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1 Introduction

Given the complexity of the economic and �nancial systems, it seems natural to view all economic

models only as approximations to the true data generating process (Watson, 1993; White, 1994;

Canova, 1994; among others). As argued by Maasoumi (1990), �Misspeci�cation of these models is

therefore endemic and inevitable. Omission of relevant variables, inclusion of �irrelevant variables�,

incorrect functional forms, incompleteness of systems of relations, and incorrect distributional as-

sumptions are both common and present simultaneously.�

Models for which the likelihood function is available are now routinely estimated in a quasi-

maximum likelihood framework and the statistical inference is performed using misspeci�cation-

robust standard errors (White, 1982, 1994). In contrast, misspeci�cation-robust inference for mo-

ment condition models, estimated by the generalized method of moments (GMM), is much less

widespread among applied researchers. It is still common practice to use the asymptotic standard

errors of Hansen (1982), derived under the assumption of correct model speci�cation, even when

the model is rejected by the data. This is unfortunate since most economic models are de�ned by a

set of conditional or unconditional moment restrictions and not allowing for possible (global) mis-

speci�cation of these moment restrictions would render the GMM inference asymptotically invalid.

Maasoumi and Phillips (1982) and Gallant and White (1988) provide an early analysis of in-

ference in globally misspeci�ed models estimated by instrumental variables and GMM with a �xed

weighting matrix, respectively. Hall and Inoue (2003) extended the asymptotic analysis in these

studies to the two-step and iterated GMM estimators. They derived the limiting variance of these es-

timators in the presence of model misspeci�cation and showed that the misspeci�cation adjustment

depends on the weighting matrix used in estimation. The consequences of model misspeci�cation

for GMM estimation and inference are summarized in Hall (2005). Despite these recent advances

in the literature, the use of misspeci�cation-robust standard errors in empirical work with GMM

estimators is largely absent.

Misspeci�cation-robust inference proves to be particularly important in evaluating linear asset-

pricing models that are often found to be rejected by the data (see Kan and Robotti, 2009, Kan,

Robotti, and Shanken, 2013, and Gospodinov, Kan, and Robotti, 2013, 2014, among others). While

invariant estimators are believed to posses a number of appealing properties, misspeci�cation-robust

inference for these estimators is not yet available in the literature. In this paper, we derive explicit
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expressions for the asymptotic variances of the ML and the continuously-updated GMM (CU-

GMM) estimators (Hansen, 1982; Hansen, Heaton, and Yaron, 1996) in potentially misspeci�ed

asset-pricing models.

We focus on the ML and CU-GMM estimators for several reasons. First, the invariance of these

estimators to normalizations and transformations of the data is particularly desirable in asset-

pricing models (Peñaranda and Sentana, 2015) that could be written in both beta-pricing and

stochastic discount factor (SDF) form. Second, the CU-GMM estimator is a member of the class

of generalized empirical likelihood (GEL) estimators (Newey and Smith, 2004), which provides an

alternative look into the �rst- and higher-order asymptotic properties of the CU-GMM estimator.

In fact, we use the GEL framework to parameterize the degree of model misspeci�cation as the

distance of the pseudo-true value of the vector of Lagrange multipliers, associated with the mo-

ment conditions, from zero and cast the CU-GMM estimator as a solution to a quasi-likelihood

problem. This allows us to work directly with the score function and to sidestep some explicit

joint normality assumptions in the approach of Hall and Inoue (2003). Due to the quasi-likelihood

interpretation of the estimated augmented parameter vector (the parameters of interest and the

Lagrange multipliers), the asymptotic variance of the CU-GMM estimator takes the usual sandwich

form as in White (1982, 1994). In this respect, we complement the results in Kitamura (1998) and

Schennach (2007), and provide an explicit expression for the asymptotic variance of the CU-GMM

estimator in potentially misspeci�ed models. Our results for CU-GMM are derived for linear as

well as nonlinear moment condition models.

On the other hand, the maximum likelihood (ML) estimator is developed only for linear beta-

pricing models. The usefulness of this estimator is that it can be obtained in a closed form, which

facilitates its practical implementation and theoretical analysis. One possibility in deriving the

asymptotic distribution of the ML estimator under potentially misspeci�ed models is to extend

the two-stage Gaussian quasi-maximum likelihood setting of White (1994), which is robust to

distributional assumptions and model misspeci�cation. In contrast, we maintain the normality

assumption, which is often imposed in the ML estimation of the beta-pricing model, to obtain a

more explicit expression for the asymptotic variance of the estimator. The proposed asymptotic

standard errors help us quantify the importance of the model misspeci�cation adjustment when

conducting statistical inference. Furthermore, our setup allows us to express the ML estimator as

an optimal minimum distance estimator and approximate its limiting behavior under misspeci�ed
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models using analytical tools for moment condition models as in Hall and Inoue (2003).

Overall, our theoretical and simulation results suggest that the impact of model misspeci�cation

on the asymptotic variance of the ML and CU-GMM estimators can be very large and of practical

economic signi�cance. It turns out that the size distortions arising from wrongly assuming correct

model speci�cation are much larger for these invariant estimators than for the non-invariant esti-

mators studied by Kan and Robotti (2009), Kan, Robotti, and Shanken (2013), and Gospodinov,

Kan, and Robotti (2013). For example, the rejection rate of the centered t-test that does not

account for model misspeci�cation could be as large as 71% for CU-GMM at the 10% signi�cance

level with 300 observations and a degree of model misspeci�cation calibrated to actual data. The

proposed misspeci�cation-robust standard errors correct these size distortions and, interestingly,

provide substantial improvements even when the model is correctly speci�ed.

The rest of the paper is structured as follows. Sections 2 and 3 derive the limiting distributions

of the ML and CU-GMM estimators in misspeci�ed linear asset-pricing models. The asymptotic

results for the CU-GMM estimator are also extended to general nonlinear moment condition mod-

els. Section 4 provides simulation results on the empirical size and power of t-tests computed with

standard errors under correct model speci�cation and misspeci�cation-robust standard errors. Sec-

tion 5 illustrates the economic signi�cance of the proposed misspeci�cation adjustment using actual

data for several popular asset-pricing models. Section 6 concludes.

2 ML Estimation and Misspeci�cation-Robust Inference in the
Beta-Pricing Representation

In this section, we discuss the maximum likelihood approach to estimation and statistical inference

in unconditional beta-pricing models. Suppose that Rt, the gross returns on N test assets at time

t (t = 1; : : : ; T ), can be described by the following data generating process:

Rt = �+ �ft + �t; (1)

where ft denotes the realizations of K systematic factors at time t and �t are the model innovations

at time t with E[�t] = 0N and E[ft�0t] = 0K�N . Taking expectations on both sides yields

�R = �+ ��f ; (2)
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where �f = E[ft] and �R = E[Rt]. Under the K-factor asset-pricing model, we have

�R = 1N
0 + �
1; (3)

where 1N is an N � 1 vector of ones, 
0 is the zero-beta rate, and 
1 is the vector of risk premia

associated with the K risk factors ft. Let 
 = [
0; 

0
1]
0 2 � denote the parameter vector of interest.

Comparing (2) with (3), we have the following restrictions on �:

� = 1N
0 + ��; (4)

where � = 
1 � �f . The multi-factor model can be written in matrix form as

Y = XB + E ; (5)

where B = [�; �]0, and the typical rows of X, Y , and E are x0t = [1; f 0t], R0t, and �0t, respectively.

Assumption MLE.A. Assume that (a) (ft; �t) are i.i.d. normally distributed with Vf = Var[ft]

and � = Var[�t]; (b) the matrix H = [1N ; �] is of full column rank; and (c) the parameter space �

is a compact subset of RK+1.

The ML estimators of �f and Vf are

�̂f =
1

T

TX
t=1

ft; (6)

V̂f =
1

T

TX
t=1

(ft � �̂f )(ft � �̂f )0: (7)

We partition the parameter vector � = [vec(B0)0; vech(�)0; 
0; �
0]0 into � = [�01; �

0
2]
0, where

�1 = [vec(B0)0; vech(�)0]0 and �2 = [
0; �
0]0. Under Assumption MLE.A(a), the log-likelihood

function of the unrestricted model (5) is given by

LT (�1) = �
NT

2
log(2�)� T

2
log j�j � 1

2

TX
t=1

(Rt �B0xt)0��1(Rt �B0xt): (8)

Then, the unrestricted ML estimators of B and � are

B̂ � [ �̂; �̂ ]0 = (X 0X)�1(X 0Y ); (9)

�̂ =
1

T
(Y �XB̂)0(Y �XB̂); (10)

and

LT (�̂1) = �
T

2
log j�̂j � NT

2
[log(2�) + 1]: (11)
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The concentrated likelihood function is

LT (~�1j�2) = �
T

2
log j~�j � NT

2
[log(2�) + 1]; (12)

where ~� denotes the estimated covariance of the residuals under the constraint (4) that the asset-

pricing model holds. Note also that the constraint (4) can be expressed as !0(Q1B + Q2) = 00N ,

where ! = [1; ��0; �
0]0; Q1 =
�
IK+1
00K+1

�
, and Q2 =

"
0(K+1)�N

10N

#
. Then, the likelihood ratio

statistic of H0 : � = 1N
0 + �� is given by

LRT (�2j�̂1) = �T log

 
1 +

!0(Q1B̂ +Q2)�̂�1(Q1B̂ +Q2)0!

T!0Q1(X 0X)�1Q01!

!
; (13)

using that

LRT = 2
h
LT (~�1j�2)� LT (�̂1)

i
= �T log

 
j~�j
j�̂j

!
(14)

and (Seber, 1984, p. 410)

~� = �̂ + (!0(Q1B̂ +Q2))
0[T!0Q1(X

0X)�1Q01!]
�1!0(Q1B̂ +Q2): (15)

Therefore, the ML estimator of �2 = [
0; �
0]0 can be de�ned as

�̂2 = argmin�2 � LRT (�2j�̂1): (16)

Since this is a ratio of quadratic forms in !, the minimum is attained when ! is proportional to

the eigenvector associated with the largest eigenvalue of

[(Q1B̂ +Q2)�̂
�1(Q1B̂ +Q2)

0]�1[TQ1(X
0X)�1Q01]: (17)

Let p = [p1; : : : ; pK+2]0 be the eigenvector associated with the largest eigenvalue of (17). Then, we

have

�̂i = �pi+1=p1; i = 1; : : : ;K; (18)


̂0 = �pK+2=p1; (19)

and the ML estimator of 
1 is simply 
̂1 = �̂+ �̂f .

White (1994, Theorem 6.11) provides the asymptotic distribution of �̂2 under potential model

misspeci�cation and non-normality of �t. To obtain explicit expressions for the asymptotic covari-

ance of 
̂ = [
̂0; 
̂
0
1]
0 in globally misspeci�ed models, in the following we deviate from White (1994)
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and maintain the joint normality assumption in MLE.A. This allows us to isolate and quantify the

impact of model misspeci�cation on the asymptotic covariance of 
̂.

Note that the ML estimator of 
 can also be expressed as


̂ = argmin

(�̂R � Ĥ
)0�̂�1(�̂R � Ĥ
)

1 + 
01V̂
�1
f 
1

; (20)

where �̂R =
1
T

PT
t=1Rt and Ĥ = [1N ; �̂]. De�ne the pseudo-true values of 
 as


� �
�

0�

1�

�
= argmin


(�R �H
)0��1(�R �H
)
1 + 
01V

�1
f 
1

; (21)

and let M =

�
1N ; � +

(�R�H
�)
01�V
�1
f

1+
01�V
�1
f 
1�

�
; S� = (�R �H
�)0��1(�R �H
�), c� = 1 + 
01�V �1f 
1�,

C1 = 2M
0��1M �H 0��1H, C = H 0��1H � S�

c�
~V �1f , c� = 1 + 
01�V

�1
f 
1�,

~Vf =

�
0 00K
0K Vf

�
(22)

and

~V �1f =

�
0 00K
0K V �1f

�
: (23)

Theorem 1 below derives the asymptotic distribution of 
̂ for globally misspeci�ed models.

Theorem 1. Suppose that Assumption MLE.A is satis�ed and �R 6= H
, that is, the model is

misspeci�ed. Then, we have
p
T (
̂ � 
�)

d! N (0K+1;
m) ; (24)

where 
m = C�1
n
c�C1 + C1 ~VfC1 + S�

h�
1� 1

c2�

�
C1 +

�
1 + S�(c��1)

c2�

�
~V �1f + 1

c2�
H 0��1H

io
C�1.

Proof. See Appendix.

Note that when the model is correctly speci�ed, we have S� = 0, M = H, and C1 = C =

H 0��1H. In this case,
p
T (
̂ � 
�)

d! N (0K+1;
c) ; (25)

where 
c = c�(H 0��1H)�1 + ~Vf .
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3 CU-GMM Estimation and Misspeci�cation-Robust Inference in
the SDF Representation

The N � 1 vector of pricing errors (moment conditions) of the linear asset-pricing model at time t

are given by

et(�) = Rt ~f
0
t�� 1N ; (26)

where ~ft = [1; f 0t]
0 and � = [�0; �01]

0 2 � is a (K + 1) � 1 parameter vector. A model is globally

misspeci�ed if for all values of � we have

E[et(�)] � e(�) = G�� 1N 6= 0N ; (27)

where G = E[Rt ~f
0
t]. Let V (�) = lim T!1Var

�
T�1=2

PT
t=1(et(�)� e(�))

�
be a positive de�nite

matrix and �� denote the pseudo-true value of �, which is de�ned as

�� �
�
�0�
�1�

�
= argmin�e(�)

0V (�)�1e(�): (28)

In the case of correctly speci�ed models, e(��) = 0N and �� is the true value of �.

Assumption GMM.A. Assume that (a) Yt � [f 0t; R0t]0 is a jointly stationary and ergodic process;

(b) et(��)�e(��) forms a martingale di¤erence sequence with variance matrix V (��); (c) E[(et(�)�

e(�))(et(�)� e(�))0] is non-singular in some neighborhood of ��; and (d) the parameter space � is

a compact subset of RK+1.

Assumption GMM.A imposes some restrictions on the dynamic behavior of the data and the

moment conditions. The martingale di¤erence sequence assumption in GMM.A(b) can be relaxed

by modifying the structure of the estimation problem along the lines suggested by Smith (2011).

Let gt = Rt ~f 0t, GT =
1
T

PT
t=1 gt =

1
T

PT
t=1Rt

~f 0t, and �eT (�) =
1
T

PT
t=1 et(�) = GT�� 1N is an N � 1

vector of sample pricing errors with a sample variance (given Assumption GMM.A(b))

VT (�) =
1

T

TX
t=1

[et(�)� �eT (�)][et(�)� �eT (�)]0: (29)

Then, the CU-GMM estimator of � is de�ned as1

�̂ =
h
�̂0; �̂

0
1

i0
= argmin��eT (�)

0VT (�)
�1�eT (�): (30)

1Newey and Smith (2004, footnote 2) establish the equivalence of this CU-GMM estimator and the CU-GMM
estimator based on VT (�) = 1

T

PT
t=1 et(�)et(�)

0:
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In deriving the asymptotic variance for the CU-GMM estimator in (30) under model misspec-

i�cation, we follow an approach that allows us to write the estimator of an augmented parameter

vector as a solution to the score function of a just-identi�ed problem. The point of departure is the

observation that the CU-GMM estimator can be de�ned equivalently as a solution to a nonparamet-

ric likelihood problem that minimizes the Euclidean distance between a probability measure PT that

satis�es exactly the moment conditions, that is, E [e(�)jPT ] =
R
e(�)dPT = 0N , and the empirical

probability measure (see Antoine, Bonnal, and Renault, 2007, and Newey and Smith, 2004, among

others). This primal problem can be recast conveniently as a dual (saddle-point) problem, where

the duality parameter �(�) is an N � 1 vector of Lagrange multipliers associated with the moment

conditions e(�) = 0N . Let �� � ��(�) denote the pseudo-true value of � and � = [�0; �0]0 2 � be

an augmented (N +K + 1) parameter vector with a pseudo-true value �� = [�0�; �
0
�]
0. For correctly

speci�ed models, we have �� = 0N while for misspeci�ed models, k��(�)k > 0 for all � 2 �.

Let �̂ =
h
�̂0; �̂

0i0
. The �rst-order conditions of this nonparametric likelihood problem are given

by (Antoine, Bonnal, and Renault, 2007)

�sT (�̂) �
1

T

TX
t=1

st(�)

�����
�=�̂

= 0N+K+1; (31)

where

st(�) = �
�
[1 + �0 (et(�)� e(�))] et(�)
[1 + �0 (et(�)� e(�))] g0t�

�
: (32)

The (N+K+1) vector st(�) can be interpreted as the score function of a quasi-likelihood problem.

As argued above, we augment the �rst-order conditions for the parameter vector of interest � with

the parameter vector of Lagrange multipliers � in order to make the model misspeci�cation, which

is re�ected in �, explicit in deriving the limiting distribution. Note also that from the �rst N

equations in (31), we have �̂ = �VT (�̂)�1�eT (�̂):

Let wt(��) = [1 + �0� (et(��)� e(��))], B = E[wt(��)gt] + E[(et(��)� e(��)) �0�(gt � G)], C =

E[(gt�G)0���0�(gt�G)]; and V = V (��). Next, we state the limiting distribution of the CU-GMM

estimator in misspeci�ed models.

Theorem 2. Suppose that Assumption GMM.A holds, G is of full column rank, and Yt has �nite

eighth moments. Then, it follows that

p
T (�̂ � ��)

d! N (0N+K+1;�); (33)
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where � � E[ltl0t], lt � [l01t; l02t]0; and

l1t = V �1 [wt(��)et(��)�Bl2t] ; (34)

l2t = (C �B0V �1B)�1wt(��)
�
g0t�� �B0V �1et(��)

�
: (35)

Proof. See Appendix.

The variance matrix � in Theorem 2 can be consistently estimated using the sample analogs of

(34) and (35). Importantly, the result in Theorem 2 can be easily extended to nonlinear moment

condition models. Let g(2)t (�) = (@=@�0)vec(gt(�)); where gt(�) = @et(�)=@�
0 is now a function

of �, and ~C = (IK+1 
 �0�)E[g
(2)
t (��)] + E[(gt(��) � G(��))0���0�(gt(��) � G(��))]. The following

theorem states the result for possibly misspeci�ed nonlinear models.

Theorem 3. In addition to Assumption GMM.A, assume that (a) the pseudo-true values �� and

�� are unique and �� is in the interior of �; (b) et(�) is twice continuously di¤erentiable in � and

E [sup�2� jet(�)j] < 1; (c) E
h
sup�2N (��)



 @
@�0
st(�)



i < 1 for some neighborhood N of ��; (d)

E kst(��)st(��)0k exists and is �nite; (h) E
�
@
@�0
st(��)

�
is of full rank. Then, it follows that

p
T (�̂ � ��)

d! N(0N+K+1; ~�); (36)

where ~� � E[~lt~l0t], ~lt � [~l01t; ~l02t] and

~l1t = V �1
h
wt(��)et(��)�B~l2t

i
; (37)

~l2t = ( ~C �B0V �1B)�1wt(��)
�
gt(��)

0�� �B0V �1et(��)
�
: (38)

Proof. See Appendix.

Note that for linear models, g(2)t (��) is a null matrix and ~C = C = E[(gt � G)0���0�(gt � G)]:

Thus, the result in Theorem 3 reduces to the asymptotic distribution in Theorem 2. Furthermore,

for correctly speci�ed models, the limiting distribution in Theorem 3 specializes to the result in

Theorem 3.2 of Newey and Smith (2004). More speci�cally, for correctly speci�ed models, we have

�� = 0N ; wt(��) = 1, B = G, C = 0(K+1)�(K+1), (C �B0V �1B)�1 = �(G0V �1G)�1, and

l1t = V �1 [et(��)�Gl2t] ; (39)

l2t = (G0V �1G)�1G0V �1et(��): (40)
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Peñaranda and Sentana (2015) show the equivalence between the CU-GMM estimation of the

SDF and beta-pricing frameworks. Let2

wt(�̂) =
1� (et(�̂)� �e(�̂))0Ŵe(�̂)

�1�e(�̂)

T
: (41)

Then, as shown in Appendix B, the CU-GMM estimates of �f , Vf , and � can be obtained (in

a computationally very e¢ cient way) as ~�f =
PT
t=1wt(�̂)ft, ~Vf =

PT
t=1wt(�̂)ft(ft � ~�f )0, and

~� =
PT
t=1wt(�̂)Rt(ft � ~�f )0 ~V

�1
f . These estimates are subsequently used to construct estimates of

the zero-beta rate and risk premium parameters, 
̂0 =
1

�̂0+~�
0
f �̂1

and 
̂1 = �
~Vf �̂1

�̂0+~�
0
f �̂1
, respectively.

The asymptotic variances of 
̂0 and 
̂1 can then be obtained by the delta method.

4 Monte Carlo Simulations

In this section, we evaluate the performance of the proposed variance estimators by reporting

the empirical size and power of t-tests that are constructed using standard errors under correct

model speci�cation and misspeci�cation-robust standard errors. To facilitate the power com-

parisons, we report size-adjusted power in all tables. In our simulations, we consider the pop-

ular linear model of Fama and French (FF3, 1993) with a constant term and three risk factors

( ~ft = [1; mktt; smbt; hmlt]
0), where mkt denotes the excess return (in excess of the one-month

T-bill rate) on the value-weighted stock market index (NYSE-AMEX-NASDAQ), smb is the return

di¤erence between portfolios of stocks with small and large market capitalizations, and hml is the

return di¤erence between portfolios of stocks with high and low book-to-market ratios (�value�

and �growth� stocks, respectively). The asset-pricing model can either be correctly speci�ed or

misspeci�ed.

In our baseline simulations, the returns on the test assets and the risk factors ft are drawn from

a multivariate normal distribution. In addition, we analyze the impact of non-normality and �nite

moment requirements on our variance approximations by drawing the returns and the factors from

a multivariate t-distribution with eight degrees of freedom.3 The variance matrix of the simulated

test asset returns, Rt, is set equal to the estimated variance matrix from the 1963:7�2015:7 sample

of monthly returns on the 25 Fama-French size and book-to-market ranked portfolios and the 10

2Newey and Smith (2004) and Antoine, Bonnal, and Renault (2007) show that wt(�̂), t = 1; : : : ; T; in (41) represent
the implied probability weights associated with the CU-GMM estimator.

3 In our empirical application, the degree-of-freedom parameter of the multivariate t-distribution is estimated to
be 8.1.
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industry portfolios (N = 35). For misspeci�ed models, the means of the simulated returns are

set equal to the means of the actual returns. Then, for example, one can use the Hansen and

Jagannathan distance (HJD, 1997) to quantify the degree of model misspeci�cation. The resulting

HJD for FF3 is 0.3996, which is in line with the HJD values commonly reported in empirical

applications with monthly data. For correctly speci�ed models, the means of the simulated returns

are set such that the asset-pricing model restrictions are satis�ed (that is, the pricing errors are

zero). The means and variances of the simulated factors are calibrated to those of the observed

factors during the 1963:7�2015:7 sample period.4 The variance matrix of the risk factors and the

returns is set equal to the variance matrix estimated from the data. The time-series sample sizes

are T = 300, 600, 1200, and 3600. The number of Monte Carlo replications is set equal to 100,000.

For the beta-pricing model, the vector of risk premium parameters 
 is estimated by the ML

estimator 
̂. The estimator 
̂ is used to construct a consistent estimate of the variance matrix


̂c = ĉ(Ĥ
0�̂�1Ĥ)�1 + ~̂Vf ; (42)

under the assumption of a correctly speci�ed model, and the variance matrix


̂m = Ĉ
�1

(
ĉĈ1 + Ĉ1

b~V f Ĉ1 + Ŝ
"�
1� 1

ĉ2

�
Ĉ1 +

 
1 +

Ŝ(ĉ� 1)
ĉ2

! b~V �1f +
1

ĉ2
Ĥ 0�̂�1Ĥ

#)
Ĉ�1;

(43)

under the assumption of a misspeci�ed model, where ĉ = 1 + 
̂01V̂
�1
f 
̂1, Ŝ = (�̂R � Ĥ
̂)0�̂�1(�̂R �

Ĥ
̂), M̂ =

�
1N ; �̂ +

(�̂R�Ĥ
̂)
̂01V̂
�1
f

1+
̂01V̂
�1
f 
̂1

�
, Ĉ1 = 2M̂ 0�̂�1M̂ � Ĥ 0�̂�1Ĥ, Ĉ = Ĥ 0�̂�1Ĥ � Ŝ

ĉ
b~V �1f ,

b~V f = � 0 00K
0K V̂f

�
; (44)

and b~V �1f =

�
0 00K
0K V̂ �1f

�
: (45)

The square roots of the diagonal elements of 
̂c and 
̂m are then used to obtain the t-tests under

correct model speci�cation, denoted by tc(
̂), and the misspeci�cation-robust t-tests, denoted by

tm(
̂).

Tables I and II report the actual probabilities of rejection for the MLE t-tests (tc(
̂) and tm(
̂))

of H0 : 
1;i = 
�1;i and H0 : 
1;i = 0 (i = 1; : : : ;K) using standard normal critical values. The

4This choice of sample period is dictated by factor data availability. The test asset return and the factor data are
obtained from Kenneth French�s website.
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factors and the returns are assumed to be multivariate normally distributed. The (pseudo-) true

values 
� (reported in the table legends) are set equal to their ML estimates from the actual data

with �R being dependent on whether the model is correctly speci�ed or misspeci�ed, as described

above.

Tables I and II about here

Table I presents the results for the FF3 speci�cation when the model is correctly speci�ed.

Table II is for the misspeci�ed model. Although the model is correctly speci�ed, the centered t-test

under correct speci�cation, tc, tends to slightly overreject in small samples. Interestingly, the cen-

tered misspeci�cation-robust t-test, tm, corrects these size distortions and provides improvements

despite the fact that the true misspeci�cation adjustment is zero in this case. When the model is

misspeci�ed, the t-tests tc are no longer valid, and this is re�ected in the fairly signi�cant overrejec-

tions. In contrast, the centered misspeci�cation-robust t-tests tm are almost perfectly sized even in

small samples. For example, for T = 600 and a 10% signi�cance level, the centered tc statistic for

mkt rejects the null hypothesis 21.6% of the time under model misspeci�cation (tc(
̂1;1) in Panel A

of Table II). In contrast, the centered misspeci�cation-robust tm statistic rejects the null hypothesis

9.7% of the time under model misspeci�cation (tm(
̂1;1) in Panel B of Table II). As for power, both

tests behave very similarly. It should be noted that power can be low at times. This depends on,

among other things, how far from zero the (pseudo-) true parameters are.

We explore departures from the normality assumption in Tables III and IV. In these tables, the

returns and the factors are multivariate t-distributed with eight degrees of freedom. Note that this

distribution (i) generates fat tails and conditional heteroskedasticity in returns, and (ii) makes the

MLE inference invalid since the normality assumption is violated.

Tables III and IV about here

When the model is correctly speci�ed (Table III), the impact of non-normality on tc and tm is

negligible, and the size and power properties of the two tests are very similar to the ones under

normality in Table I. When the model is misspeci�ed, the centered misspeci�cation-robust t-test

tends to slightly overreject the null in very large samples but is almost perfectly sized in small

samples. For example, for T = 3600 and a 10% signi�cance level, the centered tm statistic for mkt
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rejects the null hypothesis 11.1% of the time (tm(
̂1;1) in Panel B of Table IV). The centered tc

statistic continues to be theoretically invalid since the model is misspeci�ed, and it exhibits slightly

bigger overrejections compared to the normal case. As for power, both tests behave similarly,

with power being about the same as under normality. Overall, tm enjoys very nice size and power

properties and seems to be little a¤ected by the presence of heavy tails in �nancial data.

For the SDF representation of the asset-pricing model, the parameter vector � = [�0; �0]0 is

estimated using the CU-GMM estimator �̂ = [�̂0; �̂
0
]0. Let wt(�̂) = 1 + �̂0[et(�̂) � �eT (�̂)], B̂ =

1
T

PT
t=1wt(�̂)gt+

1
T

PT
t=1[et(�̂)� �eT (�̂)]�̂0(gt�GT ), and Ĉ = 1

T

PT
t=1(gt�GT )0�̂�̂0(gt�GT ). Then,

l̂1t = VT (�̂)
�1
h
wt(�̂)et(�̂)� B̂l̂2t

i
; (46)

l̂2t = (Ĉ � B̂0VT (�̂)�1B̂)�1wt(�̂)
h
g0t�̂� B̂0VT (�̂)�1et(�̂)

i
; (47)

which are used to construct a consistent estimator �̂ of the asymptotic variance matrix of �̂ in

Theorem 2. The square roots of the last K + 1 diagonal elements of �̂ are used to construct the

misspeci�cation-robust t-tests, denoted by tm(�̂). The variance estimator of �̂ under correct model

speci�cation is obtained from

l̂1t = VT (�̂)
�1
h
et(�̂)�GT l̂2t

i
; (48)

l̂2t = (G0TVT (�̂)
�1GT )

�1G0TVT (�̂)
�1et(�̂); (49)

and the square roots of the last K + 1 diagonal elements are used to construct the t-tests under

correct model speci�cation, denoted by tc(�̂).

Tables V and VI report the actual probabilities of rejection for the CU-GMM t-tests (tc(�̂) and

tm(�̂)) of H0 : �1;i = ��1;i and H0 : �1;i = 0 (i = 1; : : : ;K) using standard normal critical values.

The factors and the returns are multivariate normally distributed. The (pseudo-) true values ��

need to be computed under the joint normality assumption. For this purpose, partition

Var

"
ft

Rt

#
=

"
Vf VfR

VRf VR

#
: (50)

It is easy to show that under the i.i.d. multivariate elliptical distributional assumption on the factors

and the returns, the optimal weighting matrix (the variance matrix of the moment conditions) is

given by

V (�) = [(�0 + �
0
f�1)

2 + (1 + �)�01Vf�1]VR + (�0 + �
0
f�1)(�R�

0
1VfR + VRf�1�

0
R)

+ (�01Vf�1)�R�
0
R + (1 + 2�)VRf�1�

0
1VfR; (51)

13



where � is the multivariate excess kurtosis of the factors and the returns. The weighting matrix

under the normality assumption5 is obtained by setting � = 0 and the (pseudo-) true values are

set equal to the CU-GMM estimates from the actual data using this form of the weighting matrix

and the value of �R corresponding to correctly speci�ed or misspeci�ed models.

Tables V and VI about here

While the pattern of results is somewhat similar to those for the MLE, the CU-GMM estimator

appears to be much more sensitive to model misspeci�cation. This is partly due to the numerical

instability of the CU-GMM estimator, especially when N is large, which leads to poorer asymptotic

approximations and more pronounced size distortions. For example, in the correctly speci�ed FF3

model with T = 600, the centered tc test rejects the null for the market factor 16.7% of the time

at the 10% signi�cance level while the centered tm test rejects the null 8.9% of the time (Panels A

and B of Table V). For the misspeci�ed FF3 model with T = 600, the corresponding rejection rates

for the centered tc and tm tests are 60% and 10.8% (Panels A and B of Table VI), respectively.

In fact, the rejection rates for the centered tc test can be as large as 27.3% (Panel A of Table V)

for correctly speci�ed models and 68.2% (Panel A of Table VI) for misspeci�ed models at the 10%

signi�cance level.

This should serve as a warning signal to applied researchers who routinely use standard errors

constructed under the assumption of a correctly speci�ed model in evaluating the statistical sig-

ni�cance of the SDF parameters. It suggests that the researcher will conclude erroneously (with

very high probability) that the risk factor is important for the pricing of the test assets. While the

centered misspeci�cation-robust t-tests also exhibit some slight size distortions for small sample

sizes,6 their empirical size approaches quickly the nominal level when T increases. Importantly,

the misspeci�cation-robust t-tests provide statistically large size corrections not only for the case of

misspeci�ed models but also for correctly speci�ed models where the tc tests are theoretically valid.

Moreover, as Tables V and VI illustrate, the e¤ective size correction that the misspeci�cation-robust

t-tests perform does not re�ect negatively on the power of the tests neither in correctly speci�ed

nor in misspeci�ed models.

5We keep the notation general (with possibly nonzero �) because in Tables VII and VIII we also generate data
from a multivariate t-distribution with eight degrees of freedom.

6These size distortions are somewhat expected for a small T and a relatively large N given the small number of
time series observations per moment condition.
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Finally, in Tables VII and VIII, we conducted simulations with data drawn from a multivariate

t-distribution with eight degrees of freedom. In this case, the inference based on tm is borderline

valid since the degrees of freedom need to be at least eight for our variance approximation under

model misspeci�cation to work.

Tables VII and VIII about here

Overall, the simulations suggest that our proposed method continues to work well under this

more extreme scenario. While there are some overrejections for the centered tm test for small

sample sizes in misspeci�ed models, they appear to be due primarily to the large number of test

assets (moment restrictions) used in our analysis. In simulations that are not reported to conserve

space (N = 10 and N = 25), these size distortions largely disappear. As in the previous tables, the

size-adjusted power is similar for the tc and tm.

5 Empirical Application

We use our methodology to estimate the parameters 
 and � of three asset-pricing models. The

�rst model is the simple static CAPM with ~ft = [1; mktt]0, where mkt is the excess return on the

value-weighted stock market index that was de�ned in the previous section. The CAPM performed

well in early tests, but has fared poorly since. The second model is the three-factor speci�cation of

Fama and French (FF3, 1993) with ~ft = [1; mktt; smbt; hmlt]0 that is described in the simulation

part of the paper. Finally, we consider the �ve-factor model of Fama and French (FF5, 2015), an

empirical speci�cation that is becoming increasingly popular in the asset-pricing literature. For

this model, ~ft = [1; mktt; smbt; hmlt; rmwt; cmat]
0, where rmw (pro�tability factor) is the

average return on two robust operating pro�tability portfolios minus the average return on two

weak operating pro�tability portfolios, and cma (investment factor) is the average return on two

conservative investment portfolios minus the average return on two aggressive investment portfolios.

The test asset returns Rt are (as in the simulation section of the paper) the monthly returns on

the value-weighted 25 Fama-French size and book-to-market ranked portfolios and the 10 industry

portfolios (N = 35) for the period July 1963 �July 2015. As argued in Lewellen, Nagel, and Shanken

(2010), the 25 Fama-French portfolios appear to be characterized by a strong factor structure, and

the inclusion of the industry portfolios presents a greater challenge to the various asset-pricing

models.
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Kan and Zhou (2006) argue that the monthly portfolio returns on the 25 Fama-French bench-

mark portfolios and the three factor portfolios of Fama and French (1993) are well described by

a multivariate t distribution with eight degrees of freedom. When we apply the ML methods de-

scribed in Section 2.1 of Kan and Zhou (2006) to our dataset of 40 �nancial time series (that is,

35 benchmark portfolios and �ve factors), we obtain 8.1 as an estimate of the degrees of freedom

parameter of the multivariate t-distribution. Additional tests based on Mardia�s (1970) measures

of multivariate skewness and kurtosis (see Section 1.2 of Kan and Zhou, 2006) also indicate that

the number of degrees of freedom of the multivariate t distribution is at least eight in our dataset.

Given the outcome of these tests, our regularity assumption of �nite eighth moments for CU-GMM

does not appear to be at odds with the �nancial data used in our empirical analysis.

In addition to the invariant ML and CU-GMM estimators, we also present results for the non-

invariant generalized least squares (GLS) cross-sectional regression (CSR) and HJD estimators in

the beta-pricing and SDF representations, respectively.7 While ine¢ cient compared to the invariant

estimators, CSR and HJD provide useful benchmarks given their numerical stability and popularity

in empirical work.

To quantify the degree of misspeci�cation of these models, we performed a model speci�cation

test using each of the four estimators. For all models and estimators, the null of correct model

speci�cation is strongly rejected with p-values equal to 0.000. To determine whether the models

are well identi�ed, we also applied the Cragg and Donald (1997) rank test to the beta-pricing and

SDF representations of the models. The results from the rank test suggest that the models are well

identi�ed as the test rejects the null of a reduced rank with p-values of 0.000. In summary, these

pre-tests provide convincing evidence that the models are misspeci�ed but properly identi�ed.

Hence, to ensure valid statistical inference, the standard errors for the estimated parameters

need to be adjusted to account for the additional uncertainty arising from model misspeci�cation.

However, it is common practice in empirical work to employ the traditional standard errors derived

under the assumption of correct model speci�cation, even when the null of correct model speci-

�cation is rejected by the data. For this reason, in Table IX, we report t-statistics constructed

under the assumption of a correctly speci�ed model (tc) in addition to the misspeci�cation-robust

t-statistics (tm).

7For the GLS CSR estimator and related misspeci�cation-robust t-tests, we refer the reader to Kan, Robotti, and
Shanken (2013). For the HJD estimator and related misspeci�cation-robust t-tests, we refer the reader to Kan and
Robotti (2009) and Gospodinov, Kan, and Robotti (2013).
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Table IX about here

For the beta-pricing model, the ML and CSR estimators (Panel A of Table IX) deliver similar

results. In addition, the di¤erences between the tc and tm tests are generally small and rarely lead

to di¤erent conclusions regarding the statistical signi�cance of the individual parameters (the only

noticeable exception is the investment factor in FF5 estimated by ML). This is likely due to the

fact that all factors are traded and the model misspeci�cation adjustment is typically not large

in this scenario (see Kan, Robotti, and Shanken, 2013). It also appears that the misspeci�cation

adjustment for the ML standard errors is larger than the corresponding adjustment for the CSR

estimator although part of the reason may arise from the asymptotic e¢ ciency (larger tc statistics)

of the MLE under correct model speci�cation.

The model misspeci�cation adjustment is much more pronounced for the CU-GMM estimator

in the SDF representation of the model (Panel B of Table IX). For example, consider FF5. When

using standard errors constructed under correct model speci�cation, one would conclude that,

except for mkt, all factors are priced at the 5% signi�cance level. In contrast, incorporating

model misspeci�cation in the analysis produces standard errors that are much larger than those

constructed under correct model speci�cation. In particular, the new pro�tability and investment

factors of Fama and French (2015) do not appear to be priced at the 5% signi�cance level. The

inference based on misspeci�cation-robust standard errors suggests that only smb is priced (albeit

with much smaller t-statistics) at the 5% signi�cance level. The SDF parameter estimates on all the

other risk factors are statistically insigni�cant. The evidence of pricing in CAPM and FF3 is also

much weaker once the uncertainty associated with potential model misspeci�cation is incorporated

in the inference procedure. As for the beta-pricing representation, the non-invariant estimator

(HJD) in the SDF setup exhibits less sensitivity to model misspeci�cation (see Gospodinov, Kan,

and Robotti, 2013), although the evidence of pricing for mkt, hml, rmw, and cma in FF5 is even

weaker than for CU-GMM.

6 Conclusions

This paper derives the asymptotic variance of the ML and CU-GMM estimators in potentially

misspeci�ed models, represented either in beta-pricing or SDF form. This �lls an important gap in

the literature given the increasing popularity of invariant estimators and the widespread belief that
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economic models are inherently misspeci�ed. The new expressions for the asymptotic variances of

the ML and CU-GMM estimators are explicit and easy-to-use in practice.

We illustrate the importance of using misspeci�cation-robust standard errors of the para-

meter estimates in the context of various linear asset-pricing models. While, as expected, the

misspeci�cation-robust tests deliver impressive improvements when the true model is misspeci�ed,

these tests also tend to provide substantial small-sample corrections when the model is correctly

speci�ed, especially for CU-GMM. All these size corrections are achieved at no apparent cost as-

sociated with loss of power. As a result, the main recommendation that emerges from our analysis

is that the proposed misspeci�cation-robust standard errors should always be used in applied work

regardless of whether the model is believed (based, for example, on the outcome of a pre-test of

overidentifying restrictions) to be correctly speci�ed or misspeci�ed.
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Appendix A: Proofs of Lemmas and Theorems

A.1 Preliminary Lemma A.1

Lemma A.1. The matrix C = H 0��1H � S�
c�
~V �1f is a positive de�nite matrix.

Proof : Let � be a (K + 2)-vector, ~A = [�R; H]
0��1[�R; H] and ~B =

24 1 0 00K
0 0 00K
0K 0K V �1f

35. Then,
we can write the minimization problem in (21) as

min
�

�0 ~A�

�0 ~B�
: (A.1)

By restricting � = [0; 
0]0, it is easy to see that

min
�

�0 ~A�

�0 ~B�
< min
�:�=[0; 
0]0

�0 ~A�

�0 ~B�
= min





0H 0��1H



0 ~V �1f 

: (A.2)

Note that it is a strict inequality because when the model is identi�ed, the optimal � on the left

hand side is chosen such that the �rst element is normalized to one (that is, nonzero). Since the left

hand side is equal to S�=c�, the largest eigenvalue of (H 0��1H)�1 ~V �1f is less than c�=S�, which in

turn implies that H 0��1H � (S�=c�) ~V �1f is a positive de�nite matrix. This completes the proof.�

A.2 Proof of Theorem 1

Let

M̂ =

"
1N ; �̂ +

m̂(
̂)
̂01V̂
�1
f

1 + 
̂01V̂
�1
f 
̂1

#
; (A.3)

where m̂(
) = �̂R � Ĥ
. The �rst order conditions of (20) and (21) are given by

M̂ 0�̂�1m̂(
̂) = 0K+1; (A.4)

M 0��1m� = 0K+1; (A.5)

where m� � m(
�) = �R �H
�. Using a Taylor series expansion, we can write

p
T [m̂(
̂)� m̂(
�)] = �

p
TH(
̂ � 
�) +Op(T�

1
2 ); (A.6)
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and in addition, using the fact that �̂
p! �, M̂

p!M , and m̂(
�)
p! m�, we have

p
TM 0��1[m̂(
�)�m�]

=
p
TM 0��1m̂(
�)

= �
p
T (M̂ �M)0��1m̂(
�)�

p
TM̂ 0(�̂�1 � ��1)m̂(
�)�

p
TM̂ 0�̂�1[m̂(
̂)� m̂(
�)]

= �
p
T (M̂ �M)0��1m� �

p
TM 0(�̂�1 � ��1)m� �

p
TM 0��1[m̂(
̂)� m̂(
�)] +Op(T�

1
2 ):

(A.7)

Under the normality assumption,

p
Tvec(�̂�1 � ��1) d! N

�
0N2 ; (��1 
 ��1)(IN2 +KN )

�
; (A.8)

where KN is an N2 �N2 commutation matrix. Then, de�ning S� = m0
��

�1m� and using the fact

that M 0��1m� = 0K+1, we can obtain the limiting distribution of the second term in (A.7) as

p
TM 0(�̂�1 � ��1)m�

d! N (0K+1; S�M 0��1M); (A.9)

and it is asymptotically independent of m̂(
�).

For the third term in (A.7), we have

�
p
TM 0��1[m̂(
̂)� m̂(
�)] =

p
TM 0��1H(
̂�
�)+Op(T�

1
2 ) =

p
TM 0��1M(
̂�
�)+Op(T�

1
2 );

(A.10)

where the last equality follows from the fact that M 0��1M =M 0��1H because of (A.5).

It remains to expand the �rst term in (A.7). Writing

p
T (M̂ �M)0��1m�

=

24 0
p
T (�̂ � �)0��1m� +

�p
T V̂ �1f 
̂1m̂(
̂)

0

1+
̂01V̂
�1
f 
̂1

�
p
TV �1f 
1�m

0
�

1+
01�V
�1
f 
1�

�
��1m�

35
=

p
T (Ĥ �H)0��1m� +

24 0�p
T V̂ �1f 
̂1m̂(
̂)

0

1+
̂01V̂
�1
f 
̂1

�
p
TV �1f 
1�m

0
�

1+
01�V
�1
f 
1�

�
��1m�

35 : (A.11)

The second term in (A.11) has three sources of randomness. Using the delta method and letting
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c� = 1 + 
01�V
�1
f 
1�, we can approximate the second term in (A.11) as"p

T V̂ �1f 
̂1m̂(
̂)
0

1 + 
̂01V̂
�1
f 
̂1

�
p
TV �1f 
1�m

0
�

1 + 
01�V
�1
f 
1�

#
��1m�

=

p
TV �1f 
1�[m̂(
̂)� m̂(
�) + m̂(
�)�m�]0��1m�

c�

+

p
T (V̂ �1f � V �1f )
1�S�

c�
�
V �1f 
1�S�

c2�

p
T
01�(V̂

�1
f � V �1f )
1�

+

p
TV �1f (
̂1 � 
1�)S�

c�
�
V �1f 
1�S�

c2�
2
01�V

�1
f

p
T (
̂1 � 
1�) +Op(T�

1
2 ): (A.12)

Combining the second and the third terms in (A.12), we have
p
T (V̂ �1f � V �1f )
1�S�

c�
�
V �1f 
1�S�

c2�

p
T
01�(V̂

�1
f � V �1f )
1� =

S�
c�
A
p
T (V̂ �1f � V �1f )
1�; (A.13)

where

A = IK �
V �1f 
1�


0
1�

c�
: (A.14)

It can be readily shown that

S�
c�
A
p
T (V̂ �1f � V �1f )
1�

d! N
�
0K ;

S2�
c2�

�
(c� � 1)V �1f +

�
2

c2�
� 1
�
V �1f 
1�


0
1�V

�1
f

��
; (A.15)

and this random variable is independent of �̂, �̂R, and �̂. Combining the last two terms in (A.12),

we have24 0
p
TV �1f (
̂1�
1�)S�

c�
� V �1f 
1�S�

c2�
2
01�V

�1
f

p
T (
̂1 � 
1�)

35 = S�
c�
B
p
T (
̂ � 
�); (A.16)

where

B =

"
0 00K

0K V �1f � 2V �1f 
1�

0
1�V

�1
f

c�

#
: (A.17)

Collecting all these terms, we obtain
p
TM 0��1[m̂(
�)�m�] +

p
T (Ĥ �H)0��1m� +

p
T (M �H)0��1[m̂(
�)�m�]

+

"
0p

TA(V̂ �1f �V �1f )
1�S�
c�

#
+
p
TM 0(�̂�1 � ��1)m�

= �
p
T (M �H)0��1[m̂(
̂)� m̂(
�)]�

p
TB(
̂ � 
�)S�

c�
�
p
TM 0��1[m̂(
̂)� m̂(
�)]

)
p
T (2M �H)0��1[m̂(
�)�m�] +

p
T (Ĥ �H)0��1m�

+

"
0p

TA(V̂ �1f �V �1f )
1�S�
c�

#
+
p
TM 0(�̂�1 � ��1)m�

=

�
(2M �H)0��1H � S�

c�
B

�p
T (
̂ � 
�): (A.18)
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Using the fact that

C = (2M �H)0��1H � S�
c�
B = 2M 0��1M �H 0��1H � S�

c�
B; (A.19)

we can then write

p
T (
̂ � 
�)

d! C�1(2M �H)0��1
p
T [m̂(
�)�m�] +

p
TC�1(Ĥ �H)0��1m�

+ C�1

"
0p

TA(V̂ �1f �V �1f )
1�S�
c�

#
+ C�1M 0pT (�̂�1 � ��1)m�: (A.20)

The last two terms in (A.20) are independent of each other and also independent of the �rst two

terms, and their variances are given by

S2�
c2�
C�1

"
0 00K
0K (
01�V

�1
f 
1�)V

�1
f +

�
2
c2�
� 1
�
V �1f 
1�


0
1�V

�1
f

#
C�1 + S�C

�1M 0��1MC�1: (A.21)

Since

H 0��1H �M 0��1M =
S�
c2�

"
0 00K

0K V �1f 
1�

0
1�V

�1
f

#
; (A.22)

we can write

C = H 0��1H � S�
c�
~V �1f : (A.23)

Given that

m̂(
�)�m� = �̂� �� (�̂ � �)�� + �̂(�̂f � �f ); (A.24)

where �� = 
1� � �f , we obtain

p
T [m̂(
�)�m�]

d! N
�
0N ; (1 + 


0
1�V

�1
f 
1�)� +H ~VfH

0
�
: (A.25)

Hence, the asymptotic variance of the �rst term in (A.20) is

c�C
�1(2M �H)0��1(2M �H)C�1 + C�1(2M �H)0��1H ~VfH 0��1(2M �H)C�1

= c�C
�1H 0��1HC�1 + C�1(2M �H)0��1H ~VfH 0��1(2M �H)C�1; (A.26)

where the invertibility of C follows from Lemma A.1. Using that under Assumption MLE.A,

p
Tvec(�̂ � �) d! N

�
0NK ; V

�1
f 
 �

�
; (A.27)

we obtain the asymptotic variance of the second term in (A.20) as

S�C
�1 ~V �1f C�1: (A.28)
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Let ~B =
p
T [�̂� �; �̂ � �] and ~b = vec( ~B). We have

~b
d! N

 
0N(K+1);

"
1 + �0fV

�1
f �f ��0fV

�1
f

�V �1f �f V �1f

#

 �

!
: (A.29)

Then, using

E[
p
T [m̂(
�)�m�]m

0
��

�1pT (�̂ � �)] = E[
p
T [�̂� �� (�̂ � �)��]m0

��
�1pT (�̂ � �)]

= E

�
~B

�
1
���

�
m0
��

�1 ~B

�
00K
IK

��
= E

�
([1; ��0�]
 IN )~b~b0

��
00K
IK

�

 ��1m�

��
= �
01�V �1f 
m�

= �m�

0
1�V

�1
f ; (A.30)

we obtain the asymptotic variance between the �rst and second terms in (A.20) as

C�1(2M �H)0��1m�[0; �
01�V �1f ]C�1 = C�1H 0��1m�[0; 

0
1�V

�1
f ]C�1

= c�C
�1H 0��1(M �H)C�1: (A.31)

Combining all the results, we obtain

p
T (
̂ � 
�)

d! N (0K+1;
); (A.32)

where


 = c�C
�1H 0��1HC�1

+ C�1(2M �H)0��1H ~VfH 0��1(2M �H)C�1

+ S�C
�1 ~V �1f C�1 + c�C

�1H 0��1(M �H)C�1

+ c�C
�1(M �H)0��1HC�1

+
S2�
c2�
C�1

"
0 00K
0K (
01�V

�1
f 
1�)V

�1
f +

�
2
c2�
� 1
�
V �1f 
1�


0
1�V

�1
f

#
C�1

+ S�C
�1M 0��1MC�1: (A.33)

Let C1 = 2M 0��1M �H 0��1H. Then, we can write


 = c�C
�1C1C

�1 + C�1C1 ~VfC1C
�1 + S�C

�1 ~V �1f C�1 + S�C
�1M 0��1MC�1

+
S2�
c2�
C�1

24 0 00K

0K (
01�V
�1
f 
1�)V

�1
f +

�
2
c2�
� 1
�
V �1f 
1�


0
1�V

�1
f

35C�1: (A.34)
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Using the identities

M 0��1M = C1 +
S�
c2�

"
0 00K

0K V �1f 
1�

0
1�V

�1
f

#
; (A.35)

H 0��1H � C1 =
2S�
c2�

"
0 00K

0K V �1f 
1�

0
1�V

�1
f

#
; (A.36)

we can write 
 as


 = C�1
�
c�C1 + C1 ~VfC1 + S�

��
1� 1

c2�

�
C1 +

�
1 +

S�(c� � 1)
c2�

�
~V �1f +

1

c2�
H 0��1H

��
C�1:

(A.37)

This completes the proof.�

A.3 Proof of Theorem 2

A mean value expansion of �sT (�̂) about �� yields

0N+K+1 = �sT (��) +HT (~�)(�̂ � ��) (A.38)

or
p
T (�̂ � ��) = �

h
HT

�
~�
�i�1p

T �sT (��) ; (A.39)

where HT (�) = 1
T

PT
t=1 ht(�) with ht(�) = (@=@�

0)st(�), and ~� is an intermediate point on the line

segment joining �̂ and ��. More speci�cally,

ht(�) = �
�

(et(�)� e(�))(et(�)� e(�))0 wt(�)gt + (et(�)� e(�))�0(gt �G)
wt(�)g

0
t + (gt �G)0�(et(�)� e(�))0 (gt �G)0��0(gt �G)

�
; (A.40)

where wt(�) = [1 + �0(et(�)� e(�))]. Our regularity conditions ensure that
p
T �sT (��)

d! N (0N+K+1; S); (A.41)

and
p
T (�̂ � ��)

d! N (0N+K+1;H�1S(H 0)�1); (A.42)

where S = E[st(��)st(��)0],

H � E[HT (��)] =
�
V B
B0 C

�
; (A.43)

and V , B, and C are de�ned in the text.

To derive the explicit expression for the asymptotic variance matrix of �̂ in Theorem 2, we write

H�1S(H 0)�1 = E[ltl
0
t]; (A.44)
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where

lt �
"
l1t

l2t

#
= H�1st(��): (A.45)

From the de�nition of H in (A.43), we can use the formula for the inverse of a partitioned matrix

to obtain

H�1 =

"
V �1(IN +B ~HB

0V �1) �V �1B ~H
� ~H 0B0V �1 ~H

#
; (A.46)

where ~H = (C�B0V �1B)�1. Observe that C�B0V �1B is the Schur complement of V in H and its

invertibility follows from our assumptions and the properties of Schur complements. Using (A.46)

and (32), we can express l1t and l2t as

l1t = V �1 [wt(��)et(��)�Bl2t] ; (A.47)

l2t = ~Hwt(��)
�
g0t�� �B0V �1et(��)

�
: (A.48)

This delivers the desired result.�

A.4 Proof of Theorem 3

Note that in the case of nonlinear moment conditions, the upper-left, upper-right, lower-left, and

lower-right blocks of the ht(�) matrix are given by

�(et(�)� e(�))(et(�)� e(�))0; (A.49)

�
�
wt(�)gt(�) + (et(�)� e(�))�0(gt(�)�G(�))

�
; (A.50)

�
�
wt(�)gt(�)

0 + (gt(�)�G(�))�(et(�)� e(�))0
�
; (A.51)

�
h
wt(�)(IK+1 
 �0)g(2)t (�) + (gt(�)�G(�))0��0(gt(�)�G(�))

i
; (A.52)

respectively. The rest of the proof follows similar arguments as those in the proof of Theorem 2.�

Appendix B: CU-GMM Estimation of the Beta-Pricing Model

Let � = [
0; 

0
1; �

0
1; : : : ; �

0
K ; �

0
f ; vech(Vf )

0]0 denote the vector of parameters of interest. De�ne the

moment conditions

gt(�) =

0BB@
Rt � (1N
0 + �
1)� �(ft � �f )

[Rt � (1N
0 + �
1)� �(ft � �f )]
 ft
ft � �f

vech
�
(ft � �f )(ft � �f )0 � Vf

�
1CCA (B.1)
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and note that E[gt(�)] = 0(N+1)(K+1)+(K+1)K=2�1. Let also �g(�) = T�1
PT
t=1 gt(�) and

Ŵg(�) =
1

T

TX
t=1

(gt(�)� �g(�))(gt(�)� �g(�))0: (B.2)

Then, the CU-GMM estimator of � is de�ned as

�̂ = argmin� �g(�)
0Ŵg(�)

�1�g(�): (B.3)

The problem with implementing this CU-GMM estimator is that the parameter vector � is

highly dimensional especially when the number of test assets N is large. Peñaranda and Sentana

(2015) show that CU-GMM delivers numerically identical estimates in the beta-pricing and SDF

setups.8 By augmenting �e(�) in the SDF representation with additional (just-identi�ed) moment

conditions for �f , Vf ; and �, the CU-GMM estimate of the augmented parameter vector � =

[�0; �
0
1; �

0
1; : : : ; �

0
K ; �

0
f ; vech(Vf )

0]0 becomes numerically identical to the CU-GMM estimate of �

in the beta-pricing model. However, the estimation of � can be performed in a sequential manner

which o¤ers substantial computational advantages. The following theorem presents a general result

for this sequential estimation.

Theorem B.1. Let � = [�01; �
0
2]
0, where �1 is K1 � 1 and �2 is K2 � 1, and

E[gt(�)] =

�
E[g1t(�1)]
E[g2t(�)]

�
=

�
0N1
0N2

�
; (B.4)

where g1t(�1) is N1 � 1 and g2t(�) is N2 � 1, with N1 > K1 and N2 = K2. De�ne the estimators

~�1 = argmin�1 �g1(�1)
0Ŵ11(�1)

�1�g1(�1); (B.5)

�̂ �
�
�̂1
�̂2

�
= argmin� �g(�)

0Ŵ (�)�1�g(�); (B.6)

where �g1(�1) = 1
T

PT
t=1 g1t(�1); Ŵ11(�1) =

1
T

PT
t=1(g1t(�1) � �g1(�1))(g1t(�1) � �g1(�1))

0, �g(�) =

1
T

PT
t=1 gt(�); and Ŵ (�) =

1
T

PT
t=1(gt(�)� �g(�))(gt(�)� �g(�))0. Then, ~�1 = �̂1.

Proof. Let

~D11(�1) =
1

T

TX
t=1

~wt(�1)
@g1t(�1)

@�01
; (B.7)

8Shanken and Zhou (2007) show that under some particular Kronecker structure for the weighting matrix Ŵg, the
GMM estimator of the beta-pricing model is numerically identical to the MLE.
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where

~wt(�1) = 1� �g1(�1)0Ŵ11(�1)
�1[g1t(�1)� �g1(�1)]: (B.8)

The �rst-order conditions for the smaller system are given by

~D11(~�1)
0Ŵ11(~�1)

�1�g1(~�1) = 0N1 : (B.9)

Similarly, we de�ne

D̂(�) =
1

T

TX
t=1

ŵt(�)
@gt(�)

@�0
�
�
D̂11(�) 0N1�N2
D̂21(�) D̂22(�)

�
; (B.10)

where

ŵt(�) = 1� �g(�)0Ŵ (�)�1[gt(�)� �g(�)]: (B.11)

The �rst-order conditions for the larger system are given by

D̂(�̂)0Ŵ (�̂)�1�g(�̂) = 0N1+N2 : (B.12)

Let

Ŵ (�)�1 =

�
Ŵ 11(�) Ŵ 12(�)

Ŵ 21(�) Ŵ 22(�)

�
: (B.13)

Suppressing the dependence on the parameters in D̂(�̂) and Ŵ (�̂), the �rst-order conditions for the

larger system can be written as

0N1+N2 = D̂(�̂)0Ŵ (�̂)�1�g(�̂)

=

�
(D̂011Ŵ

11 + D̂021Ŵ
21)�g1(�̂1) + (D̂

0
11Ŵ

12 + D̂021Ŵ
22)�g2(�̂)

D̂022Ŵ
21�g1(�̂1) + D̂

0
22Ŵ

22�g2(�̂)

�
: (B.14)

When N2 = K2, D̂22 and Ŵ 22 are invertible with probability one. Using the second subset of the

�rst-order conditions, we obtain

�g2(�̂) = �(Ŵ 22)�1Ŵ 21�g1(�̂1): (B.15)

Plugging this equation into the �rst subset of �rst-order conditions, we obtain

0N1 = (D̂011Ŵ
11 + D̂021Ŵ

21)�g1(�̂1)� (D̂011Ŵ 12 + D̂021Ŵ
22)(Ŵ 22)�1Ŵ 21�g1(�̂1)

= D̂11(�̂1)
0Ŵ11(�̂1)

�1�g1(�̂1); (B.16)

where the last identity is obtained by using the partitioned matrix inverse formula, which implies

that

Ŵ11(�1)
�1 = Ŵ 11(�)� Ŵ 12(�)Ŵ 22(�)�1Ŵ 21(�): (B.17)
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In addition, de�ning �g2(�) = 1
T

PT
t=1 g2t(�) and using (B.15), we have

ŵt(�̂) = 1� �g0(�̂)0Ŵ (�̂)�1
�
g1t(�̂1)� �g1(�̂1)
g2t(�̂)� �g2(�̂)

�
= 1� [�g1(�̂1)0Ŵ 11(�̂) + �g2(�̂)

0Ŵ 21(�̂); �g1(�̂1)
0Ŵ 12(�̂) + �g2(�̂)

0Ŵ 22(�̂)]

�
g1t(�̂1)� �g1(�̂1)
g2t(�̂)� �g2(�̂)

�
= 1� �g1(�̂1)0Ŵ11(�̂1)

�1[g1t(�̂1)� �g1(�̂1)]

= ~wt(�̂1); (B.18)

which only depends on �̂1. Therefore, we have D̂11(�̂1) = ~D11(�̂1) and (B.16) is identical to the

�rst-order conditions for the smaller system. It follows that �̂1 = ~�1. This completes the proof of

Theorem B.1.�

Theorem B.1 establishes that for CU-GMM, adding a new set of just-identi�ed moment condi-

tions to the original system does not alter the estimates of the original parameters. This numerical

equivalence can also be shown for the corresponding tests for over-identifying restrictions. The

result in Theorem B.1 has implications for speeding up the optimization problem in the CU-GMM

estimation. The key is to discard the subset of moment conditions that are exactly identi�ed and

only perform the over-identifying restriction test on the remaining smaller set of moment conditions.

This will lead to fewer moment conditions and parameters in the system, which is highly desirable

when performing numerical optimization. The following lemma demonstrates how to solve for �̂2

after ~�1 is obtained from the smaller system.

Lemma B.1. Let

rt(�̂) = �g(�̂)
0Ŵ (�̂)�1[gt(�̂)� �g(�̂)] (B.19)

and

r1t(~�1) = �g1(~�1)
0Ŵ11(~�1)

�1[g1t(~�1)� �g1(~�1)]: (B.20)

The estimate �̂2 is given by the solution to

1

T

TX
t=1

g2t(~�1; �̂2)[1� r1t(~�1)] = 0K2 (B.21)

and rt(�̂) = r1t(~�1). Furthermore, if g2t, conditional on �1; is linear in �2, that is,

g2t(�1; �2) = h1t(�1)� h2t(�1)�2; (B.22)
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where h1t and h2t are functions of the data and �1, then

�̂2 =

 
TX
t=1

h2t(~�1)[1� r1t(~�1)]
!�1 TX

t=1

h1t(~�1)[1� r1t(~�1)]: (B.23)

Proof. Using the formula for the inverse of a partitioned matrix, we have �(Ŵ 22)�1Ŵ 21 =

Ŵ21Ŵ
�1
11 . Plugging this in (B.15) and noting that �̂1 = ~�1, we obtain

�g2(~�1; �̂2) = Ŵ21(~�1; �̂2)Ŵ11(~�1)
�1�g1(~�1): (B.24)

This is a system of K2 equations with K2 unknowns. Using the expression for r1t(~�1), we can write

(B.24) as

�g2(~�1; �̂2) =
1

T

TX
t=1

g2t(~�1; �̂2)r1t(~�1)

) 0K2 =
1

T

TX
t=1

g2t(~�1; �̂2)[1� r1t(~�1)]: (B.25)

For the larger system, we have

rt(�̂) =

�
�g1(�̂1)

�g2(�̂)

�0 �
Ŵ 11(�̂) Ŵ 12(�̂)

Ŵ 21(�̂) Ŵ 22(�̂)

� �
g1t(�̂1)� �g1(�̂1)
g2t(�̂)� �g2(�̂)

�
=

h
�g1(�̂1)

0Ŵ 11(�̂) + �g2(�̂)
0Ŵ 21(�̂); �g1(�̂1)

0Ŵ 12(�̂) + �g2(�̂)
0Ŵ 22(�̂)

i � g1t(�̂1)� �g1(�̂1)
g2t(�̂)� �g2(�̂)

�
= �g1(�̂1)

0Ŵ 11(�̂)[g1t(�̂1)� �g1(�̂1)]� �g1(�̂1)0Ŵ 12(�̂)(Ŵ 22(�̂))�1Ŵ 21(�̂)[g1t(�̂1)� �g1(�̂1)]

= �g1(�̂1)
0Ŵ�1

11 (�̂1)[g1t(�̂1)� �g1(�̂1)]

= r1t(~�1); (B.26)

where the third equality follows from (B.15), the fourth equality follows from the formula for the

inverse of a partitioned matrix, and the last equality follows because �̂1 = ~�1: The expression for �̂2

can be obtained by plugging g2t(�1; �2) = h1t(�1) � h2t(�1)�2 into (B.25) and solving for �̂2. This

completes the proof of Lemma B.1.�

Lemma B.1 shows that when g2t is linear in �2, �̂2 has a closed-form solution. When h2t(�1) =

IK2 , which is the case of the asset-pricing models considered in this paper, we have

�̂2 =

PT
t=1 h1t(

~�1)[1� r1t(~�1)]PT
t=1[1� r1t(~�1)]

: (B.27)

Adding an extra set of just-identi�ed moment conditions proves to be straightforward since rt(�̂) =

r1t(~�1) and rt does not need to be recomputed for the larger system.
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Table I
Size and power properties of MLE t-tests under normality:

Correctly speci�ed model
The table presents the actual probabilities of rejection for the t-tests of H0 : 
1;i = 
�1;i and H0 : 
1;i = 0
(i = 1; : : : ;K) for di¤erent levels of signi�cance. The model includes a constant term and three risk factors
(FF3 speci�cation). The true values of the risk premium parameters are 
�1;1 = �0:2829, 
�1;2 = 0:2196, and

�1;3 = 0:2801. Panel A presents the empirical size and power for t-tests that are constructed assuming that
the model is correctly speci�ed (tc). Panel B reports the empirical size and power for misspeci�cation-robust
t-tests (tm). The factors and the returns are multivariate normally distributed.

Size Power

Level of Signi�cance Level of Signi�cance

T 10% 5% 1% 10% 5% 1%

Panel A: tc

tc(
̂1;1) 300 0.137 0.077 0.020 0.199 0.119 0.035
600 0.119 0.063 0.015 0.296 0.198 0.071
1200 0.109 0.056 0.012 0.480 0.356 0.160
3600 0.102 0.052 0.010 0.873 0.795 0.592

tc(
̂1;2) 300 0.102 0.051 0.010 0.339 0.234 0.092
600 0.102 0.052 0.011 0.535 0.406 0.195
1200 0.102 0.051 0.010 0.789 0.689 0.449
3600 0.102 0.051 0.010 0.996 0.989 0.954

tc(
̂1;3) 300 0.103 0.051 0.011 0.509 0.387 0.176
600 0.102 0.052 0.011 0.762 0.652 0.410
1200 0.101 0.050 0.011 0.955 0.917 0.774
3600 0.100 0.050 0.010 1.000 1.000 0.999

Panel B: tm

tm(
̂1;1) 300 0.089 0.043 0.008 0.199 0.119 0.035
600 0.095 0.046 0.009 0.296 0.199 0.072
1200 0.096 0.048 0.009 0.480 0.356 0.160
3600 0.098 0.049 0.009 0.873 0.795 0.592

tm(
̂1;2) 300 0.102 0.051 0.010 0.338 0.234 0.093
600 0.101 0.052 0.011 0.535 0.406 0.195
1200 0.101 0.050 0.010 0.789 0.689 0.449
3600 0.102 0.051 0.010 0.996 0.989 0.954

tm(
̂1;3) 300 0.101 0.051 0.011 0.509 0.386 0.176
600 0.102 0.052 0.011 0.762 0.652 0.410
1200 0.100 0.050 0.011 0.955 0.917 0.774
3600 0.100 0.050 0.010 1.000 1.000 0.999
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Table II
Size and power properties of MLE t-tests under normality:

Misspeci�ed model
The table presents the actual probabilities of rejection for the t-tests of H0 : 
1;i = 
�1;i and H0 : 
1;i =
0 (i = 1; : : : ;K) for di¤erent levels of signi�cance. The model includes a constant term and three risk
factors (FF3 speci�cation). The pseudo-true values of the risk premium parameters are 
�1;1 = �0:7463,

�1;2 = 0:2525, and 
�1;3 = 0:3307. Panel A presents the empirical size and power for t-tests that are
constructed assuming that the model is correctly speci�ed (tc). Panel B reports the empirical size and power
for misspeci�cation-robust t-tests (tm). The factors and the returns are multivariate normally distributed.

Size Power

Level of Signi�cance Level of Signi�cance

T 10% 5% 1% 10% 5% 1%

Panel A: tc

tc(
̂1;1) 300 0.242 0.164 0.068 0.475 0.349 0.153
600 0.216 0.141 0.052 0.748 0.636 0.398
1200 0.203 0.129 0.045 0.954 0.916 0.776
3600 0.196 0.120 0.041 1.000 1.000 1.000

tc(
̂1;2) 300 0.103 0.052 0.010 0.406 0.291 0.125
600 0.103 0.053 0.011 0.635 0.507 0.271
1200 0.103 0.052 0.011 0.880 0.802 0.590
3600 0.103 0.051 0.010 1.000 0.999 0.990

tc(
̂1;3) 300 0.105 0.053 0.012 0.621 0.497 0.262
600 0.105 0.054 0.011 0.868 0.787 0.568
1200 0.103 0.052 0.011 0.988 0.975 0.908
3600 0.102 0.052 0.011 1.000 1.000 1.000

Panel B: tm

tm(
̂1;1) 300 0.095 0.047 0.009 0.476 0.354 0.160
600 0.097 0.048 0.009 0.744 0.633 0.398
1200 0.098 0.048 0.009 0.953 0.913 0.772
3600 0.097 0.048 0.010 1.000 1.000 0.999

tm(
̂1;2) 300 0.102 0.051 0.010 0.406 0.291 0.125
600 0.101 0.052 0.011 0.635 0.507 0.271
1200 0.101 0.051 0.010 0.880 0.802 0.590
3600 0.102 0.051 0.010 1.000 0.999 0.990

tm(
̂1;3) 300 0.101 0.051 0.011 0.621 0.498 0.261
600 0.102 0.052 0.011 0.868 0.787 0.568
1200 0.101 0.050 0.010 0.988 0.975 0.908
3600 0.100 0.051 0.010 1.000 1.000 1.000
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Table III
Size and power properties of MLE t-tests under non-normality:

Correctly speci�ed model
The table presents the actual probabilities of rejection for the t-tests of H0 : 
1;i = 
�1;i and H0 : 
1;i = 0
(i = 1; : : : ;K) for di¤erent levels of signi�cance. The model includes a constant term and three risk factors
(FF3 speci�cation). The true values of the risk premium parameters are 
�1;1 = �0:2829, 
�1;2 = 0:2196,
and 
�1;3 = 0:2801. Panel A presents the empirical size and power for t-tests that are constructed assuming
that the model is correctly speci�ed (tc). Panel B reports the empirical size and power for misspeci�cation-
robust t-tests (tm). The factors and the returns are multivariate t-distributed. The number of degrees of
freedom of the t-distribution is set equal to eight.

Size Power

Level of Signi�cance Level of Signi�cance

T 10% 5% 1% 10% 5% 1%

Panel A: tc

tc(
̂1;1) 300 0.135 0.074 0.019 0.196 0.117 0.035
600 0.117 0.063 0.015 0.295 0.195 0.068
1200 0.111 0.056 0.012 0.470 0.352 0.158
3600 0.103 0.053 0.011 0.871 0.791 0.575

tc(
̂1;2) 300 0.102 0.052 0.011 0.343 0.235 0.090
600 0.101 0.050 0.010 0.541 0.417 0.203
1200 0.100 0.050 0.010 0.797 0.696 0.453
3600 0.100 0.050 0.010 0.996 0.989 0.956

tc(
̂1;3) 300 0.103 0.052 0.011 0.510 0.386 0.181
600 0.103 0.051 0.010 0.763 0.656 0.416
1200 0.100 0.050 0.011 0.956 0.918 0.774
3600 0.100 0.050 0.010 1.000 1.000 0.999

Panel B: tm

tm(
̂1;1) 300 0.089 0.044 0.008 0.196 0.117 0.035
600 0.095 0.046 0.009 0.296 0.195 0.069
1200 0.099 0.048 0.009 0.470 0.352 0.158
3600 0.099 0.050 0.010 0.871 0.791 0.574

tm(
̂1;2) 300 0.102 0.051 0.010 0.343 0.235 0.090
600 0.100 0.050 0.010 0.541 0.417 0.203
1200 0.099 0.050 0.010 0.797 0.696 0.453
3600 0.100 0.050 0.010 0.996 0.989 0.956

tm(
̂1;3) 300 0.102 0.051 0.011 0.510 0.386 0.181
600 0.102 0.051 0.010 0.763 0.656 0.416
1200 0.100 0.050 0.011 0.956 0.918 0.774
3600 0.100 0.050 0.010 1.000 1.000 0.999
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Table IV
Size and power properties of MLE t-tests under non-normality:

Misspeci�ed model
The table presents the actual probabilities of rejection for the t-tests of H0 : 
1;i = 
�1;i and H0 : 
1;i =
0 (i = 1; : : : ;K) for di¤erent levels of signi�cance. The model includes a constant term and three risk
factors (FF3 speci�cation). The pseudo-true values of the risk premium parameters are 
�1;1 = �0:7463,

�1;2 = 0:2525, and 
�1;3 = 0:3307. Panel A presents the empirical size and power for t-tests that are
constructed assuming that the model is correctly speci�ed (tc). Panel B reports the empirical size and power
for misspeci�cation-robust t-tests (tm). The factors and the returns are multivariate t-distributed. The
number of degrees of freedom of the t-distribution is set equal to eight.

Size Power

Level of Signi�cance Level of Signi�cance

T 10% 5% 1% 10% 5% 1%

Panel A: tc

tc(
̂1;1) 300 0.248 0.169 0.070 0.455 0.332 0.146
600 0.226 0.150 0.058 0.723 0.609 0.364
1200 0.216 0.139 0.052 0.943 0.895 0.733
3600 0.209 0.135 0.049 1.000 1.000 0.999

tc(
̂1;2) 300 0.104 0.052 0.011 0.408 0.292 0.124
600 0.103 0.051 0.011 0.638 0.516 0.282
1200 0.101 0.051 0.011 0.882 0.808 0.594
3600 0.101 0.050 0.010 0.999 0.998 0.990

tc(
̂1;3) 300 0.106 0.054 0.012 0.621 0.498 0.267
600 0.105 0.053 0.011 0.868 0.790 0.575
1200 0.102 0.052 0.011 0.988 0.974 0.909
3600 0.102 0.052 0.010 1.000 1.000 1.000

Panel B: tm

tm(
̂1;1) 300 0.103 0.052 0.011 0.456 0.335 0.148
600 0.106 0.054 0.011 0.720 0.608 0.367
1200 0.108 0.056 0.012 0.941 0.893 0.731
3600 0.111 0.057 0.013 1.000 1.000 0.999

tm(
̂1;2) 300 0.102 0.051 0.010 0.408 0.292 0.123
600 0.101 0.050 0.010 0.638 0.516 0.282
1200 0.100 0.050 0.010 0.882 0.808 0.594
3600 0.100 0.050 0.010 0.999 0.998 0.990

tm(
̂1;3) 300 0.102 0.051 0.011 0.621 0.498 0.267
600 0.102 0.051 0.010 0.868 0.791 0.574
1200 0.100 0.051 0.011 0.988 0.974 0.909
3600 0.101 0.050 0.010 1.000 1.000 1.000
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Table V
Size and power properties of CU-GMM t-tests under normality:

Correctly speci�ed model
The table presents the actual probabilities of rejection for the t-tests of H0 : �1;i = ��1;i and H0 : �1;i = 0
(i = 1; : : : ;K) for di¤erent levels of signi�cance. The model includes a constant term and three risk factors
(FF3 speci�cation). The true values of the SDF parameters are ��1;1 = 1:4497, ��1;2 = �3:2283, and
��1;3 = �3:1090. Panel A presents the empirical size and power for t-tests that are constructed assuming
that the model is correctly speci�ed (tc). Panel B reports the empirical size and power for misspeci�cation-
robust t-tests (tm). The factors and the returns are multivariate normally distributed.

Size Power

Level of Signi�cance Level of Signi�cance

T 10% 5% 1% 10% 5% 1%

Panel A: tc

tc(�̂1;1) 300 0.273 0.192 0.088 0.161 0.092 0.023
600 0.167 0.100 0.031 0.255 0.163 0.054
1200 0.130 0.071 0.017 0.414 0.296 0.124
3600 0.108 0.055 0.012 0.806 0.708 0.469

tc(�̂1;2) 300 0.241 0.163 0.067 0.406 0.279 0.100
600 0.159 0.093 0.027 0.696 0.576 0.325
1200 0.127 0.068 0.016 0.932 0.880 0.715
3600 0.109 0.057 0.012 1.000 1.000 0.998

tc(�̂1;3) 300 0.240 0.162 0.067 0.341 0.226 0.080
600 0.157 0.091 0.026 0.602 0.474 0.247
1200 0.125 0.067 0.016 0.868 0.788 0.571
3600 0.107 0.055 0.012 0.999 0.998 0.988

Panel B: tm

tm(�̂1;1) 300 0.076 0.035 0.005 0.166 0.095 0.027
600 0.089 0.042 0.007 0.257 0.164 0.055
1200 0.095 0.046 0.009 0.414 0.298 0.125
3600 0.098 0.048 0.010 0.806 0.709 0.469

tm(�̂1;2) 300 0.090 0.042 0.008 0.417 0.295 0.116
600 0.103 0.051 0.010 0.700 0.581 0.337
1200 0.103 0.051 0.010 0.932 0.881 0.718
3600 0.102 0.052 0.011 1.000 1.000 0.998

tm(�̂1;3) 300 0.089 0.041 0.006 0.351 0.243 0.093
600 0.100 0.050 0.009 0.607 0.479 0.253
1200 0.102 0.050 0.010 0.868 0.789 0.575
3600 0.100 0.050 0.010 0.999 0.998 0.988
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Table VI
Size and power properties of CU-GMM t-tests under normality:

Misspeci�ed model
The table presents the actual probabilities of rejection for the t-tests of H0 : �1;i = ��1;i and H0 : �1;i = 0
(i = 1; : : : ;K) for di¤erent levels of signi�cance. The model includes a constant term and three risk factors
(FF3 speci�cation). The pseudo-true values of the SDF parameters are ��1;1 = 7:3017, ��1;2 = �7:3402, and
��1;3 = �3:5071. Panel A presents the empirical size and power for t-tests that are constructed assuming that
the model is correctly speci�ed (tc). Panel B reports the empirical size and power for misspeci�cation-robust
t-tests (tm). The factors and the returns are multivariate normally distributed.

Size Power

Level of Signi�cance Level of Signi�cance

T 10% 5% 1% 10% 5% 1%

Panel A: tc

tc(�̂1;1) 300 0.682 0.622 0.509 0.346 0.180 0.010
600 0.600 0.528 0.401 0.631 0.480 0.143
1200 0.536 0.461 0.330 0.905 0.836 0.604
3600 0.490 0.412 0.279 1.000 0.999 0.996

tc(�̂1;2) 300 0.531 0.454 0.323 0.466 0.328 0.113
600 0.442 0.359 0.227 0.829 0.721 0.441
1200 0.386 0.302 0.176 0.990 0.976 0.903
3600 0.346 0.262 0.141 1.000 1.000 1.000

tc(�̂1;3) 300 0.551 0.478 0.352 0.163 0.097 0.028
600 0.456 0.376 0.249 0.246 0.152 0.044
1200 0.395 0.314 0.187 0.443 0.316 0.127
3600 0.355 0.271 0.148 0.876 0.800 0.592

Panel B: tm

tm(�̂1;1) 300 0.143 0.076 0.018 0.355 0.242 0.080
600 0.108 0.053 0.011 0.607 0.489 0.258
1200 0.095 0.045 0.008 0.875 0.804 0.608
3600 0.093 0.045 0.008 0.999 0.998 0.992

tm(�̂1;2) 300 0.099 0.047 0.008 0.482 0.361 0.169
600 0.088 0.040 0.006 0.819 0.730 0.508
1200 0.091 0.041 0.006 0.987 0.973 0.912
3600 0.095 0.046 0.008 1.000 1.000 1.000

tm(�̂1;3) 300 0.116 0.060 0.012 0.177 0.109 0.034
600 0.093 0.045 0.008 0.268 0.181 0.071
1200 0.090 0.042 0.007 0.456 0.347 0.171
3600 0.096 0.047 0.009 0.873 0.799 0.600
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Table VII
Size and power properties of CU-GMM t-tests under non-normality:

Correctly speci�ed model
The table presents the actual probabilities of rejection for the t-tests of H0 : �1;i = ��1;i and H0 : �1;i = 0
(i = 1; : : : ;K) for di¤erent levels of signi�cance. The model includes a constant term and three risk factors
(FF3 speci�cation). The true values of the SDF parameters are ��1;1 = 1:4497, ��1;2 = �3:2283, and
��1;3 = �3:1090. Panel A presents the empirical size and power for t-tests that are constructed assuming
that the model is correctly speci�ed (tc). Panel B reports the empirical size and power for misspeci�cation-
robust t-tests (tm). The factors and the returns are multivariate t-distributed. The number of degrees of
freedom of the t-distribution is set equal to eight.

Size Power

Level of Signi�cance Level of Signi�cance

T 10% 5% 1% 10% 5% 1%

Panel A: tc

tc(�̂1;1) 300 0.348 0.265 0.144 0.156 0.085 0.021
600 0.204 0.132 0.048 0.248 0.157 0.050
1200 0.149 0.085 0.023 0.410 0.291 0.120
3600 0.116 0.061 0.013 0.800 0.700 0.469

tc(�̂1;2) 300 0.314 0.230 0.115 0.371 0.248 0.089
600 0.200 0.127 0.044 0.677 0.548 0.294
1200 0.149 0.085 0.024 0.926 0.868 0.686
3600 0.117 0.062 0.014 1.000 1.000 0.998

tc(�̂1;3) 300 0.311 0.229 0.115 0.312 0.200 0.066
600 0.195 0.124 0.043 0.581 0.447 0.217
1200 0.145 0.083 0.023 0.861 0.773 0.539
3600 0.115 0.061 0.014 0.999 0.998 0.987

Panel B: tm

tm(�̂1;1) 300 0.097 0.050 0.011 0.157 0.089 0.023
600 0.089 0.043 0.008 0.247 0.156 0.051
1200 0.095 0.046 0.009 0.411 0.294 0.124
3600 0.100 0.050 0.009 0.800 0.700 0.469

tm(�̂1;2) 300 0.109 0.057 0.012 0.373 0.252 0.095
600 0.110 0.056 0.012 0.680 0.552 0.303
1200 0.110 0.057 0.012 0.928 0.869 0.689
3600 0.106 0.054 0.012 1.000 1.000 0.998

tm(�̂1;3) 300 0.106 0.056 0.012 0.317 0.207 0.073
600 0.107 0.054 0.011 0.584 0.454 0.225
1200 0.107 0.055 0.012 0.862 0.774 0.543
3600 0.104 0.053 0.011 0.999 0.998 0.987
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Table VIII
Size and power properties of CU-GMM t-tests under non-normality:

Misspeci�ed model
The table presents the actual probabilities of rejection for the t-tests of H0 : �1;i = ��1;i and H0 : �1;i = 0
(i = 1; : : : ;K) for di¤erent levels of signi�cance. The model includes a constant term and three risk factors
(FF3 speci�cation). The pseudo-true values of the SDF parameters are ��1;1 = 10:5705, ��1;2 = �9:2722,
and ��1;3 = �3:1037. Panel A presents the empirical size and power for t-tests that are constructed assuming
that the model is correctly speci�ed (tc). Panel B reports the empirical size and power for misspeci�cation-
robust t-tests (tm). The factors and the returns are multivariate t-distributed. The number of degrees of
freedom of the t-distribution is set equal to eight.

Size Power

Level of Signi�cance Level of Signi�cance

T 10% 5% 1% 10% 5% 1%

Panel A: tc

tc(�̂1;1) 300 0.713 0.660 0.558 0.269 0.077 0.001
600 0.673 0.616 0.508 0.540 0.328 0.015
1200 0.660 0.599 0.491 0.809 0.660 0.229
3600 0.673 0.616 0.511 0.995 0.987 0.908

tc(�̂1;2) 300 0.588 0.517 0.391 0.427 0.276 0.066
600 0.527 0.451 0.323 0.733 0.581 0.247
1200 0.502 0.424 0.293 0.957 0.907 0.660
3600 0.515 0.438 0.310 1.000 1.000 0.997

tc(�̂1;3) 300 0.620 0.555 0.438 0.150 0.087 0.024
600 0.565 0.493 0.371 0.174 0.098 0.027
1200 0.528 0.453 0.330 0.241 0.139 0.033
3600 0.519 0.444 0.318 0.483 0.333 0.091

Panel B: tm

tm(�̂1;1) 300 0.187 0.123 0.057 0.286 0.138 0.010
600 0.151 0.095 0.042 0.495 0.317 0.049
1200 0.136 0.084 0.034 0.728 0.575 0.194
3600 0.135 0.083 0.031 0.965 0.925 0.708

tm(�̂1;2) 300 0.125 0.069 0.019 0.422 0.297 0.101
600 0.106 0.057 0.016 0.701 0.573 0.289
1200 0.104 0.056 0.016 0.918 0.858 0.623
3600 0.113 0.064 0.020 0.996 0.992 0.969

tm(�̂1;3) 300 0.173 0.104 0.031 0.157 0.093 0.026
600 0.139 0.080 0.022 0.202 0.127 0.040
1200 0.120 0.066 0.017 0.288 0.196 0.073
3600 0.113 0.058 0.014 0.526 0.421 0.224
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Table IX
Test statistics for various asset-pricing models

The table reports test statistics for the three asset-pricing models (CAPM, FF3, and FF5) described in
Section 5. CSR and HJD denote the GLS cross-sectional regression and Hansen-Jagannathan distance
estimators, respectively. t(x) denotes the t-test of statistical signi�cance for the parameter associated with
factor x, with standard errors computed under the assumption of correct model speci�cation (tc) and model
misspeci�cation (tm).

tc tm

CAPM FF3 FF5 CAPM FF3 FF5

Panel A: Beta-Pricing Representation

MLE

t(mkt) �2:92 �3:05 �1:34 �2:38 �2:43 �0:75
t(smb) 2:04 1.93 2:04 1.90
t(hml) 2:85 2.54 2:84 2.45
t(rmw) �0:85 �0:44
t(cma) 5.09 1.63

CSR

t(mkt) �2:53 �2:61 �1:99 �2:37 �2:39 �1:74
t(smb) 2:04 2:02 2:04 2:03
t(hml) 2:86 2:72 2:86 2:70
t(rmw) 0:08 0:06
t(cma) 3:05 2:39

Panel B: SDF Representation

CU-GMM

t(mkt) 4:00 4:84 �1:74 2:07 1:68 �0:84
t(smb) �4:97 �4:92 �1:53 �2:10
t(hml) �3:51 5:14 �1:25 1:62
t(rmw) �5:68 �1:46
t(cma) �7:15 �1:86

HJD

t(mkt) 2:72 2:57 0:87 2:49 2:33 0:71
t(smb) �3:03 �2:90 �2:98 �2:70
t(hml) �1:85 0:78 �1:86 0:58
t(rmw) �1:15 �1:02
t(cma) �1:80 �1:30
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