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1 Introduction

Hedging and pricing �nancial and economic variables in imperfect markets (incomplete mar-

kets and/or markets with frictions) proves to be a challenging problem. While pricing and

hedging in complete and frictionless markets are typically carried out by a unique perfect

replication of a contingent claim at a horizon time, the presence of market imperfections

renders no unique solution to this problem.

There are two main approaches to pricing and hedging in incomplete markets. The �rst

approach is parametric in nature as it assumes that the market price follows a particular

di¤usion process. This approach includes the super-hedging of El Karoui and Quenez (1995),

the e¢ cient hedging of Föllmer and Leukert (2000) and the intrinsic risk hedging of Schweizer

(1992), to name a few. The second approach is model-free (nonparametric) since it does not

make use of the structure of the model that drives the underlying price dynamics. The robust

pricing and hedging strategies of Cox and Ob÷ój (2011b) and Cox and Ob÷ój (2011a) serve

as an example of this approach. A di¤erent line of research in model-free hedging is based

directly on the concepts of hedging and minimization of risk (see Xu (2006), Assa and Balbás

(2011), Balbás, Balbás, and Heras (2009), Balbás, Balbás, and Garrido (2010), and Balbás,

Balbás, and Mayoral (2009)). In this setting, the investor or portfolio manager minimizes

the risk of a global position given the budget constraint on a set of manipulatable positions

(a set of accessible portfolios, for instance).

Furthermore, when the no-arbitrage condition holds, the set of admissible stochastic dis-

count factors for pricing �nancial variables is strictly positive, implying monotonicity of the

pricing rules. By contrast, in the presence of market imperfections, the stochastic discount

factors do not price the set of all possible payo¤s (see Jouini and Kallal (1995a), Jouini and

Kallal (1995b) and Jouini and Kallal (1999)). In this case, the main problem lies in the

existence of pricing rules that can be extended to the whole set of possible variables.

The goal of this paper is to develop a unifying framework for hedging and pricing in

imperfect markets that allows for non-convex (non-subadditive) risk measures and pricing

rules. To this end, we account for market incompleteness and frictions by minimizing aggre-

gate hedging costs that consist of costs associated with the risk of the non-hedged part and

costs of purchasing the hedging strategy. This non-parametric or robust hedging approach
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is fairly general and can be used for various purposes such as hedging contingent claims and

economic risk variables. While it encompasses the methods developed in Jaschke and Küch-

ler (2001), Staum (2004), Xu (2006), Assa and Balbás (2011), Balbás, Balbás, and Heras

(2009), Balbás, Balbás, and Garrido (2010), Balbás, Balbás, and Mayoral (2009), and Arai

and Fukasawa (2014) for sub-additive risk measures and pricing rules, the main novelty of

this paper lies in incorporating possibly non-convex risk measures which are extensively used

in practice. For example, the celebrated Value at Risk and risk measures related to Choquet

expected utility (Bassett, Koenker, and Kordas (2004)) are, in general, non-convex. The

pricing rules in actuarial applications also tend to be non-convex (Wang, Young, and Panjer

(1997)) which further reinforces the need for a framework that deals with non-convex risk

and pricing rules. While the focus in this paper is on the pricing part of the hedging problem

and the extension of the pricing rule to the space of all �nancial and economic variables in

imperfect markets, we also construct a set of market principles that are used to determine

the existence of a solution to the hedging problem.

The rest of the paper is organized as follows. Section 2 introduces the notation, provides

some preliminary de�nitions and states the main problem. Section 3 uses market principles

to characterize the solutions to the hedging and pricing problems under generalized spectral

risk measures. Section 4 discusses the practical implications of the main theoretical results

for the purposes of hedging of economic risk. Section 5 concludes. The mathematical proofs

are provided in Appendix A.

2 Preliminaries and Analytical Setup

We start by introducing the main terminology and notation for hedging and pricing �nancial

or economic variables. We assume a �nite probability space with a �nite1 event space 
 =

f!1; : : : ; !ng. We denote the physical measure by P, and the associated expectation by E.
To simplify the discussion, we assume that P(!i) = 1=n for all i = 1; : : : ; n.2 Our theory is
developed in a static setting and we only have time 0 and time T . Each random variable

1All of the results can be easily extended to a probability space with no atoms in an appropriate space �

for instance, L2(
).
2Fixing the physical probability does not imply the use of any speci�c model as we demonstrate below.
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represents the random value on a variable at time T . We denote by Rn the set of all variables.
The duality relation is expressed as (x; y) 7! E(xy) ; 8x; y 2 Rn. The risk measure and the
pricing rule are expressed in terms of time-zero value and are real numbers.

Let X be a subset of Rn. In the subsequent discussion, we will assume that X possesses

one or several properties from the following list:

S1. Normality if 0 2 X ;

S2. Positive homogeneity if �X � X , for all � > 0;

S3. Translation-invariance if R+ X � X ;

S4. Sub-additivity if X + X � X ;

S5. Convexity if �X + (1� �)X � X .

2.1 Risk Measures

In what follows, we use risk measures to quantify the risk associated with the undiversi�able

part of the market exposure.

A risk measure % is a mapping from Rn to the set of real numbers R which maps each
random variable in Rn to a real number representing its risk. Each risk measure can have
one or more of the following properties:

R1. %(0) = 0;

R2. %(�x) = �%(x), for all � > 0 and x 2 Rn;

R3. %(x+ c) = %(x)� c, for all x 2 Rn and c 2 R;

R4. %(x) � %(y), for all x; y 2 Rn and x � y;

R5. %(x+ y) � %(x) + %(y);8x; y 2 Rn;

R6. %(�x+ (1� �)y) � �%(x) + (1� �)%(y):
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A risk measure is called an expectation bounded risk if it satis�es properties R1, R2, R3

and R5 above. The mean-variance risk measure de�ned as

MV�(x) = ��(x)� E(x);

where �(x) is the standard deviation of x and � is a non-negative number representing the

level of risk aversion, is an example of an expectation bounded risk.

An expectation bounded risk is called a coherent risk measure if it also satis�es prop-

erty R4. Finally, a convex risk measure satis�es properties R1, R3, R4 and R6. Coherent

and convex risk measures are introduced by Artzner, Delbaen, Eber, and Heath (1999) and

Föllmer and Schied (2002), respectively, while expectation bounded risks are �rst de�ned in

Rockafellar, Uryasev, and Zabarankin (2006).

One popular risk measure is the Value at Risk de�ned as

VaR�(x) = �q�(x) ; 8x 2 Rn;

where q�(x) = inf fa 2 RjP[x � a] > �g denotes the �-th quantile of the distribution of x.
Note that VaR� is a decreasing risk measure which is neither a coherent risk measure nor an

expectation bounded risk. In contrast, the Conditional Value at Risk (CVaR), expressed as

the sum over all VaR below � percent

%��(x) =
1

�

Z �

0

VaR�(x)d�; (2.1)

is a coherent risk measure.

Coherent risk measures are tightly linked to the Choquet expected utility of the form

U(x) =

Z 1

0

u(F�1x (t))d�(t); (2.2)

where u is a utility function and � is a non-additive probability. The measure � distorts the

probability of di¤erent events. The case of a concave � corresponds to a pessimistic way of

weighing events by assigning larger weights to less favorable events and smaller weights to

more favorable ones. A convex � has the opposite e¤ect. In particular, when u is the identity

function and � = �� such that d�� = 1
�
1[0;�]dt in equation (2.2), we obtain the coherent risk

measure %�� de�ned in (2.1).

We have the following result from Bassett, Koenker, and Kordas (2004) which relates the

notion of coherent risk measures to the Choquet expected utility.

4



Theorem 2.1 Let % be a coherent risk measure. If % is distribution invariant (i.e., %(x) =

%(y) when Fx = Fy) and co-monotone additive, then it is pessimistic.

To further generalize the concept of a risk measure, consider the following family of risk

measures.

De�nition 2.1 A risk measure is a generalized spectral risk measure if and only if there is

a distribution ' : [0; 1]! R+ such that
R 1
0
'(s)ds = 1, and

%'(x) =

Z 1

0

'(s)VaRs(x)ds: (2.3)

One can readily see that %' is law invariant, i.e., if x and x
0 are identically distributed,

then we have %'(x) = %'(x
0). Indeed, it can be shown that all law-invariant co-monotone

additive coherent risk measures can be represented as (2.3); see Kusuoka (2001). Note that,

by a change of variables, the spectral risk measure (2.3) coincides with the Choquet utility

(2.2) for a risk neutral agent, i.e., when u(x) = x. Furthermore, equation (2.3) describes a

family of risk measures which are statistically robust. Cont, Deguest, and Scandolo (2010)

show that a risk measure %(x) =
R 1
0
VaR�(x)'(�)d� is robust if and only if the support of '

is away from zero and one. For example, Value at Risk is a risk measure with this property.

An interesting fact about this type of risk measures is that it can be represented as

in�mum of a family of coherent risk measures.

Theorem 2.2 If %'(x) =
Z 1

0

VaR�(x)'(�)d�, for a nonnegative distribution ' with

Z 1

0

'(s)ds = 1;

then we have

%'(x) = minf%(x)j for all coherent risk measure % such that % � %'g:

Proof See Appendix A.

This theorem provides a motivation for introducing another family of risk measures, called

the in�mum risk measures, which includes all coherent as well as spectral risk measures.
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De�nition 2.2 Let D be a pointwise-closed set of coherent risk measures. Then, the in�mum
risk measure associated with D is de�ned as

%D(x) = min
%2D

%(x): (2.4)

2.2 Pricing Rules

A pricing rule � is a mapping from X � Rn to the set of real numbers R which maps each
random variable in X to a real number representing its price. The pricing rule can possess

one or more of the following properties:

P1. �(0) = 0;

P2. �(�x) = ��(x), for all � > 0 and x 2 X ;

P3. �(x+ c) = �(x) + c, for all x 2 X and c 2 R (cash-invariance);

P4. �(x) � �(y), for all x; y 2 X and x � y;

P5. �(x+ y) � �(x) + �(y), for all x; y 2 X ;

P6. �(�x+ (1� �y)) � ��(x) + (1� �)�(y).

If � satis�es properties P1, P2, P3, P5 or P6, X has to satisfy properties S1, S2, S3, S4,

or S5, respectively. A pricing rule is super-additive if �(x+y) � �(x)+�(y), for all x; y 2 X .
A pricing rule that satis�es properties P1, P2, P3, P4 and P5 is called a sub-linear pricing

rule. Any sub-linear pricing rule can be extended from X to Rn as follows

~�(x) = sup
fy2Xjy�xg

�(y): (2.5)

Indeed, this supremum exists and is a �nite number because (i) min(x) 2 fy 2 X jy � xg
and3 (ii) for any x; y 2 X such that y � x; we have �(y) � max(x). It can be easily seen

that ~� is a sub-linear pricing rule on Rn.
Moreover, any sub-linear pricing rule admits the following representation:

~�(x) = sup
z2R

E(zx); (2.6)

3Note that min(x) denotes here (min(x); :::;min(x)) 2 Rn.
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where R is given by

R := fz 2 RnjE(zx) � ~�(x);8x 2 Rng: (2.7)

Monotonicity implies that z � 0;8z 2 R and translation-invariance implies E(z) = 1;8z 2
R. Therefore, R is a compact set.

The set R represents the set of nonnegative stochastic discount factors induced by � and

�(x) = ~�(x) = sup
z2R

E(zx);8x 2 X : (2.8)

Also, the condition z > 0 is equivalent to the no-arbitrage condition

�(x) � 0 & x � 0) x = 0: (2.9)

Jouini and Kallal (1995a), Jouini and Kallal (1995b) and Jouini and Kallal (1999) argue

that for a wide range of market imperfections such as dynamic market incompleteness, short

selling costs and constraints, borrowing costs and constraints, and proportional transaction

costs, the pricing rule is sub-linear. Even though the set of sub-linear pricing rules is quite

large, it does not cover some practically relevant pricing rules. For example, in a super-

hedging context, ask and bid prices de�ned as

�a(x) = sup
Q2R

EQ[x]; (2.10)

and

�b(x) = inf
Q2R

EQ[x]; (2.11)

where R is the set of martingale measures of the normalized price processes of traded secu-

rities (see Jouini and Kallal (1995a) and Karatzas, Lehoczky, Shreve, and Xu (1991)), are

of particular interest (El Karoui and Quenez (1995)). In this case, the bid price is a super-

additive pricing rule which does not ful�ll the sub-additivity conditions of the sub-linear

pricing rule. Furthermore, in insurance applications, the pricing rules are not, in general,

sub- or super-additive. As pointed out by Wang, Young, and Panjer (1997), the price of an

insurance risk has a Choquet integral representation as in equation (2.2) or (2.3) with respect

to a distorted probability. For this reason, we introduce the family of in�mum pricing rules

that subsumes both sub-linear and non-sub-linear pricing rules.
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De�nition 2.3 Let M be a pointwise-closed set of pricing rules with properties P1, P2 and

P5, on X . Then, the in�mum risk measure associated with M is de�ned as

�M(x) = min
�2M

�(x): (2.12)

2.3 Hedging

To put the subsequent discussion in the proper context, assume that we have a set of perfectly-

hedged variables denoted by X , where all members of X are priced according to the pricing

rule � : X ! R. As an example, consider the case when X is equal to the set of all portfolios

of given assets (x1; ::::; xN). A variable y is perfectly-hedged if y 2 X . If any variable y can
be perfectly-hedged, we say that the market is complete. Otherwise, if there is at least one

variable y whose risk cannot be diversi�ed away by the set of perfectly-hedged positions, the

market is incomplete. This prompts the need to introduce the mapping (risk measure) %

from the set of all variables Rn to real numbers which measures the risk generated by the
part that cannot be hedged.

We next introduce the hedging problem. Let us consider a �nancial position y in an

incomplete market which has to be hedged or priced. To achieve this, we �nd a variable,

among all perfectly-hedged variables in the set X , that mimics y most closely. In other words,
we want to project y on the set X . Assume for a moment that we know this projection and
denote it by x 2 X . Hence, y can be decomposed into two parts: a mimicking strategy
(portfolio in our example) x which is perfectly-hedged, and an unhedged part y � x which
generates risk. The cost of the mimicking strategy (or perfectly-hedged) part is given by �(x),

and the risk generated by the unhedged part, which cannot be diversi�ed by any member of

X , is measured by %(x� y). The idea is to minimize the aggregate cost of the hedging given
as �(x) + %(y � x). Therefore, one can state the problem as follows:

inf
x2X

f�(x) + %(x� y)g : (2.13)

In this case, the market imperfections are re�ected by the (non-linear) pricing rule � and the

risk measure % which capture the market frictions and the market incompleteness, respec-

tively.

We now look at this problem from a pricing point of view. Suppose that a �nancial

practitioner wants to price the position (contingent claim, for example) y. While the pricing
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of y in complete markets can utilize directly the no-arbitrage approach, the pricing problem in

incomplete markets is less straightforward as it needs to incorporate the cost of the unhedged

part. As discussed above, the cost of forming the mimicking strategy x is given by �(x) and

the unhedged risk associated with the unhedged part of y is given by %(x � y). Then, the
competitive price for position y can be de�ned as

�%(x) = inf
x2X

f� (x) + % (x� y)g : (2.14)

When % satis�es property R3, the proposed hedging method amounts to a modi�cation

of portfolio y by following a self-�nancing strategy of purchasing x assets at price �(x).

Furthermore, if % and � possesses properties R5 and P5, respectively, �%(x) is the Good Deal

upper bound introduced in Staum (2004). We obtain the Good Deal upper bound within a

general competitive pricing and hedging framework. Note, however, that this result no longer

holds true for any non-coherent risk measure; for instance, if the risk measure is not convex.

Potential applications of this framework include hedging and pricing contingent claims,

insurance underwriting, hedging of economic risk etc. It should be noted that a similar

approach to pricing is adopted in Föllmer and Leukert (2000) and Rudlo¤ (2007, 2009) but

it is based on minimizing shortfall risk instead of minimizing aggregate cost as we do in this

paper. In what follows, we re�ne the choice of pricing rules and risk measures and analyze

their theoretical properties.

3 Main Theoretical Results

In this section, we establish some market principles for general risk measures and pricing

rules. The results are stated for two di¤erent categories: �rst, for risk measures and pricing

rules which satisfy properties R1�R4 and P1�P4 (including non-sub-additive pricing rules

and risk measures), and, second, for in�mum risk measures and pricing rules which satisfy

properties R1�R4 and P1�P3, respectively. Results for the second family make use of the

dual representation of pricing rules and risk measures. We then study the conditions under

which an arbitrage opportunity is generated.
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3.1 Market Principles

We start with the following result for �% de�ned in (2.14).

Proposition 3.1 Let

X% := fx 2 Rnj�%(x) 2 Rg:

Then, the following statements hold:

1. �% and X% are positive homogeneous if % and � are.

2. �% and X% are translation-invariant if % and � are.

3. �% and X% are sub-additive if % and � are.

4. �% and X% are convex if % and � are.

Furthermore,

5. �% is monotone if % and � are.

Proof See Appendix A.

Note that Proposition 3.1 does not say anything about the �rst property of a pricing rule

which warrants some further explanation. It turns out that for the �rst property of a pricing

rule to hold, we need to guarantee that some conditions for X , % and � are satis�ed. Below,
we explicitly state these conditions as general pricing principles that are valid regardless of

the type of pricing or pricing rule.

Normality (N). �%(0) = 0.

No Good Deal Assumption (NGD). There is no �nancial position x such that

%(x) < 0 ; �(x) � 0:

Consistency Principle (CP). For any member x 2 X , � and �% are consistent, i.e.,

�(x) = �%(x):
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Compatibility (C). For a risk measure % and a pricing rule �, (2.13) has a �nite in�mum.

The �rst principle simply recognizes that the price of zero is always zero. The second

principle states that any risk-free variable has a positive cost (see Cochrane and Saa-Requejo

(2000)). The third principle is a consistency condition between a pricing rule � and �% over

X . The last principle points out that the hedging problem always yields a price.

3.2 Positive-Homogeneous and Monotone Risk and Pricing Rules

Next, we discuss the equivalence of the market principles for a risk measure % and pricing

rule � which satisfy properties R1�R4 and P1�P4.

Theorem 3.1 Assume that % and � satisfy properties R1�R4 and P1�P4. Then,

(CP )) (N), (NGD), (C):

Moreover, if X is a vector space and � is super-additive, we also have

(N)) (CP ):

Proof See Appendix A.

This theorem extends Theorem 3.4 in Arai and Fukasawa (2014) to the case where no

convexity assumption is made neither on % nor �. The following corollary states the conditions

under which �% is a pricing rule.

Corollary 3.1 Given the notation above, �% : X% ! R is a pricing rule if and only if (N) or
(NGD) holds.

3.3 In�mum Risk and Pricing Rules

Suppose the pricing rule � satisfy properties P1, P2 and P5. In that case, we extend the

range of � to R [ f+1g

��(x) =

(
�(x) x 2 X
+1 otherwise.
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This extension allows us to use the dual representation of positive-homogeneous convex

functions. Duality theory and sub-gradient analysis prove useful since the risk measures and

pricing rules are usually not di¤erentiable. First, we present conditions under which arbitrage

opportunities do not exist in terms of the dual sets. Then, we characterize the solution to

the hedging problem (2.13) and the pricing rule �% in (2.14).

We start by introducing some additional notation. From convex analysis we know any

convex function f : Rn ! R [ f+1g has the following Fenchel-Moreau representation4

f(x) = sup
z2Rn

fE(zx)� f �(z)g;

where f � : Rn ! R [ f+1g is the dual of f de�ned as

f �(z) = sup
x2Rn

fE(zx)� f(x)g:

It can be easily seen that for any positive-homogeneous function f; f� is 0 on a convex closed

set, denoted by �f , and in�nity otherwise. Therefore, the Fenchel-Moreau representation of

a positive homogeneous function f has the form

f(x) = sup
z2�f

E(zx):

As an example, for any coherent risk measure %, ��% is a subset of the set of all probability

measures, i.e., ��% � fz 2 Rnjz � 0;
P
zi = 1g; and, therefore, it is compact (see Artzner,

Delbaen, Eber, and Heath (1999)). In contrast, for any expectation bounded risk %, �% �
fz 2 Rnj

P
zi = 0g (Rockafellar, Uryasev, and Zabarankin (2006)). In the sequel Q% will

denote ��%, and R� will denote �~�.

Now assume that, in general, � is a positive-homogeneous and sub-additive mapping

(possessing properties P2 and P5). Since � is positive-homogeneous and sub-additive, and

because X is a positive cone, its extension is also positive-homogeneous and sub-additive.

Then, we have the following representation

��(x) = sup
z2���

E(zx);8x 2 Rn: (3.1)

In order to obtain the representation for ��, we need to introduce the dual-polar of a

scalar-cone of random payo¤s. If A is a scalar-cone of a random payo¤, the dual-polar of the

4For technical reasons, we use �z instead of z:
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set A is given by

A? := fzjE(zx) � 08x 2 Ag:

We then have the following proposition in convex analysis.

Proposition 3.2 For any function f(x) := sup
z2�f

E(zx), for some set �f , which is de�ned

on a positive cone A; we have that

�f(x) = sup
z2�f+A?

E(zx):

Proposition 3.2 has the important implication that any pricing rule �(x) := sup
z2R�

E(zx)

de�ned on X , can be rewritten as

��(x) = sup
z2���

E(zx);

where ��� = R� + X?.

The following theorem states one of the main theoretical results of the paper.

Theorem 3.2 Assume that the risk measure %D is de�ned as in (2.4) and the pricing rule

�M is de�ned as in (2.12). Then, the following statements are equivalent:

1. The hedging problem (2.13) is �nite.

2. R�;% = Q% \ (R� + X?) 6= ? ; 8% 2 D;8� 2M

Furthermore, if condition 3 holds for � and %, these statements are equivalent to

3. There is no Good Deal in the market.

In all cases, the price (2.14) can be represented as

(�D)%M(x) = inf
�2M;%2D

�%(x) = inf
�2M;%2D

sup
z2R�;%

E(zx):

Proof See Appendix A.

Notice that if % and � are in�mum risk and pricing rules, so is the competitive price

%�. The following result is based on Jouini, Schachermayer, and Touzi (2008) and Balbás,

Balbás, and Garrido (2010).
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Theorem 3.3 Let % and � be sub-additive, such that Q% \ (R� + �
?) 6= ?. Then, x 2 X is

a solution to the problem (2.13) if and only if for some z 2 Q% \ (R� + �
?) we have that

%(x� y) = E(z(y � x)) and �(x) = E(zx):

Theorem 3.3 can now be used to derive the following result.

Theorem 3.4 Assume that the risk measure %D is de�ned as in (2.4), and the pricing rule

�M is de�ned as in (2.12). Let x 2 X . The, the following statements hold:

1. If x 2 X is a solution to (2.13) for all (%; �) 2 D �M, then it is a solution to (2.12)
for (%D; �M).

2. If x 2 X is not a solution to (2.13) for any (%; �) 2 D�M, then it is not a solution to
(2.13) for (%D; �M).

3. If x 2 X is a solution to (2.13) for (%D; �M), then there exists a z 2 Rn such that
%D(x) = E(z(y � x)) and �M(x) = E(zx).

Proof See Appendix A.

Theorems 3.2 and 3.4 illustrate the generality of our approach compared to the exist-

ing literature. First of all, we do not assume any convexity property, cash invariance or

monotonicity. This extends the work of Jaschke and Küchler (2001), Staum (2004), Xu

(2006), Assa and Balbás (2011), Balbás, Balbás, and Heras (2009), Balbás, Balbás, and

Garrido (2010), Balbás, Balbás, and Mayoral (2009) and Arai and Fukasawa (2014). Fur-

thermore, in the existing literature, the set of stochastic discount factors is constructed either

parametrically (using, for example, a semi-martingale process) or empirically, and a pricing

rule � is then obtained by taking supremum of prices over a closed convex subset R�. In

order to price all positions in the market, any stochastic discount factor z0 is constructed as

a positive and linear extension of z 2 R�, i.e., z0jX = z. Therefore, the set of stochastic

discount factors is induced by the unique monotonic extension ~� of � (for more details, see

Theorem 2.1 in Jouini and Kallal (1995b)). By contrast, in our approach, the extension of the

pricing rule is not constructed monotonically but it is obtained within the hedging problem
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and is a¤ected, in general, by two additional factors: market incompleteness and frictions.

In our approach, the set of stochastic discount factors is equal to Q% \ (R� + X?), which is

expanded by adding X? and contracted by intersecting with Q%.

Our method can reproduce the existing approach if we assume %(x) = ~�(�x). Indeed, our
approach is able to reproduce the pricing rule ~� if and only if the consistency principle holds.

If the pricing rule is super-additive, this can be achieved if and only if �(�x) � %(x);8x 2 X .
This implies that R� � Q%. It can be easily veri�ed that x 7! ~�(�x) is the smallest
risk measure for which the consistency principle holds. The mapping x 7! ~�(�x) is the
market measurement of risk and has been proposed by Assa and Balbás (2011). In this case,

Q% = R�, which yields �% = �. Hence, the hedging problem becomes(
minf~�(y � x) + �(x)g
x 2 X :

(3.2)

It is clear that since ~� is sub-additive, x = 0 is a solution to this hedging problem. Therefore,

the pricing rule �~�(�:) equals ~�, which reproduces the existing approach in the literature.

The following example illustrates the generality of our analytical framework. Let %D(x) =R 1
0
�(�)VaR�(x)d� with the support of ' being bounded away from 0 and 1, i.e., 9� > 0

such that supp(') � [�; 1 � �]. Let �(x) = E(mx), where m is a random variable which

is strictly positive with E(m) = 1. Assume that y denotes any arbitrary �nancial position.

Form Theorem 2.2, it follows that

D =
�
%

����% is a coherent risk measure, % � Z 1

0

�(�)VaR�d�

�
:

According to Theorem 3.3, the hedging problem has a solution ifm 2 Q% for any coherent risk

measure % �
R 1
0
�(�)VaR�(x)d�. On the other hand, according to Theorem 2.2, for any x 2

Rn we have
R 1
0
�(�)VaR�(x)d� = %(x) for some coherent risk measure % �

R 1
0
�(�)VaR�d�.

This implies that
R 1
0
�(�)VaR�(x)d� � E(mx), for any x 2 Rn. This inequality clearly does

not hold, if we choose x = 1A for some set A � 
 for which 0 < P (A) < �
2
. The result of

this example is in line with the results in Assa (2014).

15



4 An Application to Hedging Economic Risk

4.1 Estimation Problem

In this section, we illustrate the practical relevance of our theoretical results in the context

of hedging economic risk by highlighting the e¤ect of di¤erent risk measures on hedging

strategies and the role of X?. Our analysis of portfolios that track or hedge various economic

risk variables follows largely Lamont (2001) and Goorbergh, Roon, and Werker (2003). While

these papers employ the mean-variance (MV) framework for constructing the portfolio of

assets, we consider the more general and robust CVaR and VaR risk measures. Let yt denote

an economic risk variable to be hedged at time t (t = 1; 2; :::; T ), xt = (xt1; :::; xtN)
0 be

N securities (traded factors) at time t and X = spanhx1; : : : ; xNi: The pricing rule is the
expected value of the portfolio given by �(x0t�) = E(x

0
t�), where � = (�1; : : : ; �N)

0.

For the mean-variance risk measure, we have that %(x) = ��(x)�E(x). To facilitate the
comparison with the other risk measures, the risk aversion parameter � is set equal to 1. By

plugging x =
P
�ixi � y, the problem (2.14) reduces to the following OLS problem:

min
�

1

T

TX
t=1

�
~yt �

XN

j=1
�j~xtj

�2
; (4.1)

where ~yt = yt � E(yt) and ~xtj = xtj � E(xtj).
For the CVaR risk measure, we rewrite the problem (2.14) with a risk measure % = %��

and a pricing rule � = E as

min
�

�
%�� (x

0
t� � yt) + E (x0t�)

	
(4.2)

or, more conveniently, as

min
�

�
%�1�� (yt � x

0
t�) + E (x

0
t�)
	
; (4.3)

using that %�� (x
0
t� � yt) = %�1�� (yt � x0t�). Then, using translation-invariance and Theorem

2 in Bassett, Koenker, and Kordas (2004), the problem (4.3) can be rewritten equivalently

as an (1� �)-quantile regression problem:

min
�;�

1

T

TX
t=1

�1�� (~yt � � � ~x0t�) ; (4.4)
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where �1�� (u) = u [(1� �)Ifu > 0g � �Ifu � 0g] and If�g denotes the indicator function.
Note that since 1 is trivially in the intersection of the sub-gradient set of these risk measures

and R�, then it follows from Theorem 3.2 there is no Good Deal and the hedging problem

has a solution.

For the VaR hedging problem, we simply minimize the aggregate hedging costs

min
�
fVaR1��(yt � x0t�) + E(x0t�)g:

One can easily show that the probability measure P belongs to the sub-gradient of any law-
invariant risk measure which also has properties R2 and R5. Therefore, by using part 2 of

Theorem 3.2, the risk measures MV and CVaR do not produce any Good Deal with the

pricing rule E. For VaR, we use the No-Good-Deal assumption and the theoretical results

developed in the previous section. Since X is a vector space and � is a linear function, then,

according to Theorem 3.1, the No-Good-Deal assumption holds if and only if �% (here EVaR)

is consistent. Hence,

min
�
fVaR1��(yt � x0t�) + E(x0t�)g = E(yt):

4.2 Data Description

Our choice of economic risk variables and security returns is similar to Goorbergh, Roon, and

Werker (2003). The data are at monthly frequency for the period February 1952 �Decem-

ber 2012. The traded securities include the risk-free rate, four stock-market factors (Fama

and French (1992), Carhart (1997)) and two bond-market factors proxied, respectively, by:

(i) the one-month T-bill (from Kenneth French�s website), denoted by RF, (ii) the excess

return (in excess of the one-month T-bill rate) on the value-weighted stock market (NYSE-

AMEX-NASDAQ) index (from Kenneth French�s website), denoted by MARKET, (iii) the

return di¤erence between portfolios of stocks with small and large market capitalizations

(from Kenneth French�s website), denoted by SMB, (iv) the return di¤erence between port-

folios of stocks with high and low book-to-market ratios (from Kenneth French�s website),

denoted by HML, (v) the momentum factor de�ned as the average return on the two high

prior return portfolios minus the average return on the two low prior return portfolios (from

Kenneth French�s website), denoted by MOM, (vi) TERM de�ned as the di¤erence between
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the yields of ten-year and one-year government bonds (from the Board of Governors of the

Federal Reserve System), and (vii) DEF de�ned the di¤erence between the yields of long-

term corporate Baa bonds (from the Board of Governors of the Federal Reserve System) and

long-term government bonds (from Ibbotson Associates).

The macroeconomic risk variables include (i) the in�ation rate measured as monthly

percentage changes in CPI for all urban consumers (all items, from the Bureau of Labor

Statistics), denoted by INF, (ii) the real interest rate measured as the monthly real yield

on the one-month T-bill (from CRSP, Fama Risk Free Rates), denoted by RI, (iii) the term

spread measured as the di¤erence between the 10-year Treasury (constant maturity) and

3-month (secondary market) T-bill rate (from the Board of Governors of the Federal Reserve

System), denoted by TS, (iv) the default spread measured as the di¤erence between corporate

Baa and Aaa rated (by Moody�s Investor Service) bonds (from the Board of Governors of the

Federal Reserve System), denoted by DS, (v) the monthly dividend yield on value-weighted

stock market portfolio (from the Center for Research in Security Prices, CRSP), denoted

by DIV, and (vi) the monthly growth rate in real per capita total (seasonally-adjusted)

consumption (from the Bureau of Economic Analysis), denoted by CG.

4.3 Results

In order to hedge against unexpected economic shocks, we follow Campbell (1996) and replace

the variable yt with the corresponding error term from a six-variable VAR(1) model of yt

(y = [INF;RI; TS;DS;DIV;CG]). For VaR and CVaR, we use � = 0:1 and 0.05 (i.e.,

1 � � = 0:9 and 0:95). The results for hedging in�ation, real interest rate, term spread,

default spread, dividend yield and consumption growth using the three risk measures are

presented in Tables 1 to 6, respectively. The standard errors for VaR and CVaR are computed

by bootstrapping. Statistically signi�cant coe¢ cients at the 5% nominal level are reported

in bold font. The last line in each table reports the computed price.

A number of interesting �ndings emerge from this hedging exercise. First, as it was noted

in section 4.1, if the pricing rule E is correctly speci�ed, the price should equal E(y) (in

the VaR case we also need to know if y is fully hedged). Tables 1 to 6 reveal that in all

cases, the prices are signi�cantly di¤erent from E(y), which is attributed to the unhedged
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part in pricing y. These results highlight the role of the set X?. Indeed, the true stochastic

discount factor lies in the larger set X? \ �% for MV and CVaR, while for VaR we have a

family of Q%�s as in part 2 of Theorem 3.2. Our theory suggests that the true SDF has to be

represented as P + z, where z belongs to X?.

Second, while there is agreement across the di¤erent risk measures in hedging the term

spread, dividend yield and, to some extent, consumption growth, the hedging of in�ation, real

interest rate and default spread exhibit substantial heterogeneity both across and within risk

measures. For example, CVaR suggests that RF, SMB and TERM prove to be important

factors for hedging in�ation whereas the other risk measures indicate that these factors

are largely insigni�cant. Furthermore, there are di¤erences across the di¤erent quantile

regressions for CVaR and in some cases, depending on the level of �, the investor needs

to switch from �long� to �short�positions in order to hedge the underlying economic risk.

This illustrates the potential of alternative risk measures for robustifying the performance of

economic portfolios.

5 Conclusion

In this paper, we develop a framework for hedging and pricing �nancial and economic vari-

ables in the presence of market incompleteness and frictions. The generality of our proposed

approach to hedging and pricing allows us to accommodate a large family of risk measures

and pricing rules. We augment this robust approach with a set of market principles to study

the conditions under which the hedging problem admits a solution and pricing is possible.

Our paper is the �rst to accommodate and analyze non-convex risk and pricing rules which

are extensively used in risk management (such as Value at Risk and risk measures related

to Choquet expected utility) and actuarial applications. We illustrate the advantages of

our proposed method for hedging economic risk using monthly U.S. data for the 1952�2012

period.
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A Appendix: Proofs of Propositions and Theorems

A.1 Proof of Theorem 2.2

From Delbaen (2002), the equality in Theorem 2.2 holds for %� = VaR�. Therefore, since

the minimum is attained for VaR�, for any � there exists %� � VaR� such that %�(x0) =

VaR�(x0). Now introduce %(x) =
Z 1

0

%�(x)'(�)d�. It is easy to see that % is a coherent risk

measure such that % � %' and %(x0) = %'(x0), which proves the desired result.

A.2 Proof of Proposition 3.1

We only provide the proof of statement 1 since the proof of statement 2 follows very similar

arguments. Let g 2 X% and t 2 R+. Then,

�%(tg) = inf
x2X
f%(x� tg) + �(x)g = inf

tx2X
f%(tx� tg) + �(tx)g = t�%(x) 2 R:

Using the same argument, one can show that for g 2 X%, �%(x+ c) = �%(x) + c for all c 2 R.
Hence, we have that g + c 2 X%.
Now let g 2 X% and g � h. Because % is decreasing, we have that

%(x� h) + �(x) � %(x� g) + �(x):

By taking in�mum on X , we obtain that �%(h) 2 R.

A.3 Proof of Theorem 3.1

We begin by showing the equivalence between (N) and (NGD). To this end, we demonstrate

that both of them are equivalent to the following inequality:

%(x) + �(x) � 0 ; 8x 2 X : (A.1)

First, we show that (N) is equivalent to (A.1). Given (N), we have that �%(0) = 0 which,

by construction, implies (A.1). On the other hand, given (A.1) it is easy to see that �%(0) � 0.
In addition, by setting x = 0 in (A.1), it follows that �%(0) = 0.

Second, we show the equivalence between (A.1) and (NGD). Suppose that x is a Good

Deal, i.e., %(x) < 0 and �(x) � 0, which clearly implies %(x) + �(x) < 0. On the other hand,
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if (A.1) does not hold, we have that %(x)+ �(x) < 0 for some position x. By cash-invariance

of � and %; it is obvious that x� �(x) is a Good Deal.
Next, we demonstrate the equivalence between (NGD) and (C). Assume that (NGD) does

not hold. Then, there exists an x such that %(x) < 0 and �(x) � 0. Let y be a variable and
assume that c 2 R is such that y � c. Since tx� y � tx� c for all t > 0,

%(tx� y) + �(tx) � %(tx� c) + �(tx)
= %(tx) + c+ �(tx)

= t(%(x) + �(x)) + c! �1;

as t tends to +1. This shows that (2.13) does not have a �nite in�mum.
To establish (NGD) ) (C), assume that for a variable y; (2.13) does not have a �nite

in�mum. Let c 2 R be such that c � y. Since x� c � x� y for all �nancial positions x 2 X ,
we have that

%(x� c) � %(x� y) ) %(x) + c � %(x� y)
) %(x) + �(x) + c � %(x� y) + �(x):

Since (2.13) is not bounded, then there exists an x such that %(x�y)+�(x) < c. This yields
%(x) + �(x) < 0. Thus, it is clear that ~x = x� �(x) is a Good Deal.
Finally, we show (N) ) (CP) when X is a vector space and � is super-additive. Let

y 2 X and suppose that (N) holds. Since X is a vector space, we have that, for a given x,

X � x = X . Therefore, by construction,

%(x� y) + �(x� y) � �%(0) = 0

and by super-additivity of �;

%(x� y) + �(x)� �(y) � %(x� y) + �(x� y) � 0

which implies that %(x� y) + �(x) � �(y). Therefore, �%(y) = �(y).

A.4 Proof of Theorem 3.2

First, we prove the result for sub-additive risk measures and pricing rules. The following

proposition, which is a standard result in the literature on convex analysis, presents the

necessary and su¢ cient conditions under which solution to the hedging problem exists.
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Proposition A.1 Let f1; f2 : Rn ! R[f+1g be two convex functions. Then, the following
equality holds

inf
x2Rn

ff1(y � x) + f2(x)g = (f �1 + f �2 )�(x);

with the convention that sup(?) = �1.

In the particular case when f1(x) = ��(x) and f2(x) = �%(�x), we have

(f �1 + f
�
2 )(x) = �Q% + �R�+X?(x) = �Q%\(R�+X?)(x):

Therefore,

inf
x2X
f%(x� y) + �(x)g = sup

z2Q%\(R�+X?)

E(zy):

This proves the existence of the in�mum for the sub-additive case.

In the general case, we have

inf
x2X
f%D(x� y) + �M(x)g = inf

x2X

�
inf
%2D
%(x� y) + inf

�2M
�(x)

�
= inf

x2X

�
inf

%2D��2M
%(x� y) + �(x)

�
= inf

%2D��2M
f inf
x2X

%(x� y) + �(x)g:

Now assume that this problem has a �nite in�mum for every % 2 D and � 2 M. Therefore,
the inner problem inf

x2X
%(x� y) + �(x) is �nite for every % 2 D and � 2M. This implies the

nonemptiness of the intersection Q% \ (R� + X?) for every % 2 D and � 2M.
On the other hand, assume that intersections Q% \ (R� + X?) are nonempty for every

% 2 D and � 2M. Since % 2 D is a coherent risk measure, for any z 2 Q%\ (R�+X?) � Q%,

we have z � 0 and E(z) = 1. Therefore, E(zy) � �max jyj, which implies the uniform
boundedness of the inner problems and, therefore, boundedness of the main problem. This

completes the proof.

A.5 Proof of Theorem 3.4

1. The proof of this part is by contrapositive. Assume that x is not a solution to (2.13)

for (%D; �M). That means there exists a x
0 2 X such that

%D(x
0 � y) + �M(x0) < %D(x� y) + �M(x):
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Therefore, by construction of %D and �M, there exists a (%; �) 2 D�M such that

%(x0 � y) + �(x0) < %D(x� y) + �M(x) � %(x� y) + �(x):

But this is impossible since x is optimal for all (%; �) 2 D�M.

2. The proof of this statement is similar to the previous one.

3. By construction, we have (%; �) 2 D�M such that

%(x� y) = %D(x� y) and �(x) = �M(x):

Given the construction of %D and �M, it is clear that x is a solution to (2.13) for (%; �).

Therefore, according to Theorem 3.3, there exists a z 2 Q% \ (R� + X?) such that

%(x� y) = E(z(y � x)) and �(x) = E(zx):

Noting that �M(x) = �(x) and %D(x�y) = %(x�y) completes the proof of the theorem.
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MV CVaR0:9 CVaR0:95 VaR0:9 VaR0:95

Intercept 0.0026 0.0022
( 0.0001) ( 0.0002)

RF 0.0072 -0.6737 -0.7844 0.0058 0.0027

( 0.0558) ( 0.0705) ( 0.1106) ( 0.0041) ( 0.0019)

MARKET -0.0048 -0.0072 -0.0123 -0.0038 -0.0066
( 0.0029) ( 0.0030) ( 0.0043) ( 0.0013) ( 0.0023)

SMB -0.0008 0.0131 0.0383 -0.0008 -0.0003

( 0.0030) ( 0.0048) ( 0.0065) ( 0.0005) ( 0.0002)

HML 0.0022 0.0013 -0.0009 0.0038 0.0031

( 0.0042) ( 0.0013) ( 0.0006) ( 0.0016) ( 0.0023)

UMD 0.0015 0.0006 0.0002 0.0019 0.0023

( 0.0027) ( 0.0006) ( 0.0001) ( 0.0012) ( 0.0015)

TERM 0.0084 -0.1427 -0.1440 0.0025 0.0104

( 0.0109) ( 0.0162) ( 0.0263) ( 0.0018) ( 0.0070)

DEF -0.0265 0.1063 0.1370 -0.0246 -0.0227
( 0.0242) ( 0.0209) ( 0.0369) ( 0.0080) ( 0.0117)

Price 0.0023 0.0077 0.0093 0.0025 0.0037
( 0.0000) ( 0.0000) ( 0.0001) ( 0.0000) ( 0.0001)

Table 1: Hedging In�ation. The table reports the estimates and their corresponding boot-

strap errors (based on 400 bootstrap replications) for di¤erent risk measures (mean-variance

MV, conditional value-at-risk CVaR, and value-at-risk VaR). The bold font represents sta-

tistical signi�cance (at the 5% nominal level) of individual coe¢ cients except for the last row

where the bold font signi�es a statistically di¤erent price from E(y).
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MV CVaR0:9 CVaR0:95 VaR0:9 VaR0:95

Intercept 0.0021 0.0035
( 0.0001) ( 0.0002)

RF -0.0304 -0.1473 -0.6805 -0.0147 -0.0296

( 0.0563) ( 0.0621) ( 0.1000) ( 0.0063) ( 0.0380)

MARKET 0.0049 -0.0020 0.0094 0.0048 0.0038

( 0.0028) ( 0.0017) ( 0.0045) ( 0.0015) ( 0.0032)

SMB 0.0013 -0.0009 0.0042 0.0009 0.0013

( 0.0029) ( 0.0007) ( 0.0033) ( 0.0003) ( 0.0020)

HML -0.0029 -0.0142 0.0188 -0.0031 -0.0031

( 0.0042) ( 0.0042) ( 0.0072) ( 0.0012) ( 0.0037)

UMD -0.0008 -0.0346 -0.0011 -0.0007 -0.0007

( 0.0027) ( 0.0031) ( 0.0008) ( 0.0003) ( 0.0013)

TERM -0.0167 -0.0664 -0.1187 -0.0284 -0.0166

( 0.0109) ( 0.0123) ( 0.0239) ( 0.0065) ( 0.0133)

DEF 0.0205 0.1095 0.2810 0.0222 0.0226

( 0.0244) ( 0.0194) ( 0.0305) ( 0.0073) ( 0.0186)

Price 0.0023 0.0075 0.0110 0.0027 0.0035
( 0.0000) ( 0.0000) ( 0.0001) ( 0.0000) ( 0.0001)

Table 2: Hedging Real Interest Rate. The table reports the estimates and their corre-

sponding bootstrap errors (based on 400 bootstrap replications) for di¤erent risk measures

(mean-variance MV, conditional value-at-risk CVaR, and value-at-risk VaR). The bold font

represents statistical signi�cance (at the 5% nominal level) of individual coe¢ cients except

for the last row where the bold font signi�es a statistically di¤erent price from E(y).
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MV CVaR0:9 CVaR0:95 VaR0:9 VaR0:95

Intercept -0.0000 -0.0000

( 0.0012) ( 0.0018)

RF 0.3958 0.3782 0.3696 0.3886 0.3883
( 0.0922) ( 0.0877) ( 0.1094) ( 0.0526) ( 0.0898)

MARKET 0.0011 -0.0023 -0.0016 0.0018 0.0006

( 0.0043) ( 0.0061) ( 0.0095) ( 0.0005) ( 0.0006)

SMB 0.0034 0.0047 0.0033 0.0026 0.0028

( 0.0048) ( 0.0092) ( 0.0138) ( 0.0008) ( 0.0016)

HML 0.0071 0.0010 0.0013 0.0091 0.0078

( 0.0053) ( 0.0227) ( 0.0230) ( 0.0021) ( 0.0042)

UMD -0.0038 -0.0017 -0.0015 -0.0065 -0.0051

( 0.0042) ( 0.0069) ( 0.0099) ( 0.0018) ( 0.0026)

TERM 0.1346 0.1055 0.1024 0.1277 0.1532
( 0.0163) ( 0.0194) ( 0.0242) ( 0.0126) ( 0.0251)

DEF -0.0691 -0.0789 -0.0756 -0.0926 -0.0571
( 0.0296) ( 0.0307) ( 0.0341) ( 0.0138) ( 0.0268)

Price 0.0033 0.0057 0.0082 0.0029 0.0044
( 0.0000) ( 0.0001) ( 0.0002) ( 0.0001) ( 0.0002)

Table 3: Hedging Term Spread. The table reports the estimates and their corresponding boot-

strap errors (based on 400 bootstrap replications) for di¤erent risk measures (mean-variance

MV, conditional value-at-risk CVaR, and value-at-risk VaR). The bold font represents sta-

tistical signi�cance (at the 5% nominal level) of individual coe¢ cients except for the last row

where the bold font signi�es a statistically di¤erent price from E(y).
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MV CVaR0:9 CVaR0:95 VaR0:9 VaR0:95

Intercept 0.0010 0.0011
( 0.0000) ( 0.0001)

RF -0.0616 0.0358 -0.0017 -0.0572 -0.0359
( 0.0335) ( 0.0214) ( 0.0010) ( 0.0119) ( 0.0133)

MARKET -0.0008 0.0002 0.0115 -0.0011 -0.0005

( 0.0018) ( 0.0001) ( 0.0026) ( 0.0003) ( 0.0002)

SMB -0.0015 0.0030 -0.0090 -0.0016 -0.0027
( 0.0014) ( 0.0015) ( 0.0036) ( 0.0005) ( 0.0011)

HML -0.0005 0.0091 0.0177 -0.0004 -0.0001
( 0.0023) ( 0.0015) ( 0.0040) ( 0.0001) ( 0.0001)

UMD -0.0003 0.0026 0.0097 -0.0002 -0.0000
( 0.0012) ( 0.0010) ( 0.0026) ( 0.0001) ( 0.0000)

TERM -0.0147 -0.0153 -0.0169 -0.0135 -0.0005

( 0.0049) ( 0.0051) ( 0.0082) ( 0.0025) ( 0.0003)

DEF 0.0503 0.1078 0.0965 0.0498 0.0882
( 0.0125) ( 0.0063) ( 0.0158) ( 0.0052) ( 0.0079)

Price 0.0011 0.0036 0.0048 0.0009 0.0016
( 0.0000) ( 0.0000) ( 0.0001) ( 0.0000) ( 0.0001)

Table 4: Hedging Default Spread. The table reports the estimates and their corresponding

bootstrap errors (based on 400 bootstrap replications) for di¤erent risk measures (mean-

variance MV, conditional value-at-risk CVaR, and value-at-risk VaR). The bold font repre-

sents statistical signi�cance (at the 5% nominal level) of individual coe¢ cients except for the

last row where the bold font signi�es a statistically di¤erent price from E(y).
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MV CVaR0:9 CVaR0:95 VaR0:9 VaR0:95

Intercept 0.0007 0.0011
( 0.0001) ( 0.0001)

RF -0.0735 -0.0323 -0.0794 -0.0774 -0.0736
( 0.0148) ( 0.0291) ( 0.0352) ( 0.0074) ( 0.0104)

MARKET -0.0309 -0.0313 -0.0343 -0.0293 -0.0313
( 0.0010) ( 0.0015) ( 0.0017) ( 0.0012) ( 0.0016)

SMB -0.0000 0.0004 0.0000 -0.0000 -0.0000
( 0.0012) ( 0.0007) ( 0.0000) ( 0.0000) ( 0.0000)

HML -0.0028 -0.0026 -0.0020 -0.0029 -0.0032
( 0.0014) ( 0.0021) ( 0.0019) ( 0.0004) ( 0.0005)

UMD -0.0012 0.0016 -0.0028 -0.0013 -0.0015
( 0.0008) ( 0.0012) ( 0.0015) ( 0.0002) ( 0.0002)

TERM -0.0036 0.0146 -0.0163 -0.0035 -0.0040
( 0.0029) ( 0.0069) ( 0.0067) ( 0.0006) ( 0.0008)

DEF -0.0038 -0.0152 0.0276 -0.0037 0.0010
( 0.0044) ( 0.0083) ( 0.0105) ( 0.0008) ( 0.0002)

Price 0.0007 0.0018 0.0028 0.0007 0.0010
( 0.0000) ( 0.0000) ( 0.0000) ( 0.0000) ( 0.0000)

Table 5: Hedging Dividend Yield. The table reports the estimates and their corresponding

bootstrap errors (based on 400 bootstrap replications) for di¤erent risk measures (mean-

variance MV, conditional value-at-risk CVaR, and value-at-risk VaR). The bold font repre-

sents statistical signi�cance (at the 5% nominal level) of individual coe¢ cients except for the

last row where the bold font signi�es a statistically di¤erent price from E(y).
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MV CVaR0:9 CVaR0:95 VaR0:9 VaR0:95

Intercept 0.0059 0.0080
( 0.0003) ( 0.0005)

RF -0.2533 -0.0510 0.0696 -0.2882 -0.1159

( 0.1112) ( 0.0718) ( 0.1184) ( 0.0672) ( 0.0788)

MARKET 0.0082 0.0079 -0.0067 0.0074 0.0048

( 0.0056) ( 0.0062) ( 0.0102) ( 0.0023) ( 0.0037)

SMB 0.0256 0.0315 0.0467 0.0288 0.0237
( 0.0080) ( 0.0097) ( 0.0169) ( 0.0051) ( 0.0094)

HML 0.0132 0.0079 -0.0096 0.0034 0.0108

( 0.0080) ( 0.0089) ( 0.0141) ( 0.0020) ( 0.0075)

UMD -0.0034 0.0334 0.0546 -0.0032 -0.0032

( 0.0052) ( 0.0073) ( 0.0120) ( 0.0015) ( 0.0028)

TERM -0.0509 -0.0581 -0.0070 -0.0835 -0.0819
( 0.0241) ( 0.0223) ( 0.0160) ( 0.0165) ( 0.0263)

DEF -0.0568 0.0005 0.1904 -0.0562 -0.0802
( 0.0312) ( 0.0007) ( 0.0648) ( 0.0178) ( 0.0332)

Price 0.0054 0.0159 0.0223 0.0064 0.0083
( 0.0000) ( 0.0001) ( 0.0002) ( 0.0001) ( 0.0002)

Table 6: Hedging Consumption Growth. The table reports the estimates and their corre-

sponding bootstrap errors (based on 400 bootstrap replications) for di¤erent risk measures

(mean-variance MV, conditional value-at-risk CVaR, and value-at-risk VaR). The bold font

represents statistical signi�cance (at the 5% nominal level) of individual coe¢ cients except

for the last row where the bold font signi�es a statistically di¤erent price from E(y).
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