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1 Introduction

Galí (1999) and a number of subsequent studies show that technology shocks have a contractionary effect

on employment.1 In a standard flexible price model, a positive technology shock increases employment

since output rises on impact and additional labor inputs are required to keep pace with higher technology.

This paper investigates whether a standard flexible price model enriched with labor market frictions is

able to generate the negative response of employment to a technology shock.2 In order to investigate this

issue, we set up a standard flexible price model that allows, but does not require, labor market frictions to

generate a negative response of employment to technology shocks. We estimate the model using Bayesian

methods and find that the data strongly prefer the version of the model in which labor market frictions

generate a negative response of employment to technology shocks.

As mentioned, the presence of labor market frictions overturns the positive reaction of employment to

a technology shock in the standard flexible price model. The intuition is straightforward. In the standard

flexible price model, households supply labor until the marginal disutility from supplying an additional

unit of labor equals its marginal contribution to production. An increase in productivity induces the

household to supply more labor in response to a technology shock. In a labor market characterized

by search and matching frictions, workers and firms face a cost in forming a match, and therefore the

optimal choice of labor units also depends on the cost of hiring an additional worker. Depending on how

the cost of hiring reacts to productivity, the response of employment to a technology shock can be either

positive or negative. For instance, if hiring costs co-move positively with productivity, a technology shock

increases the marginal product of labor (as in the standard flexible price model), but it also increases the

cost of recruiting an extra worker. If the latter effect is sufficiently strong, employment reacts negatively

to a technology because hiring costs reduce the marginal contribution to production of an additional unit

of labor. In principle, as Yashiv (2000) and Rotemberg (2006) point out, hiring costs can be either pro-

1See Mumtaz and Zanetti (2012 a) and references therein for a recent review of the literature on this topic.
2As detailed below, a number of recent studies propose alternative mechanisms to generate the negative response of employ-

ment to a positive technology shock in the context of flexible price models. This paper is the first study that addresses the issue
using labor market frictions, modelled as in Thomas (2008) and Blanchard and Galí (2010), which are empirically relevant and
theoretically appealing.
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or counter-cyclical. On one hand, recessions represent times of low opportunity costs, thereby implying

more re-structuring of the workforce so that firms devote more resources to screening and lead to counter-

cyclical hiring costs. On the other hand, recessions also are times when, due to the high availability of

workers looking for jobs, the cost of advertising is low, encouraging hiring costs to be pro-cyclical. In

this paper, we internalize both mechanisms by allowing hiring costs to react directly to productivity and

leaving the data to establish whether the reaction is pro- or counter-cyclical. The estimation of the model

reveals that labor market frictions enable a flexible price model to generate a decline in labor inputs in

response to a positive technology shock.

Before proceeding with the analysis, we relate this work to studies that develop real business cycle

(RBC) models able to replicate the negative response of labor input to a positive technology shock and

we then position the paper in the broader context of the literature. Hairault, Langot and Portier (1997)

embed implementation lags in the adoption of new technology into a standard RBC model to make future

productivity higher than the current level, thereby decreasing current labor supply for a given increase in

labor demand and, consequently, generating a negative response of employment to a technology shock.

Francis and Ramey (2005) introduce habit formation in consumption together with adjustment costs on

investment and Leontief technology with variable utilization to match the negative effect of a technol-

ogy shock on employment. Lindé (2009) observes that if the permanent technology shock is persistent in

growth rates, labor inputs fall on impact. Collard and Dellas (2007), using an international RBC model,

show that if the degree of substitution between domestic and foreign goods is low, the reaction of em-

ployment to a technology shock is negative. Finally, Wang and Wen (2011) demonstrate that a RBC model

with firm entry and exit, in which firms need time-to-build before earning profits, also delivers a neg-

ative response of employment to a technology shock. All of these works show that by appropriately

modifying the standard RBC model, the underlying framework matches the empirical negative response

of employment to productivity shocks. Unlike these studies, our paper is the first to address the issue

with a RBC model enriched with labor market frictions. This framework is empirically relevant and the-
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oretically appealing. Empirically, Rogerson and Shimer (2010) show that labor markets are characterized

by frictions that prevent the competitive market mechanism from determining labor market equilibrium

allocations, thereby suggesting that their presence is important for a realistic description of the function-

ing of the labor market. Theoretically, labor market frictions introduce the extensive margin of labor (i.e.

(un)employment) into the model, whereas this dimension is absent in standard models of the labor mar-

ket. Importantly for the analysis in the paper, labor market frictions enable the model to replicate the

negative reaction of employment to a positive technology shock.

In the broader context of the literature, the empirical results in Gali (1999) have generated significant

interest as they contradict the fundamental prediction of the neoclassical real business cycle framework

(i.e. employment reacts positively to technology shocks). Such evidence not only challenges the real

business cycle paradigm, but points to the New-Keynesian sticky-price model as suitable framework

to deliver the negative response of employment to technology shocks. Several papers have challenged

Gali’s findings, generating a remarkable and still unsettled debate. Christiano, Eichenbaum and Vigfun-

sson (2003) use the identifying assumptions of Gali (1999) and establish that results reverse when the

estimation is conducted with data of hours worked in levels rather than in differences. Alexopoulos

(2011) also challenges Gali’s results and finds a positive response of hours to changes in technology when

the measure of technical change is based on books published in the field of technology. Similarly, Chris-

tiano, Eichembaum and Vigfunsson (2004) also find results contradicting Gali when they use estimates of

technological innovations from the Solow residual using the methodology in Basu, Fernald and Kimball

(1998) to identify the effect of technological innovations on labor input. However, in a subsequent study

Kimball, Fernald and Basu (2006) show that a refined measure of the Solow residual that accounts for

increasing returns, imperfect competition and varying capital utilization produces results that are con-

sistent with Gali (1999). Similarly, Francis and Ramey (2005) provide further support to Gali’s findings

using a variety of robustness checks and alternative over-identifying restrictions.

The remainder of the paper is organized as follows. Section 2 lays out the theoretical model. Section 3
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describes the solution, data and estimation. Section 4 investigates the role of labor market frictions, and

Section 5 concludes.

2 The model

A standard flexible price model is enriched to allow for labor market frictions of the Diamond-Mortensen-

Pissarides model of search and matching, as in Thomas (2008) and Blanchard and Galí (2010). As in

Galí’s (1999) original study, our setting abstracts away from investment and capital accumulation and, in

addition, assumes that the processes of job searching and recruitment are costly for both the firm and the

worker.3

The economy is populated by a continuum of infinite-living identical households that produce goods

by employing labor. Members of the household are either employed or searching for a job while unem-

ployed. During each period, a constant fraction of jobs is destroyed and labor is employed through hiring,

a costly process. Each household maximizes the utility function:

E
∞

∑
t=0

βtεb
t

 
ln Ct � εl

t
N1+φ

t
1+ φ

!
, (1)

where Ct is consumption, Nt is the fraction of household members who are employed, β is the discount

factor such that 0 < β < 1 and φ is the inverse of the Frisch intertemporal elasticity of substitution in

labor supply such that φ � 0. In this model we assume full participation, such that the members of a

household can be either employed or unemployed, which implies 0 < Nt < 1. Equation (1), similar to

Smets and Wouters (2003), contains two preference shocks: εb
t represents a shock to the discount rate that

3This paper does not focus on investment-specific technology shock for two reasons. First, they are shown to be quantitatively
negligible despite the original study by Fisher (2006) finds them important in the context of a SVAR model. In particular, the
studies by Chari, Kehoe and McGrattan (2008) and Erceg, Guerrieri and Gust (2005), although they do not focus directly on the
comparison between neutral and investment-specific technology shocks, they show that the identification strategy in Fisher is
not robust. In addition, Uribe and Schmitt-Grohe (2012) finds that the Fisher’s findings do not hold when the full-information
Bayesian approach strategy is implemented to estimate business cycle models with investment-specific technology shocks. A
series of papers support this finding (Altig, Christiano, Eichembaum and Linde (2005), Mandelman, Rabanal, Rubio-Ramirez
and Vilan (2011) and references therein). Second, the focus of the paper is different. Our objective is not to replicate the SVAR
facts, or to take a particular stance on the importance of investment-specific technology shocks. We instead aim to show that
a standard flexible price real business cycle model is compatible with Gali’s original results once it incorporates labor market
frictions.
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affects the intertemporal rate of substitution between consumption in different periods, and εl
t represents

a shock to the labor supply. Both shocks are assumed to follow a first-order autoregressive process with

i.i.d. normal error terms such that εb
t+1 = ε0(εb

t)
ρb exp(ηb,t+1), where 0 < ρb < 0, ηb � N(0, σb), and

similarly, εl
t+1 = ε0(εl

t)
ρl exp(ηl,t+1), where 0 < ρl < 0, and ηl � N(0, σl).4

During each period, output, Yt, is produced according to the production function:

Yt = AtNt, (2)

where At is an exogenous technology shock that follows a first-order autoregressive process with i.i.d.

normal error terms such that At = A0(At)ρa exp(ηa,t+1), where 0 < ρa < 0, and ηa � N(0, σa). During

each period, total employment is given by the sum of the number of workers who survive the exogenous

separation and the number of new hires, Ht. Hence, total employment evolves according to:

Nt = (1� δ)Nt�1 + Ht, (3)

where δ is the job destruction rate and 0 < δ < 1. Accounting for job destruction, the pool of household’s

members unemployed and available to work before hiring takes place is:

Ut = 1� (1� δ)Nt�1. (4)

It is convenient to represent the job finding rate, xt, by the ratio of new hires over the number of

unemployed workers such that:

xt = Ht/Ut, (5)

with 0 < xt < 1, given that all new hires represent a fraction of the pool of unemployed workers. The job

4As discussed in Smets and Wouters (2003), the inclusion of structural shocks is a standard assumption in general equilib-
rium models, necessary to avoid the singularity problem in the model estimation and to enable a better characterization of the
unconditional moments in the data.
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finding rate, xt, may be interpreted as an index of labor market tightness. This rate also has an alternative

interpretation: from the viewpoint of the unemployed, it is the probability of being hired in period t, or

in other words, the job-finding rate. The cost of hiring a worker is equal to Gt and, as in Blanchard and

Galí (2010), is a function of xt and the state of technology:

Gt = Aγ
t Bxα

t , (6)

where γ determines the extent to which, if any, hiring costs co-move with technology; α is the elasticity of

labor market tightness with respect to hiring costs; and B is a scale parameter. Hence, γ 2 R, α � 0, and

B � 0. As pointed out in Yashiv (2000) and Rotemberg (2006), this general formulation captures the idea

that, in principle, hiring costs may be either pro- or counter-cyclical.5 Note that given the assumption of

full participation, the unemployment rate, defined as the fraction of household members left without a

job after hiring takes place, is defined as:

ut = 1� Nt. (7)

The aggregate resource constraint,

Yt = Ct + GtHt, (8)

completes the description of the model.

The resource allocations can be characterized by solving the social planner’s problem. The social plan-

ner chooses {Yt, Ct, Ht, Gt, xt, Ut, Nt�1}∞
t=0 to maximize the household’s utility subject to the aggregate

resource constraints, represented by equations (2)-(8). To solve this problem, it is convenient to use equa-

tion (8), with the other constraints to obtain the aggregate resource constraint of the economy expressed

in terms of consumption and employment. The aggregate resource constraint of the economy therefore

5Mumtaz and Zanetti (2012 b) and Yashiv (2013) establish that non-linear hiring costs are an important component of the total
firm’s factor adjustment costs and equation (6) formally embeds this dimension in the model.
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can be written as:6

AtNt = Ct + Aγ
t B
[Nt � (1� δ)Nt�1]

1+α

[1� (1� δ)Nt�1]
α . (9)

In this way, the social planner chooses {Ct, Nt}∞
t=0 to maximize the household’s utility (1), subject to

the aggregate resource constraint (9). Letting Λt be the non-negative Lagrange multiplier on the resource

constraint, the first order condition for Ct is:

Λt = εb
t /Ct, (10)

and the first order condition for Nt is:

εl
tN

φ
t

Λt
= At � Aγ

t B(1+ α)xα
t + βB(1� δ)

Aγ
t+1Λt+1

Λt

h
(1+ α)xα

t+1 � αx1+α
t+1

i
. (11)

Equation (10) is the standard Euler equation for consumption, which equates the Lagrange multiplier

to the marginal utility of consumption. Equation (11) equates the marginal rate of substitution to the

marginal rate of transformation. The marginal rate of transformation depends on productivity, At, as

in the standard flexible price model, but also, due to the presence of labor market frictions, on foregone

present and future costs of hiring. More specifically, the three terms composing the marginal rate of

transformation are as follows. The first term, At, corresponds to the additional output generated by the

marginal employed worker. The second term represents the cost of hiring an additional worker, and the

third term captures the savings in hiring costs resulting from the reduced hiring needs in period t+ 1. In

the standard flexible price model, only the first term appears.

3 Bayesian estimation

6To do so, use equation (2) to substitute for Yt into equation (8); use equation (3) to substitute for Ht into equation (8); use
equations (3) and (4) into (5) and substitute the outcome into (6) so to obtain an expression of Gt that can be used into equation
(8).
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Equations (2)-(8) and (11) describe the behavior of the endogenous variables {Yt, Ct, Ht, Gt, xt, Ut, ut,

Nt�1, Λt}, and persistent autoregressive processes describe the exogenous shocks {εb
t , εl

t, εa
t }. The equi-

librium conditions do not have an analytical solution. For this reason, the system is approximated by

loglinearizing equations (2)-(8) and (11) around the stationary steady state. In this way, a linear dynamic

system describes the path of the endogenous variables’ relative deviations from their steady state value,

accounting for the exogenous shocks. The solution to this system takes the form of a state-space repre-

sentation and is solved using the method in Klein (2000). The latter can be conveniently used to compute

the likelihood function in the estimation procedure.7

We estimate the model using Bayesian methods, as described in An and Schorfheide (2007). This ap-

proach allows one to formalize the use of prior information coming either from microeconometric studies

or previous macroeconometric studies and thereby makes an explicit link with the previous calibration-

based literature. Second, the use of prior densities over the parameters space makes the maximization

of the likelihood computationally more stable since the model is estimated by minimizing the posterior

distribution of the model parameters, which combines the likelihood function with prior distributions for

the parameters of the model. This approach is particularly valuable when only relatively small samples

of data are available, as in the case of small- and medium-size macroeconomic models. Third, there is an

asymptotic justification for choosing the Bayesian procedure. Fernandez-Villaverde and Rubio-Ramírez

(2005) prove consistency of both the point estimates and the posterior odds ratio. In addition, the small

sample performance of Bayesian estimates tends to outperform classical methods even when evaluated

by frequentist criteria, as shown in Jacquier, Polson and Rossi (1994) and Geweke, Keane and Runkle

(1997). Finally, the Bayesian approach allows evaluating the models’ misspecification by using the mar-

ginal likelihood of the model, as described in Section 4.

The estimation uses U.S. quarterly data for output, unemployment and the job finding rate for the

7As shown in Fernandez-Villaverde and Rubio-Ramirez (2005), the use of a linear approximation of the model could be
potentially problematic due to the approximation error. To investigate the size of the approximation error for our linear model,
we have simulated the model using second and third order approximation methods and established that the impulse response
functions are almost identical across different orders of approximation. An appendix that details the dynamics of the different
approximation methods is available on request from the authors.
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sample period 1951:1 through 2007:4. Output is defined as real gross domestic product in chained 2000

dollars taken from the Bureau of Economic Analysis. The unemployment rate is defined as the civilian

unemployment rate and is taken from the Bureau of Labor Statistics. The job finding rate is taken from

Shimer (2012). The data for output are logged and HP filtered prior to estimation, and the unemployment

and job finding rate series are demeaned.

The data do not contain enough information to estimate all of the model’s parameters; some must be

fixed prior to estimation. This assumption is common in estimated general equilibrium models, as de-

tailed in Ireland (2004), Fernandez-Villaverde and Rubio-Ramírez (2004) and Smets and Wouters (2007).

In particular, we fix three parameters β, δ and B. As explained in Altug (1989) and Ireland (2004), it is

necessary to calibrate the discount factor to successfully estimate the remaining parameters of the real

business cycle model. This is particularly relevant in this setup with no capital accumulation. The quar-

terly discount factor β is thus set at 0.99, which is the standard value in the literature. Without data on the

job destruction rate, it is difficult to estimate the parameter δ, and therefore we fix this parameter equal to

0.12, as estimated by den Haan, Ramey and Watson (2000) and Fujita and Ramey (2009). Similarly, it also

is difficult to estimate the scale parameter of hiring costs B without high-frequency data on the cost of

posting vacancies. We therefore fix this parameter at 0.11, which implies that hiring costs approximately

represent 1% of total output, as in Blanchard and Galí (2010).

Table 1: Summary statistics for the prior and posterior distribution of the parameters
Parameter Prior Mean Prior SE Density Range Posterior 2.5% 97.5%

(1) (2) (3) (4) (5) (6) (7)
α 1 0.3 Normal R 1.4058 0.9496 1.8526
φ 2 0.75 Normal R 0.8363 -0.4948 2.1384
γ 0 7 Normal R 10.1674 5.8933 15.0127
ρa 0.5 0.2 Beta [0,1] 0.8973 0.8291 0.9669
ρb 0.5 0.2 Beta [0,1] 0.7354 0.5326 0.8906
ρl 0.5 0.2 Beta [0,1] 0.6562 0.4517 0.8606
σa 0.01 1 Inv gamma R+ 0.0115 0.0088 0.0143
σb 0.01 1 Inv gamma R+ 0.0068 0.0021 0.0115
σl 0.01 1 Inv gamma R+ 0.0053 0.0021 0.0096

Log-likelihood 937.81
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The parameters to estimate are: fα, φ, γ, ρa, ρb, ρl , σa, σb, σlg . Columns (1)-(4) in Table 1 present the

mean and standard deviation of the prior distributions, together with their respective densities and

ranges. For the elasticity of labor market tightness with respect to hiring costs, α, we assume a nor-

mal distribution with prior mean and standard deviation equal to 1 and 0.3 respectively. The prior mean

is equal to the value suggested in Blanchard and Galí (2010), and the standard deviation allows for a wide

range of plausible values. For the Frisch intertemporal elasticity of substitution in labor supply, φ, we

assume a Gamma distribution with prior mean and standard deviation equal to 0.4 and 0.15, respectively.

Such priors cover the range of values in between the microeconomic estimates, as in Pencavel (1986), and

the macro literature, as in Rogerson and Wallenius (2007). For the elasticity of technology shocks to hiring

costs, γ, we assume a Normal distribution with prior mean and standard deviation equal to 0 and 7 re-

spectively. In this way, we impose very flat priors that allow for a wide range of plausible values.8 For the

parameters related with the structural shocks, we allow for a wide range of values and use prior distri-

butions commonly found in the literature, as in Smets and Wouters (2007) and Justiniano, Primiceri and

Tambalotti (2010). In particular, for the autoregressive parameters of the shocks fρa, ρb, ρlg , we assume a

Beta distribution with prior mean and standard deviation equal to 0.5 and 0.2 respectively. Finally, for the

variance of the stochastic components fσa, σb, σlg , we assume an Inverse Gamma distribution with prior

mean and standard deviation equal to 0.01 and 1, respectively.

Columns (5)-(7) in Table 1 present the posterior mean and the 95% probability interval of the parameter

estimates. The posterior mean of the elasticity of labor market tightness with respect to hiring costs, α,

equals 1.41, which is a value close to 1, commonly used in the literature. The posterior mean of the inverse

of the Frisch intertemporal elasticity of substitution in labor supply, φ, equals 0.84, which implies an

elasticity of labor supply equal to 1.2. This value is consistent with that in Rogerson and Wallenius (2007)

and more generally is in line with the values used in the macro literature, as reported in King and Rebelo

(1999). Of special interest is the estimate for the elasticity of hiring costs to technology, γ. The posterior

8To check the robustness of the results to the assumptions on the prior distribution of γ, we have estimated the model using
different means and standard deviations on the prior of this parameter. This has a limited effect on the results, which are
available on request.
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mean of γ is 10.17, which, as detailed below, supports the fact that the data prefer a positive response of

hiring costs to technology shocks. Furthermore, it is worth noticing that the estimation delivers a sizable

reading for γ despite its loose prior. This positive and sizeable estimate corroborates the findings in Yashiv

(2000), who establishes that hiring costs respond strongly and positively to technology. Turning now to

the stochastic processes, the posterior mean of the persistence of technology shocks, ρa, is 0.9, which shows

that technology shocks are highly persistent. The posterior mean of the persistence of preference shocks,

ρb, is 0.73, and the estimate of the persistence of labor supply shocks, ρl , is 0.65. The posterior mean of

the volatility of technology shocks, σa, is 0.01, as in King and Rebelo (1999). The posterior mean of the

volatility of preference shocks, σb, is 0.0068, and the posterior mean of the volatility of labor supply shocks,

σl , is 0.0053. Finally, Figure 1 shows that the prior and posterior densities of the estimated parameters are

different in general, providing evidence that the data are informative for the estimation of the model.9

Figure 2 traces the estimated model’s implied impulse responses (the dotted lines are the 10-90% pos-

terior intervals) of each variable to a one-standard-deviation technology shock.10 The reaction of output

and consumption is positive on impact. The reaction of hiring costs, as expected, given the large and

positive estimate of γ, is also positive. For this reason (explained in detail below) in reaction to a positive

technology shock, it is more costly to recruit workers. Consequently employment declines. As employ-

ment falls, unemployment rises, which dampens the reaction of the number of hires and labor market

tightness.11

Table 2 reports autocorrelation functions of key macroeconomic variables with output based on the

data and the mode of the model’s posterior distribution, respectively. In general, the model’s results are in

line with the empirical evidence. For instance, the model’s simulations deliver a positive contemporane-

9In addition, to check whether our choice of prior drives the estimation results, we have estimated the model using uninfor-
mative priors and established that the posterior distribution of the parameters remains substantially unchanged. An appendix
that details the alternative estimation is available upon request from the authors.

10The impulse responses of the model to the preference and labor supply shocks are available in a companion appendix to this
paper, available upon request from the authors.

11Note that the reaction of vacancies displays a hump-shape response to a technology shock in the data, as shown in Ravn and
Simonelli (2008). In the model, the reaction of new hires decays quickly in the aftermath of the shock. This response is generated
by our stylized hiring cost function that does not include any lagged term. Enriching the functional form of hiring adjustment
costs to match this important stylized fact in the data would certainly be a useful extension for future research.
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Table 2: Descriptive statistics

Data Model
Corr(Variablet�j, Yt) Corr(Variablet�j, Yt)

Variable -2 -1 0 1 2 -2 -1 0 1 2
Y 0.59 0.84 1.00 0.84 0.59 0.39 0.66 1 0.66 0.39
u -0.31 -0.45 -0.55 -0.56 -0.48 -0.28 -0.32 -0.33 -0.28 -0.21
C 0.68 0.83 0.87 0.70 0.47 0.39 0.66 0.99 0.65 0.39
x 0.33 0.46 0.55 0.55 0.46 0.15 0.22 0.31 0.22 0.15

Notes: Results based on 200,000 draws of the Metropolis Algorithm. The posterior estimated median is reported.

ous correlation of output with consumption and labor market tightness as well as a negative correlation

with the unemployment rate. Moreover, the model matches the sign of correlations at different leads

and lags relatively well. Table 3 shows asymptotic (i.e. infinite horizon) forecast error variance decom-

positions into percentages for each of the model’s shocks. The variance decompositions indicate that

productivity and discount factor innovations mostly account for the bulk of macroeconomic variability

in the long run. Technology shocks account for nearly 85% of the unconditional variance in detrended

output and consumption while they contribute approximately 40% to movements in unemployment and

labor market tightness. The rest of fluctuations is shared between preference and labor supply shocks,

similar to the findings in Kydland and Prescott (1991) and Ireland (2001).

Table 3: Variance decompositions

Variance
Decompositions

Variable At εb
t εl

t
Y 0.86 0.09 0.05
u 0.42 0.39 0.19
C 0.87 0.08 0.05
x 0.40 0.40 0.20

Notes: Results based on 200,000 draws of the Metropolis Algorithm. Asymptotic variance decompositions decom-
pose the forecast error variance into percentages due to each of the model’s shocks. The posterior estimated median
is reported.

To conclude this section, we use the identification test in Iskrev (2010) to evaluate whether the Bayesian

estimation is able to identify the estimated parameters of the model. In essence, the Iskrev test checks
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whether the derivatives of the predicted autocovariogram of the observables with respect to the vector of

estimated parameters has rank equal to the length of the vector of estimated parameters. We find that the

column rank is full when evaluated at the posterior mean of the Bayesian estimate. To establish whether

identification would hold for an appropriate neighborhood of our estimates, we also evaluate the rank for

500,000 draws from the prior distributions, and we establish that full rank condition still holds. According

to this test, therefore, the estimated parameters are identifiable in the neighborhood of our estimate.

4 The role of labor market frictions

To investigate the role of labor market frictions, we estimate two versions of the model. First, a version

that abstracts away from hiring costs by imposing B = 0, so that the theoretical framework nests the first

order conditions of a standard flexible price model where labor market frictions are absent. Second, a

version that assumes that hiring costs do not react directly to technology shocks, by imposing γ = 0, so

we determine whether the data prefer the version of the model with hiring costs reacting to technology

shocks or a more constrained specification where hiring costs do not directly react to technology shocks.

Columns (1)-(3) in Table 4 present the posterior mean and the 95% probability interval of the parameter

estimates when B = 0. In this instance, the theoretical framework nests the first order conditions of

a standard flexible price model where labor market frictions are absent. To be consistent throughout

the estimation exercise, the prior distributions of the parameters are the same as those in the baseline

model.12 Estimation results indicate that the posterior mean of the inverse of the elasticity of labor supply,

φ, equals 1.09. The persistence of the shocks is slightly lower than in the unconstrained model whereas

their volatility is similar across the two specifications. In general, these estimates are in line with the

results from standard flexible price models without labor market frictions, as in Bencivenga (1992), De-

Jong, Ingram and Whiteman (2000), Ireland (2001, 2004) and Zanetti (2008).

What lies behind the posterior means of the parameters for the reactions of the variables to tech-

12Note that B = 0 implies that Gt = 0, as from equation (6). Hence, the parameters α and γ are excluded from the estimation
of the model.
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Table 4: Posterior parameter distribution of the constrained specifications

No Hiring Costs (B = 0) No reaction to technology (γ = 0)
Parameter Posterior 2.5% 97.5% Posterior 2.5% 97.5%

(1) (2) (3) (4) (5) (6)
α - - - - - - - - - 1.4318 1.0593 1.9697
φ 1.0872 0.1679 1.9735 0.8073 -1.6055 2.2379
γ - - - - - - - - - - - - - - - - - -
ρa 0.8270 0.7652 0.8844 0.8234 0.7661 0.8794
ρb 0.7892 0.6959 0.8770 0.8550 0.7814 0.9444
ρl 0.5090 0.3555 0.6762 0.5846 0.3509 0.8051
σa 0.0089 0.0082 0.0096 0.0088 0.0080 0.0094
σb 0.0110 0.0056 0.0163 0.0105 0.0019 0.0157
σl 0.0040 0.0023 0.0058 0.0042 0.0023 0.0060

Log-likelihood 855.99 935.72
Posterior odds ratio e81.82 e2.09

Notes: Results are based on 200,000 draws of the Metropolis Algorithm. The prior distributions of the parameters
are the same as those in the baseline model, as reported in columns (1)-(4) of Table 1. The posterior odds ratio
is computed as the difference between the marginal likelihood of the unconstrained model that allows for labor
market frictions, reported in the bottom line of Table 1, and each of the marginal likelihood functions associated
with the alternative specification of the model that either abstracts away from labor market frictions by imposing
B = 0 (i.e. hiring costs are absent), or assumes that hiring costs do not react directly to technology shocks, by
imposing γ = 0.

nology shocks? Figure 3 traces the estimated model’s implied impulse responses of each variable to a

one-standard-deviation technology shock for both specifications of the model, with and without labor

market frictions. The reaction of output and consumption is qualitatively similar across the two models

whereas the reaction of employment is negative in the presence of labor market frictions and null in a

perfectly competitive labor market, due to the offsetting income and substitution effects on labor supply.

How can the presence of labor market frictions generate a negative reaction of employment? As

discussed, the answer lies in the way hiring costs react to productivity shocks. Here the reaction is deter-

mined by the elasticity of hiring costs to a technology shock, which is represented by the parameter γ. The

estimation exercise allows the value of this parameter to be either positive, negative or equal to zero and

leaves the data to choose the preferred value. The estimation suggests that the data prefer γ to be positive,

such that hiring costs co-move positively with technology shocks (which is also the assumption in the cal-

ibrated model of Blanchard and Galí (2010)). To understand how this movement generates a negative
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reaction of employment to technology shocks, consider equation (11), which represents the labor market

equilibrium condition. A productivity shock would increase the marginal product of labor, the first term

on the right-hand side of equation (11), as in the standard flexible price model, but it also would increase

the cost of recruiting an additional worker, the second term on the right-hand side of equation (11), and

at the same time, reduce the hiring needs in period t+ 1, the third term on the right-hand side of equation

(11). The effect on the second term, namely the cost of recruiting an additional worker, dominates the

other two and, as a result, the marginal rate of transformation, which is the right-hand side of equation

(11), is reduced and therefore generates a negative response of employment to technology shocks. In the

model without labor market frictions (i.e. B = 0), the correspondent equilibrium condition, equivalent

to equation (11), is εl
tN

φ+1
t /εb

t = 1, which implies a level of employment invariant to technology shocks

as a result of offsetting income and substitution effects on labor supply. Without capital accumulation,

such a result is standard in this class of models, as King and Rebelo (1999) point out. Despite the different

reactions of employment to a technology shock, the functioning of the two models is qualitatively similar.

Turning to the parameter describing the elasticity of hiring costs to technology shocks, γ, we now

impose the neutral assumption that hiring costs do not react directly to technology shocks. In this way,

we determine whether the data prefer the version of the model with hiring costs reacting to technology

shocks or a more constrained specification where hiring costs do not directly react to technology. We

test which version of the model the data prefer by imposing γ = 0 on the baseline specification of the

model. As before, the prior distributions of the parameters are the same as those in the baseline model.

Columns (4)-(6) in Table 4 report the posterior mean and 95% probability interval of the parameters for

the constrained model. The posterior mean of the structural parameters for this constrained specification

are reasonably close to those where γ is allowed to differ from zero. In particular, the posterior mean of

the elasticity of labor market tightness with respect to hiring costs, α, equals 1.43. The posterior mean of

the inverse of the elasticity of labor supply, φ, equals 0.81, and the posterior mean of the autoregressive

component of the labor supply shocks are highly persistent.
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Results indicate that the volatility of the stochastic components are of a similar magnitude to the

estimates of the unconstrained model. Overall, the similarity of these estimates to those of the uncon-

strained model suggests that the underlying model with labor market frictions is consistently estimated

across different model specifications. Figure 4 shows the model’s implied impulse responses of each vari-

able to a one-standard-deviation technology shock for both the constrained model where γ = 0 and the

baseline model with labor market frictions. Output, consumption and employment positively react to a

technology shock, as in the unconstrained specification. When γ = 0, hiring costs do not directly react to

technological innovations. In this case, the effect on the second term on the right-hand side of equation

(11), namely the cost of recruiting an additional worker, is dominated by the counteracting effect of the

two other terms, thus generating a positive response of employment to technology shocks. The positive

reaction of employment leads to a positive response in the number of hires and this, coupled with the

negative reaction of unemployment, generates an increase in labor market tightness. Consequently, the

cost of hiring increases slightly on impact.

Before concluding, to establish whether the data prefer the unconstrained specification of the model,

the version without labor market frictions (B = 0), or the version in which hiring costs do not directly react

to technological innovations (γ = 0), the last row in Table 4 reports the posterior odds ratio. This metric

is computed as the difference between the log marginal likelihood of each model with respect to the log

marginal likelihood of the unconstrained specification. Considering that this metric penalizes overpara-

metrization, models with labor market frictions do not necessarily rank better if the extra friction does not

sufficiently help in explaining the data. As from the entries in Table 4, the odds ratio of the flexible price

model is e81.82, and the odds ratio of the model in which hiring costs do not directly react to technological

innovations is e2.09. In other words, to choose one of these constrained versions of the model over the

unconstrained specification, the Bayes factor requires a prior probability over the constrained versions of

e81.82 and e2.09 times larger than over the unconstrained model. This indicates that the estimation strongly

prefers the model that accounts for labor market frictions over and above the alternative specifications
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based on either a model that abstracts away from these frictions or a model where hiring costs do not

directly react to technology shocks.

5 Conclusion

Recent empirical evidence led by Galí (1999) and supported by several subsequent studies finds that a

positive technology shock leads to a decline in labor inputs. This paper uses Bayesian methods to establish

that labor market frictions enable a standard flexible price model to match this stylized fact. We believe

that this finding clearly underlines the importance of labor market frictions to accurately characterize the

dynamics of labor inputs to technology shocks in the context of estimated general equilibrium models.

The model puts forward some interesting avenues for future research. First, labor market frictions

introduce flows in and out of employment. It would be interesting to establish the contribution of each

flow to the fall in employment. This task, however, would prove to be non-trivial because it requires

introducing endogenous job destruction. Second, it also would be interesting to enrich the model with

nominal price rigidities that Galí (1999) identifies as an alternative mechanism to rationalize the fall in

employment in the aftermath of a positive technology shock. In this way, it would be possible to establish

to what extent labor market frictions and nominal price rigidities compete to account for the observed

stylized fact. These investigations offer avenues for future research.

6 References

Alexopoulos, M. (2011). ‘Read all about it!! What happens following a technology shock?’, American
Economic Review, vol. 101(4), pp. 1144-79.

Altig, D., Christiano, L., Eichenbaum, M. and Linde, J. (2011). ‘Firm-specific capital, nominal rigidities
and the business cycle’, Review of Economic Dynamics, vol. 14(2), pp. 225-247.

An, S. and Schorfheide, F. (2007). ‘Bayesian analysis of DSGE models’, Econometric Reviews, vol. 26(2-4),
pp. 113-72.

Basu, S., Fernald, J. and Kimball, M. (1998). ‘Are technology improvements contractionary?’, Interna-
tional Finance Discussion Papers 625, Board of Governors of the Federal Reserve System.

Bencivenga, V. R. (1992). ‘An econometric study of hours and output variation with preference shocks’,
International Economic Review, vol. 33(2), pp. 449-71.

17



Blanchard, O. J. and Galí, J. (2010). ‘Labor markets and monetary policy: a New Keynesian model with
unemployment’, American Economic Journal: Macroeconomics, vol. 2(2), pp. 1-30.

Chari, V., Kehoe, P.J., McGrattan, E.R., (2008). ‘Are structural VARs with long-run restrictions useful in
developing business cycle theory?’, Journal of Monetary Economics, vol. 55, pp. 1337-52.

Christiano, L., Eichenbaum, M. and Vigfusson, R. (2003). ‘What happens after a technology shock?,"
International Finance Discussion Papers 768, Board of Governors of the Federal Reserve System
(U.S.).

Christiano, L., Eichenbaum, M. and Vigfusson, R. (2004). ‘The response of hours to a technology shock:
evidence based on direct measures of technology’, Journal of the European Economic Association, vol.
2(2-3), pp 381-395.

Collard, F. and Dellas, H. (2007). ‘Technology shocks and employment’, Economic Journal, vol. 117, pp.
1436-59.

den Haan, W. J., Ramey, G. and Watson, J. (2000). ‘Job destruction and propagation of shocks’, American
Economic Review, vol. 90(3), (June), pp. 482-98.

De-Jong, D. N., Ingram, B. F. and Whiteman, C. H. (2000). ‘Keynesian impulses versus Solow resid-
uals: identifying sources of business cycle fluctuations’, Journal of Applied Econometrics, vol. 15(3)
(May/June), pp. 311-29.

Erceg, C.J., Guerrieri, L. and Gust, C., (2005). ‘Can long-run restrictions identify technology shocks?’,
Journal of the European Economic Association, vol. 3, pp. 1237-78.

Fernandez-Villaverde, J. and Rubio-Ramírez, J. (2004). ‘Comparing dynamic equilibrium economies to
data: a Bayesian approach’, Journal of Econometrics, vol. 123(1) (January), pp 153-87.

Fernandez-Villaverde, J. and Rubio-Ramírez, J. (2005). ‘Estimating dynamic equilibrium economies: lin-
ear versus nonlinear likelihood’, Journal of Applied Econometrics, vol. 20(7), pp. 891-910.

Fisher, J.D.M., 2006. ‘The dynamic effects of neutral an investment-specific technology shocks’. Journal
of Political Economy, vol. 114, pp. 413–51.

Francis, N. and Ramey, V. A. (2005). ‘Is the technology-driven real business cycle hypothesis dead?
Shocks and aggregate fluctuations revisited’, Journal of Monetary Economics, vol. 52(8) (November),
pp. 1379-99.

Fujita, S. and Ramey, G. (2009). ‘The cyclicality of separation and job finding rates’, International Economic
Review, vol. 50(2) (May), pp. 415-30.

Galí, J. (1999). ‘Technology, employment, and the business cycle: do technology shocks explain aggregate
fluctuations?’, American Economic Review, vol. 89(1) (March), pages 249-71.

Geweke, J.M., Keane, M. and Runkle, D. (1997). ‘Statistical inference in the multinomial multiperiod
probit model’, Journal of Econometrics, vol. 80, pp. 125-65.

Greenwood, J., Hercowitz, Z. and Krusell, P., (1997). ‘Long-run implications of investment-specific tech-
nological change’, American Economic Review, vol. 87(3), pp. 342-62.

Hairault, J-O., Langot, F. and Portier, F. (1997). ‘Time to implement and aggregate fluctuations’, Journal
of Economic Dynamics and Control, vol. 22(1) (November), pp. 109-21.

Ireland, P. N. (2001). ‘Technology shocks and the business cycle: an empirical investigation’, Journal of
Economic Dynamics and Control, vol. 25(5) (May), pp. 703-19.

18



Ireland, P. N. (2004). ‘A method for taking models to the data’, Journal of Economic Dynamics and Control,
vol. 28(6) (March), pp. 1205-26.

Iskrev, N. (2010). ‘Local identification in DSGE models’, Journal of Monetary Economics, vol. 57(2) (March),
pp. 189-202.

Jacquier, E., Polson, N.G. and Rossi, P. (1994). ‘Bayesian analysis of stochastic volatility models’, Journal
of Business and Economic Statistics, vol. 12, pp. 371-89.

Kimball, M., Fernald, J. and Basu, S. (2006). ‘Are technology improvements contractionary?’, American
Economic Review, vol. 96(5), pp. 1418-48.

King, R. and Rebelo, S. (1999). ‘Resuscitating real business cycle’, in (Taylor, J. B. and Woodford, M.,
eds.), Handbook of Macroeconomics, Amsterdam: North Holland.

Klein, P. (2000). ‘Using the generalized Schur form to solve a multivariate linear rational expectations
model’, Journal of Economic Dynamics and Control, vol. 24(10) (September), pp. 1405-23.

Kydland, F. E. and Prescott, E. C. (1991). ‘Hours and employment variation in business cycle theory’,
Economic Theory, vol. 1(1) (January), pp. 63-81.

Lindé, J. (2009). ‘The effects of permanent technology shocks on hours: can the RBC-model fit the VAR
evidence?’, Journal of Economic Dynamics and Control, vol. 33(3) (March), pp. 597-613.

Mandelman, F., Rabanal, P., Rubio-Ramirez, J. and Vilan, D. (2011). ‘Investment specific technology
shocks and international business cycles: an empirical assessment’, Review of Economic Dynamics,
vol. 14(1), pp. 136-55.

Mumtaz, H. and Zanetti, F. (2012 a). ‘Neutral technology shocks and the dynamics of labor input: results
from an agnostic identification’, International Economic Review, Vol. 53(1) (February), pp. 235-54.

Mumtaz, H. and Zanetti, F. (2012 b). ‘Factor adjustment costs: a structural investigation’, Bank of Eng-
land working papers 467.

Pencavel, J. (1986). ‘Labor supply of men: a survey’, in (Ashenfelter, O. and Layard, R., eds.), Handbook
of Labor Economics, Amsterdam: North Holland.

Petrongolo, B. and Pissarides, C. (2001). ‘Looking into the black box: a survey of the matching function’,
Journal of Economic Literature, vol. 38(2) (June), pp. 390-431.

Ravn, M. and Simonelli, S. (2008). ‘Labor market dynamics and the business cycle: structural evidence
for the United States’, Scandinavian Journal of Economics, vol. 109(4), pp. 743-77.

Rogerson, R. and Shimer, R. (2010). ‘Search in macroeconomic models of the labor market’, Handbook of
Labor Economics, Vol. 4A, edited by Orley Ashenfelter and David Card, pp. 619–700.

Rogerson, R. and Wallenius, J. (2007). ‘Micro and macro elasticities in a life cycle model with taxes’,
NBER Working Papers No. 13017.

Rotemberg, J. J. (2006). ‘Cyclical wages in a search-and-bargaining model with large firms’, NBER Inter-
national Seminar on Macroeconomics, pp. 65-114.

Shimer, R. (2012). ‘Reassessing the ins and outs of unemployment’, Review of Economic Dynamics, Vol.
15(2) (April), pp. 127-48.

Smets, F. and Wouters, R. (2003). ‘An estimated dynamic stochastic general equilibrium model of the
euro area’, Journal of the European Economic Association, vol. 1(5) (September), pp. 1123-75.

19



Smets, F. and Wouters, R. (2007). ‘Shocks and frictions in US business cycles: a Bayesian DSGE approach’,
American Economic Review, vol. 97(3) (June), pp. 586-606.

Thomas, C. (2008). ‘Search and matching frictions and optimal monetary policy’, Journal of Monetary
Economics, Vol. 55(5) (July), pp. 936-56.

Uribe, M. and Schmitt-Grohe, S. (2012). ‘What’s news in business cycles?’, Econometrica 80 (6), pp. 2733–
64.

Wang, P. and Wen, Y. (2011). ‘Understanding the puzzling effects of technology shocks’, Review of Eco-
nomic Dynamics, Vol. 14 (4) (October), pp 705-24.

Yashiv, E. (2000). ‘The determinants of equilibrium unemployment’, American Economic Review, vol. 90(5)
(December), pp. 1297-1322.

Yashiv, E. (2013). ‘The forward looking behavior of hiring and investment’, Tel Aviv University, mimeo.

Zanetti, F. (2008). ‘Labor and investment frictions in the real business cycle model’, Journal of Economic
Dynamics and Control, vol. 32(10) (October), pp. 3294-3314.

20



0.01 0.02 0.03 0.04 0.05
0

100

200

σa

0 0.01 0.02 0.03 0.04 0.05
0

50

100

150

σb

0 0.01 0.02 0.03 0.04 0.05
0

100

200

σl

­4 ­2 0 2 4 6
0

0.2

0.4

φ

­20 ­10 0 10 20 30
0

0.05

0.1

0.15

γ

0 1 2 3
0

0.5

1

1.5

α

0.2 0.4 0.6 0.8 1
0
2
4
6
8

ρa

0 0.2 0.4 0.6 0.8 1
0

2

4

6

ρb

0 0.5 1
0

2

4

ρl

Figure 1. Prior and posterior densities of the estimated parameters, benchmark model

Notes: Each entry shows the prior (gray line) and posterior (dark line) densities associated with the estimated

parameter. Results based on 200,000 draws of the Metropolis Algorithm.
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Figure 2. Impulse responses to a one-standard-deviation technology shock, unconstrained model

Notes: Impulse responses to a one-standard-deviation technology shock of the unconstrained model. Each

entry depicts the median impulse response (solid line) of each variable together with the 10-90% posterior intervals

(dotted line). The horizontal axes measures the time, expressed in quarters.
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Figure 3. Impulse responses to a one-standard-deviation technology shock, model comparison

Notes: Impulse responses to a one-standard-deviation technology shock. Comparison between the uncon-

strained model (solid line) and the model with no labor market frictions (dashed line) that imposes B = 0. Impulse

responses are depicted at the estimated median. The horizontal axes measures the time, expressed in quarters.
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Figure 4. Impulse responses to a one-standard-deviation technology shock, model comparison

Notes: Impulse responses to a one-standard-deviation technology shock. Comparison between the uncon-

strained model (solid line) and model with hiring costs not reacting to technology shocks (dashed line) that imposes

γ= 0. Impulse responses are depicted at the estimated median. The horizontal axes measures the time, expressed

in quarters.
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