)

3.802
(0.348)

4 −0.164 6.131 0.180
(0.034)

4.754
(0.538)

4.092
(0.455)

high −0.208 6.464 0.241
(0.032)

3.368
(0.349)

2.944
(0.254)

low −0.318 4.677 0.144
(0.032)

0.212
(0.027)

3.694
(0.289)

2 −0.419 5.551 0.143
(0.035)

0.219
(0.697)

3.880
(0.384)

2 3 −0.458 6.105 0.153
(0.035)

0.251
(0.026)

3.763
(0.312)

4 −0.439 6.148 0.156
(0.035)

0.241
(0.025)

4.120
(0.394)

high −0.414 6.186 0.166
(0.030)

0.232
(0.027)

3.745
(0.306)

low −0.371 4.701 0.117
(0.030)

0.178
(0.022)

3.001
(0.162)

2 −0.506 5.936 0.151
(0.035)

0.278
(0.022)

3.702
(0.323)

3 3 −0.510 5.324 0.146
(0.034)

4.884
(0.386)

3.553
(0.272)

4 −0.276 5.314 0.142
(0.034)

0.246
(0.026)

3.537
(0.283)

high −0.305 6.081 0.154
(0.033)

4.981
(0.488)

3.875
(0.340)

low −0.234 4.933 0.104
(0.033)

0.168
(0.022)

3.338
(0.180)

2 −0.585 6.135 0.143
(0.034)

0.203
(0.022)

3.649
(0.416)

4 3 −0.503 6.348 0.140
(0.032)

0.264
(0.023)

3.682
(0.354)

4 −0.231 4.930 0.092
(0.035)

0.212
(0.020)

4.045
(0.300)

high −0.193 5.385 0.118
(0.032)

0.244
(0.021)

4.680
(0.405)

low −0.253 4.565 0.065
(0.030)

0.106
(0.028)

5.078
(0.799)

2 −0.362 4.677 0.052
(0.034)

0.157
(0.024)

5.602
(0.686)

big 3 −0.264 5.209 0.035
(0.031)

0.100
(0.029)

6.457
(1.119)

4 −0.168 4.608 0.025
(0.032)

0.125
(0.021)

6.206
(1.140)

high −0.200 4.002 0.072
(0.032)

0.140
(0.020)

4.803
(0.611)

Notes: The table reports the SMD, SMM and Gaussian quasi-ML estimates and standard errors
(in parentheses below the estimates) for the MA(1) model yt = et + θet−1, where et ∼ iid(0, σ2)
and yt is one of the 25 Fama-French portfolio returns. The first two columns report the sample
skewness and kurtosis of yt. The standard errors for SMM and SMD are constructed using the
asymptotic approximation in Proposition 2.
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Figure 1: Density functions of the standardized GMM estimator (t-statistic) of θ based on data
(T = 3000) generated from an MA(1) model yt = et+θet−1 with θ = 0.5, 1, 1.5, 2, and et ∼ iid(0, 1).
The errors are drawn from a generalized lambda distribution with zero excess kurtosis and a
skewness parameter equal to 0.85. For the sake of comparison, the figure also plots the standard
normal (N(0, 1)) density.
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Figure 2: Logarithm of the objective function of simulation-based estimator of θ and σ based on
data (T = 1000) generated from an MA(1) model yt = et+θet−1 with θ = 0.7 and et ∼ iid(0, 1). The
errors are drawn from a generalized lambda distribution with zero excess kurtosis and a skewness
parameter equal to 0, 0.35, 0.6 and 0.85.
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