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1 Introduction

Any variable can be decomposed, by identity, into multiplicative absolute value and sign com-

ponents. One widely documented �nding in empirical work is that while the two multiplicative

components exhibit a substantial degree of predictability, the variable itself is often linearly

unpredictable. Anatolyev and Gospodinov (2010) capitalize on this observation and propose,

in a univariate setting, a model of joint dynamics of the components that is able to exploit

implicit nonlinearities, predictability in the marginals, dependence of the components etc. This

analytical setup also helps to construct the whole conditional predictive density (and various

conditional measures), uncover the sources of possible prediction failures of linear conditional

mean models, etc.

Given the rich information content and wide applicability of this approach, it is desirable

to extend it to a multivariate framework. In this paper, we propose a multivariate extension of

the decomposition model. We link the continuous marginals for the m absolute values and the

binary marginals for the m signs via a 2m-dimensional Gaussian copula. This choice of copula

is prompted by the �exibility and computability of the Gaussian copula whose parsimonious

parameterization is readily interpretable. We show how the likelihood function is constructed

from the data, how various conditional measures of interest (such as conditional means, vari-

ances, covariances and correlations, skewnesses and co-skewnesses, and so on) can be computed,

and how the parameter estimates behave in �nite samples. Finally, we work out an empirical

application to two bond returns of di¤erent maturity.

For notational simplicity, we detail the multiplicative decomposition approach of bivariate

processes, i.e. the case m = 2. This value of m helps keep the model parsimonious in order

to avoid the curse of dimensionality. While higher values of m do not change materially the

model�s appearance and present any challenges to the underlying theory, in practice they imply

a much higher risk of overparametrization. In addition, they bring in a need to consider a mul-

tivariate framework for binary directions-of-change. This does not often happens in economics

and �nance, with models like bivariate probit just beginning to gain attention recently (e.g.,

Nyberg, 2014); a rare exception is Anatolyev (2010).

It should be stressed that our approach is multi-purpose and trades o¤�exibility in modeling

the marginals (for volatility and direction) for analytical tractability of the joint density of the

2m components. More �exible functional and distributional forms could be allowed provided

that this preserves the analytical convenience and internal consistency of the model. Instead,

and this is the approach adopted in this paper, one could further improve the speci�cation of

the marginals by incorporating (functions of) additional predictors.
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The article is organized as follows. In Section 2 we discuss the construction of the joint

density and likelihood function as well as the computation of conditional measures. The numer-

ical properties of the proposed maximum likelihood estimator are evaluated in a Monte Carlo

experiment reported in Section 3. The usefulness of the method in a multivariate context is

illustrated by studying the predictability of intermediate-term and long-term government bond

returns. The empirical results from various di¤erent models, including the bivariate decompo-

sition model, are presented in Section 4. Section 5 concludes. The Appendix contains proofs,

derivations and auxiliary technical details.

2 Decomposition Approach

The decomposition approach is based on modeling the joint distribution of multiplicative com-

ponents of returns �their absolute values and signs, or, equivalently, directions. In a univariate

case, a positive marginal for the absolute values and a binary marginal for the signs are linked

by a copula, all three ingredients being conditional on the history of returns. In a m-variate

case, the ingredients of the decomposition model arem-variate positive �marginal�form absolute

values, m-variate binary �marginal�for m directions, and a 2m-dimensional copula that links all

components.

The marginals for absolute values have positive1 support by their positivity. We assume that

each of these m marginals are Weibull. One can use more �exible positive distributions (e.g.,

Gamma), but the use of Weibull appears to be su¢ cient in empirical applications in this paper

and in Anatolyev and Gospodinov (2010). Each of m binary marginals is, of course, Bernoulli.

The choice of the copula is vast. Anatolyev and Gospodinov (2010) in their application used

the Clayton, Frank, and Farley-Gumbel-Morgenstern copulas; Liu and Luger (2015) also used

rotated Clayton, etc. In the multivariate setting, we suggest using the multivariate Gaussian

copula, for a number of reasons. First, the Gaussian copula is fairly �exible in a multivariate

context: it is parameterized by m(2m � 1) parameters, which in case m = 2 equals 6. These

parameters are easily interpretable as degrees of dependence among di¤erent components, which

may not be the case with other copula choices. Second, the submodel for absolute values only in

this case is a multivariate MEM model with a Gaussian copula (as in Cipollini, Engle and Gallo,

2009), and the submodel for directions only is a multivariate probit model (Ashford and Sowden,

1970). Third, the Gaussian copula facilitates computations of various conditional distributions

involved in the likelihood because the multivariate Gaussianity is very tractable in these terms.

The general theory developed below, however, is applicable to other choices of the copula as

1Strictly speaking, the support should be non-negative, but we assume continuous distribution of returns which
makes the di¤erence inconsequential.
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well.

2.1 Univariate decomposition

To illustrate the main idea of our approach, we �rst present the univariate decomposition method

of Anatolyev and Gospodinov (2010). Let rt be a time series of returns. It can be decomposed

into two multiplicative components as

rt = jrtj sign(rt) = jrtj(2It � 1);

where It = Ifrt > 0g; and If�g denotes the indicator function. The univariate decomposition
method of Anatolyev and Gospodinov (2010) is based on joint dynamic modeling of the two

multiplicative components � �volatility� jrtj and �direction� It, a linear transformation of sign
sign(rt):

Let  t = E(jrtjjFt�1) be the conditional expectation of a conditionally Weibull distrib-
uted absolute value jrtj with a shape parameter &, denoted as jrtjjFt�1 � W( t; &). Let

pt = Prfrt > 0jFt�1g = �(�t) be the �success� (i.e. the market�s going up) probability of

the Bernoulli distributed direction It denoted as ItjFt�1 � B(pt). The joint distribution of the
two multiplicative components can be expressed as

(jrtj; It) jFt�1 � C(W( t; &);B(pt); %);

where2

C(w; y) = �2(�
�1(w);��1(y); %)

is a bivariate Gaussian copula with correlation parameter %. The processes  t and �t can be

speci�ed as functions of the variables in Ft�1 adding to the set of parameters.
Let us temporarily suppress the time indexing. Denote by fv(u) and Fv(u) the PDF and

CDF of the volatility component, and by p the success probability of the direction component.

The following Proposition is proved in Appendix A.1.

Proposition 1. The joint density/mass of the pair (jrj; I) is equal to

f(u; v) = fv(u) � fCd (u; v);

where fCd (u; v) is the Bernoulli PMF with �distorted�probability

pC(u) = �

 
��1(p)� %��1(Fv(u))p

1� %2

!
:

2Here and elsewhere �2m( �; �; :::; �| {z }
2m tim es

; R) is CDF of the standard 2m-dimensional normal distribution with corre-

lation matrix R:

3



In our case, fv(u) and Fv(u) are those of the Weibull distribution, and p = �(�) is probit

success probability. Restoring time indexing, the joint log-likelihood is

`r =
TX
t=1

log fW( t;&)(jrtj) +
TX
t=1

It log p
C
t + (1� It) log(1� pCt );

where the series of �distorted�probabilities is

pCt = �

 
�t + %�

�1(FW( t;&)(jrtj))p
1� %2

!

for t = 1; :::; T:

2.2 Bivariate decomposition

Now let r1;t and r2;t be two time series of returns. Each of them can be decomposed as

ri;t = jri;tj(2Ii;t � 1);

i = 1; 2; where Ii;t = Ifri;t > 0g. The two absolute values are Weibull W( i;t; & i); and the
two directions are Bernoulli B(pi;t); where  i;t = E(jri;tjjFt�1) and pi;t = Prfri;t > 0jFt�1g =
�(�i;t) : The information set Ft�1 now embeds individual information sets Fi;t�1 and possibly
information beyond the history of the two variables. Together, there are four components that

are linked through a copula:�
jr1;tj
jr2;tj

�
;

�
I1;t
I2;t

�
jFt�1 � C

 �
W( 1;t; &1)
W( 2;t; &2)

�
;

�
B(p1;t)
B(p2;t)

�
; R

!
;

where

C(w1; w2; y1; y2) = �4(�
�1(w1);�

�1(w2);�
�1(y1);�

�1(y2); R)

is a quartivariate Gaussian copula with correlation matrix

R =

2664
1 %v %1 %vd
%v 1 %dv %2
%1 %dv 1 %d
%vd %2 %d 1

3775 � � Rv Rvd
Rdv Rd

�
:

Let us temporarily suppress the time indexing. Denote the marginal CDFs of volatility

components by F1(u1) and F2(u2) and their marginal PDFs by f1(u2) and f1(u2): Denote the

success probabilities of the direction components by p1 and p2. The following Proposition whose

proof can be found in Appendix A.1 gives an expression for the quartivariate joint density/mass

function.
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Proposition 2. The joint density/mass of the quartuple (jr1;tj; jr2;tj; I1;t; I2;t) is equal to

f(u1; u2; v1; v2) = fv(u1; u2) � fCd (u1; u2; v1; v2);

where

fv(u1; u2) = f1(u1)f2(u2) � c(F1(u1); F2(u2); Rv)

is the bivariate PDF of the volatility submodel linked by the bivariate Gaussian copula c(w1; w2; Rv)

and

fCd (u1; u2; v1; v2) = pC11(u1; u2)
v1v2pC01(u1; u2)

(1�v1)v2pC10(u1; u2)
v1(1�v2)pC00(u1; u2)

(1�v1)(1�v2)

is the bivariate Bernoulli PMF with �distorted�probabilities

pC11(u1; u2) = 1� �1(u1; u2)� �2(u1; u2) + �12(u1; u2);

pC01(u1; u2) = �1(u1; u2)� �12(u1; u2);

pC10(u1; u2) = �2(u1; u2)� �12(u1; u2);

pC00(u1; u2) = �12(u1; u2);

where3

�1(u1; u2) = �2(�
�1(1� p1);��1(1)j��1(w1);��1(w2))

��
w1=F1(u1);w2=F2(u2)

�2(u1; u2) = �2(�
�1(1);��1(1� p2)j��1(w1);��1(w2))

��
w1=F1(u1);w2=F2(u2)

�12(u1; u2) = �2(�
�1(1� p1);��1(1� p2)j��1(w1);��1(w2))

��
w1=F1(u1);w2=F2(u2)

:

Note that the volatility-only submodel is the copula-based multivariate MEM (though with

di¤erent marginals) from Cipollini, Engle and Gallo (2009). Recall that the density of the

bivariate Gaussian copula is

c(w1; w2; %v) =
1p
detRv

exp

 
�1
2

�
��1(w1)

��1(w2)

�0 �
R�1v � I2

����1(w1)
��1(w2)

�!
:

Note also that (see Appendix A.2), if there were no links to the volatility submodel,

pCij = �(�1)ji�jj%d((�1)
i+1�1; (�1)j+1�2); i; j 2 f0; 1g

where �%(�; �) denotes a standard bivariate normal CDF with correlation coe¢ cient %; reducing
to the bivariate probit model (Ashford and Sowden, 1970). The algorithm of computations of

�1(u1; u2); �2(u1; u2) and �12(u1; u2) is described in Appendix A.3.

3The following expressions can be simpli�ed using that �2(y1;��1(1)) = �(y1) and �2(��1(1); y2) = �(y2):
However, we prefer not to do it for the sake of generality of further computations of conditional CDFs.
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In our case, fi(u) and Fi(u); i = 1; 2; are those of the Weibull distribution, and pi = �(�i) ;

i = 1; 2; are probit success probabilities. Restoring time indexing, the joint log-likelihood equals

`r =
TX
t=1

X
i=1;2

log fW( i;t;&i)(jri;tj) +
TX
t=1

c(FW( 1;t;&1)(jr1;tj); FW( 2;t;&2)(jr2;tj); %v)

+

TX
t=1

I1;tI2;t log p
C
11;t + (1� I1;t)I2;t log pC01;t + I1;t(1� I2;t) log pC10;t + (1� I1;t)(1� I2;t) log pC00;t;

where

pCij;t = pCij(jr1;tj; jr2;tj); i; j 2 f0; 1g; t = 1; :::; T;

is a collection of the series of �distorted�probabilities.

2.3 Computation of conditional measures

The decomposition model is a fully speci�ed parametric model, and hence allows computation of

various conditional measures such as conditional mean values, conditional variances, covariances

and correlations, and so on. In this subsection we give technical details how one can compute

conditional expectations of various functions of r1 and r2:

Suppose one is interested in the conditional expectation of g(r1; r2) for some function g(�; �).
The predictor for a general function of returns is, temporarily omitting conditioning on Ft�1
and time indexes,

E [g(r1; r2)] =
X

v12f0;1g

X
v22f0;1g

Z +1

u1=0

Z +1

u2=0
g(u1(2v1 � 1); u2(2v2 � 1))

fCd (v1; v2)fv(u1; u2)du1du2

=

Z +1

u1=0

Z +1

u2=0

�
g(�u1;�u2)pC00(u1; u2) + g(u1;�u2)pC10(u1; u2)
+g(�u1; u2)pC01(u1; u2) + g(u1; u2)pC11(u1; u2)

�
fv(u1; u2)du1du2;

where pCij(u1; u2); i; j 2 f0; 1g are de�ned before as functions of �1(u1; u2); �2(u1; u2) and
�12(u1; u2): If the function g(�; �) is de�ned over absolute values only, then, denoting g(r1; r2) =
h(jr1j; jr2j);

E [h(jr1j; jr2j)] =
Z +1

u1=0

Z +1

u2=0
h(u1; u2)fv(u1; u2)du1du2:

If g is a function of only one of returns, r1 say, the expression simpli�es:

E [g(r1)] =
X

v12f0;1g

X
v22f0;1g

Z +1

u1=0

Z +1

u2=0
g(u1(2v1 � 1))fCd (v1; v2)fv(u1; u2)du1du2

=

Z +1

u1=0

Z +1

u2=0
[g(�u1)�1(u1; u2) + g(u1) (1� �1(u1; u2))] fv(u1; u2)du1du2:
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Alternatively and more simply, one can proceed as in Anatolyev and Gospodinov (2010):

E [g(r1)] =

Z +1

u1=0

�
g(�u1)pC1;t(u1) + g(u1)

�
1� pC1;t(u1)

��
f1(u1)du1:

As a consequence, the conditional means can be computed as

Et�1 [r1;t] =

Z +1

u1=0

Z +1

u2=0
u1 (1� 2�1;t(u1; u2)) fv;t(u1; u2)du1du2;

and similarly for Et�1 [r2;t] ; or alternatively and more simply

Et�1 [r1;t] = 2Et�1 [jr1;tjI1;t]� Et�1 [jr1;tj] = 2�1;t �  1;t;

where

�1;t =

Z +1

u1=0

Z +1

u2=0
u1 (1� �1;t(u1; u2)) fv;t(u1; u2)du1du2

=

Z +1

u1=0
u1p

C
1;t(u1)du1

Z +1

u2=0
fv;t(u1; u2)du2

=

Z +1

u1=0
u1p

C
1;t(u1)f1;t(u1)du1;

and similarly for Et�1 [r2;t] : The conditional means can be used, among other things, for con-

structing the pseudo-R2 measure.

The conditional variances are simply

vart�1(r1;t) = Et�1
�
jr1;tj2

�
� Et�1 [r1;t]2 ;

where

Et�1
�
jr1;tj2)

�
=

Z +1

u1=0
u21

Z +1

u2=0
fv;t(u1; u2)du1du2;

and similarly for vart�1(r2;t): The conditional correlations are

corrt�1(r1;t) =
Et�1 [r1;tr2;t]� Et�1 [r1;t]Et�1 [r2;t]p

vart�1(r1;t)vart�1(r2;t)
;

where

Et�1 [r1;tr2;t] =

Z +1

u1=0

Z +1

u2=0
u1u2 (1� 2�1;t(u1; u2)� 2�2;t(u1; u2) + 4�12;t(u1; u2)) fv;t(u1; u2)du1du2:

The two-dimensional integrals involved in these formulas are straightforward to compute

using numerical methods. In our simulation and empirical work, we compute them via a product

Gauss�Chebychev quadrature with 100 Chebychev quadrature nodes on [0; 1], see Judd (1998,

p. 270).
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3 Simulation evidence

In this section, we investigate the �nite-sample properties of the maximum likelihood estimator of

the bivariate decomposition model. The simulation design is an �autoregressive�(not containing

extraneous predictors) version of the model used in the empirical section, with similar parameter

values. The design is intentionally made symmetric across the two variables.

The volatility equations are speci�ed as

ln i;t = !vi + �vi ln i;t�1 + �vij ln jrj;t�1j+ vijIj;t�1

for i; j = 1; 2: The parameter values are !vi = 0; �vi = 0:8; �vij = 0:1 for i = j and �vij = 0:05

for i 6= j, and vij = �0:3 for i = j and vij = 0:2 for i 6= j. That is, the persistence in volatility

is high, and its reaction to news about own components is higher than that to news about the

other variable�s components. The Weibull distribution shape parameters are &1 = &2 = 1:2:

The direction equations are speci�ed as

�i;t = !di + �dijIj;t�1

for i; j = 1; 2: The parameter values are !di = 0:3; �dij = 0:3 for i = j and �dij = �0:1 for i 6= j.

That is, the reaction of direction to own past directions is higher in absolute value than that

the other variable�s directions, and opposite in sign.

The elements of the dependence matrix R are set at %v = %d = 0:6 and %1 = %2 = %vd =

%dv = 0:2. That is, the namesake components are moderately correlated across variables; the

opposite components are weakly correlated both within the same variable and across variables.

Table 1 presents the mean and the standard deviation of the estimates across 1,000 replica-

tions for sample sizes n = 500 and n = 2000. To assess the accuracy of the asymptotic standard

errors and the asymptotic normality of the estimates, we also report the empirical size of the

individual t-tests at the 5% signi�cance level. Overall, the estimates appear unbiased and well

identi�ed. The empirical size of tests for the true value is also very close to the nominal level

of the test. From standard deviation one can see that the volatility equation coe¢ cients are

estimated on average twice as precisely as the direction equation coe¢ cients, the other vari-

able�s news impact coe¢ cients beating the record. Another interesting thing is that the degree

of volatility dependence is estimated twice as precisely as all other dependence coe¢ cients.

To evaluate the accuracy of the predictions from the bivariate decomposition model, we

compute the pseudo-R2 and compare it to the R2 from a linear model �tted to the simulated

data. Figure 1 plots the histogram of the R2 from the linear and decomposition models for

n = 500. It turns out that for this DGP the R2 �gures are small, indicating that the noise by far
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exceeds the signal, and one should not expect big R2 �gures in a corresponding application. The

decomposition model, being the true DGP, naturally produces a much higher R2 than the linear

model, and the corresponding distribution dominates that for the linear model. However, note

that there is a non-trivial fraction of simulations when the R2 from the linear model exceeds

that of the decomposition model, that there are discrepancies in the distributions across the

two variables that enter the model symmetrically, and that there are R2 �gures very close to

zero. These facts indicate that the pseudo-R2 is a very noisy measure of time-series �t in this

application, at least for such sample sizes. We will return to this issue in the empirical section

of the paper.

4 Bond return predictability

4.1 Motivation and data description

Predictability of bond returns has been the focus of renewed research interest in the recent

literature. Cochrane and Piazzesi (2005) provide strong evidence of predictability of excess

bond returns by a linear combination of forward rates. Some subsequent studies show that

the �rst few principal components from a large panel of US economic and �nancial time series

(Ludvigson and Ng, 2009), survey in�ation expectations (Chernov and Mueller, 2012) and a

cyclical component of past in�ation (Cieslak and Povala, 2015) also tend to be strong predictors

of future bond returns. The statistical magnitude of the bond return predictability and the

robustness of these �ndings are summarized in Du¤ee (2013). This predictive evidence may

at �rst appear to be at odds with the results that these additional factors are ine¤ective in

explaining the term structure of bond yields where the level, slope and the curvature of the

yield curve explain in excess of 99.5% of the cross-sectional variation of bond yields. However,

Du¤ee (2011) argues that this evidence can be reconciled if these are hidden factors; i.e., they

do not a¤ect the cross-section of yields but help to predict the future dynamics of bond returns.

In other words, the dimension of the state vector that determines current yields is smaller than

the dimension of the state vector that determines the expected bond yields and returns (Du¤ee,

2013).

Following Du¤ee (2013), this could be best illustrated using the conditional expectation

version of the main relationship linking long-term and short-term yields:

y
(n)
t =

1

n
Et

 
n�1X
h=0

y
(1)
t+h

!
+
1

n
Et

 
n�1X
h=0

r
(n)
t+h;t+h+1 � y

(1)
t+h

!
;

where y(n)t = � 1
n ln(P

(n)
t ) is the yield on an n-period zero-coupon bond with price P (n)t at time t

and r(n)t;t+1 � y
(1)
t = ln(P

(n�1)
t+1 =P

(n)
t )� y(1)t is the excess bond return between time t and t+1. It
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is then plausible to envision a situation when a hidden factor has a non-zero equal but opposite

e¤ect on both expectational terms of the right-hand side while passing undetected through the

cross-section of yields at time t. For more rigorous discussion of this, see Du¤ee (2011). Joslin,

Priebsch and Singleton (2014) propose a new framework for estimating dynamic term structure

model with such hidden (unspanned) macro factors.

In this application, we explore possible nonlinearities in the predictive relationship between

long-term (with average maturity of 20 years) and medium-term (with average maturity of 5

years) bond returns and two popular predictors: the Cochrane-Piazzesi factor (cpt) and S&P500

stock returns (spt). The Cochrane-Piazzesi factor is constructed from the following monthly

predictive regression (Cochrane and Piazzesi, 2005; Du¤ee, 2013):

rxt;t+1 = F 0t + "t+1;

where rxt;t+1 = 1
4

P5
n=2 r

(n)
t;t+1 � y

(1)
t are excess returns for a portfolio of bonds with 2-, 3-,

4- and 5-year maturities, Ft = [1; y
(1)
t ; f

(2)
t ; :::; f

(5)
t ; f

(2)
t�1; :::; f

(5)
t�1; :::; f

(2)
t�11; :::; f

(5)
t�11]

0 and f (i)t =

ln(P
(i�1)
t )� ln(P (i)t ) for i = 2; :::; 5 is the forward rate at time t for loans between time t+ i� 1

and t + i. The Cochrane-Piazzesi factor is then computed as cpt = F 0t ̂, where ̂ is the OLS

estimate from the above regression.

The yield data, used for constructing the Cochrane-Piazzesi factor, is obtained from the

U.S. Treasury yield curve of Gürkaynak, Sack and Wright (2007), maintained by the Federal

Reserve Board.4 The data for bond returns and S&P500 returns is from Ibbotson SBBI 2014

yearbook. We use returns on long-term government bonds (with an approximate maturity of

20 years) and intermediate-term government bonds (with an approximate maturity of 5 years).

The data are monthly observations covering the period January 1953 �December 2013. The

two series are denoted by r1 (LT) and r2 (IT), respectively.

The predictive regressions for bond returns are typically linear in the predictors and are

estimated separately for each maturity. The decomposition method allows for possible nonlin-

earities while the multivariate version of the method exploits possible dependencies between

long- and intermediate-term bond returns and their components.

4.2 Dynamic speci�cations and empirical results

As a benchmark, we use the linear univariate and bivariate models. The univariate version of

our benchmark linear models is

ri;t = !`i + �`iri;t�1 + �`ispt�1 + �`icpt�1

4Available at http://www.federalreserve.gov/Pubs/feds/2006/200628/200628abs.html.
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for i = 1; 2; and the multivariate version is

ri;t = !`i + �`iiri;t�1 + �`ijrj;t�1 + �`ispt�1 + �`icpt�1

for i; j = 1; 2. The estimation is performed via univariate and bivariate Gaussian QML, respec-

tively. The estimation results for the univariate and bivariate model are presented in Table 2.

For both univariate and bivariate versions, the external predictors have strong predictive power:

past stock returns have a negative e¤ect on bond returns, in line with the �great rotation�hy-

pothesis between stocks and bonds, and the Cochrane-Piazzesi factor tends to increase future

bond returns. In all cases, long-term bonds appear to react more strongly to changes in the

predictors. There is also a strong cross-e¤ect of lagged IT bond returns on LT bond returns but

not vice versa. As expected, the residuals of the two equations are highly positively correlated

with a correlation coe¢ cient of � = 0:82.

Along with the bivariate decomposition model, we also estimate the univariate decomposi-

tion models for both variables separately. In addition, we estimate bivariate stand-alone models

for absolute values only (bivariate MEM) and directions only (bivariate probit). Finally, the

univariate decomposition model combines the univariate volatility and directions submodels.

The bivariate decomposition model combines the bivariate volatility and directions submodels,

or, from the other perspective, it combines the two univariate decomposition models.

The speci�cations for the latent processes  i;t and �i;t are the same in these models as long

as they model the same number of variables. The conditional mean in the univariate model for

absolute returns (�volatility submodel�) is speci�ed as

ln i;t = !vi + �vi ln i;t�1 + �vi ln jri;t�1j+ viIi;t�1 + �vspt�1 + �vcpt�1

for i = 1; 2: The individual log-likelihood for the univariate volatility submodel for variable i is

given by

`vi =
TX
t=1

log fW ( i;t;&i)(jri;tj)

for i = 1; 2: This is maximized separately for each individual volatility model (or jointly, which

is equivalent). The conditional means in the bivariate model for absolute returns are speci�ed

as

ln i;t = !vi+�vi ln i;t�1+�vii ln jri;t�1j+viiIi;t�1+�vij ln jrj;t�1j+vijIj;t�1+�vispt�1+�vicpt�1

for i = 1; 2: The joint log-likelihood for the bivariate volatility submodel is

`v = `v1 + `v2 +
TX
t=1

log c(FW ( 1;t;&1)(jr1;tj); FW ( 2;t;&2)(jr2;tj); %v):

11



An additional parameter involved is the degree of conditional dependence %v between the two

absolute values. The construction of the excess dispersion test that tests for adequacy of Weibull

marginals is described in Anatolyev and Gospodinov (2010). The estimation results for the

univariate and bivariate (standalone) volatility submodels are reported in the middle part of

Table 3, and those for the univariate (bivariate) decomposition models are presented in the left

(right) panel of Table 3. The results indicate that both volatility processes are persistent. For

LT, past positive (negative) returns cause lower (higher) current volatility. As in the linear

model, the external predictors have a signi�cant e¤ect on volatility but both of these e¤ects

are now negative. Another di¤erence with the linear models of the conditional mean is that

the cross-e¤ects (of absolute returns and direction) are now from LT to IT. The two volatility

processes are moderately strongly dependent with %v = 0:6.

The latent variables that determine the conditional success probabilities in a univariate

probit model for directions (�direction submodel�) is given by

�i;t = !di + �diIi;t�1 + �dspt�1 + �dcpt�1

for i = 1; 2: The individual log-likelihood for the univariate direction submodel for variable i are

given by

`di =
TX
t=1

Ii;t log p1i;t + (1� Ii;t) log p0i;t:

The latent variables that determine the conditional success probabilities in a univariate probit

model for directions is given by

�i;t = !di + �diiIi;t�1 + �dijIj;t�1 + �dispt�1 + �dicpt�1

for i = 1; 2: The joint log-likelihood for the bivariate direction submodel is

`d =
TX
t=1

I1;tI2;t log p11;t+ I1;t(1� I2;t) log p10;t+(1� I1;t)I2;t log p01;t+(1� I1;t)(1� I2;t) log p00;t:

An additional parameter involved is the degree of conditional dependence %d between the two

directions. The estimation results for the stand-alone direction submodels, as well as the uni-

variate and bivariate decomposition models, are reported in Table 4. The direction model for

LT exhibits positive persistence. Furthermore, the past direction of LT returns a¤ects positively

the direction of IT returns. The lagged stock returns and the Cochrane-Piazzesi factor again

have a signi�cant (negative and positive, respectively) e¤ect on the direction of bond returns.

The dependence of the directional components is strong with %d = 0:84.

The estimates of the dependence matrix R for the decomposition model are collected in

Table 5. The parameters for the univariate decomposition models are the degree of component
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dependence %i for variable i = 1; 2: For the bivariate decomposition model, the two new elements

are %dv and %vd: The former indicates dependence between direction of LT and volatility of IT. It

is moderately large and highly signi�cant. The latter indicates dependence between direction of

IT and volatility of LT. It is close to zero and statistically insigni�cant. The positive and highly

signi�cant dependence between volatility of shorter-term bonds and the direction of longer-term

bond returns is interesting. It suggests that the volatility of the short-term bond returns appears

to be a priced risk that may not be necessarily revealed in a linear speci�cation.

4.3 Model comparison and prediction

Our model comparison includes univariate and bivariate linear models, bivariate stand-alone

(direction and volatility) models and univariate and bivariate decomposition models. Table 6

reports the values of the log-likelihood and Bayesian information criterion (BIC) for di¤erent

models. The linear model is dominated by the other models. The bivariate decomposition model

performs best despite the large number of estimated parameters. This is also con�rmed by con-

ducting of a likelihood ratio test in the bivariate decomposition model with restrictions imposed

by the nested standalone and univariate decomposition models. In both cases, the restrictions

are strongly rejected. Also, it is interesting to note that the pair of standalone bivariate volatility

and direction models outperforms the pair of univariate decomposition models. This �nding can

be attributed to the fact that the two series are strongly dependent �in dynamics�and much less

�in multiplicative components�.

We construct return predictions from the decomposition model as described in subsection

2.3. The actual and predicted returns from the decomposition model are plotted in Figure 2.

Table 7 provides information on the quality of the model predictions measured by the pseudo-

R2. Overall, the decomposition model tends to generate better predictions than linear model

with the bivariate version o¤ering noticeable improvements only for the long-term bond returns.

We would like to stress that a valuable feature of a fully speci�ed non-linear model for the

components, such as the decomposition model, is its ability of predict any function of these

components, while the pseudo-R2 measures the �t of only a small subset of these functions

(products of absolute values and signs). In contrast, the linear model is intrinsically tied to that

objective and, as our simulations showed, the use of pseudo-R2 places the decomposition model

at a disadvantage. Nevertheless, we report the pseudo-R2 given its popularity in applied work.

As indicated above, a fully-speci�ed model such as the bivariate decomposition model can

be used to derive the dynamics of any moments and co-moments of the predictive distribution

of returns. Figure 3 plots the conditional variances of r1 and r2 as well as their conditional

correlation. The conditional variances are characterized by sharp rises in the early 70s, early

13



80s and during the recent �nancial crisis. While the conditional correlation is large and stable,

it also exhibits sharp movements during the business cycle.

5 Conclusions

This paper is concerned with the development of a multivariate version of the multiplicative

decomposition approach of Anatolyev and Gospodinov (2010). A particular attention is paid

to the parsimony, tractability and interpretability of this multivariate extension. The marginals

for the m absolute values and the binary marginals for the m directions are linked through

a 2m-dimensional Gaussian copula which is parameterized by m(2m � 1) parameters. The

computation of various conditional measures of interest are also discussed. We show how this

approach allows one to uncover some important dependencies that remain hidden in the usual

analysis of multivariate models.
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Appendix

A.1 Proofs

Proof of Proposition 1. We will suppress the time index throughout. Anatolyev and Gospodi-

nov (2010) derive the multivariate structure of the density as in Proposition 1. What is left is

to compute the distorted success probability in the case of Gaussian copula. Because

@�2(x1; x2)

@x1
=

@

@x1

Z x1

�1

Z x2

�1
�2(t1; t2)dt1dt2

=

Z x2

�1

�
@

@x1

Z x1

�1
�2(t1; t2)dt1

�
dt2

=

Z x2

�1
�2(x1; t2)dt2

= � (x1)

Z x2

�1
�(t2jx1)dt2

= � (x1) � (x2jx1)

and hence

@C(w; y)

@w
=

@�2(�
�1(w);��1(y); %)

@w
=
@�2(x1; x2)

@x1

����
x1=��1(w);x2=��1(y)

@��1(w)

@w

= � (x1) � (x2jx1; %)jx1=��1(w);x2=��1(y)
1

� (x1)

����
x1=��1(w)

= �
�
��1(y)j��1(w); %

�
= �

 
��1(y)� %��1(w)p

1� %2

!

we have, from Anatolyev and Gospodinov (2010), the distorted success probability is

pC = 1� @C(w; y)

@w

����
w=F (u);y=1��(�)

= �

 
� + %��1(F (u))p

1� %2

!
:

�
Proof of Proposition 2. We will suppress the time index throughout. Likewise, denote the

marginal (Bernoulli) CDFs of direction components by G1(v1) and G2(v2) and their marginal

success probabilities by p1 and p2: The joint CDF of the quadruple (u1; u2; v1; v2) is

F (u1; u2; v1; v2) = C(F1(u1); F2(u2); G1(v1); G2(v2)):

The joint PDF/PMF is derived by taking the second derivative with respect to the two contin-
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uous components and second-order di¤erence with respect to the two discrete components:

f(u1; u2; v1; v2) =
@2C

@u1@u2
(F1(u1); F2(u2); G1(v1); G2(v2))

� @2C

@u1@u2
(F1(u1); F2(u2); G1(v1 � 1); G2(v2))

� @2C

@u1@u2
(F1(u1); F2(u2); G1(v1); G2(v2 � 1))

+
@2C

@u1@u2
(F1(u1); F2(u2); G1(v1 � 1); G2(v2 � 1))

= f1(u1)f2(u2)f@@(u1; u2; v1; v2);

where the last term is

f@@(u1; u2; v1; v2) =

�
@2C

@w1@w2
(w1; w2; G1(v1); G2(v2))

� @2C

@w1@w2
(w1; w2; G1(v1 � 1); G2(v2))

� @2C

@w1@w2
(w1; w2; G1(v1); G2(v2 � 1))

+
@2C

@w1@w2
(w1; w2; G1(v1 � 1); G2(v2 � 1))

�
w1=F1(u1);w2=F2(u2)

= q11(u1; u2)
v1v2q01(u1; u2)

(1�v1)v2q10(u1; u2)
v1(1�v2)q00(u1; u2)

(1�v1)(1�v2);

where

q11(u1; u2) =
@2C

@w1@w2
(F1(u1); F2(u2); 1; 1)�

@2C

@w1@w2
(F1(u1); F2(u2); 1� p1; 1)

� @2C

@w1@w2
(F1(u1); F2(u2); 1; 1� p2) +

@2C

@w1@w2
(F1(u1); F2(u2); 1� p1; 1� p2);

q01(u1; u2) =
@2C

@w1@w2
(F1(u1); F2(u2); 1� p1; 1)�

@2C

@w1@w2
(F1(u1); F2(u2); 1� p1; 1� p2)

q10(u1; u2) =
@2C

@w1@w2
(F1(u1); F2(u2); 1; 1� p2)�

@2C

@w1@w2
(F1(u1); F2(u2); 1� p1; 1� p2)

q00(u1; u2) =
@2C

@w1@w2
(F1(u1); F2(u2); 1� p1; 1� p2)

taking advantage of the fact that C(w1; w2; y1; 0) = C(w1; w2; 0; y2) = C(w1; w2; 0; 0) = 0: Using

17



that

@2�4(x1; x2; x3; x4)

@x1@x2
=

@

@x1

@

@x2

Z x1

�1

Z x2

�1

Z x3

�1

Z x4

�1
�4(t1; t2; t3; t4)dt1dt2dt3dt4

=

Z x3

�1

Z x4

�1

�
@

@x1

@

@x2

Z x1

�1

Z x2

�1
�4(t1; t2; t3; t4)dt1dt2

�
dt3dt4

=

Z x3

�1

Z x4

�1
�4(x1; x2; t3; t4)dt3dt4

= �2(x1; x2)

Z x3

�1

Z x4

�1
�2(t3; t4jx1; x2)dt3dt4

= �2(x1; x2)�2(x3; x4jx1; x2);

we have

@2C(w1; w2; y1; y2)

@w1@w2
=

@2�4(�
�1(w1);��1(w2);��1(y1);��1(y2))

@w1@w2

=
@2�4(x1; x2; x3; x4)

@x1@x2

����
x1=��1(w1);x2=��1(w2);x3=��1(y1);x4=��1(y2)

�@�
�1(w1)

@w1

@��1(w2)

@w2
= �2(x1; x2)�2(x3; x4jx1; x2)jx1=��1(w1);x2=��1(w2);x3=��1(y1);x4=��1(y2)

� 1

� (x1)

����
x1=��1(w1)

1

� (x2)

����
x2=��1(w2)

=
�2(�

�1(w1);��1(w2))

� (��1(w1))� (��1(w2))
�2(�

�1(y1);�
�1(y2)j��1(w1);��1(w2))

= cN (w1; w2; %v)�2(�
�1(y1);�

�1(y2)j��1(w1);��1(w2));

where

c(w1; w2; %v) =
1p
detRv

exp

 
�1
2

�
��1(w1)

��1(w2)

�0 �
R�1v � I2

����1(w1)
��1(w2)

�!
is bivariate Gaussian copula. Then,

qij(u1; u2) = c(F1(u1); F2(u2); %v) � pCij(u1; u2);

i; j 2 f0; 1g; where, using also that �2(��1(1);��1(1)j��1(w1);��1(w2)) = 1; we get

pC11(u1; u2) = 1� �1(u1; u2)� �2(u1; u2) + �12(u1; u2)

pC01(u1; u2) = �1(u1; u2)� �12(u1; u2)

pC10(u1; u2) = �2(u1; u2)� �12(u1; u2)

pC00(u1; u2) = �12(u1; u2);
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where

�1(u1; u2) = �2(�
�1(1� p1);��1(1)j��1(w1);��1(w2))

��
w1=F1(u1);w2=F2(u2)

�2(u1; u2) = �2(�
�1(1);��1(1� p2)j��1(w1);��1(w2))

��
w1=F1(u1);w2=F2(u2)

�12(u1; u2) = �2(�
�1(1� p1);��1(1� p2)j��1(w1);��1(w2))

��
w1=F1(u1);w2=F2(u2)

:

Now, collecting the pieces,

f(u1; u2; v1; v2) = f1(u2)f1(u2) � (q11)v1v2 (q01)(1�v1)v2 (q10)v1(1�v2) (q00)(1�v1)(1�v2)

= f1(u2)f1(u2) � cN (F1(u1); F2(u2); %v)

�
�
pC11
�v1v2 �

pC01
�(1�v1)v2 �

pC10
�v1(1�v2) �

pC00
�(1�v1)(1�v2)

= fv(u1; u2) � fCd (u1; u2; v1; v2);

where

fv(u1; u2) = f1(u1)f2(u2) � c(F1(u1); F2(u2); %v)

is the normal copula-induced bivariate PDF of the volatility submodel, and

fCd (u1; u2; v1; v2) = pC11(u1; u2)
v1v2pC01(u1; u2)

(1�v1)v2pC10(u1; u2)
v1(1�v2)pC00(u1; u2)

(1�v1)(1�v2)

is the bivariate Bernoulli PMF of the direction submodel with �distorted�probabilities. �

A.2 Special case: no link to volatility

When the bivariate direction model is separate from the volatility model, it reduces to the

conventional bivariate probit model (Ashford and Sowden, 1970). Indeed,

pC00 = �%d(�
�1(1� p1);��1(1� p2)) = �%d(��1;t;��2;t)

pC01 = 1� � (�1;t)� �%d(��1;t;��2;t) = � (��1;t)�
�
� (��1;t)� ��%d(��1;t; �2;t)

�
= ��%d(��1;t; �2;t);

pC10 = 1� � (�2;t)� �%d(��1;t;��2;t) = � (��2;t)�
�
� (��2;t)� ��%d(�1;t;��2;t)

�
= ��%d(�1;t;��2;t)

pC11 = 1� (1� � (�1;t))� (1� � (�2;t)) + �%d(��1;t;��2;t)

= � (�1;t) + � (�2;t)� 1 +
�
� (��1;t)� ��%d(��1;t; �2;t)

�
= �(�2;t)� ��%d(��1;t; �2;t)

=
�
�%d (�1;t; �2;t) + ��%d (��1;t; �2;t)

�
� ��%d(��1;t; �2;t)

= � (�1;t; �2;t; %d)
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A.3 Computation of conditional distributions

Note that �1(u1; u2); �2(u1; u2) and �12(u1; u2) all have the form

�2

��
y1
y2

�
j
�
x1
x2

��

after plugging in a value of
�
y1
y2

�
from the set

��
y1
y2

�
;

�
y1
y2

�
;

�
y1
y2

��
; and

�
x1
x2

�
=

�
��1(F1(u1))

��1(F2(u2))

�
:

This is a CDF of a subvector of a quartivariate normal random variable and thus is (conditional)

bivariate normal.

Represent this CDF by the from law of total probability asZ y2

�1
�

�
y1j�y2;

�
x1
x2

��
�

�
�y2j
�
x1
x2

��
d�y2; (A1)

where �
�
y1j�y2;

�
x1
x2

��
is a CDF of a univariate conditional (on �y2; x1 and x2) normal random

variable with the mean

%01j2vR
�1
2v

0@ �y2
x1
x2

1A
and variance 1� %01j2vR

�1
2v %1j2v; where

R2v =

24 1 %vd %2
%vd 1 %v
%2 %v 1

35 ; %1j2v =

24 %d
%1
%dv

35 ;
and �

�
�y2j
�
x1
x2

��
is a PDF of a univariate conditional (on x1 and x2) normal random variable

with mean e2RdvR�1v

�
x1
x2

�
and variance 1� e02RdvR�1v Rvde2; where ei is ith unit vector.

We evaluate the integral (A1) using the Gauss-Chebychev quadrature with 400 Chebychev

quadrature nodes on [�5; y2]. See formulas (7.2.5) and (7.2.7) in Judd (1998).
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Table 1. Simulation results for the bivariate decomposition model.

n = 500 n = 2000

parameter true value mean stdev t mean stdev t

!v1 0 �0:018 0:065 0:049 �0:004 0:029 0:048
�v1 0:8 0:800 0:032 0:068 0:800 0:015 0:064
�v11 0:1 0:095 0:024 0:078 0:099 0:011 0:051
v11 �0:3 �0:302 0:054 0:074 �0:301 0:027 0:062
�v12 0:05 0:049 0:017 0:075 0:050 0:008 0:047
v12 0:2 0:203 0:052 0:072 0:200 0:025 0:055
&1 1:2 1:208 0:041 0:042 1:202 0:021 0:053
!v2 0 �0:017 0:064 0:051 �0:003 0:028 0:054
�v2 0:8 0:801 0:031 0:081 0:801 0:014 0:053
�v21 0:05 0:050 0:017 0:069 0:050 0:008 0:056
v21 0:2 0:202 0:053 0:063 0:201 0:025 0:056
�v22 0:1 0:094 0:024 0:084 0:099 0:011 0:057
v22 �0:3 �0:303 0:054 0:065 �0:301 0:025 0:047
&2 1:2 1:207 0:041 0:040 1:203 0:020 0:051

!d1 0:3 0:308 0:117 0:057 0:302 0:056 0:047
�d11 0:3 0:294 0:133 0:050 0:299 0:063 0:035
�d12 �0:1 �0:106 0:136 0:052 �0:103 0:067 0:057
!d2 0:3 0:309 0:118 0:063 0:302 0:055 0:053
�d21 �0:1 �0:103 0:134 0:050 �0:101 0:066 0:052
�d22 0:3 0:296 0:132 0:044 0:297 0:064 0:041

%v 0:6 0:601 0:029 0:066 0:599 0:014 0:043
%d 0:6 0:602 0:055 0:058 0:600 0:029 0:066
%1 0:2 0:204 0:056 0:051 0:202 0:029 0:052
%2 0:2 0:202 0:057 0:050 0:202 0:028 0:047
%vd 0:2 0:202 0:057 0:046 0:201 0:028 0:058
%dv 0:2 0:203 0:056 0:050 0:202 0:029 0:062

Notes: The tables present the Monte Carlo mean estimate (mean), its standard deviation (stdev)

and the empirical size of the t-test (t) for each individual parameter at the 5% signi�cance level.

The �rst block contains parameters of volatility equations, the second block contains parameters

of direction equations, the third block contains component dependence parameters. The number

of Monte Carlo replications is 1,000 and the sample sizes are n = 500 and n = 2000.
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Table 2. Estimation results for the univariate and multivariate linear model.

Univariate linear Multivariate linear
parameter LTLT ITIT parameter LTLT+IT ITLT+IT

!`i 0:00229
(0:0012)

0:00283
(0:00068)

!`i 0:00120
(0:00111)

0:00287
(0:00064)

�`i 0:040
(0:054)

0:132
(0:049)

�`ii �0:170
(0:105)

0:109
(0:09782)

�`i �0:0905
(0:0311)

�0:0588
(0:0157)

�`i �0:0889
(0:0301)

�0:0593
(0:0151)

�`i 0:438
(0:094)

0:253
(0:051)

�`i 0:399
(0:095)

0:253
(0:051)

�`ij 0:493
(0:179)

0:014
(0:049)

�`i 0:0272
(0:0011)

0:0139
(0:0007)

�`i 0:0269
(0:0010)

0:0139
(0:0007)

� 0:819
(0:017)

Notes: Estimation based on the Gaussian quasi-density. Standard errors are reported in paren-

theses below the estimate. � is the correlation coe¢ cient between the innovations of the two

equations.
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Table 3. Estimation results for the univariate and multivariate volatility submodels.

Univariate MEM Multivariate MEM
Decomposition Volatility only Decomposition

parameter LTLT ITIT parameter LTLT+IT ITLT+IT LTLT+IT ITLT+IT
!vi �0:024

(0:035)
�0:095
(0:089)

!vi �0:032
(0:052)

�0:388
(0:149)

�0:026
(0:056)

�0:351
(0:136)

�vi 0:886
(0:016)

0:870
(0:029)

�vi 0:877
(0:016)

0:764
(0:042)

0:882
(0:017)

0:783
(0:036)

�vi 0:087
(0:012)

0:083
(0:015)

�vii 0:071
(0:016)

0:070
(0:020)

0:066
(0:016)

0:061
(0:020)

vi �0:079
(0:029)

�0:100
(0:038)

vii �0:120
(0:035)

�0:003
(0:045)

�0:124
(0:035)

0:027
(0:051)

�vi �0:958
(0:326)

�1:100
(0:348)

�vi �0:888
(0:310)

�1:274
(0:440)

�0:851
(0:302)

�1:146
(0:414)

�vi 0:642
(0:525)

�0:237
(0:811)

�vi 0:485
(0:508)

2:231
(1:260)

0:423
(0:525)

1:877
(1:172)

& i 1:207
(0:037)

1:114
(0:033)

& i 1:248
(0:037)

1:159
(0:033)

1:249
(0:037)

1:159
(0:033)

�vij 0:021
(0:014)

0:063
(0:021)

0:022
(0:014)

0:066
(0:020)

vij 0:047
(0:035)

�0:120
(0:045)

0:053
(0:038)

�0:129
(0:046)

%v 0:604
(0:024)

0:603
(0:024)

ED �0:49 �0:42 ED �0:80 1:11 0:22 0:49

Notes: Standard errors are reported in parentheses below the estimate. ED is excess dispersion

test statistics for validity of conditionally Weibull marginal.
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Table 4. Estimation results for the univariate and multivariate direction submodels.

Univariate Probit Multivariate Probit
Decomposition Direction only Decomposition

parameter LTLT ITIT parameter LTLT+IT ITLT+IT LTLT+IT ITLT+IT
!di �0:023

(0:078)
0:256
(0:089)

!di �0:023
(0:087)

0:176
(0:088)

0:049
(0:082)

0:206
(0:089)

�di 0:156
(0:096)

0:245
(0:103)

�dii 0:137
(0:122)

�0:011
(0:133)

0:135
(0:115)

�0:021
(0:141)

�di �2:53
(1:15)

�4:44
(1:19)

�di �2:43
(1:14)

�4:57
(1:17)

�2:33
(1:123)

�4:36
(1:11)

�di 18:66
(4:42)

�10:99
(4:58)

�di 18:28
(4:31)

11:59
(4:50)

15:66
(4:30)

9:24
(4:45)

�dij 0:025
(0:126)

0:445
(0:127)

�0:015
(0:105)

0:434
(0:130)

%d 0:845
(0:026)

0:835
(0:026)

Notes: Standard errors are reported in parentheses below the estimate.
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Table 5. Estimates of degrees of dependence from the univariate and multivariate

decomposition models.

Decomposition models
parameter Univariate Bivariate

%1 0:136
(0:046)

0:123
(0:045)

%2 0:152
(0:048)

0:203
(0:045)

%v 0:603
(0:024)

%d 0:835
(0:026)

%vd �0:022
(0:047)

%dv 0:300
(0:042)

Notes: Standard errors are reported in parentheses below the estimate.
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Table 6. Mean log-likelihoods ` and BIC.

Model Linear Bivariate standalone Decomposition
Univariate Bivariate Volatility Direction Univariate Bivariate

k 6 6 16 19 11 12 12 34

Partial ` 2:1840 2:8599 6:8378 �1:0702 2:3337 2:9895
Total ` 5:0439 5:6099 5:7676 5:3232 5:8085

BIC �7305:1 �8107:4 �8245:9 �7634:9 �8279:39

Notes: BIC is computed as BIC = �2T`+ k lnT .
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Table 7. Equation-by-equation pseudo-R2.

Univariate Bivariate
LTLT ITLT LTLT+IT ITLT+IT

Linear model 5:15% 8:95% 7:21% 8:91%
Decomposition model 5:10% 9:70% 5:34% 8:22%
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Figure 1: Histogram of pseudo-R2 of linear and decomposition model in Monte Carlo simulations.
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Figure 2: Actual and predicted long-term (r1) and intermediate-term (r2) government bond
returns.
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Figure 3: Conditional variances and correlation of long-term (r1) and intermediate-term (r2)
government bond returns.
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