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1 Introduction

A¢ ne term structure models can produce better forecasts of nominal Treasury yields than those

obtained by simply assuming that yields follow a random walk process (Du¤ee, 2002). They

are capable of simultaneously �tting the behavior of expected excess returns over time and term

structure shapes in the cross section. More recently, researchers have extended the a¢ ne term

structure framework to jointly model the markets for nominal Treasury securities and Treasury

In�ation Protected Securities (TIPS). The no-arbitrage restriction across these markets for nominal

and real Treasury securities sheds light on the dynamics of the in�ation process. Another potentially

useful source of forward-looking information about in�ation are in�ation derivatives (e.g., in�ation

swaps, caps, and �oors) whose market has exhibited a rapid growth in recent years. Finally, given

the increased correlation between oil prices and market-based measures of in�ation compensation,

commodity futures may also provide di¤erential information about the short- and medium-term

movements of in�ation and in�ation expectations.

In this paper, we study the following questions: How well can the joint a¢ ne term structure

models forecast simultaneously in�ation, nominal and real interest rates? How can we incorporate

in�ation derivatives and commodity futures into the a¢ ne term structure framework and do they

lead to forecasting improvements?

To address these questions, we develop a uni�ed a¢ ne term structure framework that links the

markets for nominal and real Treasury securities, in�ation derivatives, and oil futures assuming

no-arbitrage across these markets.1 Our model builds on the growing literature on decomposing

the break-even in�ation into in�ation expectations and risk premium that includes Abrahams,

Adrian, Crump and Moench (2015), Ang, Bekaert and Wei (2008), Chen, Liu and Cheng (2010),

Christensen, Lopez and Rudebusch (2010), D�Amico, Kim, and Wei (2014), Grishchenko and Huang

(2013), Haubrich, Pennacchi and Ritchken (2012), Hördahl and Tristani (2012), Joyce, Lildholdt

and Sorensen (2010), Kitsul and Wright (2013), among others. It is well known that nominal

and real Treasury yields take an a¢ ne functional form (D�Amico, Kim, and Wei, 2014) and it is

relatively straightforward to include in�ation swaps into an a¢ ne term structure model (Haubrich,

Pennacchi, and Ritchken, 2012). However, it is not trivial to incorporate the markets for in�ation

1 Incorporating additional independent information from surveys or other asset markets also help the potential
identi�cation of hidden or unspanned factors (Fisher and Gilles, 2000; Du¤ee, 2011; Chernov and Mueller, 2012;
Joslin, Priebsch and Singleton, 2014) that pass undetected through the term structure of interest rates. For example,
as Chernov and Mueller (2012) point out, a factor can remain hidden from the nominal and real term structure of
interest rates if it has an equal but opposite e¤ect on in�ation expectations and in�ation risk premium.
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options and oil futures into an a¢ ne model and preserve the a¢ ne structure.

For in�ation options, the di¢ culty arises from the fact that their prices are highly nonlinear

functions of the underlying parameters and state variables. The novelty of our paper is to show

that (1) under the put-call parity, we can extract option-implied in�ation expectation based on

the values of an in�ation cap and an in�ation �oor with the same tenor and strike price, and

(2) importantly, the option-implied in�ation expectations have an a¢ ne structure in Gaussian no-

arbitrage term structure models. It is worth pointing out that the extraction of option-implied

in�ation expectation is model-free, but the resulting in�ation expectations are obtained under

the forward measure. Furthermore, under no-arbitrage, the forward, risk-neutral, and physical

measures are all connected through the prices of risk, and this relation also has an a¢ ne structure

that can be readily incorporated in an a¢ ne term structure model.

To extract information from oil futures, we follow Casassus and Collin-Dufresne (2005) by

embedding unobservable oil factors, i.e., the spot oil price and the convenience yield, into an a¢ ne

term structure model. Instead of one single yield curve factor assumed in their paper, we allow

for three latent yield curve factors in addition to the two oil factors, resulting in a �ve-factor

a¢ ne model. It is important to have at least three latent yield curve factors because they are

needed to capture the level-, slope-, and curvature-movements in the nominal yield curve (Litterman

and Scheinkman, 1991) and additional information from the real yield curve. To the best of our

knowledge, the proposed �ve-factor a¢ ne model is the �rst comprehensive model that allows for

incorporating information from the markets for nominal and real Treasury securities, in�ation swaps

and options, and oil futures.

We estimate our joint model by maximum likelihood via Kalman �lter and evaluate its forecast-

ing performance. First, we evaluate how the model performs in forecasting in�ation against the SPF

(Survey of Professional Forecasters) benchmark. We show that using nominal and real Treasury

yields only, the in�ation forecasting performance of the model is worse than the survey bench-

mark, with root-mean squared forecast errors about 1-2% larger than the survey-based forecasts.

However, once in�ation derivatives and/or oil futures are included, our model�s in�ation forecasting

performance is generally at par with the survey benchmark, and exhibits a substantially better per-

formance during the 2011-2015 period when in�ation option prices became available. Also, while

the accuracy of SPF in�ation forecasts has been documented elsewhere (Ang, Bekaert and Wei,

2007; Faust and Wright, 2013), the source of the SPF empirical success for forecasting in�ation has

not been thoroughly investigated. Interestingly, our results suggest that the SPF forecasts at short
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horizons are almost identical to a stylized a¢ ne model that uses information only from the yield

curve of nominal and real yields.

Second, we also assess how the model performs in forecasting interest rates against the random

walk benchmark. As shown in Du¤ee (2002), essentially a¢ ne term structure models can produce

better forecasts of nominal Treasury yields than those produced by simply assuming yields follow

a random walk. The success of essentially a¢ ne models stems from breaking up the tight link

between risk compensation and interest rate volatility prevalent in completely a¢ ne models. In this

paper, we show that when we extend the essentially a¢ ne models to model jointly nominal, real and

in�ation derivative markets, it is more challenging to produce interest rate forecasts that outperform

the random walk model. This is perhaps largely due to the fact that the �exibility that allows the

essentially a¢ ne term structure models to accurately forecast Treasury yields is compromised in the

multi-market context. The reason is that to rule out arbitrage, the cross-sectional and time-series

characteristics of the term structure in both Treasury and TIPS markets are inherently linked.

Focusing on one single market can produce better forecasts for that market only. Once multiple

markets are included in an essentially a¢ ne term structure model, no-arbitrage imposes a tight

link between risk compensations demanded in these markets.2 Despite the increased di¢ culty to

outperform the interest rate forecasts by the random walk model, we �nd that incorporating oil

futures help to improve the interest rate forecasts at a longer-term horizon and for longer-maturity

bonds.

Finally, while our focus in this paper is on forecasting, the proposed model provides a useful

framework for policy analysis or decision-making by businesses and households (e.g., mortgage

choices). In particular, it allows us to decompose market-based measures of in�ation compensation

into several components and monitor the evolution of short-term and long-term in�ation expecta-

tions. For example, from the middle of 2014 until the beginning of 2016, the �ve-year, �ve-year

forward breakeven in�ation based on TIPS declined by over 100 basis points and many observers

interpreted this as a downward drift in in�ation expectations. Using a similar version of the model

proposed in this paper, Gospodinov and Wei (2015) showed that most of the decline in the TIPS

breakeven in�ation was due to technical factors and risk premia while the long-run in�ation ex-

pectations remained stable. Furthermore, even though the performance of our in�ation forecasts

is similar to that of SPF, our model builds the whole term structure of in�ation expectations (at

2Part of the underperformance of the model in forecasting interest rates can be attributed to the speci�city of the
out-sample forecasting period that is characterized by nominal yields that are near the lower zero bound.
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any desired horizon) which is available at much higher frequency. This provides policy makers with

timely and valuable information in forming their decisions.

The rest of the paper is organized as follows. Section 2 introduces our new a¢ ne model of

nominal yields, TIPS and in�ation option prices and derives its implications for in�ation expec-

tations, uncertainty, and risk premium. Section 3 describes the data and the estimation strategy.

Section 4 contains the main empirical results. Section 4 concludes. The proofs of the main results

are relegated to Appendix A. The state-space representation of the model and its estimation are

discussed in the Appendix B.

2 A Joint Model of Nominal Yields, Real Yields, Oil Prices and
In�ation

In this section, we describe in detail the main no-arbitrage framework that we use to jointly model

nominal yields, real yields and in�ation. We extend the framework in D�Amico, Kim, and Wei

(2014) by incorporating information from the derivatives markets and oil futures.

The main risk factors that drive nominal and real yields are the latent variables xt = (x1t; x2t; x3t)
0

which are associated with the level, slope and curvature of the yield curve. The log spot oil price

st � lnSt and oil convenience yield �t are introduced to capture the possible e¤ect of oil prices on

in�ation expectations. Since st and �t are found to be highly positively correlated (Casassus and

Collin-Dufresne, 2005), we assume that they are driven by the same shock although extending this

setup to separate correlated shocks is straightforward. The dynamics the state variables (x0t; �t; st)
0

under the physical measure P is

dxt = K (�� xt) dt+�dWx;t; (1)

d�t = �� (�� � �t) dt+ ��dW�;t; (2)

dst =

�
�s � �t �

1

2
�2s

�
dt+ �sdW�;t; (3)

where Wx;t = (W1;t;W2;t;W3;t)
0, and W�;t are independent standard Brownian motions. Note that

as we will show shortly, the drift of the spot price st can be shown to have an a¢ ne functional form

under no-arbitrage.

The logarithm of the price level Qt, denoted by qt � lnQt, follows the process

dqt = �tdt+ �
0
qdWx;t + �

?
q dW?;t; (4)
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where W?;t is an independent standard Brownian motion and �t is the instantaneous expected

in�ation rate, which is assumed to be a¢ ne in the latent variables

�t = �
�
0 + �

�0
x xt + �

�
� �t + �

�
s st: (5)

The in�ation process is allowed to be a¤ected by shocks to these state variables, dWx;t = (dW1;t;

dW2;t; dW3;t)
0, as well as the in�ation-speci�c shock dW?;t with constant volatility �?q .

3

2.1 Nominal and Real Bond Prices and Spot Rates

The nominal bond prices are determined by the following nominal pricing kernel

dMN
t =M

N
t = �rNt dt� �N 0x;tdWx;t � �N�;tdW�;t; (6)

where rNt is the nominal short rate, speci�ed as an a¢ ne function of the latent variables

rNt = �
N
0 + �

N 0
x xt + �

N
� �t + �

N
s st; (7)

and the vector of prices of risk is given by

�Nx;t = �N0;x + �
N
1;xxt; (8)

�N�;t = �N0;� + �
N
1;��t; (9)

where �N0;x is a 3� 1 vector, �N1;x is a 3� 3 matrix, and �N0;� and �N1;� are scalar parameters.

The real and the nominal pricing kernels are linked by the no-arbitrage conditionMR
t =M

N
t Qt.

By Ito�s lemma, it is straightforward to show that the real pricing kernelMR
t follows (see Appendix

A.1 for detailed derivation)

dMR
t =M

R
t = dMN

t =M
N
t + dQt=Qt +

�
dMN

t =M
N
t

�
� (dQt=Qt)

= �rRt dt� �R0x;tdWx;t � �R�;tdW�;t + �
?
q dW?;t; (10)

where the real short rate rRt is given by

rRt = rNt � �t + �0q�Nx;t �
1

2

�
�0q�q +

�
�?q

�2�
(11)

� �R0 + �
R0
x xt + �

R
� �t + �

R
s st;

3 In an earlier version of the paper, we also allowed for time-varying volatility in the in�ation process. While
incorporating this in�ation uncertainty factor may be theoretically appealing (see Wright, 2011), it also leads to
overparameterization and additional technical problems arising from the non-Gaussianity of the model. Results for
the model with stochastic volatility in in�ation are available from the authors upon request.
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and �Rx;t = �Nx;t � �q � �R0;x + �
R
1;xxt and �

R
�;t = �N�;t � �R0;� + �

R
1;��t with �

R
0;x, �

R
1;x, �

R
0;� and �

R
1;�

being of the same dimension as their nominal counterparts. Eq. (11) is the generalized Fisher

equation in which the nominal short rate is decomposed into the real short rate, expected in�ation

rate, instantaneous in�ation risk premium, and a convexity term due to Jensen�s inequality.

Let PNt;� (or P
R
t;� ) denote the time-t price of a nominal (or real) � -year zero-coupon bond that

pays one dollar at maturity. Under the model, nominal and real bond prices can then be determined

under the risk neutral measure P�:

P it;� = E
P�
t

�
exp

�
�
Z t+�

t
risds

��
, for i = N;R;

where EQt [�] (respectively, V ar
Q
t [�]) is generic notation for the expectation (respectively, variance)

operator under a particular Q measure, conditional on information at time t. As is standard

for a¢ ne term structure models, bond prices can be shown to be exponential a¢ ne in the state

variables.

2.2 Spot Oil Price

Absence of arbitrage in the oil futures market implies that

EP
�
t [dSt] =

�
rNt � �t

�
Stdt: (12)

The convenience yield �t can be considered as a �dividend �ow�, net of storage costs, to the holder

of the commodity. Using Ito�s lemma and the change of probability measure, we can derive the

dynamics of log spot price under the physical measure as

dst =

�
rNt � �t �

1

2
�2s + �s�

N
�;t

�
dt+ �sdW�;t

�
�
�s0 + �

s0
x xt + �

s
��t + �

s
sst
�
dt+ �sdW�;t; (13)

where �s0 = �
N
0 � 1

2�
2
s + �s�

N
0;�, �

s
x = �

N
x , �

s
� = �

N
� � 1 + �s�

N
1;�, and �

s
s = �

N
s .

2.3 An A¢ ne Model of Nominal Yields, Real Yields and Oil Futures Prices

In Proposition 1 below, we derive the closed-form expressions of bond prices and yields in term of

the underlying parameters.

Proposition 1 Under this model, � -year nominal and real bond prices take the exponential-a¢ ne

form

P it;� = exp
�
Ai� +B

i0
� xt + C

i
��t +D

i
�st
�
; i = N;R (14)
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and � -year nominal and real yields take the a¢ ne form

yit;� = a
i
� + b

i0
� xt + c

i
��t + d

i
�st; i = N;R; (15)

where ai� � �Ai�=� , bi� � �Bi�=� , ci� � �Ci�=� , and di� � �Di�=� , and Ai� , Bi� , Ci� , Di� (i = N;R)

satisfy the following system of ordinary di¤erential equations:

dAi�
d�

= ��i0 +
�
K�� ��i0;x

�0
Bi� +

�
���� � ���i0;�

�
Ci� +

�
�N0 �

1

2
�2s

�
Di�

+
1

2
Bi0� ��

0Bi� +
1

2
�2�
�
Ci�
�2
+
1

2
�2s
�
Di�
�2

dBi�
d�

= ��ix �
�
K +��i1;x

�0
Bi� + �

N
x D

i
�

dCi�
d�

= ��i� �
�
�� + ���

i
1;�

�
Ci� +

�
�N� � 1

�
Di�

dDi�
d�

= ��is + �Ns Di�

with Ai0 = B
i
0 = C

i
0 = D

i
0 = 0.

Proof of Proposition 1. See Appendix A.

It follows from Proposition 1 that (for i = N;R)

dP it;�
P it;�

= ritdt+B
i0
� �dWx;t +

�
Ci��� +D

i
��s
�
dW�;t;

i.e., we allow the dynamics of nominal and real bond prices to be a¤ected by dWx;t and dW�;t.

Next, Proposition 2 shows that the oil futures prices are an exponentially a¢ ne function of the

state variables and the underlying parameters.

Proposition 2 Under this model, the oil futures price with � -year maturity takes the form

P oilt;� = E
P�
t [exp (st+� )] = exp

�
Aoil� +Boil0� xt + C

oil
� �t +D

oil
� st

�
;

where Aoil� , B
oil
� , C

oil
� , D

oil
� satisfy the following system of ordinary di¤erential equations:

dAoil�
d�

=
�
K�� ��N0;x

�0
Boil� +

�
���� � ���N0;�

�
Coil� +

�
�N0 �

1

2
�2s

�
Doil�

+
1

2
Boil0� ��0Boil� +

1

2
�2�

�
Coil�

�2
+
1

2
�2s

�
Doil�

�2
;

dBoil�
d�

= �
�
K +��N1;x

�0
Boil� + �Nx D

oil
� ;

dCoil�
d�

= �
�
�� + ���

N
1;�

�
Coil� +

�
�N� � 1

�
Doil� ;

dDoil�
d�

= �Ns D
oil
� ;
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with initial conditions Aoil0 = Boil0 = Coil0 = 0 and Doil0 = 1.

Proof of Proposition 2. See Appendix A.

2.4 In�ation Derivative Prices

We now turn to in�ation derivatives, i.e., in�ation swaps and options. A zero-coupon in�ation swap

is a forward contract, whereby the in�ation buyer pays a predetermined �xed nominal rate and

in return receives from the seller an in�ation-linked payment. By a standard argument (see, e.g.,

Haubrich, Pennacchi, and Ritchken, 2012), the equilibrium swap rate for an in�ation swap that

matures in � periods is given by

ySt;� = y
N
t;� � yRt;� : (16)

Next, we turn our attention to pricing in�ation options under the forward measure ~P� . The

Radon-Nikodym derivative of the forward measure ~P� with respect to the risk neutral measure P�

is given by  
d~P�

dP�

!
t;t+�

=
1

PNt;�
exp

�
�
Z t+�

t
rNs ds

�
:

In the rest of the paper, we omit the superscript and simply denote the forward measure by ~P. The

forward measure ~P is used for analytical tractability. In particular, the value of an in�ation option

is simply the expected payo¤ at maturity under the forward measure discounted by the nominal

yield yNt;� ; that is,

PCAPt;� ;K = exp
�
��yNt;�

�
E
~P
t

"�
Qt+�
Qt

� (1 +K)�
�+#

;

PFLOt;� ;K = exp
�
��yNt;�

�
E
~P
t

"�
(1 +K)� � Qt+�

Qt

�+#
;

where PCAPt;� ;K (PFLOt;� ;K ) denotes the price of an in�ation cap (�oor) with time to maturity � and a

strike priceK. If the put-call parity holds, then one can extract option-implied in�ation expectation

from option prices as follows:

E
~P
t

�
Qt+�
Qt

�
=
PCAPt;� ;K � PFLOt;� ;K

PNt;�
+ (1 +K)� : (17)

Two observations are worth mentioning here. First, the expression for the option-implied in�ation

expectation in Eq.(17) holds in general and is not model-speci�c. The only assumption behind this

8



result is the put-call parity. Second, although we can extract in�ation expectations from option

data using Eq.(17), the expectations are taken under the forward measure. As a result, they cannot

be directly compared with the breakeven in�ation rate which contains in�ation expectations under

the physical measure. The a¢ ne term structure model in this paper allows us to further translate

the option-implied in�ation expectations based on Girsanov�s theorem which implies the following

relationship between Brownian motions under the forward and risk-neutral measures:

d ~Wx;t = dW
�
t � �0BN� dt;

Denote

IE t;� � 1

�
E
~P
t [qt+� � qt] ;

IU t;� � 1

�
V ar

~P
t [qt+� � qt] ;

where IE t;� is an alternative de�nition of in�ation expectations4 and IU t;� measures in�ation

uncertainty. Under the assumption that the change in log price levels follows a normal distribution,

i.e., qt+� � qtjFt � N (� � IE t;� ; � � IU t;� ), the option-implied in�ation expectations in Eq.(17) have

the following exponential-a¢ ne form:

E
~P
t

�
Qt+�
Qt

�
= exp

�
� (IE t;� ) +

1

2
� (IU t;� )

�
; (18)

where the explicit expressions of IE t;� and IU t;� , in terms of the state variables and model para-

meters, are given in Lemma A.1 in Appendix A.

Moreover, we can also derive closed-form pricing formulas for in�ation caps and �oors. The

results are presented in Proposition 3 below.

Proposition 3 Under the model, the prices of in�ation caps and �oors with maturity � and strike

K are given by

PCAPt;� ;K = PNt;�

2664 e
�(IEt;�+ 1

2
IUt;�)�

�
� ln(1+K)+(IEt;�+IUt;� )p

IUt;�=�

�
� (1 +K)� �

�
� ln(1+K)+IEt;�p

IUt;�=�

�
3775 ; (19)

4We de�ne in�ation expectations as in Christensen, Lopez and Rudebusch (2010)

IEt;� � �
1

�
ln

�
Et

�
Qt
Qt+�

��
:

This di¤ers from D�Amico, Kim and Wei (2014) who de�ne it as IEt;� � 1
�
Et
h
ln
�
Qt+�
Qt

�i
. The di¤erence between

these two slightly di¤erent measures is due to the Jensen�s inequality term.
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PFLOt;� ;K = P
N
t;�

2664 �e
�(IEt;�+ 1

2
IUt;�)�

�
�� ln(1+K)+(IEt;�+IUt;� )p

IUt;�=�

�
+(1 +K)� �

�
�� ln(1+K)+IEt;�p

IUt;�=�

�
3775 ; (20)

where �(�) denotes the cumulative distribution function of a standard normal random variable.

Proof of Proposition 3. See Appendix A.

3 Estimation Methodology and Data

3.1 Estimation Methodology

The set of variables that enter our model consists of observables (yNt;� , y
R
t;� , y

O
t;� ;K , y

S
t;� and p

oil
t;� ),

latent (xt, st and �t) and partially observed (qt) state variables, where yOt;� ;K � 1
� lnE

~P
t

h
Qt+�
Qt

i
=

IE t;� + 1
2IU t;� (see Eqs.(17)-(18)) and p

oil
t;� = lnP oilt;� . The superscript �O� refers to the use of

options data in deriving the in�ation expectations under the forward measure. Since the dimension

of the observables is typically larger than the dimension of the state vector, the term structure

models are inherently stochastically singular (Piazzesi, 2010, p.726). There are two approaches to

dealing with this singularity. One approach is to �invert� the state variables from a small subset

(of the same dimension as the state vector) of observables, add measurement errors to the rest of

the observable vector and proceed with quasi-maximum likelihood estimation. The drawback of

this method is that the choice of the observables from which the state variables are extracted is

arbitrary and naturally a¤ects the quality and the dynamics of the derived state variables. An

additional problem that arises in our setup is the presence of in�ation derivative and oil prices.

For these reasons, we pursue the second approach in which all yields, log oil prices and option-

implied in�ation expectations are assumed to be observed with a measurement error. This spec-

i�cation arises naturally in our framework since our yield data is obtained from an interpolated

zero-coupon yield curve (see also Piazzesi, 2010, for the plausibility of this assumption). This ap-

proach requires the use of a �ltering method and, given the assumptions and the structure of our

model, we employ the Kalman �lter which is discussed later. The nominal yields, real yields, oil

prices and in�ation option prices are at weekly frequency while the CPI in�ation is based on monthly

data. Let Yt = (qt; yN 0t;� ; y
R0
t;� ; y

O0
t;� ;K ; y

S0
t;� ; p

oil0
t;� )

0 denote the m�1 vector of observables, where fqtg, t 2

f1; � � � ; Tqg,
�
yNt;�
	
with t 2 f1; � � � ; TNg and � 2 f�1; � � � ; �mN g,

�
yRt;�
	
with t 2 f1; � � � ; TRg and

� 2 f�1; � � � ; �mRg,
n
yOt;� ;K

o
with t 2 f1; � � � ; TOg, � 2 f�1; � � � ; �mOg and K 2 fK1; � � � ;KmKg,�

poilt;�
	
with t 2 f1; � � � ; Toilg and � 2 f�1; � � � ; �moilg and m = 1+mN +mR+mS+mO �mK+moil.
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The state-space representation of the model is characterized by the measurement equation for Yt

and the transition equation for the augmented state vector Xt = (qt; x0t; st; �t)
0 whose construction

is described in Appendix B. The discretized state-space system is given by

Xt = A+ BXt�1 + �t

Yt = a+ bXt + et;

where A, B, a, and b are functions of the underlying parameters of interest � = (vec(K)0; vech(��0)0;

�0; �N 00 ; �
N 0
x ; �

N
� ; �

N
s ; �

N 0
0 ; vec(�

N
x )

0; ��0 ; �
�0
x ; �

�
� ; �

�
s ; �

0
q; �

?
q ; ��; ��; ��; �

N
0;�; �

N
1;�; �s)

0. For

identi�cation purposes, we follow D�Amico, Kim and Wei (2014) and impose the restrictions that �

is a zero vector, K is a diagonal matrix and � is a lower triangular matrix with diagonal matrix set

equal to 0.01. For forecasting, as explained in Section 4, we also impose the following parameter

restrictions: ��s = 0, �
N
0;� = 0 and �

N
1;� = 0. The parameter vector � is then estimated by Kalman

�lter (see Appendix B for details).

3.2 Data

All data variables are converted to weekly frequency and end in the last week of December 2015 (al-

though they may have di¤erent start dates). Continuously-compounded, zero-coupon yields on U.S.

Treasury notes with 1-, 2-, 4-, 7- and 10-year maturities are obtained from the U.S. Treasury yield

curve of Gürkaynak, Sack and Wright (2007), maintained by the Federal Reserve Board (available at

http://www.federalreserve.gov/Pubs/feds/2006/200628/ 200628abs.html). The 3- and 6-

month rates are obtained from the 3- and 6-month T-bill rates with constant maturity from the Fed-

eral Reserve Board�s H.15 statistical release by converting them from discount basis to continuously-

compounded rates. The sample period for the nominal yields starts in the �rst week of January 1990.

For the TIPS yields, we use data for 5-, 7- and 10-year continuously-compounded, zero-coupon yields

from the TIPS yield curve5 of Gürkaynak, Sack and Wright (2010), maintained by the Federal Re-

serve Board (http://www.federalreserve.gov/pubs/feds/2008/200805/200805abs.html). The

sample period for TIPS yields starts in the �rst week of January 1999. As of the end of August

2015, there is $1.1 trillion of TIPS outstanding versus $11.4 trillion of nominal Treasuries out-

standing. The principal of the TIPS is linked to the non-seasonally adjusted CPI for all urban

consumers, and is accredited monthly. TIPS o¤er a de�ation protection (�oor) as the greater of

the in�ation-adjusted principal and the original principal is paid at maturity.
5For some speci�c aspects of the U.S. TIPS market, see Fleckenstein, Longsta¤ and Lustig (2014), Fleming and

Krishnan (2012), Gürkaynak, Sack and Wright (2010), and Sack and Elsasser (2004).
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Data for in�ation cap and �oor prices, starting in the middle of February 2010, with strike prices

from 1% to 3% in increments of 1% with 1- and 3-year maturities, are obtained from Bloomberg.

We also obtain in�ation swap data (starting in July 2004) from Bloomberg and choose the same

maturities as the TIPS data, i.e., 5-, 7-, and 10-year maturities.

For our oil series, we use the prices of crude oil (WTI), traded on NYMEX, for the nearest, 1-, 3-

and 12-month futures contracts. To avoid problems with lack of liquidity and higher volatility near

the expiration of the contract, we roll over the current contract to the following contract on the �rst

day of the delivery month. The oil data is available from January 1990. Weekly series for nominal

yields, TIPS yields, and in�ation option prices, in�ation swaps and oil prices are constructed by

using the Wednesday observation of each week (if the market is closed on Wednesday, we take the

Tuesday observation or Thursday�s observation if the Tuesday�s is not available).

We use the CPI for all urban consumers (all items, seasonally adjusted) from the U.S. Bureau of

Labor Statistics, covering the period January 1990 �September 2015. The monthly CPI is assumed

to be observed on the third Wednesday of each month. The remaining weeks are treated as missing

observations which are �lled in via the Kalman �lter. Similarly, the missing weekly observations

up to January 1999 for TIPS and October 2009 for in�ation options are also estimated using the

Kalman �lter.

Figure 1 plots the 5-year Treasury and TIPS yields along with the 5-year breakeven in�ation

rate. For most of the period, the 5-year breakeven rate varies between 1% and 3% except for a sharp

decrease in the wake of the recent �nancial crisis. There are some regularities in the breakeven

rate that have become more pronounced after the �nancial crisis and may have been caused by a

seasonal carry that characterizes the TIPS market. In historical context, the recent decline in the

breakeven in�ation is not unusual.6

4 Empirical Results

We estimate four versions of the model that include di¤erent input variables. The models are

denoted by M with superscripts NR, O, S, oil (for nominal/real yields, option-implied in�ation

expectations, swaps and oil prices) for the input variables. The benchmark model, MNR, is the

model used in D�Amico, Kim and Wei (2014) without a liquidity factor. This model uses nominal

(Treasury) and real (TIPS) yields (as well as in�ation) as input variables.

6See Gospodinov and Wei (2015) for a more detailed analysis of the dynamics and decomposition of the breakeven
in�ation.
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The other three models are new. The �rst one,MNRO, is designed to evaluate the information

content of options (option-implied in�ation expectations, to be more precise) for identifying and

estimating the same set of model parameters as in MNR. The model MNRS uses in�ation swap

information and the modelMNRoil incorporates oil futures prices in addition to nominal and real

yields.

It should be noted that modelMNRoil is estimated by imposing some parameter restrictions �in

particular, ��s = 0, �
N
0;� = 0 and �

N
1;� = 0 �in order to avoid overparameterization and over�tting.

The �rst restriction is imposed to prevent the near-nonstationary and trending behavior of the

spot oil price to translate directly into in�ation expectations. The informational content that is

aggregated in the oil futures market is allowed to operate through the convenience yield which

tends to re�ect global demand conditions (see Gospodinov and Ng, 2013). The last two restrictions

are imposed since the prices of oil risk appear to be small and relatively unimportant.

All model speci�cations produce similar dynamics for the state variables in x which roughly

correspond to the level (x2), slope (x1) and curvature (x3) of the nominal and real term structure.

The loadings of the nominal spot rate on these state variables as well as the estimated prices of

risk are also similar across the di¤erent models.

The models MNR, MNRO, MNRS and MNRoil, estimated at weekly frequency, are used to

produce forecasts at 3-month, 6-month and 12-month horizons. The monthly forecasts for in�ation,

nominal and real yields are evaluated relative to the random walk (RW) model. Since the Survey

of Professional Forecasters (SPF) has been documented to provide some of the best forecasts of

in�ation (Ang, Bekaert and Wei, 2007; Faust and Wright, 2013), we also evaluate the forecast

performance of our models relative to SPF at 1- to 4-quarter ahead horizons.

4.1 Out-of-sample forecast of in�ation

Table 1 presents the out-of-sample forecasting results for annual in�ation at monthly forecast

horizons. The forecasts are computed recursively with an initial estimation sample January 1990

- December 2003. The out-of-sample period is 2004-2014. To assess how the performance of the

di¤erent forecasting models vary over time (in particular - before, during and after the recent

�nancial crisis), we also report results for several sub-samples: 2004-2007, 2008-2010, 2011-2014.

We should note that the dating of our sample periods re�ects the time when the forecast is being

made. This allows us to have the same number of forecasts for each forecast horizon h (h = 3; 6; 12).

The root mean squared forecast error (RMSE) for the di¤erent forecasting models is computed as
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q
1
n

Pn
i=1 (~�i+h � �̂i+h)

2, where �̂i+h =
Qi+h�Qi+h�12

Qi+h�12
is the actual annual in�ation rate at horizon

h (in months) and ~�i+h is the model forecast of in�ation.

Table 1 presents the RMSE for the RW model and the ratios of the RMSEs of the other models

relative to that of RW. Hence, numbers greater than one indicate that RW dominates the other

models and numbers smaller than one suggest that RW is outperformed by the corresponding

model. The models considered in this paper dominate uniformly the RW model across forecast

horizons and sub-samples. The reduction of the RMSE, relative to RW, is often quite substantial.

The in�ation options improve the accuracy of in�ation forecasts with their introduction in 2010.

Oil prices also help to reduce the RMSE at short horizons (up to 3 months) in the sub-periods

2004-2007 and 2011-2014.

Since SPF has been documented (Ang, Bekaert and Wei, 2007) to produce some of the most

accurate forecasts of in�ation, we compare our model against this benchmark. Since SPF is available

only at quarterly frequency, we conduct the forecast comparison at this frequency with 1-, 2- 3-

and 4-quarter horizons. Table 2 reports the results for di¤erent models as ratios of their RMSEs

relative to that of SPF.

The results in Table 2 can be summarized as follows. As argued elsewhere in the literature

(Ang, Bekaert and Wei, 2007; Faust and Wright, 2013), SPF performs very well for forecasting

CPI in�ation 1- to 4-quarters ahead. Adding information from options and swaps helps the model

forecasts at longer horizons, except for the �nancial crisis period. The improvements of MNRO

over SPF in the most recent sub-sample (when in�ation option data has become available and

in�ation options started to trade more actively) are substantial. As in Table 1, oil futures provide

some forecasting improvements at short horizons, with the exception of the �nancial crisis period.

Figure 2 plots the year-over-year in�ation rate (blue solid line), four-quarter ahead SPF survey

forecast (black crosses), and model forecasts from all four models (red circles). The right-upper

subplot demonstrates that the forecast based on MNRO performs generally better than the SPF

survey forecast between 2011 and 2014 when in�ation option data are readily available. In this

period, the realized in�ation rate dropped to a low level around zero percent in 2015 while the SPF

forecast was quite stable around 2 percent (recall that the timing is speci�ed as the time when the

SPF forecast was made). By contrast, unlike the other models, model MNRO is able to generate

in�ation forecast that is more in line with the actual realization.

Presumably in�ation options may well contain useful forward-looking information about future
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in�ation and thus help improve in�ation forecasts. As we argue earlier, one particular useful

information we can extract from in�ation options is the model-free in�ation expectations under the

forward measure. Figure 3 presents the 1- and 3-year option-implied in�ation expectations that

are computed as described in Section 2. From Figure 3, we can see that option-implied in�ation

expectations co-move closely with the break-even in�ation rate, and are typically greater than the

latter most of the time.

To the best of our knowledge, however, the source of the good forecasting performance of SPF

has not been clear apart from being a combination of forecasts from experts. Our results shed light

on what factors the professional forecasters might be using in forming their in�ation expectations

and forecasts. First, note that the forecasting performance ofMNR, albeit slightly worse, is very

close to SPF for 1- and 3-quarter horizons. To visualize this performance over time, Figure 4 plots

the model forecasts, SPF forecasts and realized annualized in�ation. The closeness between the

forecasts ofMNR and SPF at shorter horizons is striking. This suggests that the median forecaster

uses the information (level, slope and curvature) in the yield curve as a main predictor for future

in�ation. At longer horizons, the discrepancy is increasing as the SPF forecasts become �atter.

This is likely due to the fact that the professional forecasters impose more mean reversion (possibly

based on judgemental assessment) in their longer-term in�ation forecasts. By contrast, the model

state variables (especially the level x2) are highly persistent and induce a slower mean reversion in

the model forecasts.

4.2 Out-of-sample forecast of interest rates

Tables 3a-3d and 4a-4d report results for out-of-sample forecasts of nominal and real yields.

We consider models MNR, MNRO, MNRS , MNRoil, and RW. RW is the benchmark model

and the results for the other models are presented as a ratio of their RMSE to the RMSE of

RW. The RMSEs for nominal and real yields are computed as

r
1
n

Pn
i=1

�
~yNi+h;� � ŷNi+h;�

�2
andr

1
n

Pn
i=1

�
~yRi+h;� � ŷRi+h;�

�2
, where ŷNi+h;� is the actual nominal yield, ~y

N
i+h;� is the model fore-

cast of nominal yield, ŷRi+h;� is the actual real (TIPS) yield, and ~y
R
i+h;� is the model forecast of

real yield, respectively. The forecast horizon is h = 3; 6; 12 months. We consider bond maturi-

ties � = 0:5; 1; 2; 5 and 10 (in years) for nominal yields and � = 2; 5 and 10 (in years) for real

yields. As for in�ation, we report results for the whole out-of-sample period 2004-2014 as well as

for sub-samples: 2004-2007, 2008-2010 and 2011-2014.
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For nominal yields, MNR dominates RW at shorter maturities for the 2004-2007 sub-sample.

Incorporating information from in�ation derivatives does not help to reduce the RMSE for nominal

bond forecasts. The oil state variables appear to provide an improvement for long-maturity bonds

but it is only marginal. The models are more successful at forecasting real yields at 6- and 12-month

horizon with a substantial reduction of the RMSE for 2- and 5-year TIPS.

The poor forecasting performance of the model for nominal yields warrants a few remarks. First,

a part of the under-performance can be attributed to the speci�city of the out-sample forecasting

period that is characterized by nominal yields that are near the lower zero bound. Since none of

the models considered have any built-in-features to handle this type of behavior, it is not surprising

that they are out-performed by the RW model. Consider, for example, the sub-sample period 2011-

2014 when the relative RMSE ratios are the highest. Figure 5 plots the actual 6-month Treasury

yield and its 3-month forecasts by the MNR, MNRO, MNRS , and MNRoil models. While the

actual 6-month yield has stayed relatively �at and close to zero since 2008, the model forecasts

have been much more volatile because our speci�cation does not impose any restrictions related

to the zero lower bound. This is not a de�ciency that is speci�c to our model but a feature of

any a¢ ne term structure model that does not account explicitly for the zero lower bound. In fact,

our model forecasts exhibit a fairly realistic dynamics that can be linked to some developments in

monetary policy (quantitative easing programs, FOMC statements etc.) Introducing a shadow rate

as in Wu and Xia (2015) may allow our model to better approximate the behavior of the short end

of the nominal yield curve during the period of unconventional monetary policy.

Another important reason, however, is that once markets for both nominal and real yields are

included in an essentially a¢ ne term structure model, no-arbitrage imposes a tight link between

the nominal and real prices of risk. For example, since �Nx;t = �Rx;t + �q, the parameter �q that

governs the in�ation process imposes a tight link between �Nx;t and �
R
x;t. Therefore, it is challenging

to freely break up risk compensations demanded in both markets. That is, we may be able to

break up the link between risk compensation and interest rate volatility in one market, but it is

quite challenging to break up the link in both markets. This is the key reason why the essentially

a¢ ne term structure models that jointly model Treasury and TIPS yields fail to produce accurate

forecasts for nominal yields, although they can still produce accurate forecasts for TIPS yields and

in�ation.
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4.3 Information contained in in�ation swaps, options, and oil futures

In this subsection, we try to assess and summarize the information content from incorporating in�a-

tion derivatives and oil futures. First, we focus on in�ation forecasting at quarterly forecast horizons

for which SPF forecasts are available. One natural way of assessing the relative contribution of

the di¤erent informational sources is to regress the realized in�ation rate on the model-implied

forecasts based on di¤erent markets. Speci�cally, we run the following regression of the realized

in�ation rate �t+h at time t+ h on survey and model forecasts b�t+h made at time t:
�t+h = �

SPF b�SPFt+h + �NRb�NRt+h + �NROb�NROt+h + �NRSb�NRSt+h + �NRoilb�NRoilt+h ;

subject to the constraints:

�SPF + �NR + �NRO + �NRS + �NRoil = 1;

and

�SPF ; �NR; �NRO; �NRS ; �NRoil 2 [0; 1] :

Heuristically, the regression coe¢ cients measure the incremental information content from a speci�c

market or survey. For example, if the survey-based in�ation forecast had completely dominated

all model-implied forecasts, we would expect to see �SPF close to one with the other coe¢ cients

being close to zero. The regression results are reported in Table 5. From Table 5, we can see that

the coe¢ cient �SPF is around 0.5, indicating that model-based forecasts are informative as well.

Table 5 also shows that the forecast based on modelMNR is no longer informative once we include

forecasts based on in�ation derivatives or oil futures. Among the latter, model MNRO contains

most information content for predicting in�ation, as suggested by its large regression coe¢ cients.

This is consistent with the earlier evidence shown in Table 1.

Similar exercises can be performed to evaluate information contents in forecasting interest rates.

Speci�cally, we run the following regression

yit+h;� = �
RW byi;RWt+h;� + �

NRbyi;NRt+h;� + �
NRObyi;NROt+h;� + �NRSbyi;NRSt+h;� + �

NRoilbyi;NRoilt+h;� ; for i = N;R;

where byNt+h;� and byRt+h;� denote model h-month ahead forecasts of nominal and real yields made
at time t, subject to the same constraints as the regression for in�ation forecasts. The results are

reported in Tables 6 and 7, regarding the forecasts of nominal and real interest rates, respectively.

One interesting �nding is that incorporating in�ation options is no longer useful in forecasting
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interest rates. On the other hand, incorporating oil futures seems to matter a lot especially when

forecasting longer-term interest rates. One possible explanation for this �nding is that the conve-

nience yield may contain valuable information about the economy and is thus useful in forecasting

future interest rates.

5 Conclusion

In this paper we examine the forecasting ability of a¢ ne term structure framework that links the

markets for Treasuries, in�ation-protected securities, in�ation derivatives, and oil futures, based

on no-arbitrage restrictions across these markets. In addition to �tting all these asset markets

simultaneously, the model provides measures of in�ation expectations, risk premium and model-

implied in�ation distributions with wide policy implications.

We contribute to the literature along several dimensions. First, we demonstrate the importance

of no-arbitrage restrictions across di¤erent markets for improved forecasting of in�ation. Incor-

porating information from in�ation options reduces substantially the forecast error for in�ation.

Second, we use a novel way to introduce information from the options market into an a¢ ne frame-

work. More speci�cally, we establish that option-implied in�ation expectations, under the forward

measure, are a¢ ne in the state variables. We link the di¤erent (physical, risk-neutral and forward)

measure through common prices of risk and show that in�ation options help to identify the price

of risk parameters. Third, we augment the no-arbitrage model for nominal and real yields with the

term structure of oil future prices. Fourth, our results suggest that the empirical success of in�ation

forecasts from the survey of professional forecasters can be replicated with a standard a¢ ne model

that exploits only information in the nominal and real yield curve. Finally, because the no-arbitrage

restrictions across markets also constrain the �exibility in modeling risk compensation and interest

rate volatility, combining information from these markets poses a challenge to existing a¢ ne term

structures models for their ability to simultaneously forecast in�ation and interest rates.
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Appendix A: Derivation and Proofs

A.1 Derivation of the Real Pricing Kernel

By Ito�s lemma and the no-arbitrage condition MR
t =M

N
t Qt, we have

dMR
t =M

R
t = dMN

t =M
N
t + dQt=Qt +

�
dMN

t =M
N
t

�
� (dQt=Qt)

= �rNt dt� �N 0x;tdWx;t � �N�;tdW�;t

+

�
�t +

1

2

�
�0q�q +

�
�?q

�2��
dt+ �0qdWx;t + �

?
q dW?;t + �

0
q�

N
x;t

= �rRt dt� �R0x;tdWx;t � �R�;tdW�;t + �
?
q dW?;t;

where the real short rate rRt is given by

rRt = rNt � �t + �0q�Nx;t �
1

2

�
�0q�q +

�
�?q

�2�
=

�
�N0 + �

N 0
x xt + �

N
� �t + �

N
s st
�
�
�
��0 + �

�0
x xt + �

�
� �t + �

�
s st
�

+�0q
�
�N0;x + �

N
1;xxt

�
� 1
2

�
�0q�q +

�
�?q

�2�
=

�
�N0 � ��0 �

1

2

�
�0q�q +

�
�?q

�2�
+ �0q�

N
0;x

�
+
�
�Nx � ��x + �0q�N1;x

�
xt +

�
�N� � ���

�
�t +

�
�Ns � ��s

�
st

� �R0 + �
R0
x xt + �

R
� �t + �

R
s st

and the real prices of risk are given by

�Rx;t = �Nx;t � �q � �R0;x + �R1;xxt;
�R�;t = �N�;t � �R0;� + �R1;��t:

The parameters in the above equations are given by:

�R0 � �N0 � ��0 �
1

2

�
�0q�q +

�
�?q

�2�
+ �0q�

N
0;x;

�Rx � �Nx � ��x + �0q�N1;x;
�R� � �N� � ��� ;
�Rs � �Ns � ��s ;

and

�R0;x � �N0;x � �q;
�R1;x � �N1;x;

�R0;� � �N0;�;

�R1;� � �N1;�:
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A.2 Proof of Proposition 1

We derive the pricing formula for nominal bonds. The derivation of the pricing formula for real

bonds is very similar and thus omitted.

Let

�Nt �
�
�Nx;t
�N�;t

�
;Wt �

�
Wx;t

W�;t

�
:

Then, the Radon-Nikodym derivative of the risk neutral measure P� with respect to the physical
measure P is given by �

dP�

dP

�
t;T

= exp

�
�1
2

Z T

t
�N 0s �

N
s ds�

Z T

t
�N 0s dWs

�
By the Girsanov theorem, dW �

t = dWt+�
N
t dt is a standard Brownian motion under the risk-neutral

probability measure P�. It implies that under the risk neutral measure,

dxt = K� (�� � xt) + �dW �
x;t; (A1)

d�t = ��� (�
�
� � �t) dt+ ��dW �

�;t; (A2)

dst =
�
��0 + �

�0
x xt + �

�
��t + �

�
sst
�
dt+ �sdW

�
�;t; (A3)

dqt =
�
���0 + ���0x xt + �

��
� �t + �

��
s st

�
dt+ �0qdW

�
x;t + �

?
q dW

�
?;t; (A4)

where

K� = K+��N1;x;K��� = K����N0;x
��� = �� + ���

N
1;�; �

�
��
�
� = ���� � ���N0;�

��0 = �0 � �s�N0;�; ��x = �x; ��� = �� � �s�N1;�; ��s = �Ns
���0 = ��0 � �N 00;x�q; ���x = ��x � �N 01;x�q; ���� = ��� ; �

��
s = ��s :

From the fact that exp
�
�
R t
0 r

N
s ds

�
PNt;� is a martingale under the risk neutral measure, we can

derive the ODE system for the nominal yields by standard argument.

A.3 Proof of Proposition 2

Given the dynamics of st in Eq.(13), we can show that the oil futures price has the following

exponential-a¢ ne form:

P oilt;� = E
�
t [exp (st+� )] � exp

�
Aoil� +Boil0� xt + C

oil
� �t +D

oil
� st

�
:
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Applying the Girsanov�s theorem and using similar arguments as in the proof of Proposition 1, we

obtain the system of ordinary di¤erential equations

dAoil�
d�

=
�
K�� ��N0;x

�0
Boil� +

�
���� � ���N0;�

�
Coil� +

�
�N0 �

1

2
�2s

�
Doil�

+
1

2
Boil0� ��0Boil� +

1

2
�2�

�
Coil�

�2
+
1

2
�2s

�
Doil�

�2
;

dBoil�
d�

= �
�
K +��N1;x

�0
Boil� + �Nx D

oil
� ;

dCoil�
d�

= �
�
�� + ���

N
1;�

�
Coil� +

�
�N� � 1

�
Doil� ;

dDoil�
d�

= �Ns D
oil
� :

A.4 Lemma A.1

Under the forward measure, we have 
d~P
dP�

!
t;T

=
exp

�
�
R T
t r

N
s ds

�
PNt;�

and

	t � EP
�
t

24 d~P
dP�

!
0;T

35 = EP�t
24exp

�
�
R T
0 r

N
s ds

�
PN0;T

35 = PNt;�

PN0;T
exp

�
�
Z t

0
rNs ds

�
We have

d	t =
exp

�
�
R t
0 r

N
s ds

�
PN0;T

�
dPNt;� � rNt PNt;�dt

�
= 	t

h
BN 0� �dWx;t + C

N
� �

?
q dW?;t

i
By Girsanov�s Theorem, we have

d ~Wt = dW
�
t �

d	t
	t

� dW �
t

or

d ~Wx;t = dW �
t � �0BN� dt

d ~W?;t = dW �
?;t

d ~W�;t = dW �
�;t �

�
��C

N
� + �sD

N
�

�
dt

The dynamics of the state variables under the risk neutral measure is stated in Eq.(A1)-Eq.(A3).

Applying the Girsanov�s Theorem yields:

dxt = K� (�� � xt) dt+�
�
d ~Wx;t +�

0BN� dt
�

=
�
K��� +��0BN� �K�xt

�
dt+�d ~Wx;t

� ~K (~�� xt) dt+�d ~Wx;t;
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d�t = ��� (�
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� � �t) dt+ ��dW �
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�
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?
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0 � �N 00 �q + �0q�0BN� ;e��x = ���x = ��x � �N 01;x�q;e���� = ���� and e���s = ���s :

The notations such as e��0 , etc. denote corresponding parameters under the forward measure
Next, we compute the expected values of the state variables over the period t to t + � under

the forward measure. After tedious algebra, we can show that

IE t;� �
1

�
E
~P
t [qt+� � qt] = ~a�� +~b�0� xt + ec�� �t + ed�� st

IU t;� �
1

�
V ar

~P
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where
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~b�� = ~bx0� e��x +~bs;x0� e��s ;ec�� = e���~b�� + e��sebs;�� ;ed�� = e��sebs;s� :
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A.5 Proof of Proposition 3

Using the results in Lemma A.1, the price of a � -maturity in�ation cap with strike K is given by

PCAPt;� ;K = exp
�
��yNt;�

�
E
~P
t

"�
Qt+�
Qt

� (1 +K)�
�+#

= exp
�
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�
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�
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�i
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and the price of a � -maturity in�ation cap with strike K is given by
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where we used the fact that for a normal random variable ez � N ��; �2�,
E
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Appendix B: Estimation Methodology

B.1 Transition and Measurement Equations

We �rst consider the discrete-time dynamics of the state variable qt between time t � �t and t.
From dqt = �tdt+ �

0
qdWx;t + �

?
q dW?;t, we have

qt = qt��t + �
�
0�t+

�
��0x �t

�
xt + (�

�
��t) �t + (�

�
s�t) st + �

q
t

where �qt �
R t
t��t

�
�0qdWx;u + �

?
q dW?;u

�
� N

�
0;
qt��t

�
and 
qt��t � V art��t (�

q
t ) = (�0q�q +

(�?q )
2)�t.
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Similarly, for the state variable xt we have

xt = exp (�K�t)xt��t + (I � exp (�K�t))�+ �xt ;

where �xt =
R �t
0 exp (�Ku) �dWx;u � N

�
0;
xt��t

�
and


xt��t � V art��t (�xt ) =
Z �t

0
exp (�Ku) ��0 exp

�
�K0u

�
du = N�N 0;

with K =NDN�1, D = diag ([d1; :::; dN ]), and �i;j =
�
(N�1�x)(N�1�x)0

�
i;j

1�exp(�(di+dj)�t)
(di+dj)

. The

covariance matrix between �xt and �
q
t is given by


xqt��t = Covt��t [�
x
t ; �

q
t ] =

Z �t

0
exp (�Ku) ��qdu = K�1 (I � exp (�K�t))��q:

where I signi�es the identity matrix.

Next, we consider the state variable �t. From d�t = �� (�� � �t) dt+ ��dW�;t, we have

�t = exp(����t)�t��t + �� (1� exp(����t)) + ��t ;

where ��t = ��
R t
t��t exp(�� (u� t))dW�;u � N

�
0;
�t��t

�
and


�t��t = Et��t

�
�2�

Z t

t��t
exp(2�� (u� t))du

�
= �2�

1� exp(�2���t)
2��

Finally, for the state variable st we have

st � st��t =
�
�s0�t+ (�

s
x�t)

0 xt��t + �
s
��t�t��t + �

s
s�tst��t

�
+ �st ;

where �st = �s
R t
t��t exp (��

s
s (u� t)) dW�;u � N

�
0;
st��t

�
,


st��t = Et��t

�
�2s

Z t

t��t
exp(2 (��ss) (u� t))du

�
= �2s

exp(2�ss�t)� 1
2�ss

and


�st��t = ���sEt��t

�Z t

t��t
exp(�� (u� t))dW�;u

Z t

t��t
exp(��ss (u� t))dW�;u

�
= ���sEt��t

�Z t

t��t
exp((�� � �ss) (u� t))du

�
= ���s

1� exp(� (�� � �ss)�t)
�� � �ss

:

In summary, the dynamics of the augmented state vector Xt = (qt; x0t; �t; st)
0 follows the VAR

process

Xt = A+ BXt��t + �t;
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where A =

2664
��0�t

(I � exp (�Kx�t))�x
(1� exp(����t))��

�s0�t

3775, B =

2664
1 ��0x �t ����t ��s�t
0 exp (�Kx�t)
0 01�3 exp(����t)
0 �s0x�t �s��t 1 + �ss�t

3775, �t =
0BB@
�qt
�xt
��t
�st

1CCA � N (0;
t��t) and 
t��t =

2664

qt��t 
xq0t��t

xqt��t 
xt��t


�t��t 
�st��t

�st��t 
st��t

3775.
Combining the expressions for nominal and real yields in Proposition 1 and for option-implied

in�ation expectations in Proposition 3, the measurement equation7 takes the form

Yt =

266664
0
aN�
aR�
aoil�
aO�;K

377775+
266664
1 01�3 0 0
0 bN 0� cN� dN�
0 bR0� cR� dR�
0 boil0� coil� doil�
0 bO0�;K cO�;K dO�;K

377775Xt +
266664

0
eNt
eRt
eoilt
eOt

377775
� a+ bXt + et;

where et is anm�1 vector of iid measurement errors with eNt;� i � N
�
0; (�N� i)

2
�
, eRt;� i � N

�
0; (�R� i)

2
�
,

eoilt;� i � N
�
0; (�oil� i )

2
�
and eOt;� i � N

�
0; (�O� i)

2
�
with �O� i = �

O for all � 2
�
�1; � � � ; �Om

	
.

B.2 Kalman Filter

With the derived state and observation equations, the state-space system is given by

Xt = A+ BXt�1 + �t
Yt = a+ bXt + et

where A, B, a, and b are functions of the underlying parameters of interest � = (vec(K)0; vech(��0)0;
�0; �N 00 ; �

N 0
x ; �

N
� ; �

N
s ; �

N 0
0 ; vec(�

N
x )

0; ��0 ; �
�0
x ; �

�
� ; �

�
s ; �

0
q; �

?
q ; ��; ��; ��; �

N
0;�; �

N
1;�; �s)

0. The estimation

procedure, based on the Kalman �lter, that we adopt in this paper is the following. Denote the

one-period-ahead prediction and variance of Xt (or Yt) as X tjt�1 and P tjt�1 (or Y tjt�1 and V tjt�1),

respectively. That is,

X tjt�1 � Et�1 [Xt] and P tjt�1 � V art�1 [Xt]
Y tjt�1 � Et�1 [Yt] and V tjt�1 � V art�1 [Yt] :

1. Calculate the unconditional mean and variance of Xt as the prediction and variance of X0,

denoted by X0j0 and P0j0.

2. Compute the one-period-ahead prediction and variance of Xt, given X t�1jt�1 and P t�1jt�1

X tjt�1 = A+ BX t�1jt�1

P tjt�1 = BP t�1jt�1B0 +
t�1
7The vector of observables can be further augmented with in�ation survey expectations as well as short-term (up

to a year) and long-term (5 to 10 years) forecasts of the spot rate as in D�Amico, Kim and Wei (2014).
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3. Compute the one-period-ahead prediction and variance of Yt, given X t�1jt�1 and P t�1jt�1

Y tjt�1 = a+ bX tjt�1

V tjt�1 = bP t�1jt�1b
0 + �

4. Compute the forecast error in Yt as

� tjt�1 = Yt � Y tjt�1 � N
�
0; V tjt�1

�
5. Update the prediction of Xt as

X tjt = X tjt�1 + P tjt�1b
0V �1tjt�1� tjt�1

P tjt = P tjt�1 � P tjt�1b0V �1tjt�1bP tjt�1

6. Repeat steps 2-5 for t = 1; � � � ; T , the parameter vector � maximizes the following pseudo
log-likelihood function

L(Yt;Xt; �) = max
PT
t=1

�
�1
2

�
m ln (2�) + ln

��V tjt�1��+ �0tjt�1V �1tjt�1� tjt�1�� :
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Table 1. RMSEs for Monthly Out-of-Sample In�ation Forecasts.

horizon (months) RW MNR MNRO MNRS MNRoil

Panel A: 2004-2014
3 0.0119 0.6824 0.6817 0.6815 0.6967
6 0.0165 0.7273 0.7257 0.7294 0.8212
12 0.0219 0.7159 0.7116 0.7332 0.9018
Panel B: 2004-2007
3 0.0098 0.6560 0.6560 0.6449 0.6358
6 0.0106 0.8167 0.8166 0.7927 0.7401
12 0.0173 0.8708 0.8709 0.8577 0.8777
Panel C: 2008-2010
3 0.0181 0.6658 0.6686 0.6667 0.7094
6 0.0270 0.6925 0.6960 0.6962 0.8379
12 0.0341 0.6281 0.6290 0.6418 0.9008
Panel D: 2011-2014
3 0.0070 0.8051 0.7882 0.8128 0.7455
6 0.0097 0.8058 0.7758 0.8305 0.8161
12 0.0121 0.8464 0.8088 0.9399 0.9549

Notes: The table reports the root mean squared errors (RMSE) of the h-month (h = 3; 6; 12)

ahead forecasts of annualized CPI in�ation for the random walk (RW) model. The results for all

the other models are presented as ratios of their RMSEs to RW�s RMSE. The initial in-sample

period is January 1990 - December 2003 and the out-of-sample period is January 2004 - December

2014. Note that the samples in Panels A to D re�ect the time when the forecast is made. MNR

denotes the model tat uses data from nominal and real yields;MNRO uses data from nominal and

real yields, as well as in�ation option prices; MNRS uses data from nominal and real yields, and

in�ation swaps; and modelMNRoil uses data from nominal and real yields, and oil futures prices.
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Table 2. RMSEs for Quarterly Out-of-Sample In�ation Forecasts.

horizon (quarters) SPF RW MNR MNRO MNRS MNRoil

Panel A: 2004-2014
1 0.0075 1.5236 1.0118 1.0101 1.0112 1.0217
2 0.0110 1.4301 1.0202 1.0179 1.0214 1.1628
3 0.0133 1.4144 1.0179 1.0154 1.0305 1.2619
4 0.0149 1.4098 1.0059 1.0025 1.0248 1.3146
Panel B: 2004-2007
1 0.0063 1.5277 0.9875 0.9875 0.9739 0.9424
2 0.0084 1.2654 0.9967 0.9967 0.9604 0.9075
3 0.0113 1.0644 1.0645 1.0645 1.0230 0.8985
4 0.0144 1.1914 0.9698 0.9698 0.9441 1.0036
Panel C: 2008-2010
1 0.0109 1.5733 1.0162 1.0205 1.0179 1.0887
2 0.0167 1.5041 1.0230 1.0306 1.0280 1.2745
3 0.0193 1.5863 1.0021 1.0118 1.0238 1.4493
4 0.0197 1.6428 1.0585 1.0692 1.0736 1.5863
Panel D: 2011-2014
1 0.0051 1.3338 1.0334 1.0090 1.0443 0.8955
2 0.0073 1.3353 1.0403 0.9952 1.0738 0.9927
3 0.0090 1.2621 0.9964 0.9462 1.0649 1.0404
4 0.0107 1.0958 0.9294 0.8774 1.0376 1.0103

Notes: The table reports the root mean squared errors (RMSE) of the h-quarter (h = 1; 2; 3; 4)

ahead forecasts of annualized CPI in�ation from SPF (Survey of Professional Forecasters). The

results for all the other models are presented as ratios of their RMSEs to SPF�s RMSE. The initial

in-sample period is January 1990 - December 2003 and the out-of-sample period is January 2004

- December 2014. Note that the samples in Panels A to D re�ect the time when the forecast is

made. See the notes to Table 1 for the description of the di¤erent models.
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Table 3a. RMSEs for Out-Of-Sample Nominal Yields Forecasts (2004-2014).

maturity (years) horizon (months) RW MNR MNRO MNRS MNRoil

0.5 3 0.0043 0.9344 0.9450 0.9393 0.9805
1 3 0.0044 0.9369 0.9441 0.9372 0.9681
2 3 0.0045 1.0125 1.0122 1.0058 1.0116
5 3 0.0045 1.0324 1.0288 1.0263 1.0106
10 3 0.0044 1.0694 1.0688 1.0710 1.0547
0.5 6 0.0072 0.9300 0.9394 0.9283 0.9757
1 6 0.0070 0.9502 0.9521 0.9399 0.9789
2 6 0.0066 1.0369 1.0287 1.0189 1.0312
5 6 0.0062 1.0605 1.0528 1.0534 1.0294
10 6 0.0060 1.0697 1.0688 1.0784 1.0463
0.5 12 0.0125 0.8835 0.8865 0.8700 0.8977
1 12 0.0116 0.9290 0.9228 0.9036 0.9231
2 12 0.0101 1.0497 1.0337 1.0141 1.0047
5 12 0.0077 1.1610 1.1456 1.1376 1.0647
10 12 0.0072 1.1153 1.1124 1.1248 1.0322

Table 3b. RMSEs for Out-Of-Sample Nominal Yields Forecasts (2004-2007).

maturity (years) horizon (months) RW MNR MNRO MNRS MNRoil

0.5 3 0.0062 0.8113 0.8382 0.8278 0.8725
1 3 0.0062 0.8384 0.8635 0.8515 0.8816
2 3 0.0060 0.9255 0.9456 0.9340 0.9452
5 3 0.0048 1.0146 1.0226 1.0143 1.0088
10 3 0.0036 1.0568 1.0520 1.0516 1.0373
0.5 6 0.0108 0.7846 0.8144 0.7964 0.8481
1 6 0.0102 0.8141 0.8417 0.8221 0.8636
2 6 0.0091 0.8914 0.9131 0.8951 0.9171
5 6 0.0063 1.0160 1.0205 1.0147 1.0050
10 6 0.0043 1.1579 1.1328 1.1577 1.1220
0.5 12 0.0195 0.7632 0.7941 0.7719 0.7988
1 12 0.0179 0.7924 0.8240 0.7982 0.8155
2 12 0.0153 0.8742 0.9021 0.8760 0.8743
5 12 0.0095 1.0586 1.0674 1.0510 1.0190
10 12 0.0055 1.3351 1.2917 1.3252 1.2617
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Table 3c. RMSEs for Out-Of-Sample Nominal Yields Forecasts (2008-2010).

maturity (years) horizon (months) RW MNR MNRO MNRS MNRoil

0.5 3 0.0042 1.0973 1.0801 1.0834 1.1029
1 3 0.0044 1.0635 1.0409 1.0433 1.0584
2 3 0.0051 1.0983 1.0670 1.0692 1.0703
5 3 0.0057 1.0253 1.0016 1.0055 1.0010
10 3 0.0055 1.0150 1.0059 1.0125 1.0144
0.5 6 0.0060 1.2302 1.1965 1.2015 1.2197
1 6 0.0063 1.2041 1.1531 1.1567 1.1716
2 6 0.0069 1.2210 1.1582 1.1628 1.1680
5 6 0.0077 1.0812 1.0388 1.0494 1.0576
10 6 0.0072 1.0145 0.9961 1.0126 1.0300
0.5 12 0.0081 1.2997 1.1948 1.1997 1.2086
1 12 0.0080 1.3677 1.2217 1.2252 1.2229
2 12 0.0071 1.5889 1.4009 1.4055 1.3627
5 12 0.0068 1.4782 1.3199 1.3380 1.2382
10 12 0.0067 1.1873 1.0876 1.1178 1.0094

Table 3d. RMSEs for Out-Of-Sample Nominal Yields Forecasts (2011-2014).

maturity (years) horizon (monthly) RW MNR MNRO MNRS MNRoil

0.5 3 0.0004 5.2621 5.1446 5.1550 5.5538
1 3 0.0005 3.8064 3.6804 3.6929 4.0939
2 3 0.0011 1.7316 1.7277 1.7165 1.6818
5 3 0.0031 1.0921 1.1110 1.1067 1.0400
10 3 0.0042 1.1452 1.1573 1.1563 1.1174
0.5 6 0.0005 6.5007 6.2639 6.2905 6.7921
1 6 0.0007 4.2245 4.0460 4.0623 4.4432
2 6 0.0016 2.0485 2.0609 2.0468 1.9846
5 6 0.0046 1.0972 1.1398 1.1314 1.0131
10 6 0.0064 1.0805 1.1062 1.1029 1.0267
0.5 12 0.0009 6.2274 5.9043 5.9259 6.4122
1 12 0.0015 3.6988 3.5366 3.5342 3.8131
2 12 0.0021 2.6079 2.6379 2.6053 2.6022
5 12 0.0061 1.0602 1.1549 1.1378 1.0111
10 12 0.0089 0.9837 1.0464 1.0409 0.9713

Notes: The table reports the out-of-sample root mean squared errors (RMSEs) of h-month (h =

3; 6; 12) ahead forecasts of � -year to maturity nominal (Treasury) yields. The results for all models,

except for RW, are presented as ratios of their RMSEs to RW�s RMSE. The initial in-sample period

is January 1990 - December 2003 and the out-of-sample period is January 2004 - December 2014.

Note that the sub-sample periods re�ect the time when the forecast is made. See the notes to Table

1 for the description of the di¤erent models.
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Table 4a. RMSEs for Out-of-Sample Real Yields Forecasts (2004-2014).
maturity (years) horizon (months) RW MNR MNRO MNRS MNRoil

2 3 0.0095 1.0212 1.0277 1.1367 1.0176
5 3 0.0057 1.1348 1.1427 1.1994 0.9802
10 3 0.0041 1.5780 1.5779 1.3979 1.4785
2 6 0.0123 0.7767 0.7909 0.8563 0.8528
5 6 0.0074 0.9826 0.9953 0.9982 0.9313
10 6 0.0054 1.4748 1.4736 1.3346 1.4177
2 12 0.0137 0.7037 0.7115 0.7212 0.7752
5 12 0.0092 0.9121 0.9243 0.8565 0.9222
10 12 0.0073 1.3392 1.3434 1.2143 1.3211

Table 4b. RMSEs for Out-of-Sample Real Yields Forecasts (2004-2007).
maturity (years) horizon (months) RW MNR MNRO MNRS MNRoil

2 3 0.0069 0.9148 0.9005 0.9002 0.7571
5 3 0.0044 1.3380 1.3015 1.2174 0.9992
10 3 0.0030 2.3167 2.2497 2.0361 1.7105
2 6 0.0097 0.8233 0.8158 0.7889 0.7864
5 6 0.0062 1.2077 1.1734 1.0937 1.0350
10 6 0.0039 2.1614 2.0847 1.9534 1.7106
2 12 0.0156 0.8349 0.8343 0.8289 0.9480
5 12 0.0093 1.0537 1.0323 0.9943 1.0496
10 12 0.0055 1.8497 1.7733 1.7308 1.5806

Table 4c. RMSEs for Out-of-Sample Real Yields Forecasts (2008-2010).
maturity (years) horizon (months) RW MNR MNRO MNRS MNRoil

2 3 0.0151 1.0756 1.0956 1.2088 1.0633
5 3 0.0086 1.0481 1.0677 1.2262 0.8881
10 3 0.0055 1.1578 1.1454 1.1790 1.0456
2 6 0.0196 0.7696 0.7938 0.8778 0.8455
5 6 0.0107 0.8135 0.8391 0.9550 0.7615
10 6 0.0065 1.1059 1.0955 1.1115 1.0621
2 12 0.0182 0.4285 0.4411 0.4805 0.4627
5 12 0.0115 0.6305 0.6300 0.5763 0.6094
10 12 0.0075 1.1770 1.1465 0.9874 1.1578
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Table 4d. RMSEs for Out-of-Sample Real Yields Forecasts (2011-2014).
maturity (years) horizon (months) RW MNR MNRO MNRS MNRoil

2 3 0.0056 0.8557 0.8004 1.0481 1.1045
5 3 0.0038 1.1553 1.1906 1.0647 1.2506
10 3 0.0039 1.5963 1.6646 1.2348 1.8477
2 6 0.0059 0.7036 0.6930 0.8504 1.0592
5 6 0.0051 1.1106 1.1660 0.9892 1.2282
10 6 0.0058 1.3881 1.4454 1.1674 1.5554
2 12 0.0052 1.2398 1.2866 1.2926 1.2187
5 12 0.0070 1.1080 1.1892 1.0503 1.1748
10 12 0.0085 1.1606 1.2358 1.0610 1.2986

Notes: The table reports the out-of-sample root mean squared errors (RMSEs) of h-month (h =

3; 6; 12) ahead forecasts of � -year to maturity real (TIPS) yields. The results for all models, except

for RW, are presented as ratios of their RMSEs to RW�s RMSE. The initial in-sample period is

January 1990 - December 2003 and the out-of-sample period is January 2004 - December 2014.

Note that the sub-sample periods re�ect the time when the forecast is made. See the notes to

Table 1 for the description of the di¤erent models.

34



Table 5. Combination of In�ation Forecasts.

horizon �SPF �RW �NR �NRO �NRS �NRoil

1-quarter 0.3656 0 0 0.2556 0 0.3788
2-quarter 0.6780 0 0 0.1965 0.1255 0
3-quarter 0.6181 0 0 0.3819 0 0
4-quarter 0.5144 0 0 0.4856 0 0

Notes: The table reports the results of regressing realized in�ation on survey-based and model-

based in�ation forecasts, for forecast horizons of 1- to 4-quarters. Speci�cally, for a given forecasting

horizon h, we regress the realized in�ation rate �t;h at time t+h on various forecasts that are made

at time t: �t;h = �SPF b�SPFt;h +�NRb�NRt;h +�NROb�NROt;h +�NRSb�NRSt;h +�NRoilb�NRoilt;h , subject to the

constraints: �SPF +�NR+�NRO+�NRS+�NRoil = 1 and �SPF ; �NR; �NRO; �NRS ; �NRoil 2 [0; 1].
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Table 6. Combination of Nominal Interest Rate Forecasts.

maturity (years) horizon (months) �RW �NR �NRO �NRS �NRoil

0.5 3 0.7626 0 0.2374 0 0
1 3 0.7706 0 0.2139 0 0.0155
2 3 0.7065 0.0189 0.2745 0 0
5 3 0 0.1256 0.3391 0 0.5353
10 3 0 0.2497 0.2350 0 0.5154
0.5 6 0.5411 0 0 0.4589 0
1 6 0.5290 0 0 0.4710 0
2 6 0.3771 0.0195 0 0.6034 0
5 6 0 0.2126 0.7034 0 0.0840
10 6 0.1874 0.3577 0.4549 0 0
0.5 12 0.3165 0 0 0.6835 0
1 12 0.2679 0 0 0.7321 0
2 12 0.1970 0 0 0.8030 0
5 12 0.1030 0 0 0.6649 0.2321
10 12 0.1225 0 0.3802 0 0.4972

Notes: The table reports the results of regressing actual nominal bond yields on model-based

nominal yield forecasts, for forecast horizons of 3-, 6-, and 12-months. Speci�cally, for a given

forecasting horizon h and a given bond maturity � , we regress the observed bond yield yNt+h;� at

time t + h on various h-month ahead forecasts that are made at time t: yNt+h;� = �RW byN;RWt+h;� +

�NRbyN;NRt+h;� + �
NRObyN;NROt+h;� + �NRSbyN;NRSt+h;� + �NRoilbyN;NRoilt+h;� , subject to the constraints: �RW +

�NR + �NRO + �NRS + �NRoil = 1 and �RW ; �NR; �NRO; �NRS ; �NRoil 2 [0; 1].
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Table 7. Combination of Real Interest Rate Forecasts.

maturity (years) horizon (months) �RW �NR �NRO �NRS �NRoil

2 3 0.4291 0.1613 0 0 0.4096
5 3 0.2585 0.0745 0 0 0.6669
10 3 0.3204 0.0579 0.1777 0 0.4440
2 6 0.0606 0.1830 0 0 0.7564
5 6 0.0101 0.0166 0 0 0.9733
10 6 0.2705 0.1294 0.3428 0 0.2574
2 12 0 0 0.2055 0 0.7945
5 12 0.0371 0 0 0.3445 0.6184
10 12 0.1921 0 0 0.4835 0.3245

Notes: The table reports the results of regressing actual real (TIPS) bond yields on model-based

nominal yield forecasts, for forecast horizons of 3-, 6-, and 12-months. Speci�cally, for a given

forecasting horizon h and a given bond maturity � , we regress the observed bond yield yRt+h;� at

time t + h on various h-month ahead forecasts that are made at time t: yRt+h;� = �RW byR;RWt+h;� +

�NRbyR;NRt+h;� + �
NRObyR;NROt+h;� + �NRSbyR;NRSt+h;� + �NRoilbyR;NRoilt+h;� , subject to the constraints: �RW +

�NR + �NRO + �NRS + �NRoil = 1 and �RW ; �NR; �NRO; �NRS ; �NRoil 2 [0; 1].
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Figure 1: 5-year Treasury and TIPS yields (top graph) and 5-year breakeven in�ation (bottom
graph).

38



2011 2012 2013 2014 2015
­0.01

0

0.01

0.02

0.03

2011 2012 2013 2014 2015
­0.01

0

0.01

0.02

0.03

2011 2012 2013 2014 2015
­0.01

0

0.01

0.02

0.03

2011 2012 2013 2014 2015
­0.01

0

0.01

0.02

0.03

Figure 2: Actual year-over-year in�ation rate (blue solid line), 4-quarter ahead SPF survey forecast
(black crosses), and model forecasts (red circles) fromMNR,MNRO,MNRS andMNRoil models.
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Figure 3: 1-year and 3-year option-implied in�ation expectations (IE, top graph), and 3-year option-
implied in�ation expectations and TIPS-based breakeven in�ation rate (BEI, bottom graph).
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Figure 4: Actual in�ation (blue solid) versus the 1-, 2-, 3-, and 4-quarter ahead forecasts based on
SPF (black crosses) andMNR (red circles).
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Figure 5: Actual 6-month nominal yield (blue solid line) and its 3-month ahead forecasts (red
circles) fromMNR,MNRO,MNRS andMNRoil models.
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