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1 Introduction

An important form of bank lending is credit lines and other liquidity commitments, which

serve as liquidity backstops to businesses. The recent �nancial crisis of 2007-09 demonstrated

that liquidity backstops have important implications for �nancial stability. For example,

concerns about provision of liquidity backstops by banks contributed to runs on asset-backed

commercial paper programs in the summer 2007 (Covitz, Liang, and Suarez (2013)). These

runs together with those in several other markets (e.g., markets for repo, money market

funds) tightened credit going to �rms and households and in�icted widespread damage to

the US and global economy. In this paper we provide a microfoundation for the important

role of liquidity backstops in mitigating runs (or, conversely, the role of the lack of liquidity

backstops in exacerbating runs) based on a dynamic model of debt runs. We focus on the

municipal bond markets for variable rate demand obligations (VRDOs) and auction rate

securities (ARS). As we will describe shortly, these markets provide an ideal laboratory to

identify and quantify the value of a liquidity backstop in mitigating runs.

VRDOs and ARS are essentially short-term municipal bonds with �oating interest rates

that are reset on a periodic basis (typically weekly). Despite many similarities, they di¤er

in terms of the nature of liquidity support. VRDOs are typically structured with liquidity

backstop facilities committed by liquidity providers (usually large banks) who act as �buyers

of last resort.� By contrast, there are no explicit liquidity backstops in the ARS market:

in the event that there are insu¢ cient bids at an auction and the auction agent does not

intervene to provide liquidity, the auction will fail and selling creditors will be stuck with

their holdings until the next successful auction. Section 2 provides more detail about these

markets.

The key di¤erence in the nature of liquidity support in these two markets leads to dra-

matically di¤erent experiences during the crisis. Prior to the crisis, market participants

viewed both ARS and VRDOs as almost identical securities. From some anecdotal evidence,

such view partly stems from the �awed perception that auction agents would always provide



liquidity to prevent ARS auctions from failing. Consistent with the treatment of ARS and

VRDOs as almost identical securities, the average ARS and VRDO interest rates, shown in

Figure 1, were very close before 2007.

[Insert Figure 1 About Here]

However, at the onset of the crisis, several major banks serving as auction agents were

forced to cut back on lending including uncommitted lending in the ARS market and decided

not to intervene in early 2008. Consequently, auctions in the ARS market started to fail and

at the peak in mid-February 2008 �about two-thirds of auctions have failed per day.�1 The

wave of auction failures shattered the misperception and triggered a run on ARS. The run is

evident in the spike of the ARS rate around 6.6% in the second half of February and March

in 2008 as shown in Figure 1. By contrast, explicit liquidity backstops in the VRDO market

helped to stabilize its interest rate around 2%. Later that year, in September 2008, the

Lehman bankruptcy cast into doubt the strength of explicit liquidity backstops. Investors

worried whether banking institutions with explicit liquidity commitment would be able to

meet their obligations and consequently runs on both VRDO and ARS occurred. As shown

in Figure 1, the average VRDO and ARS rates jumped in unison to around 8% on September

24, 2008.

These run episodes suggest that whether or not an explicit liquidity backstop exists can

lead to dramatically di¤erent dynamics in otherwise almost identical markets. This is the

basis for our identi�cation of the value of a liquidity backstop. Moreover, the run on ARS

in early 2008 demonstrates its �dynamic�nature; that is, once auctions started to fail, fear

of future auction failures propelled more investors to run on ARS.

Motivated by the above observations, we develop a continuous time model of dynamic

debt runs in the markets for ARS and VRDO based on He and Xiong (2012, HX hereafter).

Our model captures several key characteristics of ARS and VRDOs: the �oating interest

1See �Florida Schools, California Convert Auction-Rate Debt,�Bloomberg L.P., February 22, 2008.
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rate, the pre-speci�ed interest rate cap or maximum interest rate, and, more importantly, the

committed versus uncommitted liquidity provision. In the model there is a unique threshold

equilibrium in which creditors�decision to run or not depends on whether the fundamental

falls below a certain endogenous threshold (referred to as the �rollover threshold�). Runs

may arise in the model due to the �maturity-mismatch�problem � short-term securities

(ARS or VRDOs in our case) are issued to �nance an illiquid long-term project. As argued in

HX, a run by future creditors may force the project to be prematurely liquidated, resulting

in a loss from premature liquidation that is borne by earlier creditors who decide to roll over

the debt. Ex ante, such a negative externality prompts creditors to run more often, giving

rise to so-called dynamic debt runs.

One key departure of our model from HX is that we formally model and distinguish be-

tween committed and uncommitted liquidity provision. The former is referred to as liquidity

backstops. As one main result, we show theoretically that the lack of a liquidity backstop

can exacerbate runs because of a new type of externalities arising from a creditor�s running

decision. The intuition is as follows. Absent liquidity backstops, liquidity may evaporate

unexpectedly, especially at times when it is needed most. In the context of the ARS mar-

ket, a run may trigger an auction to fail and the failure is likely to occur when creditors

need to liquidate their bond holdings. Put di¤erently, the decision to run imposes negative

externalities on future maturing creditors who may �nd themselves unable to sell and su¤er

losses amid auction failures. The resulting negative externalities make a run more likely to

happen, ex ante. Theoretically, we prove that the rollover threshold is higher in the ARS

market than that in the VRDO market because of the lack of a liquidity backstop. This

explains why the ARS market was more susceptible to runs than the VRDO market during

the crisis.

In another main result, we conceptualize and evaluate the value of a liquidity backstop

based on structural estimation of the model. As shown in Figure 1, following the eruption of

auction failures, the ARS rate started to diverge from the VRDO rate since November 2007,
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as ARS creditors began to take into account the previously ignored possibility of auction

failures. This structural shift helps us to identify the value of a liquidity backstop in a

spirit similar to the �di¤erence-in-di¤erence�approach. In the model, we assume that the

probability of auction failure is considered to be zero in the pre-crisis period so that the

running decision in both ARS and VRDO markets is the same, characterized by a common

rollover threshold. We further assume that in the crisis and post-crisis periods, ARS creditors

correctly recognize the lack of a liquidity backstop in the ARS market. Once a positive

probability of auction failure is taken into consideration, ARS creditors face a higher rollover

threshold than that in the VRDO market, implying that creditors in the ARS market are

more likely to run.

The value of a liquidity backstop can now be conceptualized in the following thought

experiment. If an ARS issuer acquires the same liquidity backstop facility as in the VRDO

market, the rollover threshold in the ARS market will be reduced to the same threshold in

the VRDO market. Alternatively, without acquiring the VRDO liquidity facility, the ARS

issuer could obtain the same VRDO threshold by permanently increasing the ARS rate by a

large enough amount at each point of time. A risk neutral ARS issuer would be indi¤erent

between these two methods, as long as the fee for acquiring the liquidity backstop is the

same as the constant ARS rate increase. Therefore, the value of a liquidity backstop can

be determined as the hypothetical permanent increase in the ARS rate that equalizes the

rollover thresholds in both markets.

Lastly, to quantify a liquidity backstop�s value we structurally estimate the model us-

ing the Quasi-Maximum Likelihood (QML) method based on the following identi�cation

assumptions. One identi�cation assumption is that issuers of ARS and VRDOs have similar

fundamentals. In fact, many municipalities issue both types of securities. We �rst infer

the unknown fundamental process based on the historical and model-implied VRDO rates.

Then we apply the inferred fundamental process to the ARS market to compute the like-

lihood function. Another identi�cation assumption is that there is a structural change in
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the beliefs of ARS investors at the onset of the crisis. Speci�cally, we assume that ARS

investors have started to recognize the lack of a liquidity backstop and the possibility of

auction failures beginning November 2007. As a result, the ARS rollover threshold has since

then jumped to a higher level than the VRDO threshold, and the resulting ARS interest rate

is determined by taking into account the higher rollover threshold as well as possible losses

from auction failures. Based on these identi�cation assumptions and using the historical

and model-implied ARS rates, we can estimate several key parameters by maximizing the

likelihood function. The estimation results imply that auctions are expected to fail within a

month with a unconditional probability of 0.3%. We are also able to estimate the value of a

liquidity backstop to be about 14.5 basis points per annum.

Our paper contributes to the theoretical debt-run literature that examines the determi-

nants of runs.2 Our model is built upon He and Xiong (2012), which extends the literature

on static bank-run models (Diamond and Dybvig (1983); Rochet and Vives (2004); Gold-

stein and Pauzner (2005), etc.). The He-Xiong model highlights the dynamic coordination

problem and one main �nding is that fear of future rollover risk could motivate each creditor

to run ahead of others. In a closely related paper, Schroth, Suarez, and Taylor (2014) extend

and apply the He-Xiong model to the ABCP market. The authors show that an endogenous

�dilution risk�, arising from higher yields demanded by maturing creditors, increases the

likelihood of runs. Cheng and Milbradt (2012) develop a dynamic debt run model to study

the optimal maturity structure of debt to best trade o¤ incentive provision against ine¢ cient

rollover freezes. Our di¤erent focus on the e¤ect of liquidity backstops on the likelihood of

runs distinguishes our paper from these papers.

This paper is also related to the literature on the role of banks as liquidity providers.

Kashyap, Rajan, and Stein (2002) provide a convincing argument that banks have a natural

2For empirical studies, please see Carey, Correa, and Kotter (2009) and Covitz, Liang, and Suarez (2012)
for the run on ABCP, Gorton and Metrick (2012) for the run on repo, Kacperczyk and Schnabl (2013),
Wermers (2012) for the run on money market mutual funds, and Shin (2009) on the run on Northern Rock,
and Han and Li (2009) and McConnell and Saretto (2010) for the run on ARS.
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advantage of acting as liquidity providers to provide liquidity on demand. The advantage

stems from a synergy between deposit-taking and loan commitments to the extent that both

types of activities require banks to hold large balances of liquid assets. The synergy exists as

long as both activities are not too highly correlated, which holds up very well during normal

times or several recent episodes of market stress.3 However, as Acharya and Mora (2015)

argue, during the banking crisis of 2007-08, the role of banks as liquidity providers was itself

in crisis as both sides of their balance sheet were hit simultaneously. Nagel (2012) shows

empirical evidence for the reluctance of market makers to absorb inventories during times of

crises. In this paper, we further investigate the destabilizing e¤ects when banks as liquidity

providers cut back on uncommitted lending (e.g., the wave of auction failures in the ARS

market). By contrasting the run episodes in the VRDO and ARS markets, our paper is able

to shed new light on how valuable the role of banks is in providing backup liquidity.

The remainder of this paper is structured as follows. In Section 2, we provide an overview

of the VRDO and ARS markets and the turmoil in these markets during the �nancial crisis.

Section 3 presents the model. Section 4 characterizes the equilibrium. In Section 5 we

discuss key model implications, including the externalities imposed on future creditors by

the running decisions of current creditors. In Section 6, we present our estimation procedure

and results. Section 7 concludes. Most proofs are in the appendix at the end of this paper.

A companion internet appendix provides omitted proofs and additional derivations.

2 Overview of the Markets for VRDOs and ARS

In this section, we �rst provide a description of VRDOs and ARS, and an overview of these

markets, followed by a narrative on the disruptions in these markets in 2008 during the

recent �nancial crisis.

3See Gatev and Strahan (2006) and Gatev, Schuermann, and Strahan (2009) for evidence of a negative
correlation between deposit withdrawals and commitment draw-downs in the commercial paper market.
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2.1 Background

In this subsection we provide some background information on VRDOs and ARS.

Auction Rate Securities. ARS are long-term municipal bonds with interest rates that

are periodically reset through a Dutch auction process at short-term intervals, usually 7, 28

or 35 days. Following a successful auction, buyers purchase the bonds at par and receive

the market clearing interest rate until the next interest reset date. ARS have nominally

long-term maturities that usually range from 20 to 30 years. Nonetheless, the interest rate

reset mechanism provides creditors with frequent opportunities to sell their holdings through

auctions, and thus makes ARS priced and traded as short-term instruments.

At each auction, the auction agent accepts bids from market participants. Existing bond

holders can submit one of three types of orders: a �hold at market�order if they wish to

maintain their positions regardless of the market-clearing rate; a �sell at market� (market

sell) order if they wish to sell regardless of the market-clearing rate; a �hold at rate�(limit

sell) order if they commit to sell their positions under the condition that the market-clearing

rate is equal to or lower than the speci�ed rate. Potential buyers can submit a limit buy

order to buy the bond if the bid is less than or equal to the market-clearing rate. The auction

agent then receives all the bids and can submit his/her own order.

The market-clearing interest rate is bounded from above by a pre-speci�ed maximum

interest rate, often shortened to �max rate� in Wall Street parlance.4 The max rates are

either �xed, or �oating and usually tied to a reference rate (e.g., LIBOR). Fixed max rates

are speci�ed for all ARS, in a wide range of 9% to 25%. For ARS that also have �oating

max rates, the binding max rate is the minimum of the two.5

An auction fails when there are not su¢ cient bids to clear the market at a rate less than

the max rate. In the case of auction failure, the max rate is imposed, however, importantly,

creditors are stuck with the bonds until the next successful auction. Until the ARS market

4Throughout this paper we use the terms �maximum interest rate�and �max rate�interchangeably.
5Please see McConnell and Saretto (2010) for some examples of how �oating max rates are set.
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froze in mid-Feburary 2008, auction failures were extremely rare � there were only 13 failed

auctions between 1984 and 2006.6 However, as described shortly in the next subsection, after

the �nancial crisis broke out, a tidal wave of auction failures hit the market.

Variable Rate Demand Obligations. VRDOs are very similar to ARS; they are also

long-term �oating-rate bonds with periodic interest rate resets. Unlike ARS, interest rates

of VRDOs are reset periodically through �remarketing agents�so that the securities can be

sold at par.

The key distinguishing characteristic of VRDOs is the existence of an explicit liquidity

facility/backstop. VRDO creditors have a �tender�or �put�option which allows them to

put the bonds at par value (plus any accrued interest) to the remarketing agent who then

try to resell (remarket) the tendered bonds to new investors. To make the tender option

feasible, VRDOs are usually structured with a liquidity facility provided by a third-party

�liquidity provider.� The liquidity provider, usually a large bank, acts as a buyer of last

resort; it provides liquidity support by buying the bonds if the remarketing agent is unable

to remarket them. In this case, the bonds become the so-called �bank bonds�showing up

on the liquidity provider�s balance sheet.

The liquidity facility is in the form of a direct Letter of Credit (LOC) under which the

liquidity provider acts as the �rst source of payment of principal and interest, or a standby

LOC under which the issuer is the �rst source of liquidity and the liquidity provider acts as a

back-up, or a Standby Bond Purchase Agreement (SBPA) under which the VRDO instrument

is insured by an investment-grade insurer and in the case of unsuccessful remarketing, the

liquidity provider is obligated to buy the tendered bonds as long as the insurer maintains

its investment grade rating. Regardless of which structure is used, the liquidity provider is

the ultimate source of liquidity. As a result, the VRDO instrument carries the short-term

rating of its liquidity provider.

6�Prolonged disruption of the auction rate market could have negative impact on some ratings,�Special
Report, Moody�s Investors Service, February 20, 2008.

8



VRDOs are also typically sold with credit enhancement, which takes the form of a munic-

ipal bond insurance policy provided by some monoline bond insurers. The credit enhance-

ment protects creditors and the liquidity provider from long-term credit risk. Therefore, the

VRDO instrument carries the long-term rating of its insurer, typically triple A.

2.2 The VRDO and ARS Markets and the Crisis in 2008

The VRDO and ARS markets are signi�cant components of the $3.7 trillion municipal bond

market, with sizes of about $200 billion and $500 billion in 2008 at their peak time, respec-

tively. The markets were an attractive �nancing venue for municipal issuers because they

allow for the issuance of long-term obligations using short-term interest rates that are typi-

cally lower than long-term interest rates. For investors, these securities were also attractive

because they o¤ered better returns than traditional money market investments. Both mar-

kets have existed since 1980s and had functioned well until the �nancial crisis broke out in

2007. In the aftermath of the �nancial crisis, the ARS market collapsed afterwards and there

have been no new ARS issuances since 2008. Meanwhile, new issuance of VRDOs surged in

2008 as many existing ARS were converted into VRDOs. Figure 2 below plots the annual

amount of issuance in both markets since 1988, calculated using SDC platinum.

[Insert Figure 2 About Here]

The ARS market encountered signi�cant problems in early 2008. Since mid-2007, the

disruption in the subprime mortgage market spread to the monoline insurance market where

several major municipal bond insurers (e.g., Ambac and MBIA) were downgraded because of

their exposure to subprime mortgage debt. These downgrades resulted in increased selling

pressure in ARS. On the other hand, the subprime mortgage meltdown also signi�cantly

strained balance sheets of auction agents (e.g., Citibank, Goldman Sachs, Lehman Brothers,

UBS, Royal Bank of Canada and JPMorgan) to the extent that they decided not to intervene

and let the auctions fail in mid-February 2008. Reportedly, about 60% to 80% of auctions

9



failed in the second half of February in 2008.7 The wave of auction failures drove up the

ARS rate to as high as 6.6% around mid-February 2008 as shown in Figure 1. The sheer

volume of failed auctions and fear of future auction failures propelled more investors to run

on ARS.

The run on ARS highlighted the implicitness of the liquidity provision in the ARS market:

although in less tumultuous times prior to 2007, auction agents had almost always stepped in

to buy some of these securities to help keep the market functioning, they had no contractual

obligations to do so. During the �nancial crisis, major auction agents indeed chose to no

longer be �buyers of last resort.�By contrast, the VRDO market was not a¤ected as much

in early 2008 due to the explicit structure of its liquidity facility.

However, later in 2008 the VRDO (as well as ARS) market experienced a run as a result

of the bankruptcy of Lehman Brothers declared on September 15, 2008 and the subsequent

panic in the market of money market mutual funds (e.g., runs on the Reserve Primary Fund

that �broke the buck�, and other money market mutual funds). Investors worried about

whether banking institutions that explicitly provided liquidity facility would be able to meet

their obligations. The run on VRDO is evident in the spike of 7.96% of the average VRDO

rate on September 24, 2008, as shown in Figure 1.

The runs on ARS and VRDO in 2008 allow us to distinguish the di¤erential e¤ects of

explicit and implicit liquidity provisions on the running decision of investors. In particular,

we build a dynamic-debt-run model of the VRDO and ARS markets to illustrate why the

ARS market became more susceptible to runs in early 2008 once investors started to recognize

the implicitness of the liquidity provision. Furthermore, we also structurally estimate the

model to assess the value of providing an explicit liquidity facility as in the case of VRDOs.

7See, �Breakdown of auction rate securities markets,�congressional testimony by Leslie Norwood, Sep-
tember 18, 2008.
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3 The Model

We develop a model of dynamic debt runs for the markets for VRDOs and ARS, based

on He and Xiong (2012). The model contains several common features shared by VRDOs

and ARS: a �oating short-term interest rate and a pre-speci�ed maximum interest rate.

Moreover, the model captures a unique feature of VRDOs that ARS do not have: a liquidity

backstop (facility), structured as imperfect credit lines, to support the tender option of

VRDO investors. We use ��oating-rate (municipal) bonds�or simply �bonds� to refer to

both VRDOs and ARS when describing the setting that applies to both.

3.1 Asset

At time 0, a government-related entity (referred to as a municipality, hereafter) issues

�oating-rate municipal bonds (i.e., VRDOs or ARS) to borrow $1 to �nance a long-horizon

project that generates cash �ow at a constant rate r. At a random arrival time �� according

to a Poisson process with intensity � > 0, the project is terminated with a �nal payo¤. The

�nal payo¤ is the realization of a geometric Brownian motion process yt at time ��,

dyt = yt (�dt+ �dZt) ; (1)

where fZtg is a standard Brownian motion. The project�s fundamental value under a discount

rate � is determined as follows:

F (yt) = Et

�Z ��

t

e��(s�t)rds+ e��(���t)y��

�
=

r

�+ �
+

�

�+ �� �yt: (2)

Due to tax exemption, the discount rate � equals the after-tax risk-free rate, that is,

� = rf (1� �) ; (3)
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where rf denotes the taxable Treasury yield and � the marginal tax rate. The discount rate

� is identical for all creditors.

3.2 VRDO/ARS Financing

The long-term project is �nanced by the issuance of VRDOs or ARS whose maturity coincides

with the termination of the project. That is, the issued VRDOs or ARS have a long-

term nominal maturity, equal to 1=� or the expected time until the project is terminated.

Despite the long-term nominal maturity, VRDOs and ARS have been considered as short-

term securities in practice, because of periodical (typically, weekly) remarketing or auctions

through which creditors can sell their holdings (see Section 2). To capture the short-term

nature of VRDO/ARS �nancing in a tractable way, we assume that there is a continuum

of risk neutral creditors with measure 1, and each creditor decides to sell his bond holdings

at a random time � � which arrives following a Poisson process with intensity � >> � > 0.

This assumption shares the spirit of the Calvo (1983) staggered-pricing model: at each time

interval [t; t+ dt], a �xed fraction �dt of creditors arrive to make their rollover decision.

For example, creditors may experience idiosyncratic private liquidity shocks such that their

rollover decision making is uniformly spread out across time.

A coordination problem between current and future creditors arises in the model. This is

because current creditors face a so-called rollover risk where they may su¤er losses if future

creditors choose not to roll over their debt. As a result, each creditor�s rollover decision

depends on what he anticipates the action of future creditors to be. This dynamic nature

of creditors�rollover decisions makes this model distinct from the static bank-run models

(Diamond and Dybvig (1983)).

Another prominent feature associated with �nancing via VRDO or ARS is the �oating

interest rate. In the next section, we will discuss in detail how the interest rate is determined.
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3.3 Runs, Liquidity Backstops, and Auction Failures

A run occurs if creditors decide not to roll over their debt. In the model, creditors may refuse

to roll over their debt for fear of future distressed liquidations, but also for fear of auction

failures in the ARS market that lacks a liquidity backstop, both of which can be triggered

by a run by future creditors. The latter fear of auction failures due to the lack of a liquidity

backstop is an innovative feature of our model. As we will show shortly, a run induces very

di¤erent dynamics in these markets, because liquidity backstops exist in one market (i.e.,

VRDO) but not in the other one (i.e., ARS).

VRDOs are structured with an explicit liquidity backstop (i.e., a liquidity facility in the

form of a letter of credit or stand-by purchase agreement) committed by a liquidity provider.

Upon a run when the remarketing agent cannot �nd enough buyers, the liquidity provider

is contractually obligated to provide liquidity and buy the bonds. However, the liquidity

facility may not be perfectly reliable, even though it is explicitly committed. For example,

the liquidity provider may become so severely �nancially distressed (e.g., Lehman Brothers)

that it may fail to honor its liquidity commitment. To model the extent of unreliability of

the liquidity facility, we assume that with probability ��dt, the committed liquidity support

may fail, and, once it fails, the asset will be forced into premature liquidation, sold at a

fraction � of its fundamental value (e.g., �re sale). That is, the liquidation value is

L (yt) = �F (yt) =
�r

�+ �
+

��

�+ �� �yt � L+ lyt. (4)

If the liquidation value is not enough to pay o¤all the creditors, a bankruptcy occurs. There-

fore, a run in the future will expose creditors to possible bankruptcy losses. In anticipation

of the bankruptcy losses, creditors may refuse to roll over the debt earlier on.

By contrast, ARS are not structured with a liquidity backstop. As a result, ARS creditors

face an additional risk of auction failures. Without a liquidity commitment, the auction

agent can choose whether or not to participate in an auction. Upon a run when there are
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insu¢ cient buyers, the auction agent has no contractual obligations to act as the residual

bidder and the auction would fail if the agent decided not to step in. To capture this layer

of uncertainty due to the lack of a liquidity backstop in the ARS market, we assume that

upon a run, with probability ��dt, the auction agent will not step in to intervene in the

market and the auctions will fail; with probability 1� ��dt, the auction agent will intervene

to keep the auctions functioning. For tractability, we further assume that once an auction

fails, all the following auctions continue to fail. In the event of successful auctions, the

market-clearing interest rate rt prevails and premature liquidation occurs with probability

��dt. In the autarkic event of failed auctions, the max rate r is imposed and premature

liquidation occurs with probability ��dt.

3.4 Timeline

Figures 3A and 3B summarize the sequence of events in the model of VRDOs and ARS,

respectively. All participants observe the fundamental yt and the max rate r. At the begin-

ning, the (remarketing or auction) agent announces and commits to an interest rate formula

R (yt; y�) which may depend on a certain (endogenously determined) parameter y� which we

will discuss shortly in the following section.

In the case of VRDOs (shown in Figure 3A), at each time t, a fraction �dt of creditors

decide whether to roll over their debt or to run. They base their decision on the observation

of the fundamental yt and the interest rate rt reset by the remarketing agent. If they decide to

roll over, the game continues to the next instant. If they decide to run, the liquidity facility

is drawn upon to purchase the tendered bonds, but the facility may fail with probability

��dt. If it fails, the game ends and the project is liquidated to pay o¤ all the creditors. If it

succeeds, the game continues to the next instant.

[Insert Figure 3 About Here]

The case of ARS, shown in Figure 3B, has a similar timeline as VRDOs, except that
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when the creditors decide to run, with probability ��dt the auction agent may decide not

to intervene and then the auctions would continue to fail until the project fails eventually.

This additional layer of uncertainty, highlighted by the �owchart within the dashed circle

in Figure 3B, captures the central distinction between VRDOs and ARS in terms of the

existence of a liquidity backstop.

3.5 Parameter Restrictions

We impose a few parameter restrictions for the model to be meaningful. We keep the same

parameter restrictions as in HX:

� < �+ �; (5)

� < �� (1� L� l) + �� (1� U (1)) ; (6)

� <

�
r

�+ �
+

�

�+ �� �

��1
: (7)

The �rst one of the above three restrictions imposes an upper bound on the growth rate of the

fundamental to ensure the fundamental value is �nite. The second restriction ensures that

the parameter � is su¢ ciently high so that bankruptcy becomes likely when some creditors

choose to run. U (�) denotes the value function in the case of continued auction failures,

which we derive shortly in the next section. The third restriction stipulates a su¢ ciently

low premature recovery rate so that L+ l < 1.

In addition, we impose the following restriction for the additional parameters in our

model, namely, r, �, and �:

r > �+�+ ��

�
1� U

�
1� L
l

��
; (8)

0 � � < �1 (�+ �) (�+ �+ �� (1� L)� r)

2 (�+ �+ � (1 + � + �))

; (9)
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where �1 and 
2 as well as other constants are de�ned in Appendix A. The restriction (8)

ensures that the max rate is su¢ ciently high for the model to be meaningful. The restriction

(9) rules out the degenerate case where the liquidity component � is too large and it is

thus always pro�table to hold the bonds, implying that the equilibrium threshold y� is zero.

Note that �+ �+ �� (1� L) is an endogenous upper bound on the max rate. Furthermore,

this restriction also implies U (0) < 1. Lastly, we also impose some parameter restrictions

to ensure monotonicity of the value function. To simplify exposition, we assume � = 1 + �

throughout the paper.

4 Equilibrium

We now turn to the characterization of monotone equilibriums in which creditors choose to

roll over if and only if the fundamental is above a threshold. In this section, we �rst analyze

an individual creditor�s problem of optimal threshold choice. Then we study how the interest

rate should be set in a monotone equilibrium. Lastly, we derive a unique symmetric monotone

equilibrium in closed form in which the optimal threshold, denoted by y�, is unique for all

creditors and the equilibrium interest rate is set in a way that the debt is priced at par

whenever yt � y�. We also discuss an extension of the model which is needed when we

conceptualize and estimate the value of a liquidity backstop.

4.1 Value Functions

We derive the optimal rollover threshold y� by solving an individual creditor�s optimal rollover

problem. Consider an individual creditor who is making his rollover decision. Suppose all

the other creditors choose a rollover threshold y� and the (remarketing or auction) agent

resets the interest rate rt = R (yt; y�) based on the same threshold y�. Denote by V (yt; y�)

the creditor�s value function when auctions have been successful, and by U (yt) the value

function when auctions have failed.
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First, we determine the value function V (y; y�) when auctions have been successful. For

each unit of debt, each creditor receives a stream of interest payments R (yt; y�) until the

earliest of the following four events occur. The �rst event occurs at stopping time �� when

the asset matures and the creditor gets a �nal payo¤ of min
�
1; y��

�
. The second event

occurs at stopping time � � when the creditor gets the opportunity to decide whether to

roll over the debt. Whether or not the creditor decides to roll over depends on whether

or not the continuation value V (y�� ; y�) exceeds the one-dollar par value. The third and

fourth events occur when the fundamental falls below other creditors�rollover threshold y�:

upon a run by other creditors, with probability 1fyt�y�g��dt, the third event occurs at the

stopping time �� when auctions fail and the creditor will be stuck with the debt valued at

U (y��); with probability 1fyt�y�g��dt, the fourth event occurs at the stopping time � � when

the project is forced to premature liquidation with payo¤ min (1; L+ ly��). The stopping

time � � min f��; � �; ��; � �g is the minimum of these four stopping times, representing the

earliest time when any of these four events occur. Due to risk neutrality, the value function

V (y; y�) is given by

V (yt; y�) = Et

�Z �

t

e��(s�t)R (ys; y�) ds+ e
��(��t)min (1; y� ) 1f�=��g (10)

+e��(��t)min (1; L+ ly� ) 1f�=��g + e
��(��t)U (yt) 1f�=��g

+e��(��t) max
rollover or run

(V (y� ; y�) ; 1) 1f�=��g

i
:

The Hamilton-Jacobi-Bellman (HJB) equation is given below:

�V (yt; y�) = �ytVy (yt; y�) +
�2

2
y2t Vyy (yt; y�) +R (yt; y�) (11)

+� [min (1; yt)� V (yt; y�)]

+��1fyt�y�g [min (1; L+ lyt)� V (yt; y�)]

+��1fyt�y�g [U (yt)� V (yt; y�)]

+� max
rollover or run

(0; 1� V (yt; y�)) :
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It shows that the creditor�s required return on the left hand side, �V (yt; y�), is equal to

the expected increase in his continuation value as summarized by the terms on the right

hand side. The creditor will choose to roll over the debt if and only if V (yt; y�) � 1. If

we denote as y0� = inf fyt : V (yt; y�) � 1g the minimum fundamental value at which the

continuation value is no less than 1, then y0� is the creditor�s optimal rollover threshold since

V (y0�; y�) = 1 and V (y; y�) < 1 for y < y
0
�. In the symmetric equilibrium we consider below,

each creditor�s optimal threshold choice y0� must coincide with other creditors�threshold y�.

Thus the optimality condition is

V (y�; y�) = 1.

Similarly, we can determine the value function U (yt) when auctions have continued to

fail. Under the assumption that the auctions, once failed, would continue to fail, creditors�

rollover decision becomes irrelevant and thus the value function U (yt) does not depend on

their rollover threshold y�. In this autarkic scenario, the max rate r is imposed until the asset

matures at the stopping time �� or the project is prematurely liquidated at the stopping

time � �. As a result, the value function U (yt) is given by

U (yt) = Et

�Z ��^��

t

e��(s�t)rds+ e��(���t) min
�
1; y��

�
1f�����g (12)

+e��(���t) min
�
1; L+ ly��

�
1f��>��g

i
:

In Lemma 1, we derive the value function in closed form as below, and prove that it is strictly

monotonically increasing:

U (yt) =

8>>><>>>:
K1 +K2yt + U1y

�3
t , if y 2 (0; 1]

K3 +K4yt + U2y
�
3
t + U3y

�3
t ; if y 2 (1; 1�L

l
]

K5 + U4y
�
3
t , if y 2 (1�L

l
;1)

; (13)

where the coe¢ cients K1, etc. are de�ned in Appendix A or in the proof of Lemma 1.
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Lemma 1 U (y) is strictly monotonically increasing.

To determine the value function V (y; y�), we need to spell out how the �oating interest

rate rt = R (yt; y�) is determined �rst, to which we will turn next.

4.2 Floating Interest Rate

We now consider how the interest rate rt is reset at each point in time. We �rst derive the

unconstrained interest rate in the benchmark case where there is no interest rate cap, and

then determine the constrained interest rate once an interest rate cap is imposed.

In the absence of a maximum interest rate, for any �xed threshold y� � 0, the interest

rate is unbounded and can be set arbitrarily high to ensure that VRDOs or ARS are priced

at par. Based on the HJB equation (11), the value function is always equal to one under the

following unconstrained interest rate Ru (yt; y�)

Ru (yt; y�) = �+ � (1� yt)+ + 1fyt�y�g
�
�� (1� [L+ lyt])+ + �� (1� U (yt))

�
(14)

where (x)+ denotes x if x > 0, or zero otherwise. The unconstrained interest rate schedule

takes a di¤erent shape when y� is in a di¤erent range: y� � 1, 1 < y� � 1�L
l
, and y� > 1�L

l
,

as shown in Panels A, B, and C of Figure 4, respectively.

[Insert Figure 4 About Here]

The unconstrained interest rate in Eq. (14) can be decomposed into three components:

a risk-free component �, a component related to losses at maturity � (1� yt)+, and the last

component associated with possible credit losses. Intuitively, the unconstrained interest rate

decreases with the fundamental yt. That is, creditors are generally paid by a higher interest

rate when the fundamental deteriorates. As we will show shortly, such countercyclicality

of the interest rate tends to alleviate runs. Furthermore, the unconstrained interest rate
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jumps to a higher value when the threshold y� is reached from above. The upward jumps

occur in these cases because of the possible losses incurred due to premature liquidation

(1� [L+ lyt])+ and auction failures (1� U (yt)). However, in the absence of a maximum

rate, the interest rate can freely adjust to guarantee the value of debt is always equal to one.

As a result, in equilibrium, creditors are indi¤erent between rolling over and running.

In the presence of an interest rate cap r, creditors will be under-compensated in bad states

if r is imposed instead of the higher unconstrained interest rate. Therefore, if the interest

rate is given as the lower value between r and Ru (yt; y�), then creditors�continuation value

is strictly less than 1 and thus they always prefer to run, i.e., y� = 1. To avoid such a

degenerate case and to keep tractability, throughout the rest of the paper, we add a new

component � � 0 to the unconstrained interest rate, which we refer to as a �liquidity

premium�, and then impose the following interest rate schedule:

R (yt; y�) = min (R
u (yt; y�) + �; r) : (15)

Depending on the values of � and r, as shown in Figure 5, there are totally eight di¤erent

cases (Case A, � � � , Case H) where the constrained interest rate schedule takes a di¤erent

functional form.

[Insert Figure 5 About Here]

The component � introduces a trade-o¤ for creditors. On one hand, when the funda-

mental falls below the rollover threshold, creditors are undercompensated by the max rate,

which is usually lower than what the market-required rate would have been had creditors

decided to roll over the debt. On the other hand, when the fundamental remains above

the threshold, creditors are overcompensated by an amount equal to �. Therefore, however

small � is, creditors receive the bene�t of overcompensation during tranquil times and trade

o¤ the bene�t against the loss due to undercompensation during future run scenarios. As we

prove in the next subsection, the trade-o¤ guarantees uniqueness of the symmetric equilib-
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rium where the threshold y� is uniquely pinned down at which creditors are just indi¤erent

between rolling over and running. Another possible interpretation of the component � is

that it can also be an extra compensation demanded by the (auction or remarketing) agent

for possible inventory risk or holding costs. Lastly and importantly, it is also related to the

concept of the value of a liquidity backstop we introduce shortly in the next section. For the

above reasons, we will refer to � as a �liquidity premium.�

4.3 Unique Threshold Equilibrium

We focus on symmetric monotone equilibria where all creditors in equilibrium will choose

the same threshold y� and the agent resets the interest rate based on y�. The threshold y�

is de�ned as the minimum value at which V (yt; y�) � 1, i.e., y� = min fyt : V (yt; y�) � 1g.

When yt falls below the threshold y�, due to monotonicity of the value function, the decision

to run is strictly preferable since V (y; y�) < 1 for y < y�. Theorem 1 below proves the

existence of a unique symmetric monotone equilibrium.

Theorem 1 There exists a unique symmetric monotone equilibrium in which the rollover

threshold y� is uniquely determined � each maturing creditor chooses to roll over his debt if

yt > y�, and to run otherwise.

Proof. See Appendix C.

5 Model Implications

In this section, we explore the main implications of our model. The model has two key

ingredients: a liquidity backstop and a �oating interest rate. The rest of this section is

devoted to understanding how these features a¤ect equilibrium outcomes, in particular, the

likelihood of runs. We �rst examine the role of a �oating interest rate by focusing on the

model of VRDOs where � is set to zero to re�ect the existence of an explicit liquidity
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backstop. We then turn to the model of ARS to examine the role of (lack of) a liquidity

backstop where � > 0 is positive to re�ect the possibility of auction failures. Lastly, we

formally de�ne and quantify the value of a liquidity backstop based on structural estimation

of the model in the next section.

5.1 Implications of Floating Interest Rate: The VRDO Model

To single out the role of a �oating interest rate, we start with a special case where � is

set to be zero � the liquidity support, albeit imperfect, is explicitly committed such that

the liquidity provider has contractual obligations to honor its liquidity commitment. In this

special case where � = 0, the model reduces to the one of VRDOs.

The �oating interest payment frtg in this paper, a key departure from HX, a¤ects the

creditors�rollover decision in a profound way. For example, as the fundamental deteriorates,

the interest rate increases in a manner so as to compensate creditors for credit losses. How-

ever, the magnitude of overall interest payments to creditors depends on two factors: the

maximum interest rate r and the liquidity premium �.

We show in Proposition 1 below that the equilibrium rollover threshold y� decreases

with the maximum interest rate r or the liquidity premium �. The result that y� decreases

with the liquidity premium is very important when we de�ne and measure the value of a

liquidity backstop later. The intuition is straightforward: a higher maximum interest rate

r or a higher liquidity premium � allows the interest rate to increase further in a severely

adverse environment; therefore, it increases the expected interest income for creditors and

they will roll over more frequently. In the extreme case where the maximum interest rate r

is su¢ ciently high, then the rollover threshold is zero (i.e., y� = 0), that is, the likelihood of

runs is zero.

Proposition 1 The equilibrium rollover threshold y� decreases with the maximum interest

rate r or the liquidity premium �. In particular, when � goes to 0, the equilibrium rollover

threshold y� tends to in�nity.
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Proof. See Appendix C.

5.2 Implications of Liquidity Backstop: The ARS Model

Next, we examine how the lack of a liquidity backstop in the ARS market a¤ects equilibrium

outcomes. To examine the role of (lack of) a liquidity backstop in isolation, we assume away

the �oating interest rate. In particular, we assume that the interest rate is always �xed at r,

the max rate, regardless of auction success or failure. This simpli�ed model is very similar

to the one in HX, except that there is an additional risk of auction failures.

In Proposition 2 below, we prove that when the max rate is low enough, increasing �

from zero to a positive value makes creditors more likely to run. Intuitively, a low enough

max rate leads to a very low continuation value U (y) in the event of failed auctions and

thus, ex ante, creditors choose to run more often.

Proposition 2 If r is su¢ ciently low, the equilibrium rollover threshold y� increases as the

arrival intensity of auction failures � increases from zero; that is, dy�
d�

��
�=0

> 0.

Proof. See Appendix C.

Proposition 2 illustrates how the lack of a liquidity backstop may exacerbate runs, which

provides an explanation for the turmoil in the ARS market in early 2008 when investors

started to factor in the possibility of auctions failures. As we show below, the destabilizing

e¤ect of the lack of liquidity backstops results from a new type of externality. The running

decision of current creditors accelerates the issuer�s default probability and may also trigger

auction failures. Therefore, their decision to run a¤ects payo¤s of future creditors. Table

1 summarizes the current and future creditors�payo¤s in di¤erent scenarios depending on

whether the current creditors run or not.

[Insert Table 1 About Here]
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From Table 1, we can see that the current creditors will choose to run if and only if

1 � (1� ��dt� ��dt)+L (y) � ��dt+U (y) ���dt > V (y) � 1, or V (y) < 1 after ignoring higher

order terms. Furthermore, because of the lack of a committed liquidity facility, a run on

ARS may lead to auction failure when the auction agent stops providing liquidity, which

imposes an additional implicit cost on future maturing creditors. Speci�cally, a run by the

current creditors reduce the future creditors�value function by

V (y)� [V (y) � (1� ��dt� ��dt) + L (y) � ��dt+ U (y) � ��dt]

= [V (y)� L (y)]��dt| {z }
cost due to default loss

+ [V (y)� U (y)]��dt| {z } :
cost due to auction failure

Besides the implicit cost of default loss as studied in HX, a run in our model also induces

an additional cost in the event of auction failure. This additional externality, absent in the

VRDO market, makes the ARS market more susceptible to runs: in anticipation of possible

auction failures and the associated losses as a result of runs by future creditors, the current

creditors have less incentive to roll over their debt.

5.3 The Value of a Liquidity Backstop

We are now in position to de�ne the value of a liquidity backstop. From our earlier discussion

(Section 2), prior to the crisis, ARS were considered to have the same explicit liquidity

backstops as VRDOs. Put di¤erently, before 2007 investors perceived the probability of

auction failures to be negligible, i.e., � = 0 for both ARS and VRDOs. However, the wave

of auction failures in 2008 during the crisis revealed the implicit nature of liquidity support

in the ARS market, and investors started to realize that � > 0. As proved in Proposition 2,

an increase in � increases the rollover threshold y�. Our estimation results reported in the

following section con�rms that after the crisis broke out, the estimated rollover threshold

yARS� (�; �) in the ARS market is substantially higher than yV RDO� (�; 0) in the VRDO

market. Note that we explicitly express the rollover threshold as a function of the arguments
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� and � (in the case of VRDOs, � is always zero).

To de�ne the value of a liquidity backstop, let us consider the following thought experi-

ment. On one hand, an ARS issuer can pay a certain fee per annum to purchase a liquidity

backstop from a liquidity provider, and e¤ectively reduce the rollover threshold yARS� to the

same level as yV RDO� (�; 0). On the other hand, the ARS issuer can raise the level of interest

rate by a constant amount � > 0, and thus e¤ectively increases � to � + �. According to

Proposition 1, a higher liquidity premium � + � induces a lower rollover threshold. From

the perspective of the (risk neutral) issuer, the two methods are equivalent as long as the

fee to purchase a liquidity backstop is the same as �. Therefore, the increment in the ARS

rate � measures the value of a liquidity backstop, satisfying

yARS� (� + �; �) = yV RDO� (�; 0) : (16)

In the next section, we use the historical data to estimate � based on the estimated thresholds

yARS� (�; �) and yV RDO� (�; 0).

6 Estimation

The markets for VRDOs and ARS provide an ideal laboratory for us to identify the value

of a liquidity backstop. The identi�cation scheme hinges on the structural change in the

belief of ARS investors following the wave of auction failures in mid-February 2008. We �rst

describe the data and our estimation methodology, and then report estimation results.

6.1 Data

The weekly data of 1-week tax-exempt VRDO and ARS rates are obtained directly from the

Securities Industry and Financial Markets Association (SIFMA) website.8 The historical

8The website�s URL is http://archives.sifma.org/swapdata.html.
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data for the VRDO rate is available for the period from May 22, 1991 to October 24, 2012,

while the ARS historical rate is only available for a shorter period from May 31, 2006 to

December 30, 2009. We also obtain the 1-week Treasury repo rate from Bloomberg for the

same period as the VRDO sample period.

For the purpose of calibration, we obtain information about characteristics of VRDOs or

ARS (e.g., the max rate) from the Municipal Securities Rulemaking Board (MSRB)�s SHORT

database from its inception date of April 1, 2009 through November 8, 2012. The SHORT

database has been built from the Short-term Obligation Rate Transparency (SHORT) Sys-

tem and the Real-Time Transaction Reporting System (RTRS), which the MSRB launched

in early 2009 to collect and disseminate interest rates and important descriptive informa-

tion about these ARS and VRDOs. The SHORT database provides a centralized source of

information about municipal ARS and VRDOs that was previously unavailable. Starting

from May 2011, MSRB rules require VRDO remarketing agents to report to the MSRB the

aggregate amount of par value of bonds held by investors or remarketing agents. There are

20,547 distinct VRDOs in the SHORT database during our sample period. We focus on

the VRDOs with weekly interest resets, which accounts for 90.7% of the whole sample (i.e.,

18,630). The SHORT database does not contain maturity information. Therefore, we merge

it with the Mergent Municipal Bond database to collect information on maturities.

6.2 Calibration

There are eleven primitive parameters in the model: r; r; �; �; �; �; �; �;�; �; �. Using the

SHORT database and the Mergent Municipal Bond database, we �rst calibrate the parame-

ters r; r; �; �; �; �. We then use the quasi-maximum likelihood (QML) method to estimate

the remaining parameters.

The contractual maximum interest rate r is calibrated to be 12% using the SHORT

database. Among the 18,630 VRDOs with weekly interest resets in the SHORT database,

53.42% of them have the max rate of 12%, 26.13% of them have the max rate of 10%, and

26



10.37% of them have the max rate of 15%. The weighted average of these three rates is

11.76%. Therefore, we set r as 12%. The cash �ow rate from the project r is set to be equal

to the average VRDO interest rate, or r = 2:39%. That is, the municipality issuers have

balanced budgets.

The average debt maturity of our merged VRDO sample from the SHORT and Mergent

databases is 25.2 years (and the median is 25.96 years). We therefore set 1=�, the expected

asset maturity, to 25 based on the assumption that the average maturity coincides with

the average asset maturity; that is, � = 0:04. The tax-adjusted risk-free rate � is set to the

average value of the tax-adjusted repo rate, or � = 0:0195, during the sample period between

1991 and 2012 using a tax rate of 40% following Longsta¤ (2011).

The parameter � represents the arrival intensity of creditors who make the running deci-

sion. In the model, once a run occurs, the proportion of creditors who decide not to roll over

the debt is ��t, where we set �t = 7=365:25 to re�ect the weekly frequency of the interest

rate reset for the constituent VRDOs/ARS in the SIFMA indexes. In reality, VRDO/ARS

creditors come to the remarketing or auction agent to buy or sell the securities on the interest

rate reset dates. A run is considered to occur if a signi�cant number of creditors decide to

not roll over the debt. As a result, we set � = 12, meaning that on average creditors make

the running decision on a monthly basis, and upon a run, about ��t = 23% of the securities

are not rolled over. Furthermore, we set the recovery rate � = 50%.9 The calibration results

are reported in Table 2 Panel A.

[Insert Table 2 About Here]

9The recovery rate of municipal bonds is not readily available given municipal bankruptcy is rare. See,
for instance, Coval and Sta¤ord (2007) for the estimates of the recovery rate for stocks; and Andrade and
Kaplan (1998), Hennessy and Whited (2007) , Ellul, Jotikashira, and Lundblad (2010), for the estimates of
the recovery rate for corporate bonds.
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6.3 Estimation Methodology

We use the Quasi-Maximum Likelihood (QML) method to structurally estimate the model.

The key equation in the structural estimation is the following equation:

rxARSt = RXARS (yt; y� (�t)) + wt, where wt � N
�
0; �2

�
; (17)

where rxARSt is the ARS interest rate in excess of the repo rate at time t, andRXARS (yt; y� (�t)) �

R (yt; y� (�t)) � � is the model-implied excess interest rate for the ARS market (see Equa-

tion (15) for the expression of RARS (yt; y� (�t))), and wt denotes the pricing error that is

assumed to follow a normal distribution with mean zero and standard deviation v. Note that

the risk-free rate � is assumed to be constant in the model for tractability. We thus work

directly with the excess rates in our structural estimation.

Note that the model-implied ARS excess rate depends on the equilibrium rollover thresh-

old y� (�t), which in turn depends on the vector of the parameters to estimate �t =

(�; �;�; �; �t; v), as well as the other parameters calibrated. The subscript t re�ects one

important identi�cation assumption that there is a structural change in the beliefs of ARS

investors. Denote by � the date of structural change. The probability of auction failures is

considered to be zero before time � , and becomes positive and equal to ��dt > 0 at time

� and onwards once investors realize that auction agents have no contractual obligations to

provide liquidity (i.e., no explicit liquidity backstops). That is,

�t =

8<: 0; t 2 [T1; �)

� > 0; t 2 [� ; T2]
; (18)

where T1 and T2 denotes the start and end time periods of the ARS sample period, respec-

tively. As we will describe shortly, we choose the date of structural change � as November

14, 2007 when the VRDO and ARS rates start to diverge, and the ARS sample period is

between May 31, 2006 and December 30, 2009.
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The model-implied ARS excess rate also depends on the fundamental value yt, which,

however, is unobservable in the data. Based on the other identi�cation assumption that both

VRDO and ARS markets have the same fundamental process, we can infer yt from the VRDO

market. As mentioned before, this identi�cation assumption is realistic since municipality

issuers of VRDOs or ARS are very similar (and in fact the same in many cases). To infer yt,

we assume that there are no measurement errors in the VRDO market

rxV RDOt = RXV RDO
�
yt; y

V RDO
� (�0)

�
= � (1� yt)+ + 1fyt�yV RDO� (�0)g�� (1� [L+ lyt])

+ :

Note that the explicit arrangement of liquidity backstops in the VRDO market implies

� = 0. Therefore, the VRDO rollover threshold yV RDO� (�0) remains unchanged throughout

the sample period, and �0 = (�; �;�; �) denotes the set of constant parameters to estimate.

Also note that the model-implied VRDO excess rate is always non-negative while the VRDO

excess rate in the data are sometimes (but very infrequently) negative. In this case, we set

yt = max
�
1; yV RDO� (�0)

�
. We denote by byV RDOt the value of yt inferred from the VRDO

data.

The above method of assuming zero measurement error to extract latent factors in one

market segment and then applying the extracted factors to the other market segment as-

suming non-zero measurement errors is widely used in the literature of a¢ ne term-structure

models (ATSMs). In this literature, it is very common to assume that the Treasury yield

curve is driven mainly by a �nite number of latent factors (e.g., level, slope, and curvature,

etc.). The usual way to estimate such ATSMs is to extract the latent factors by assuming

zero measurement errors for the same number of Treasury securities, and then to estimate

the model using the extracted factors together with the rest of the yield curve. Our method

is similar, but has a major di¤erence: when we extract the unobservable fundamental process�byV RDOt

	
and apply it to the ARS market, our structural estimation takes into consideration

29



the structural change in November 2007 when the probability of auction failures is (correctly)

perceived to be positive.

Lastly, we can estimate the parameters � = (�; �;�; �; �; v) from the quasi-maximum

likelihood (QML) method. That is, the QML estimator is the maximizer of log-likelihood

function lnL
�
�; rxARST1:T2

; byV RDOT1:T2

�
:

b� = argmax
�
lnL

�
�; rxARST1:T2

; byV RDOT1:T2

�
;

where T1 : T2 denotes the sequence of time periods fT1; T1 + 1; � � � ; T2g. The log-likelihood

function is constructed as follows:

lnL
�
�; rxARST1:T2

; byV RDOT1:T2

�
=

X(��1)

t=T1
ln f (0)

�
rxARSt

��byV RDOt ;�
�
+
XT2

t=�
ln f (1)

�
rxARSt

��byV RDOt ;�
�

where

f (0)
�
rxARSt

��byV RDOt ;�
�
=

1p
2�v

exp

(
�
�
rxARSt �RXARS

�byV RDOt ; yV RDO� (�0)
��

2v2

)
;

f (1)
�
rxARSt

��byV RDOt ;�
�
=

1p
2�v

exp

(
�
�
rxARSt �RXARS

�byV RDOt ; yARS� (�)
��

2v2

)
:

As discussed above, in the subperiod [T1; �), the probability of auction failures is assumed

to be zero by ARS investors. Therefore, in this subperiod, the rollover threshold is the same

as in the VRDO market, i.e., yV RDO� (�0), which is used in the density function f (0) (�).

However, in the subperiod [� ; T2] following the structural change, the ARS rollover threshold

yARS� (�) jumps to a higher level as a result of positive probability of auction failures (or

� > 0). The density function f (1) (�) captures the structural change by using the higher

threshold yARS� (�).
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6.4 Estimation Results

We apply the above estimation methodology to the SIFMA historical interest rate indexes

for the VRDO and ARS markets. The VRDO sample period ranges between May 22, 1991

and October 24, 2012, while the ARS sample period ranges between May 31, 2006 and

December 30, 2009 when the SIFMA stopped producing the ARS index. Recall that from

Figure 1 the ARS rate had largely moved in lockstep with the VRDO rate until November

14, 2007, and has diverged since then. Based on this observation, we set � to zero for the

pre-crisis period when using the ARS data, but allow for a positive � between November

14, 2007 and December 30, 2009 as a re�ection the structural change in investors�beliefs.

For the VRDO data, we restrict � to zero for the entire sample period. In addition, we set

� = �2=2 so that the (log) fundamental process has zero expected growth rate.

We back out the fundamental process using the VRDO historical rate, which is plotted by

solid line in Figure 6 Panel A below. In plotting the �gure, we focus on the period between

May 2006 and December 2009 when both ARS and VRDO data are available. In Panel A, we

also plot the VRDO rollover threshold (dashed line) and the ARS rollover threshold (dash-

pointed line). The latter is plotted only after November 2007 when the structural change

took place. The estimation results con�rm that once a positive probability of auction failures

is taken into account, ARS investors face a higher threshold and are more likely to run.

Moreover, in February and March 2008, it is only the higher ARS rollover threshold that is

crossed, not the VRDO threshold. This is consistent with the di¤erential crisis experiences

in these markets in early 2008 when there was a run in the ARS market, but not in the

VRDO market. Moreover, in late 2008 following the Lehman�s bankruptcy, both rollover

thresholds were crossed, indicating runs in both markets. This is consistent with the market

commentary that Lehman�s bankruptcy put in doubt the ability of liquidity providers to

honor their commitments.

In Panels B and C of Figure 6, we also plot the actual and model-implied excess interest

rates in both markets. Because the actual VRDO excess interest rate is used to exactly �t
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the model-implied one in order to back out the fundamental process, these two series coincide

with each other as shown in Panel B of Figure 6. We then estimate the model using QML to

best �t the actual ARS excess interest rate. Panel C of Figure 6 shows a reasonably good �t

between the model and the data. In particular, consistent with the data our model is able

to generate spikes in the ARS excess interest rate in both run episodes in 2008.

[Insert Figures 6 and 7 About Here]

The structural estimation also allows us to compute the likelihood of a run to occur within

the following week. Figure 7 plots such run probabilities for both VRDOs (Panel A) and

ARS (Panel B). From Panel A, the model implies a 50% chance of a VRDO run within a week

following the Lehman�s bankruptcy. The run probability of 50% is very likely to understate

the true likelihood of runs. This is due to the truncation in the fundamental process when

we infer it from the historical VRDO rate. Recall that when the rollover threshold is hit for

the �rst time, the interest rate jumps (see Panel A of Figure 4). Observing a spike in the

VRDO rate indicates that the fundamental hits and may fall below the rollover threshold.

In our estimation, we truncate the fundamental in this case at the threshold level. This

leads to the arti�cial probability value of 50%. The run probability estimates for the ARS

market are not subject to this problem. As a result, we can see from Panel B of Figure

7 that the run probability increases to about 80% during the �rst ARS run and to about

100% during the second ARS run in 2008. Furthermore, except these run episodes, the run

probabilities are close to zero. In summary, our model is able to reproduce the di¤erential

crisis experiences for both markets.

We now turn to the quantitative estimation results, reported in Panels B-D in Table 2.

We report the estimated parameter values in Panel B of Table 2. The default intensity � is

estimated to be 0:0111 so that the average time from a run to eventual bankruptcy is equal

to 1= (��) = 7:5 years, which is roughly in line with the bankruptcy experience of Je¤erson
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County, AL (Woodley (2012)). Furthermore, the parameter � is estimated to be 0:003, under

which the fraction of auctions that have failed within the 14-week window between November

14, 2007 and February 20, 2008 is about 1%.10 Based on the formula L = �r
�+�

and l = ��
�+���

and the estimated parameter values, the parameters governing the recovery rate of the asset

in the worst case scenario are calibrated as: (L; l) = (20:2%; 55:8%). The estimated value of

� equal to 1 basis points accounts for about 0.4% of the average VRDO interest rate (i.e.,

2.4%), or 0.3% of the average ARS interest rate (i.e., 3.02%) in the data.

Standard errors, reported in parentheses, are constructed from Monte Carlo simulations.

Each simulation begins by randomly generating 119 weekly data of the underlying fundamen-

tal process. We then reestimate the key parameters with maximum likelihood using these

data. We repeat this procedure 1000 times to construct the standard errors. The standard

errors should be treated with caution. They are correct assuming the model is speci�ed

accurately. However, because of focus on the run episodes during the crisis, our data sample

contain some extreme observations (e.g., spikes in the historical interest rates in the markets

considered), which are likely to be less informative about the data-generating process than

the Gaussian model implies.

The equilibrium thresholds are reported in Table 2 Panel C. First, the estimation results

con�rm that with a positive probability of auction failures (i.e., � > 0), the rollover threshold

for ARS investors is indeed higher than that for VRDO investors: yARS� > yV RDO� . This is

consistent with the economic intuition discussed in Section 5.2 that the fear of getting stuck

when future auctions fail propels ARS creditors more likely to run, ex ante, relative to

VRDO creditors. The higher rollover threshold for ARS creditors re�ects the lack of a

liquidity backstop in the ARS market.

We also study the e¤ect of the �oating interest rate on the run behavior. Recall that in

10By de�nition, following a run, a fraction (��dt) of auctions will fail in the �rst week, or (1� ��dt) of
auctions will surive the �rst week. Similarly, among the ARS whose auctions succeeded in the �rst week,
a fraction of them, (1� ��dt)2, will continue to surve in the second week, � � � . The cumulative fraction of
auctions that have failed with N weeks equals 1 � (1� ��dt)N . Plugging in � = 0:003, � = 12, dt = 7=365
leads to a failure rate of 1% in a 14-week window.
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our structural estimation, we set the cash �ow r to the average VRDO interest rate. That is,

on average, the municipality issuer has a balanced budget. To compare with the HX model

which has a �xed interest rate, we consider a �xed interest rate equal to the constant cash

�ow rate r. The equilibrium rollover threshold in this case is labeled as yHX� , which turns out

to be higher than the rollover thresholds in either VRDO or ARS markets, according to the

estimation results in Panel C of Table 2. This result suggest that �oating interest rates tend

to mitigate runs in both markets. This is an intuitive result because the �oating interest

rate moves inversely with the fundamental. When the issuer�s fundamental deteriorates, the

interest rate increases to compensate investors for the higher default risk, and thus makes

them more willing to roll over. It is worthwhile to note that this result is contrary to the

�nding in Schroth, Suarez, and Taylor (2012) where due to the dilution risk time-varying

yields in the ABCP market tend to make investors more likely to run because only maturing

creditors enjoy a higher yield. By contrast, the dilution risk does not exist in our model

because the �oating interest rate, once reset, applies to all creditors. As a result, the �oating

interest rate in our paper tends to make investors less likely to run.

Lastly, we estimate the value of a liquidity backstop (denoted by �) and the estimation

result is reported in Table 2 Panel D. Recall that from Proposition 1, the rollover threshold y�

decreases with the liquidity/risk premium �. Therefore, to measure the value of a liquidity

backstop �, we should �nd out how much the interest rate needs to be increased so that the

ARS rollover threshold can be reduced to the same level of the VRDO rollover threshold.

The required increase � in the interest rate is a measure of the value of a liquidity backstop.

Mathematically, we express the rollover thresholds yARS� (�; �) and yV RDO� (�; 0) to denote

their dependence on �, and de�ne the value of a liquidity backstop � > 0 as the solution to

the following equation:

yARS� (� + �; �) = yV RDO� (�; 0) :

The estimated value of a liquidity backstop is about 14 basis points. In present value (i.e.,

�= (�+ �)), a liquidity backstop is evaluated to be about 2:4% of the par value. Therefore,
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the implied value (or cost) of providing liquidity backstops for the ARS market is about $4.7

billion for the $200 billion ARS market at the peak level before its collapse.

6.5 Policy Implications

Our study has several policy implications. First, this paper sheds light on (the costs of)

government bailouts, or public liquidity backstops, although we focus on (private) liquidity

backstops provided by banks.11 In particular, the value of a private liquidity backstop

estimated in this paper can serve as a lower bound for that of a public liquidity backstop

and thus can be used to estimate the costs of government bailouts. For example, the FDIC

o¤ered on October 13, 2008 a three-year government guarantee on new unsecured bank debt

issues with an annualized fee equal to 75 basis points.12

Second, the stabilizing role of liquidity backstops studied in this paper helps us better

understand the fragility in the shadow banking system. The shadow banking system provides

important liquidity and credit transformation outside of the traditional banking system

(Moreira and Savov (2013)), however, as pointed out in Tarullo (2012),

�[s]shadow banking also refers to the creation of assets that are thought to be

safe, short-term, and liquid, and as such, �cash equivalents� similar to insured

deposits in the commercial banking system. Of course, as many �nancial market

actors learned to their dismay, in periods of stress these assets are not the same

as insured deposits.�

Due to a lack of government guarantees that backstop the traditional banking system

(e.g., federal deposit insurance and the central bank�s lender-of-last-resort capacity), �shadow

money�created by the shadow banking system is runnable. In fact, the recent �nancial crisis

11See Veronesi and Zingales (2010) for the study of the costs and bene�ts of government intervention
during the �nancial crisis.
12More detail about the Temporary Liquidity Guarantee Programm can be found at

https://www.fdic.gov/news/board/08BODtlgp.pdf.
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can be considered as a modern bank run on the shadow banking system (Gorton and Metrick

(2010, 2012)). The value of a liquidity backstop, the key focus of this paper, speaks to the

central di¤erence between the shadow banking system and the traditional banking system.

Related to the �neglected risk�view of shadow banking in Gennaioli, Shleifer, and Vishny

(2013) studied in a static setting, this paper contributes to the growing literature on shadow

banking by showing that in a dynamic setting, recognition of �neglected risk�in conjunction

with strategic complementaries among investors can further exacerbate runs.13

7 Concluding Remarks

In this paper, we develop a model of dynamic debt runs to provide a microfoundation for the

important role of liquidity backstops in mitigating runs. We focus on the municipal bond

markets for ARS and VRDOs, which provide an idea laboratory to identify and quantify

the value of a liquidity backstop in terms of its run-mitigating role. As discussed in the

paper, ARS were considered almost identical to VRDOs prior to the �nancial crisis, how-

ever, investors started to recognize the lack of a liquidity backstop in the ARS market at

the onset of the crisis. The structural change in investors�beliefs drove a wedge in the ex-

periences of these two markets during the crisis: the liquidity-backstop-lacking ARS market

was more susceptible to runs and collapsed, while the liquidity-backstop-possessing VRDO

market survived. Such structural change is also the key in identifying the value of a liquidity

backstop. Through structural estimation, we estimate that a liquidity backstop is valued at

about 14.5 basis points per annum.

Our model provides a microfoundation for the destabilizing e¤ects of the lack of a liquidity

backstop observed during the crisis. In the model, a run by future creditors imposes two

types of negative externalities on earlier creditors who have decided to roll over the debt.

13The dynamic e¤ects in exacerbating runs have empirical evidence from runs on money market or open-
end mutual funds (see, Kacperczyk and Schnabl (2013) and Chen, Goldstein, and Jiang (2010)). Also see
Pozsar, et al. (2012) for a comprehensive overview of the shadow banking system and the references therein.

36



The �rst type of externalities, studied in HX, results from losses due to premature liquidation

of the project triggered by the run, while the second type, new in this paper, arises from

losses due to illiquidity when the run cause liquidity to completely dry up unexpectedly (e.g.,

auction failures in the ARS market). The latter explains why the ARS market that lacks

liquidity backstops was more susceptible to runs than the VRDO market.

Note that the microfoundation has broad applications beyond these municipal bond mar-

kets studied in the paper. For example, when the Reserve Primary Fund broke the buck

in September 2008 following the Lehman�s bankruptcy, the fund sponsor did not cover the

losses, which made investors realize that fund sponsors have the option, but not the obliga-

tion, to support failing money market funds. Similar to the run on ARS in early 2008, the

structural change in beliefs triggered a wide-spread run on other money market funds. How-

ever, focusing on the run on money market funds is not enough for us to identify the value

of a liquidity backstop. Instead, we consider the markets for ARS and VRDOs that allow

for such identi�cation in a spirit similar to the �di¤erence-in-di¤erence�approach. Through

structural estimation of the model based on the QML method, we are able to quantify the

value of a liquidity backstop as about 14 basis points per annum.

Consistent with the literature on the �neglected risk�view of shadow banking, �shadow

money�(e.g., ARS in this paper, or money market fund shares) can stop being liquid or safe

once investors take account of tail risks that are previously neglected (see Gennaioli, Shleifer,

and Vishny (2013)). We further demonstrate possible amplifying e¤ects of neglecting tail

risks in a dynamic setting in the context of the markets for VRDOs and ARS. Despite our

focus on these speci�c markets, the key model implication is more general: the possibility of

shadow money becoming illiquid in the future prompts investors to run more often, ex ante.

Having a public liquidity backstop (e.g., deposit insurance) e¤ectively mitigates runs induced

by such liquidity risk. Therefore the value of a liquidity backstop studied in this paper speaks

to the central di¤erence between the shadow banking system and the traditional banking

system in terms of their di¤erential access to public liquidity backstops.
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Appendix A: Notation

We denote by �
i and �i two real roots of the quadratic equation 1
2
�2x (x� 1) + �x �

(�+ �+ �i) = 0, i = 1; 2; 3,

�
i = �
�� 1

2
�2 +

q�
1
2
�2 � �

�2
+ 2�2 [�+ �+ �i]

�2
< 0;

�i = �
�� 1

2
�2 �

q�
1
2
�2 � �

�2
+ 2�2 [�+ �+ �i]

�2
> 0:

where �1 = � (1 + � + �), �2 = 0, �3 = ��. The following notation is used in determining
equilibrium threshold

K1 =
r+�(1+�L)

�+�+�(1+�+�)
K6 =

�
�+��� K1 =

r+��L
�+�+��

K6 = ��
K1

�+�+�(1+�+�)

K2 =
�+��l

�+�+�(1+�+�)�� K7 =
�+�+�(1+�+�)
�+�+�(1+�+�)

K2 =
�+��l

�+�+���� K7 = ��
K2

�+�+�(1+�+�)��

K3 =
r+�+�(1+�L)
�+�+�(1+�+�)

K8 =
�+�
�+�

K3 =
r+�+��L

�+�+��
K8 = ��

K3

�+�+�(1+�+�)

K4 =
��l

�+�+�(1+�+�)�� K9 =
r+�+�(1+�)
�+�+�(1+�+�)

K4 =
��l

�+�+���� K9 = ��
K4

�+�+�(1+�+�)��

K5 =
r
�+�

K10 =
r+�
�+�

K5 =
r+�+��

�+�+��
K10 = ��

K5

�+�+�(1+�+�)

Appendix B: Proofs

Proof. [Proof of Lemma 1] The HJB equation for U (y) is the following

�U (yt) = �ytUy (yt)+
�2

2
y2tUyy (yt)+r+� [min (1; yt)� U (yt)]+�� [min (1; L+ lyt)� U (yt)] :

Depending on the value of y, the HJB equation can be re-expressed as

�
�+ �+ ��

�
U � �yUy �

�2

2
y2Uyy =

8<:
r + �y + �� (L+ ly) , if y 2 (0; 1];
r + �+ �� (L+ ly) , if y 2 (1; 1�L

l
];

r + �+ ��, if y 2 (1�L
l
;1):
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Therefore, the solution has the functional form in Eq. (13). We determine the unknown
coe¢ cients U1; � � � ; U4 from the value-matching and smooth-pasting conditions:

U1 =
�
K3 +K4

�
�
�
K1 +K2

�
+ U2 + U3;

U2 = �
�3
�
K3 �K1

�
+ (�3 � 1)

�
K4 �K2

�
�3 + 
3

;

U3 =
�
3

�
K3 �K5

�
� (
3 + 1)K4

�
1�L
l

�
(�3 + 
3)

�
1�L
l

��3 ;

U4 = �
K4

�
1�L
l

�
� 
3U2

�
1�L
l

��
3 + �3U3 �1�Ll ��3

3
�
1�L
l

��
3 :

To prove the monotonicity of U (y), we �rst prove that Ui < 0, for i = 1; � � � ; 4. Substi-
tuting the expressions of K1, � � � , K5 into U1; U2; U3, we have

U1 =
�+ �� (1� L)

�
1�L
l

���3
(�3 + 
3)

�

3

�+ �+ ��
� 
3 + 1

�+ �+ �� � �

�
< 0;

U2 = � �

�3 + 
3

�
�3

�+ �+ ��
� �3 � 1
�+ �+ �� � �

�
< 0;

U3 =
�� (1� L)

(�3 + 
3)
�
1�L
l

��3 � 
3
�+ �+ ��

� 
3 + 1
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�
< 0:

Lastly, from the above expression of U3 and the result U2 < 0, we have


3

�
1� L
l

��
3
U4 = �

"
(�3 � 1) �� (1� L)

(�3 + 
3)
�
�+ �+ �� � �

� � 
3U2�1� Ll
��
3#

< 0:

Next, we prove U (y) is monotonically increasing. For y > 1�L
l
, U 0 (y) = U4 (�
3) y�
3�1 >

0 for since U4 < 0. For 0 < y � 1, because
�
1�L
l

���3 < l
1�L and de�nitions of �3 and 
3, we

have

U 0 (y) = K2 + �3U1y
�3�1 � K2 + �3U1

=
�+ ��l

�+ �+ �� � �
+ �3

�+ �� (1� L)
�
1�L
l

���3
(�3 + 
3)

�

3

�+ �+ ��
� 
3 + 1

�+ �+ �� � �

�
>

�+ ��l

�+ �+ �� � �
+ �3

�+ ��l

(�3 + 
3)

�

3

�+ �+ ��
� 
3 + 1

�+ �+ �� � �

�
=


3
�
�+ ��l

�
�3 + 
3

�
�3

�+ �+ ��
� �3 � 1
�+ �+ �� � �

�
> 0:
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For 1 < y � 1�L
l
,

U 0 (y) = K4 + (�
3)U2y�
3�1 + �3U3y�3�1 > K4 � 
3U2 + �3U3
�
1� L
l

��3�1
=

��l

�+ �+ �� � �
+ 
3

�

�3 + 
3

�
�3

�+ �+ ��
� �3 � 1
�+ �+ �� � �

�
+�3

��l

(�3 + 
3)

�

3

�+ �+ ��
� 
3 + 1

�+ �+ �� � �

�
=


3
�
�+ ��l

�
�3 + 
3

�
�3

�+ �+ ��
� �3 � 1
�+ �+ �� � �

�
> 0:

The following lemmas are needed. Lemma 2�s proof is straightforward and thus omitted.

Lemma 2 For �i and 
i, i = 1; 2; 3, de�ned in Appendix A, we can show that: (i)
�i
i

�+�+�i
=

(�i�1)(
i+1)
�+�+�i�� = 2

�2
; (ii) Under the restriction �+ � > �, �i �

�i
�+�+�i

� �i�1
�+�+�i�� > 0.

Lemma 3 Under the parameter restrictions in Eqs. (5)-(9) and the following restrictions

(�1 � 1)
�
K2 +K7

�
+ �3 (�1 � �3)U1 > 0; (19)

(�1 � 1)
�
K4 +K9

�
+ �3 (�1 � �3)U3 ((1� L) =l)

�3�1 > 0; (20)

the function W (y) is strictly increasing.

Proof. [Proof of Lemma 3] Because there are eight di¤erent cases and in each di¤erent case
the functionW (y) takes a di¤erent form. Below we prove the monotonicity ofW (y) in each
of the ten cases. De�ne yC�� =

�+��r
�

< 1, and yA��, y
E
�� as solutions to the following equations:

r = �+ �
�
1� yA��

�
+ ��

�
1�

�
L+ lyA��

��
+ ��

�
1�

�
K1 +K2y

A
�� + U1

�
yA��
��3�� ;

r = �+ ��
�
1�

�
L+ lyE��

��
+ ��

�
1�

h
K3 +K4y

E
�� + U2

�
yE��
��
3 + U3 �yE����3i� :

(i) In Case A where r > � + � (1� y) + �� (1� [L+ ly]) + �� (1� U (y)), the function
W (y) = WA (y) =

�1K7+
2K8

�1+
2
+ �1+
1

�1+
2
A2y

�
1, for y 2 (0; 1]. To prove WA (y) is strictly

increasing, we only need to prove A2 =
�1(K1+K6�K7)+(�1�1)(K2+K7)yA��+(�1��3)U1(yA��)

�3

(�1+
1)(y
A
��)

�
1 < 0.

Substituting the expression of rA�� into the above equation yields

(�1 + 
1)
�
yA��
��
1 A2 = � ��+ ��l + ��K2

�
yA���1+

�
�1 � �3 �

���1
�+ �+ � (1 + � + �)

�
U1
�
yA��
��3 :
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From Condition (19) and Lemma 2, we have

(�1 � 1)
�
�+ ��l + ��K2

�
�+ �+ � (1 + � + �)� � =

�
�+ ��l + ��K2

�

1�1 > ��3 (�1 � �3)U1;

and, note that �1 � 
1 = �3 � 
3 and
�1
1

(1+�+�)
= �3
3

�+�+��
,

�3 (�1 � �3) + 
1
�
�1 � �3 �

���1
�+ �+ � (1 + � + �)

�
= ��3
3+

(�+ �+ � (1 + �)) �1
1
�+ �+ � (1 + � + �)

= 0:

Therefore, since 0 <
�
yA��
��3 < yA�� < 1, we have

(�1 + 
1)
�
yA��
��
1 A2 < ��3 (�1 � �3) + 
1��1 � �3 � ���1

�+ �+ � (1 + � + �)

��
U1

�
yA��
��3

1

= 0:

(ii) In Case B where �+� (1� y) � r � �+� (1� y)+ �� (1� [L+ ly])+�� (1� U (y)),
the function W (y) =WB (y), for y 2 (0; 1]

WB (y) =
�1
�
K1 +K6

�
+ 
2K8 + (�1 � 1)

�
K2 +K7

�
y

�1 + 
2
+
(�1 � �3)U1y�3

�1 + 
2
:

Under Condition (19) and y � 1, we have

(�1 + 
2)W
0
B (y) = (�1 � 1)

�
K2 +K7

�
+ �3 (�1 � �3)U1y�3�1

� (�1 � 1)
�
K2 +K7

�
+ �3 (�1 � �3)U1 > 0:

(iii) In Case C where r < �+� (1� y) < �+�, the functionW (y) =WC (y), for y 2 (0; 1]

WC (y) =

2K5 + �1

�
K1 +K6

�
+ (
2 + 1)K6y + (�1 � 1)

�
K2 +K7

�
y

(�1 + 
2)

+
�1 � �3
�1 + 
2

U1y
�3 +


2 (K8 �K5)� (
2 + 1)K6y
C
��

(�1 + 
2) (y
C
��)

�2
y�2 :

When r < �+�, it holds that 
2 (K8 �K5)�(
2 + 1)K6y
C
�� = (�+ �� r)

h

2
�+�

� 
2+1
�+���

i
< 0.

Furthermore, since y < yC�� < 1 and U1 < 0, we have that under Condition (19),

(�1 + 
2)W
0
C (y) >

"
(�1 � 1)

�
K2 +K7

�
+ (
2 + 1)K6 + �3 (�1 � �3)U1

�
yC��
��3�1

+
�

2 (K8 �K5)� (
2 + 1)K6y

C
��
� �2
yC��

#
= (�1 � 1)

�
K2 +K7

�
+ �3 (�1 � �3)U1

�
yC��
��3�1 > (�1 � 1) �K2 +K7

�
+ �3 (�1 � �3)U1 > 0:
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(iv) In Case D where r � � + �� (1� L� l) + �� (1� U (1)), the function W (y) =
WD (y) =WA (y), for y 2

�
1; 1�L

l

�
. The proof in (i) applies here too.

(v) In Case E where � + �� (1� L� ly) + �� (1� U (y)) < r < � + �� (1� L� l) +
�� (1� U (1)), the function W (y) = WE (y) =

�1K7+
2K8

�1+
2
+ �1+
1

�1+
2
E4y

�
1 ; for 1 < yE�� < y <
1�L
l
where

E4 = E2 +

�
yE��
�
1

(�1 + 
1)

�
�1
�
K3 +K8 �K7

�
+ (�1 � 1)

�
K4 +K9

�
yE��

+(�1 + 
3)�U2
�
yE��
��
3 + (�1 � �3)�U3 �yE����3

�
;

E2 =
1

�1 + 
1

�
�1
�
K1 +K6 �K3 �K8

�
� (�1 � 1)

�
K4 +K9 �K2 �K7

�
+(�1 � �3)� (U1 � U3)� (�1 + 
3)�U2

�
:

To prove the increasing monotonicity ofWE (y), we only need to prove the coe¢ cient of y�
1
in WE (y) is negative, or E4 < 0. It is straightforward to verify that E2 = 0. As a result,

(�1 + 
1)E4
�
yE��
��(
1+1)

= �
�
��l + ��K4

�
�1 +

�
�1 + 
3 �

���1
�+ �+ � (1 + � + �)

�
U2
�
yE��
��(
3+1)

+

�
�1 � �3 �

���1
�+ �+ � (1 + � + �)

�
U3
�
yE��
��3�1

<

"
�
�
��l + ��K4

�
�1 +

�
�1 � �3 �

���1
�+ �+ � (1 + � + �)

�
U3

�
1� L
l

��3�1#� yE��
(1� L) =l

��3�1
< 0:

where we used the following fact based on a similar argument as in in the proof of (i) that
under Condition (20)

�
�
��l + ��K4

�
�1 +

�
�1 � �3 �

���1
�+ �+ � (1 + � + �)

�
U3

�
1� L
l

��3�1
<

1


1

�
�3 (�1 � �3) + 
1

�
�1 � �3 �

���1
�+ �+ � (1 + � + �)

��
U3

�
1� L
l

��3�1
= 0:

(vi) In Case F where r � � + �� (1� L� ly) + �� (1� U (y)), the function W (y) =

WF (y) =

24 �1 �K3 +K8

�
+ 
2K8 + (�1 � 1)

�
K4 +K9

�
y

+(�1 + 
3)U2y
�
3 + (�1 � �3)U3y�3

35
(�1+
2)

+�1+
1
�1+
2

F2y
�
1 for y 2

�
1; 1�L

l

�
where
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F2 = E2 = 0. Under Condition (20), we have

(�1 + 
2)W
0
F (y) = (�1 � 1)

�
K4 +K9

�
� 
3 (�1 + 
3)U2y�
3�1 + �3 (�1 � �3)U3y�3�1

>

"
(�1 � 1)

�
K4 +K9

�
+ �3 (�1 � �3)U3

�
1� L
l

��3�1#� y

(1� L) =l

��3�1
> 0:

(vii) In Case G where r � � + �� (1� L� l) + �� (1� U (1)), the function W (y) =
WG (y) =WA (y) for y � 1�L

l
. The proof of (i) applies here too.

(viii) In Case H where � + ��
�
1� U

�
1�L
l

��
� r < � + �� (1� L� l) + �� (1� U (1)),

the functionW (y) =WH (y) =WE (y) for y � 1�L
l
. The proof of (v) applies here too.

Proof. [Proof of Theorem 1] The equilibrium threshold y� is determined by the condition
V (y�; y�) = 1. De�ne W (y�) � V (y�; y�). Here we prove that there always exists a unique
y� such that W (y�) = 1. To simplify notation, we replace y� by y and express W (y�) as
W (y) throughout the proof. It is easy to show that under the parameter restriction (9),
WC (0) < WB (0) < 1, WA (1) > 1, and WE (1) > 1.
Denote by y�� = max fy : R (y; y�) = rg the maximum fundamental value that is asso-

ciated with the max rate. That is, the constraint of the max rate is binding if and only
if y � y��. It is straightforward to see that in Case B or Case F, y�� coincides with y�
(i.e., y�� = y�), and in Case C, yC�� � �+��r

�
� 1. For the other cases, y�� is determined by

f (y��) = 0 where the function f (�) is de�ned as

f (y) = �+ � (1� y)+ + �� (1� L� ly)+ + �� (1� U (y))� r:

Then from Lemma 1, f (y) is continuous and strictly decreasing. Furthermore, under the
parameter restrictions (8) and (9), we have f (0) > 0 and f

�
1�L
l

�
� 0., implying that

f (y��) = 0 has a unique solution y�� 2 (0; 1�L
l
]. It is straightforward to check that

WB

�
yC��
�
= WC

�
yC��
�
, WA (y��) =WB (y��), WF (y��) =WE (y��), and WB (1) = WF (1).

We now prove the existence of the unique threshold y� by considering all the possible
max rates r. Under the restriction (6), � + � < � + �� (1� L� l) + �� (1� U (1)). There
are three possibilities.
(i) Consider the possibility where r � �+�� (1� L� l)+�� (1� U (1)), implying f (1) �

0 and y�� 2 (0; 1]. Based on the strict monotonicity of WA and WB, as well as y�� � 1, we
have

WB (0) < WA (y��) =WB (y��) � WA (1) < WA (1) :
If WA (1) < 1, then Case D or Case G holds (note WA (1) > 1) where WA (y) = 1 has a
unique root y > 1, depending on whether WA

�
1�L
l

�
� 1 or not. Otherwise, if WA (1) � 1,

depending on whetherWA (y��) =WB (y��) < 1 or not, either Case A holds whereWA (y) = 1
has a unique root y 2 (y��; 1], or Case B holds whereWB (y) = 1 has a unique root y 2 (0; y��].
(ii) Consider the possibility where �+� � r < �+�� (1� L� l)+�� (1� U (1)), implying
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f (1) > 0 and y�� 2 (1; 1�Ll ]. Based on the strict monotonicity of WB, WE, and WF , and
y�� > 1, we know

WB (1) = WF (1) < WF (y��) =WE (y��) :

If WE (y��) < 1, then Case E or Case H holds (note WE (1) > 1) where WE (y) = 1
has a unique root y > y��, depending on whether WE

�
1�L
l

�
� 1 or not. Otherwise, if

WE (y��) =WF (y��) � 1, depending on whether WB (1) = WF (1) < 1 or not, either Case F
holds where WF (y) = 1 has a unique root y 2 (1; y��], or Case B holds where WB (y) = 1
has a unique root y 2 (0; 1].
(iii) Consider the possibility where r < � + �, implying 0 < yC�� � 1 and y�� 2 (1; 1�Ll ].

Based on the strict monotonicity of WB and WF , as well as y�� > 1, we have

WC (0) < WB

�
yC��
�
= WC

�
yC��
�
< WB (1) = WF (1) < WF (y��) =WE (y��) :

If WC

�
yC��
�
� 1, then Case C holds (note WC (0) < 1) where WC (y) = 1 has a unique

solution y 2 (0; yC��]. Otherwise, if WC

�
yC��
�
< 1, by the same argument used in Possibility

(ii), we can prove that Case B holds if WB (1) � 1, or Case E or Case H holds if WB (1) < 1
and WE (y��) < 1, or Case F holds if WB (1) < 1 and WE (y��) � 1.

Proof. [Proof of Proposition 1] (i) We �rst prove dy�
dr
< 0. By the implicit function theorem,

dy�
dr
= � @W=@r

@W=@y�
. We have shown in Lemma 3 that @W=@y > 0. Therefore, we only need to

show that @W=@r > 0 for each of functions WA (y) ; � � � ;WH (y) in order to prove the claim.
From Lemma 2, we have

@WA (y)

@r
=

y�
1

(�1 + 
2)

@
h
�1 (K1 �K7)

�
yA��
�
1 + (�1 � 1)K2

�
yA��
�
1+1i

@r

=
(
1 + 1) y

�
1
�
yA��
�
1

(�1 + 
2)

�
�1

�+ �+ � (1 + �)
� �1 � 1
�+ �+ � (1 + �)� �

�
> 0:
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When r < �+ �, for y < yC��, from Lemma 2, we have

@WC (y)

@r
=
@
h
�1K1+
2K5

�1+
2
+ 
2(K8�K5)�(
2+1)K6yC��

(�1+
2)(y
C
��)

�2 y�2
i

@r

=
1

�1 + 
2

�
�1

�+ �+ � (1 + �)
+


2
�+ �

�
+
(�2 � 1) y�2

�
yC��
���2

�1 + 
2

�

2
�+ �

� 
2 + 1

�+ �� �

�
>

1

�1 + 
2

�
�1

�+ �+ � (1 + �)
+


2
�+ �

�
+
�2 � 1
�1 + 
2

�

2
�+ �

� 
2 + 1

�+ �� �

�
=

1

�1 + 
2

�1
�+ �+ � (1 + �)

> 0:

When r < �+ �� (1� L� l), from Lemma 2, we have

@WE (y)

@r
=

y�
1

�1 + 
2

@
h
�1 (K3 �K7)

�
yE��
�
1 + (�1 � 1)K4

�
yE��
�1+
1i

@r

=
(
1 + 1) y

�
1
�
yE��
�
1

�1 + 
2

�
�1

�+ �+ � (1 + �)
� (�1 � 1)
�+ �+ � (1 + �)� �

�
> 0:

Lastly, @WB(y)
@r

= @WF (y)
@r

= �1
�1+
2

1
�+�+�(1+�)

> 0 .

(ii) Next, we prove dy�
d�
< 0. By the similar argument as in (i), we only need to show that

@W=@� > 0 for each of functions WA (y) ; � � � ;WH (y). From Lemma 2, we have

@WA (y)

@�
=

24 �1
�1+
2

1
�+�+�(1+�)

+ 
2
�1+
2

1
�+�

� (
1+1)y
�
1(yA��)


1

(�1+
2)

�
�1

�+�+�(1+�)
� �1�1

�+�+�(1+�)��

� 35
>

" �1
�1+
2

1
�+�+�(1+�)

+ 
2
�1+
2

1
�+�

� 
1+1
�1+
2

�
�1

�+�+�(1+�)
� �1�1

�+�+�(1+�)��

� # = 
2
�1 + 
2

1

�+ �
> 0;

and when r < �+ �, for y < yC��,
@WC(y)
@�

=
(�2�1)y�2(yC��)

��2

�1+
2

�

2+1
�+��� �


2
�+�

�
> 0; and further-

more, when r < �+ �� (1� L� l), we have

@WE (y)

@�
=

24 �1
�1+
2

1
�+�+�(1+�)

+ 
2
�1+
2

1
�+�

� (
1+1)y
�
1(yE��)


1

�1+
2

�
�1

�+�+�(1+�)
� (�1�1)

�+�+�(1+�)��

� 35
>

" �1
�1+
2

1
�+�+�(1+�)

+ 
2
�1+
2

1
�+�

� 
1+1
�1+
2

�
�1

�+�+�(1+�)
� (�1�1)

�+�+�(1+�)��

� # = 
2
�1 + 
2

1

�+ �
> 0:
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Lastly, @WB(y)
@�

= @WF (y)
@�

= 
2
�1+
2

1
�+�

> 0.
(iii) Lastly, we prove by contradiction that lim

�!0
y� = 1. Suppose lim�&�y� = y0 < 1.

Consider two cases: r > �+ �� (1� L� l) and r � �+ �� (1� L� l).
(iii-A) If r > � + �� (1� L� l), then lim�&�WA (y�) = 1 = lim�&�WA (y0). However,

note that when � tends to �, K7 and K8 tends to 1. Therefore, we have

lim�&�WA (y0)

= 1 + lim�&�
�1 (K7 � 1) + 
2 (K8 � 1)

�1 + 
2
+
�1 (K1 �K7) + (�1 � 1)K2y

A
��

(�1 + 
2) (y
A
��)

�
1 y
�
1
0

= 1 +
�1 (K1 �K7) + (�1 � 1)K2y

A
��

(�1 + 
2) (y
A
��)

�
1 y
�
1
0 < 1;

which is a contradiction.
(iii-B) If r � �+ �� (1� L� l), then lim�&�WB (1) < 1 because

WB (1)� 1 =
�1 (K1 � 1) + 
2 (K8 � 1) + (�1 � 1)K2

�1 + 
2

! �1
�1 + 
2

�
r + � (1 + �L)

�+ �+ � (1 + �)
� 1
�
+
�1 � 1
�1 + 
2

�+ ��l

�+ �+ � (1 + �)� �

= � �1
�1 + 
2

�
(�+ �� (1� L� l))� r
�+ �+ � (1 + �)

�
��+ ��l
�1 + 
2

�
�1

�+ �+ � (1 + �)
� �1 � 1
�+ �+ � (1 + �)� �

�
< 0:

Similarly as before, we can prove that in this case, lim�&�y� = 1. We can prove it by
contradiction. Suppose lim�&�y� = y0 < 1. Then lim�&�WE (y�) = 1 = lim�&�WE (y0).
However,

lim�&�WE (y0) = 1 +

�
�1 + 
1
�1 + 
2

E2 +
�1 (K3 �K7) + (�1 � 1)K4y

E
��

(�1 + 
2) (y
E
��)

�
1

�
y
�
1
0 < 1;

which is a contradiction.

Proof. [Proof of Proposition 2] There are only three possibilities: y� < 1, 1 � y� � 1�L
l
,

and y� > 1�L
l
:

1. If y� � 1, then the value function is given by

V (y; y�) =

8<:
�
K1 +K6

�
+
�
K2 +K7

�
y + U1y

�3 + A1y
�1, if y 2 (0; y�]

K5 +K6y + A2y
�
2 + A3y

�2 ; if y 2 (y�; 1]
K10 + A4y

�
2, if y 2 (1;1)
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2. If 1 < y� � 1�L
l
, then the value function is given by

V (y; y�) =

8>><>>:
�
K1 +K6

�
+
�
K2 +K7

�
y + U1y

�3 +B1y
�1, if y 2 (0; 1]� �

K3 +K8

�
+
�
K4 +K9

�
y + U2y

�
3

+U3y
�3 +B2y

�
1 +B3y
�1

�
; if y 2 (1; y�]

K10 +B4y
�
2, if y 2 (y�;1)

3. If y� > 1�L
l
, then the value function is given by

V (y; y�) =

8>>>><>>>>:

�
K1 +K6

�
+
�
K2 +K7

�
y + U1y

�3 + C1y
�1, if y 2 (0; 1]� �

K3 +K8

�
+
�
K4 +K9

�
y + U2y

�
3

+U3y
�3 + C2y

�
1 + C3y
�1

�
; if y 2 (1; 1�L

l
]�

K9 +K10

�
+ U4y

�
3 + C4y
�
1 + C5y

�1, if y 2 (1�L
l
; y�]

K10 + C6y
�
2, if y 2 (y�;1)

where the unknown coe¢ cients A1; � � � ; C6 are determined through the value matching and
smooth pasting conditions.
Similarly as the proof of Proposition 1, to prove dy�

d�
> 0, we only need to prove @W (y)

@�
< 0

for Case A, Case B, and Case C.
For simplicity, we only provide the proof for Case A: @WA(y)

@�
< 0 for 0 < y � 1. The proof

for the other two cases is similar. In Case A,

WA (y) =

"
�1(K1+K6)+
2K5

�1+
2
+

(�1�1)(K2+K7)+(1+
2)K6

�1+
2
y

+
2(K10�K5)�(1+
2)K6

�1+
2
y�2 + �1��3

�1+
2
U1y

�3

#
= IA + IIAy + IIIAy

�2 + IVAy
�3

Note that @IVA
@�

��
�=0

= U1
�1+
2

@�1
@�

���
�=0

< 0. Below we consider the �rst three terms. First, it is

straightforward to show that

@
�
K1 +K6

�
@�

=
@
�
K3 +K8

�
@�

= � �2 (1� L)
(�+ �+ � (1 + � + �))2

;

@
�
K2 +K7

�
@�

=
@
�
K4 +K9

�
@�

=
�2l

(�+ �+ � (1 + � + �)� �)2
;

@
�
K9 +K10

�
@�

= 0:
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Therefore,

@WA (y)

@�

����
�=0

<

24 �

2(K1+K2y)

(�1+
2)
2 � 
2(K10�K5)�(1+
2)K6

(�1+
2)
2 y�2

�
@�1
@�

+ �1
�1+
2

�
� �2(1�L)
(�+�+�(1+�))2

+ �2l
(�+�+�(1+�)��)2y

� 35 :
Because 
2 (K10 �K5)� (1 + 
2)K6 = �

�

2
�+�

� 1+
2
�+���

�
< 0 and y � 1, we have

@WA (y)

@�

����
�=0

�

24 
2(K1+K2)�(
2(K10�K5)�(1+
2)K6)

(�1+
2)
2

@�1
@�

+ �1
�1+
2

�
�2l

(�+�+�(1+�)��)2 �
�2(1�L)

(�+�+�(1+�))2

� 35
Therefore, for @WA(y)

@�

���
�=0

< 0, it is su¢ cient to have

K1 +K2 <

" 1

2
(
2 (K10 �K5)� (1 + 
2)K6)

+�1(�1+
2)�
2


2

�
1�L

(�+�+�(1+�))2
� l

(�+�+�(1+�)��)2

� #

which imposes an upper bound on r.
In Case B,

WB (y) =

"
�1(K3+K8)+
2K10

�1+
2
+

(�1�1)(K4+K9)
�1+
2

y +
�1(K3�K1)+(�1�1)(K4�K2)

�1+
2
y�
1

+ (�1+
3)U2
�1+
2

y�
3 + (�1��3)U3
�1+
2

y�3

#
= IB + IIBy + IIIBy

�
1 + IVBy
�
3 + VBy

�3

@WB

@�

����
�=0

=

26664
@

�1
�1+
2

@�

�
K3 +K4y +

�
K3 �K1 +K4 �K2

�
y�
1

�
+ �1
�1+
2

@(K3+K8)
@�

+ �1�1
�1+
2

@(K4+K9)
@�

y

��1(K3�K1)+(�1�1)(K4�K2)
�1+
2

log (y) @
1
@�
y�
1

37775

=

2664

2

(�1+
2)
2
@�1
@�

�
K3 +K4y +

�
K3 �K1 +K4 �K2

�
y�
1

�
��2 �1

�1+
2

1�L
(�+�+�(1+�+�))2

+ �2 �1�1
�1+
2

l
(�+�+�(1+�+�)��)2y

��1(K3�K1)+(�1�1)(K4�K2)
�1+
2

log (y) y�
1 @�1
@�

3775
<


2
(�1 + 
2)

2

@�1
@�

 
K3 +K4

1� L
l

+
�
K3 �K1 +K4 �K2

��1� L
l

��
1!
��2 �1

�1 + 
2

1� L
(�+ �+ � (1 + � + �))2

+ �2
�1 � 1
�1 + 
2

1� L
(�+ �+ � (1 + � + �)� �)2
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where we used the fact 1 < y � 1�L
l
,

K3 �K1 +K4 �K2 =
�

�+ �+ ��
� �

�+ �+ �� � �
< 0

�1
�
K3 �K1

�
+ (�1 � 1)

�
K4 �K2

�
= �

�
�1

�+ �+ ��
� �1 � 1
�+ �+ �� � �

�
> 0

Therefore, for @WB(y)
@�

���
�=0

< 0, it is su¢ cient to have �1
(�+�+�(1+�))2

> �1�1
(�+�+�(1+�)��)2 and

K3 +K4
1� L
l

<

24
�

�

�+�+���� �
�

�+�+��

� �
1�L
l

��
1
+ �2(1�L)

@�1
@�

�1+
2

2

�
�1

(�+�+�(1+�))2
� �1�1

(�+�+�(1+�)��)2

� 35
which imposes an upper bound on � and r.
In Case C,

WC (y) =
�1
�
K9 +K10

�
+ 
2K10

(�1 + 
2)

+

"
�
�1
�
K3 +K8 �K1 �K6

�
+ (�1 � 1)

�
K4 +K9 �K2 �K7

�
�1 + 
2

#
y�
1

+
�1
�
K3 +K8 �K9 �K10

�
+ (�1 � 1)

�
K4 +K9

� �
1�L
l

�
(�1 + 
2)

�
y

(1� L) =l

��
1
+
(�1 + 
3)U4
(�1 + 
2)

y�
3 � (�1 + 
3)U2 + (�1 � �3) (U3 � U1)
�1 + 
2

y�
1

+
(�1 + 
3) (U2 � U4)

�
1�L
l

��
3 + (�1 � �3)U3 �1�Ll ��3
(�1 + 
2)

�
1�L
l

��
1 y�
1

= IC + IICy
�
1 + IIIC

�
y

(1� L) =l

��
1
+ IVC

where we used the facts

@
�
K4 +K9 �K2 �K7

�
@�

=
@
�
K3 +K8 �K1 �K6

�
@�

=
@
�
K9 +K10

�
@�

= 0

�1 (K3 �K1) + (�1 � 1) (K4 �K2) = ��1 > 0

�1 (K3 �K9) + (�1 � 1)K4

�
1� L
l

�
= ��� (1� L)�1 < 0
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K1 �K3 +K2 �K4 =
�

�+ �+ � (1 + � + �)� � �
�

�+ �+ � (1 + � + �)
> 0

K3 �K9 +K4

�
1� L
l

�
=

�� (1� L)
�+ �+ � (1 + � + �)� � �

�� (1� L)
�+ �+ � (1 + � + �)
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@
�
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�
@�

+ (�1 � 1)
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�
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�
@�

�
1� L
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�
thus

@WC

@�
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��
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K3 �K9 +K4
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l
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�
y
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��
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Therefore, for @WC(y)

@�

���
�=0

< 0, it is su¢ cient to have �1
(�+�+�(1+�+�))2

> �1�1
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2
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2
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"
K9 + (K1 �K3 +K2 �K4)

�
1� L
l

��
1
+K3 �K9 +K4
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1
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(�+ �+ � (1 + � + �))2
� �1 � 1
(�+ �+ � (1 + � + �)� �)2
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1
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Table 1: Run-Induced Externalities

Table 1 summarizes the payo¤s of the current creditors and future creditors depending
on the decision of the current creditors to run or roll over.

Choice of current creditors Run Rollover
Liquidity Provision NO YES

Failed Survived Survived
Probability ��dt ��dt 1� ��dt� ��dt 1
Payo¤ of current creditors U (y) L (y) 1 V (y)
Payo¤ of future creditors U (y) L (y) V (y) V (y)
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Table 2: Calibration and Estimation Results

Panel A of this table reports calibrated values for some of the model�s primitive parameters.
In Panel B, the estimated values for the other primitive paramters are reported. Standard errors,
reported in parentheses, are constructed from Monte Carlo simulations. Each simulation begins by
randomly generating 119 weekly data of the underlying fundamental process. We then reestimate
the key parameters with maximum likelihood using these data. We repeat this procedure 1000
times to construct the standard errors. In Panel C, we compute the equilibrium rollover thresholds
based on the estimation results, including the equilibrium threshold in the benchmark model in
HX where the interest rate is �xed at r. In Panel D, the estimated value of a liquidity backstop
is reported. These parameters are estimated using the quasi-maximum likelihood (QML) method.
The data are the VRDO rate as well as weekly repo rate from May 1991 to October 2012, and the
ARS rate from May 2006 and December 2009.

VRDO ARS
Panel A: Calibration
max rate r 0:12 same
cash �ow rate r 0:0239 same
avg. maturity 1=� 25 same
tax-adj. riskless rate � 0:0195 same
avg. duration 1=� 1=12 same
recovery rate � 0:5 same
Panel B: Estimation
drift � 0:024 same

(s:e:) (0:0107)
volatility � 0:217 same

(s:e:) (0:0884)
liquidity premium � 0:0001 same

(s:e:) (0:0005)
default intensity � 0:0111 same

(s:e:) (0:0047)
auction failure intensity � 0 0:0030

(s:e:) (n:a:) (0:0033)
pricing error v 0:0107 same

(s:e:) (0:0063)
Panel C: Equilibrium Rollover Threshold (y�)
Eqm. threshold y� 0:403 0:569
Eqm. threshold (HX) yHX� 0:829
Panel D: Value of a Liquidity Backstop (�)
Value of a liq. backstop � 0:0014
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Figure 1: Average VRDO and ARS Interest Rates

Figure 1 plots the average interest rates in percent on the indexes of weekly resettable high-
grade ARS (solid line) and VRDO (dashed line) between May 2006 and December 2009, maintained
by the Securities Industry and Financial Markets Association (SIFMA).
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Figure 2: VRDO and ARS Annual Issuance Amounts (in Billion)

Figure 2 plots annual issuance amounts of VRDOs (green bars) and ARS (blue bars) in
billions in the period between 1989 and 2011.
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Figure 3: Models of VRDO and ARS
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Figure 4: Unconstrained Interest Rate Schedule

Figure 4 plots interest rate schedules in the absence of the maximum rate cap in three
possible scenarios: y� � 1, 1 < y� � 1�L

l
, and y� > 1�L

l
.
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Figure 5: Constrained Interest Rate Schedule

Figure 5 plots interest rate schedules in the presence of the maximum rate cap in eight
possible scenarios.
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Figure 6: Structural Estimation Results

Panel A of Figure 6 plots the estimated fundamental process fytg (blue solid line), the
VRDO rollover threshold (blue dashed line), as well as the increased ARS rollover threshold
following structural change in investors�beliefs (red dotted-dashed line). Panel B (or Panel
C) of Figure 6 plots the actual and model-implied VRDO (or ARS) excess rates in blue solid
and red dashed lines, respectively.
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Figure 7: Model-Implied Run Probabilities

Figure 7 plots the model-implied run probabilities based on structural estimation results
during the period between May 2006 and December 2009, for the VRDO market in Panel A
and for the ARS market in Panel B.
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