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1 Introduction

Affine term structure models can produce better forecasts of nominal Treasury yields than those
obtained by simply assuming that yields follow a random walk process (Duffee, 2002). They
are capable of simultaneously fitting the behavior of expected excess returns over time and term
structure shapes in the cross section. More recently, researchers have extended the affine term
structure framework to jointly model the markets for nominal Treasury securities and Treasury
Inflation Protected Securities (TIPS). The no-arbitrage restriction across these markets for nominal
and real Treasury securities sheds light on the dynamics of the inflation process. Another potentially
useful source of forward-looking information about inflation are inflation derivatives (e.g., inflation
swaps, caps, and floors) whose market has exhibited a rapid growth in recent years. Finally, given
the increased correlation between oil prices and market-based measures of inflation compensation,
commodity futures may also provide differential information about the short- and medium-term
movements of inflation and inflation expectations.

In this paper, we study the following questions: How well can the joint affine term structure
models forecast simultaneously inflation, nominal and real interest rates? How can we incorporate
inflation derivatives and commodity futures into the affine term structure framework and do they
lead to forecasting improvements?

To address these questions, we develop a unified affine term structure framework that links the
markets for nominal and real Treasury securities, inflation derivatives, and oil futures assuming
no-arbitrage across these markets.! Our model builds on the growing literature on decomposing
the break-even inflation into inflation expectations and risk premium that includes Abrahams,
Adrian, Crump and Moench (2015), Ang, Bekaert and Wei (2008), Chen, Liu and Cheng (2010),
Christensen, Lopez and Rudebusch (2010), D’Amico, Kim, and Wei (2014), Grishchenko and Huang
(2013), Haubrich, Pennacchi and Ritchken (2012), Hordahl and Tristani (2012), Joyce, Lildholdt
and Sorensen (2010), Kitsul and Wright (2013), among others. It is well known that nominal
and real Treasury yields take an affine functional form (D’Amico, Kim, and Wei, 2014) and it is
relatively straightforward to include inflation swaps into an affine term structure model (Haubrich,

Pennacchi, and Ritchken, 2012). However, it is not trivial to incorporate the markets for inflation

ncorporating additional independent information from surveys or other asset markets also help the potential
identification of hidden or unspanned factors (Fisher and Gilles, 2000; Duffee, 2011; Chernov and Mueller, 2012;
Joslin, Priebsch and Singleton, 2014) that pass undetected through the term structure of interest rates. For example,
as Chernov and Mueller (2012) point out, a factor can remain hidden from the nominal and real term structure of
interest rates if it has an equal but opposite effect on inflation expectations and inflation risk premium.



options and oil futures into an affine model and preserve the affine structure.

For inflation options, the difficulty arises from the fact that their prices are highly nonlinear
functions of the underlying parameters and state variables. The novelty of our paper is to show
that (1) under the put-call parity, we can extract option-implied inflation expectation based on
the values of an inflation cap and an inflation floor with the same tenor and strike price, and
(2) importantly, the option-implied inflation expectations have an affine structure in Gaussian no-
arbitrage term structure models. It is worth pointing out that the extraction of option-implied
inflation expectation is model-free, but the resulting inflation expectations are obtained under
the forward measure. Furthermore, under no-arbitrage, the forward, risk-neutral, and physical
measures are all connected through the prices of risk, and this relation also has an affine structure
that can be readily incorporated in an affine term structure model.

To extract information from oil futures, we follow Casassus and Collin-Dufresne (2005) by
embedding unobservable oil factors, i.e., the spot oil price and the convenience yield, into an affine
term structure model. Instead of one single yield curve factor assumed in their paper, we allow
for three latent yield curve factors in addition to the two oil factors, resulting in a five-factor
affine model. It is important to have at least three latent yield curve factors because they are
needed to capture the level-, slope-, and curvature-movements in the nominal yield curve (Litterman
and Scheinkman, 1991) and additional information from the real yield curve. To the best of our
knowledge, the proposed five-factor affine model is the first comprehensive model that allows for
incorporating information from the markets for nominal and real Treasury securities, inflation swaps
and options, and oil futures.

We estimate our joint model by maximum likelihood via Kalman filter and evaluate its forecast-
ing performance. First, we evaluate how the model performs in forecasting inflation against the SPF
(Survey of Professional Forecasters) benchmark. We show that using nominal and real Treasury
yields only, the inflation forecasting performance of the model is worse than the survey bench-
mark, with root-mean squared forecast errors about 1-2% larger than the survey-based forecasts.
However, once inflation derivatives and/or oil futures are included, our model’s inflation forecasting
performance is generally at par with the survey benchmark, and exhibits a substantially better per-
formance during the 2011-2015 period when inflation option prices became available. Also, while
the accuracy of SPF inflation forecasts has been documented elsewhere (Ang, Bekaert and Wei,
2007; Faust and Wright, 2013), the source of the SPF empirical success for forecasting inflation has

not been thoroughly investigated. Interestingly, our results suggest that the SPF forecasts at short



horizons are almost identical to a stylized affine model that uses information only from the yield
curve of nominal and real yields.

Second, we also assess how the model performs in forecasting interest rates against the random
walk benchmark. As shown in Duffee (2002), essentially affine term structure models can produce
better forecasts of nominal Treasury yields than those produced by simply assuming yields follow
a random walk. The success of essentially affine models stems from breaking up the tight link
between risk compensation and interest rate volatility prevalent in completely affine models. In this
paper, we show that when we extend the essentially affine models to model jointly nominal, real and
inflation derivative markets, it is more challenging to produce interest rate forecasts that outperform
the random walk model. This is perhaps largely due to the fact that the flexibility that allows the
essentially affine term structure models to accurately forecast Treasury yields is compromised in the
multi-market context. The reason is that to rule out arbitrage, the cross-sectional and time-series
characteristics of the term structure in both Treasury and TIPS markets are inherently linked.
Focusing on one single market can produce better forecasts for that market only. Once multiple
markets are included in an essentially affine term structure model, no-arbitrage imposes a tight

2 Despite the increased difficulty to

link between risk compensations demanded in these markets.
outperform the interest rate forecasts by the random walk model, we find that incorporating oil
futures help to improve the interest rate forecasts at a longer-term horizon and for longer-maturity
bonds.

Finally, while our focus in this paper is on forecasting, the proposed model provides a useful
framework for policy analysis or decision-making by businesses and households (e.g., mortgage
choices). In particular, it allows us to decompose market-based measures of inflation compensation
into several components and monitor the evolution of short-term and long-term inflation expecta-
tions. For example, from the middle of 2014 until the beginning of 2016, the five-year, five-year
forward breakeven inflation based on TIPS declined by over 100 basis points and many observers
interpreted this as a downward drift in inflation expectations. Using a similar version of the model
proposed in this paper, Gospodinov and Wei (2015) showed that most of the decline in the TIPS
breakeven inflation was due to technical factors and risk premia while the long-run inflation ex-

pectations remained stable. Furthermore, even though the performance of our inflation forecasts

is similar to that of SPF, our model builds the whole term structure of inflation expectations (at

2Part of the underperformance of the model in forecasting interest rates can be attributed to the specificity of the
out-sample forecasting period that is characterized by nominal yields that are near the lower zero bound.



any desired horizon) which is available at much higher frequency. This provides policy makers with
timely and valuable information in forming their decisions.

The rest of the paper is organized as follows. Section 2 introduces our new affine model of
nominal yields, TIPS and inflation option prices and derives its implications for inflation expec-
tations, uncertainty, and risk premium. Section 3 describes the data and the estimation strategy.
Section 4 contains the main empirical results. Section 4 concludes. The proofs of the main results
are relegated to Appendix A. The state-space representation of the model and its estimation are

discussed in the Appendix B.

2 A Joint Model of Nominal Yields, Real Yields, Oil Prices and
Inflation

In this section, we describe in detail the main no-arbitrage framework that we use to jointly model
nominal yields, real yields and inflation. We extend the framework in D’Amico, Kim, and Wei
(2014) by incorporating information from the derivatives markets and oil futures.

The main risk factors that drive nominal and real yields are the latent variables z; = (z1¢, zat, $3t),
which are associated with the level, slope and curvature of the yield curve. The log spot oil price
s¢ = In Sy and oil convenience yield d; are introduced to capture the possible effect of oil prices on
inflation expectations. Since s; and d; are found to be highly positively correlated (Casassus and
Collin-Dufresne, 2005), we assume that they are driven by the same shock although extending this
setup to separate correlated shocks is straightforward. The dynamics the state variables (z}, d¢, s¢)’

under the physical measure P is

dr; = K (,u — J}t) dt + EdWx’t, (1)

dét = K§ (,U,(; — 575) dt + U§dW§7t, (2)
1

dSt = <,us — (St — 20?) dt + Jde&ta (3)

where Wy = (Wi, Way, Wa)', and Wi+ are independent standard Brownian motions. Note that
as we will show shortly, the drift of the spot price s; can be shown to have an affine functional form
under no-arbitrage.

The logarithm of the price level @, denoted by ¢; = In @), follows the process

dg; = mpdt + o dW, s + o-dW 4, (4)



where W ; is an independent standard Brownian motion and 7 is the instantaneous expected

inflation rate, which is assumed to be affine in the latent variables
T = pg + pg Tt + P3Ot + P st (5)

The inflation process is allowed to be affected by shocks to these state variables, dW,; = (dWi,,

13

dWayt, dWs,)', as well as the inflation-specific shock dW, ; with constant volatility oy

2.1 Nominal and Real Bond Prices and Spot Rates

The nominal bond prices are determined by the following nominal pricing kernel
dMY /MY = —r]dt — AY AW, — A, d Wiy, (6)
where 7V is the nominal short rate, specified as an affine function of the latent variables
i = o+ Y we + p3 60+ pY s, (7)

and the vector of prices of risk is given by

Av{c\{t = )‘é\jar—i_)‘{\fxxta (8)
AFy = A5+ ANs04, (9)

where )\é\f » 1s a 3 x 1 vector, /\Jl\j » 1s @ 3 X 3 matrix, and )\é\{ s and /\11\77 s are scalar parameters.
The real and the nominal pricing kernels are linked by the no-arbitrage condition M/[t = MN Q;.
By Ito’s lemma, it is straightforward to show that the real pricing kernel M? follows (see Appendix

A1 for detailed derivation)

dME/ME = daMP /MY +dQ./Q: + (dMY /M) - (dQ:/ Q)

= —rfdt — A AW,y — Af dWsy + o dW (10)
where the real short rate r* is given by

1 2
Tf‘ = Tiv —m + O':]Ai\it ~3 (Jgaq + (o*j) > (11)

= pit+ pfxy + pBos + plisy,

3In an earlier version of the paper, we also allowed for time-varying volatility in the inflation process. While
incorporating this inflation uncertainty factor may be theoretically appealing (see Wright, 2011), it also leads to
overparameterization and additional technical problems arising from the non-Gaussianity of the model. Results for
the model with stochastic volatility in inflation are available from the authors upon request.



and AR, = AY, — oy = A, + Mz and A, = A, = Al + Mo, with AL, AL, Afls and Afs
being of the same dimension as their nominal counterparts. Eq. (11) is the generalized Fisher
equation in which the nominal short rate is decomposed into the real short rate, expected inflation
rate, instantaneous inflation risk premium, and a convexity term due to Jensen’s inequality.

Let Pt{i (or Ptlf;) denote the time-t price of a nominal (or real) 7-year zero-coupon bond that
pays one dollar at maturity. Under the model, nominal and real bond prices can then be determined

under the risk neutral measure P*:

. . trr
P, = Ef [exp </ réds)} ,for i = N, R,
t

where E;@ [[] (respectively, Var;@ [-]) is generic notation for the expectation (respectively, variance)
operator under a particular Q measure, conditional on information at time ¢. As is standard
for affine term structure models, bond prices can be shown to be exponential affine in the state

variables.
2.2 Spot Oil Price
Absence of arbitrage in the oil futures market implies that
E; [dSy] = (r)Y — 6;) Sidt. (12)

The convenience yield d; can be considered as a “dividend flow”, net of storage costs, to the holder
of the commodity. Using Ito’s lemma and the change of probability measure, we can derive the

dynamics of log spot price under the physical measure as

1
dSt = <7"iv — 515 — 50’3 + O'SA(];\;> dt + Ude(S,t
= (p§ + e + P30 + pise) dt + osdWs,, (13)

where p = py — 302 + 005, P3 = PN, py = py — 14 0.As, and pf = plY.
2.3 An Affine Model of Nominal Yields, Real Yields and Oil Futures Prices

In Proposition 1 below, we derive the closed-form expressions of bond prices and yields in term of

the underlying parameters.

Proposition 1 Under this model, T-year nominal and real bond prices take the exponential-affine
form

Pt’;T = exp (AZT + Bi':ct + Cj.(St + D.irst) ,i=N,R (14)



and T-year nominal and real yields take the affine form
y;T = al + b7z 4+ Loy +disy, i = N, R, (15)

where al. = —Al /7, bL = —Bl/1, ¢t = —Cl/7, and d: = —D%/7, and AL, B., CL, DL (i = N, R)

satisfy the following system of ordinary differential equations:

e = (k=530 Bk (o~ 000b) O+ (o~ 302 D
+BYEYBL+ 50} (1) + 50 (D))

B = - (kS B DS

Oy (s asMLa) Ci+ () — 1) DY

= D

with Al = By = C} = D} = 0.
Proof of Proposition 1. See Appendix A. =

It follows from Proposition 1 that (for ¢ = N, R)
P, _ ir i i
o = dt + BYSdW,y + (Clos + Dios) dWs,,

t,T

i.e., we allow the dynamics of nominal and real bond prices to be affected by dW, ; and dW ;.
Next, Proposition 2 shows that the oil futures prices are an exponentially affine function of the

state variables and the underlying parameters.
Proposition 2 Under this model, the oil futures price with T-year maturity takes the form
Pl = BF exp (st17)] = exp (49" + B2V + C28; + DY)

where A%, B, C%l DO satisfy the following system of ordinary differential equations:

(SN B s — ) 07+ (o 2
+%Bgmzzngiz n éog (07‘?“)2 N %Jg (Dgil)2 |

(e B DR,

G2 (st 0w ) O (4 - 1) D2,

d?fil = DY



with initial conditions Agil = Bg” = Cg“ =0 and Dgil =1.

Proof of Proposition 2. See Appendix A. m

2.4 Inflation Derivative Prices

We now turn to inflation derivatives, i.e., inflation swaps and options. A zero-coupon inflation swap

is a forward contract, whereby the inflation buyer pays a predetermined fixed nominal rate and

in return receives from the seller an inflation-linked payment. By a standard argument (see, e.g.,

Haubrich, Pennacchi, and Ritchken, 2012), the equilibrium swap rate for an inflation swap that
matures in 7 periods is given by

Yir = Ypr — Y- (16)

Next, we turn our attention to pricing inflation options under the forward measure P7. The

Radon-Nikodym derivative of the forward measure P™ with respect to the risk neutral measure P*

dﬂ}r 1 t+T
T T t

In the rest of the paper, we omit the superscript and simply denote the forward measure by P. The

is given by

forward measure P is used for analytical tractability. In particular, the value of an inflation option

is simply the expected payoff at maturity under the forward measure discounted by the nominal

Qt+T_ T *
(% -avnr) ]
P QT
(s -%57) ]
PCAP PFLO

where P;7" (P;/7¢) denotes the price of an inflation cap (floor) with time to maturity 7 and a

yield y,{};; that is,

CAP N\ P
Pk = exp (_Tyt,T) n

FLO N\ P
Pi;k = exp (_Tyt,T) 2

strike price K. If the put-call parity holds, then one can extract option-implied inflation expectation

from option prices as follows:

CAP FLO
P Qt+7':| PtTK_PtTK
EP[ = 40 T2 L1+ K). 17
to P ( ) (17)

Two observations are worth mentioning here. First, the expression for the option-implied inflation

expectation in Eq.(17) holds in general and is not model-specific. The only assumption behind this



result is the put-call parity. Second, although we can extract inflation expectations from option
data using Eq.(17), the expectations are taken under the forward measure. As a result, they cannot
be directly compared with the breakeven inflation rate which contains inflation expectations under
the physical measure. The affine term structure model in this paper allows us to further translate
the option-implied inflation expectations based on Girsanov’s theorem which implies the following

relationship between Brownian motions under the forward and risk-neutral measures:

AW,y = dW; — X'BN dt,

Denote
1
&, = ;Et T
1 ~
U = ;Vf”"}tp T

where Z&; - is an alternative definition of inflation expectations? and IU;, measures inflation
uncertainty. Under the assumption that the change in log price levels follows a normal distribution,
e, qir — qt|lp, ~ N (7-ZE 7,7 IU1 s ), the option-implied inflation expectations in Eq.(17) have

the following exponential-affine form:

EF [%ﬂ = exp [T (Z&:,) + %T(zut,T) , (18)

where the explicit expressions of Z&; » and ZU; -, in terms of the state variables and model para-
meters, are given in Lemma A.l in Appendix A.
Moreover, we can also derive closed-form pricing formulas for inflation caps and floors. The

results are presented in Proposition 3 below.

Proposition 3 Under the model, the prices of inflation caps and floors with maturity T and strike

K are given by

oT (T t3TU L) g [ 0O+ E)+(TE+TUse r)
\/Ium/r

, 19
—(1+K) ® I+ K)+TE+.r (19)
VIUt T

*We define inflation expectations as in Christensen, Lopez and Rudebusch (2010)

_ 1 Qt
e =—2in <Et [Qt+7]) .

This differs from D’Amico, Kim and Wei (2014) who define it as [Ey., = LB [In (95:=)]. The difference between

these two slightly different measures is due to the Jensen’s inequality term.

CAP _ pN
Pt,T,K - Pt,T




oT(TEtr+3TU ) g [ _ = In(+E)+(TE0r +TUs,7)
VIU [T

, 20
+(1+K)T(I> _ I+ K)+TE + ( )
IUe [T

where ®(-) denotes the cumulative distribution function of a standard normal random variable.

FLO N
PtTK P

Proof of Proposition 3. See Appendix A. m

3 Estimation Methodology and Data

3.1 Estimation Methodology

The set of variables that enter our model consists of observables (ytT, yl i ylt K ytT and p‘”l)

Qt+r} —

latent (x4, s¢ and d;) and partially observed (q;) state variables, where yt K= 1ln EP [
IEr + TU, -~ (see Egs.(17)-(18)) and pml = In Pml. The superscript “O” refers to the use of
options data in deriving the inflation expectations under the forward measure. Since the dimension
of the observables is typically larger than the dimension of the state vector, the term structure
models are inherently stochastically singular (Piazzesi, 2010, p.726). There are two approaches to
dealing with this singularity. One approach is to “invert” the state variables from a small subset
(of the same dimension as the state vector) of observables, add measurement errors to the rest of
the observable vector and proceed with quasi-maximum likelihood estimation. The drawback of
this method is that the choice of the observables from which the state variables are extracted is
arbitrary and naturally affects the quality and the dynamics of the derived state variables. An
additional problem that arises in our setup is the presence of inflation derivative and oil prices.
For these reasons, we pursue the second approach in which all yields, log oil prices and option-
implied inflation expectations are assumed to be observed with a measurement error. This spec-
ification arises naturally in our framework since our yield data is obtained from an interpolated
zero-coupon yield curve (see also Piazzesi, 2010, for the plausibility of this assumption). This ap-
proach requires the use of a filtering method and, given the assumptions and the structure of our
model, we employ the Kalman filter which is discussed later. The nominal yields, real yields, oil
prices and inflation option prices are at weekly frequency while the CPI inflation is based on monthly
data. Let Y; = (g, y1y, yiv, yt Ko Vi 27, PP denote the m x 1 vector of observables, where {g:}, t €
{1, 15}, {9l } witht € {1,--- Ty} and 7 € {71, , 7w}, {yf,} with ¢t € {1,--- , Tg} and
re{r, T8} {ygﬂK} with t € {1,---,To}, 7 € {1, ,7,0} and K € {Ki, -, KmK}

{pf} witht € {1,--- ,Toy} and 7 € {71, -+ ,Tppou} and m = L+m" +mf +m+m® . m*X +m

B mml

10



The state-space representation of the model is characterized by the measurement equation for Y;
and the transition equation for the augmented state vector X; = (q, x}, st, 5t)/ whose construction

is described in Appendix B. The discretized state-space system is given by

Xy = A+BXi 1+,

Yi = a+bX;+e,
where A, B, a, and b are functions of the underlying parameters of interest § = (vec(K)’, vech(XX')’,
Wy o o' o5 o MY vee(NY), 8, PEs PFs PR Oy OFs Ky 05, tsy Abss Algr 0s). For
identification purposes, we follow D’Amico, Kim and Wei (2014) and impose the restrictions that p
is a zero vector, K is a diagonal matrix and ¥ is a lower triangular matrix with diagonal matrix set
equal to 0.01. For forecasting, as explained in Section 4, we also impose the following parameter
restrictions: p7 = 0, )\é\f s =0 and )\]1\’7 s = 0. The parameter vector 6 is then estimated by Kalman

filter (see Appendix B for details).

3.2 Data

All data variables are converted to weekly frequency and end in the last week of December 2015 (al-
though they may have different start dates). Continuously-compounded, zero-coupon yields on U.S.
Treasury notes with 1-, 2-, 4- 7- and 10-year maturities are obtained from the U.S. Treasury yield
curve of Giirkaynak, Sack and Wright (2007), maintained by the Federal Reserve Board (available at
http://www.federalreserve.gov/Pubs/feds/2006/200628/ 200628abs.html). The 3- and 6-
month rates are obtained from the 3- and 6-month T-bill rates with constant maturity from the Fed-
eral Reserve Board’s H.15 statistical release by converting them from discount basis to continuously-
compounded rates. The sample period for the nominal yields starts in the first week of January 1990.
For the TIPS yields, we use data for 5-, 7- and 10-year continuously-compounded, zero-coupon yields
from the TIPS yield curve® of Giirkaynak, Sack and Wright (2010), maintained by the Federal Re-
serve Board (http://www.federalreserve.gov/pubs/feds/2008/200805/200805abs .html). The
sample period for TIPS yields starts in the first week of January 1999. As of the end of August
2015, there is $1.1 trillion of TIPS outstanding versus $11.4 trillion of nominal Treasuries out-
standing. The principal of the TIPS is linked to the non-seasonally adjusted CPI for all urban
consumers, and is accredited monthly. TIPS offer a deflation protection (floor) as the greater of

the inflation-adjusted principal and the original principal is paid at maturity.

For some specific aspects of the U.S. TIPS market, see Fleckenstein, Longstaff and Lustig (2014), Fleming and
Krishnan (2012), Giirkaynak, Sack and Wright (2010), and Sack and Elsasser (2004).
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Data for inflation cap and floor prices, starting in the middle of February 2010, with strike prices
from 1% to 3% in increments of 1% with 1- and 3-year maturities, are obtained from Bloomberg.
We also obtain inflation swap data (starting in July 2004) from Bloomberg and choose the same
maturities as the TIPS data, i.e., 5-, 7-, and 10-year maturities.

For our oil series, we use the prices of crude oil (WTI), traded on NYMEX, for the nearest, 1-, 3-
and 12-month futures contracts. To avoid problems with lack of liquidity and higher volatility near
the expiration of the contract, we roll over the current contract to the following contract on the first
day of the delivery month. The oil data is available from January 1990. Weekly series for nominal
yields, TIPS yields, and inflation option prices, inflation swaps and oil prices are constructed by
using the Wednesday observation of each week (if the market is closed on Wednesday, we take the
Tuesday observation or Thursday’s observation if the Tuesday’s is not available).

We use the CPI for all urban consumers (all items, seasonally adjusted) from the U.S. Bureau of
Labor Statistics, covering the period January 1990 — September 2015. The monthly CPI is assumed
to be observed on the third Wednesday of each month. The remaining weeks are treated as missing
observations which are filled in via the Kalman filter. Similarly, the missing weekly observations
up to January 1999 for TIPS and October 2009 for inflation options are also estimated using the
Kalman filter.

Figure 1 plots the 5-year Treasury and TIPS yields along with the 5-year breakeven inflation
rate. For most of the period, the 5-year breakeven rate varies between 1% and 3% except for a sharp
decrease in the wake of the recent financial crisis. There are some regularities in the breakeven
rate that have become more pronounced after the financial crisis and may have been caused by a
seasonal carry that characterizes the TIPS market. In historical context, the recent decline in the

breakeven inflation is not unusual.b

4 Empirical Results

We estimate four versions of the model that include different input variables. The models are
denoted by M with superscripts NR, O, S, o0il (for nominal /real yields, option-implied inflation
expectations, swaps and oil prices) for the input variables. The benchmark model, M™% is the
model used in D’Amico, Kim and Wei (2014) without a liquidity factor. This model uses nominal

(Treasury) and real (TIPS) yields (as well as inflation) as input variables.

See Gospodinov and Wei (2015) for a more detailed analysis of the dynamics and decomposition of the breakeven
inflation.
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The other three models are new. The first one, MNEO

, is designed to evaluate the information
content of options (option-implied inflation expectations, to be more precise) for identifying and
estimating the same set of model parameters as in MY%. The model MNES uses inflation swap
information and the model MY incorporates oil futures prices in addition to nominal and real
yields.

It should be noted that model MY i5 estimated by imposing some parameter restrictions — in
particular, p7 = 0, )\é\f s = 0 and )\]1\’[ s = 0 — in order to avoid overparameterization and overfitting.
The first restriction is imposed to prevent the near-nonstationary and trending behavior of the
spot oil price to translate directly into inflation expectations. The informational content that is
aggregated in the oil futures market is allowed to operate through the convenience yield which
tends to reflect global demand conditions (see Gospodinov and Ng, 2013). The last two restrictions
are imposed since the prices of oil risk appear to be small and relatively unimportant.

All model specifications produce similar dynamics for the state variables in x which roughly
correspond to the level (z2), slope (z1) and curvature (z3) of the nominal and real term structure.
The loadings of the nominal spot rate on these state variables as well as the estimated prices of
risk are also similar across the different models.

The models MNE MNEO - MNES and MNEoil - estimated at weekly frequency, are used to
produce forecasts at 3-month, 6-month and 12-month horizons. The monthly forecasts for inflation,
nominal and real yields are evaluated relative to the random walk (RW) model. Since the Survey
of Professional Forecasters (SPF) has been documented to provide some of the best forecasts of
inflation (Ang, Bekaert and Wei, 2007; Faust and Wright, 2013), we also evaluate the forecast

performance of our models relative to SPF at 1- to 4-quarter ahead horizons.

4.1 Out-of-sample forecast of inflation

Table 1 presents the out-of-sample forecasting results for annual inflation at monthly forecast
horizons. The forecasts are computed recursively with an initial estimation sample January 1990
- December 2003. The out-of-sample period is 2004-2014. To assess how the performance of the
different forecasting models vary over time (in particular - before, during and after the recent
financial crisis), we also report results for several sub-samples: 2004-2007, 2008-2010, 2011-2014.
We should note that the dating of our sample periods reflects the time when the forecast is being
made. This allows us to have the same number of forecasts for each forecast horizon h (h = 3,6, 12).

The root mean squared forecast error (RMSE) for the different forecasting models is computed as
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\/ % Yoy (Tign — 7 +h)27 where ;15 = % is the actual annual inflation rate at horizon
h (in months) and 7;4, is the model forecast of inflation.

Table 1 presents the RMSE for the RW model and the ratios of the RMSEs of the other models
relative to that of RW. Hence, numbers greater than one indicate that RW dominates the other
models and numbers smaller than one suggest that RW is outperformed by the corresponding
model. The models considered in this paper dominate uniformly the RW model across forecast
horizons and sub-samples. The reduction of the RMSE, relative to RW, is often quite substantial.
The inflation options improve the accuracy of inflation forecasts with their introduction in 2010.
Oil prices also help to reduce the RMSE at short horizons (up to 3 months) in the sub-periods
2004-2007 and 2011-2014.

Since SPF has been documented (Ang, Bekaert and Wei, 2007) to produce some of the most
accurate forecasts of inflation, we compare our model against this benchmark. Since SPF is available
only at quarterly frequency, we conduct the forecast comparison at this frequency with 1-, 2- 3-
and 4-quarter horizons. Table 2 reports the results for different models as ratios of their RMSEs
relative to that of SPF.

The results in Table 2 can be summarized as follows. As argued elsewhere in the literature
(Ang, Bekaert and Wei, 2007; Faust and Wright, 2013), SPF performs very well for forecasting
CPI inflation 1- to 4-quarters ahead. Adding information from options and swaps helps the model
forecasts at longer horizons, except for the financial crisis period. The improvements of MNFEO
over SPF in the most recent sub-sample (when inflation option data has become available and
inflation options started to trade more actively) are substantial. As in Table 1, oil futures provide
some forecasting improvements at short horizons, with the exception of the financial crisis period.
Figure 2 plots the year-over-year inflation rate (blue solid line), four-quarter ahead SPF survey
forecast (black crosses), and model forecasts from all four models (red circles). The right-upper
subplot demonstrates that the forecast based on MNEC performs generally better than the SPF
survey forecast between 2011 and 2014 when inflation option data are readily available. In this
period, the realized inflation rate dropped to a low level around zero percent in 2015 while the SPF
forecast was quite stable around 2 percent (recall that the timing is specified as the time when the

SPF forecast was made). By contrast, unlike the other models, model MNFO

is able to generate
inflation forecast that is more in line with the actual realization.

Presumably inflation options may well contain useful forward-looking information about future
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inflation and thus help improve inflation forecasts. As we argue earlier, one particular useful
information we can extract from inflation options is the model-free inflation expectations under the
forward measure. Figure 3 presents the 1- and 3-year option-implied inflation expectations that
are computed as described in Section 2. From Figure 3, we can see that option-implied inflation
expectations co-move closely with the break-even inflation rate, and are typically greater than the
latter most of the time.

To the best of our knowledge, however, the source of the good forecasting performance of SPF
has not been clear apart from being a combination of forecasts from experts. Our results shed light
on what factors the professional forecasters might be using in forming their inflation expectations
and forecasts. First, note that the forecasting performance of MY albeit slightly worse, is very
close to SPF for 1- and 3-quarter horizons. To visualize this performance over time, Figure 4 plots
the model forecasts, SPF forecasts and realized annualized inflation. The closeness between the
forecasts of MV and SPF at shorter horizons is striking. This suggests that the median forecaster
uses the information (level, slope and curvature) in the yield curve as a main predictor for future
inflation. At longer horizons, the discrepancy is increasing as the SPF forecasts become flatter.
This is likely due to the fact that the professional forecasters impose more mean reversion (possibly
based on judgemental assessment) in their longer-term inflation forecasts. By contrast, the model
state variables (especially the level z) are highly persistent and induce a slower mean reversion in

the model forecasts.

4.2 QOut-of-sample forecast of interest rates

Tables 3a-3d and 4a-4d report results for out-of-sample forecasts of nominal and real yields.
We consider models MNE MNEO = pNES = ApqNRoil -~ and RW. RW is the benchmark model
and the results for the other models are presented as a ratio of their RMSE to the RMSE of
RW. The RMSEs for nominal and real yields are computed as \/ % dica (?]ﬁh,r - @f\frhﬁ>2 and

\/SL 21 (gi]ih,r - Qﬁhﬁ)Q, where ﬁﬁrhﬁ is the actual nominal yield, gjﬁ}w is the model fore-
cast of nominal yield, gjﬁhﬁ is the actual real (TIPS) yield, and gﬁh,ﬂ' is the model forecast of
real yield, respectively. The forecast horizon is h = 3,6,12 months. We consider bond maturi-
ties 7 = 0.5,1,2,5 and 10 (in years) for nominal yields and 7 = 2,5 and 10 (in years) for real
yields. As for inflation, we report results for the whole out-of-sample period 2004-2014 as well as

for sub-samples: 2004-2007, 2008-2010 and 2011-2014.

15



For nominal yields, M™% dominates RW at shorter maturities for the 2004-2007 sub-sample.
Incorporating information from inflation derivatives does not help to reduce the RMSE for nominal
bond forecasts. The oil state variables appear to provide an improvement for long-maturity bonds
but it is only marginal. The models are more successful at forecasting real yields at 6- and 12-month
horizon with a substantial reduction of the RMSE for 2- and 5-year TIPS.

The poor forecasting performance of the model for nominal yields warrants a few remarks. First,
a part of the under-performance can be attributed to the specificity of the out-sample forecasting
period that is characterized by nominal yields that are near the lower zero bound. Since none of
the models considered have any built-in-features to handle this type of behavior, it is not surprising
that they are out-performed by the RW model. Consider, for example, the sub-sample period 2011-
2014 when the relative RMSE ratios are the highest. Figure 5 plots the actual 6-month Treasury
yield and its 3-month forecasts by the MNE MNEO  pMNES = and MNEol models. While the
actual 6-month yield has stayed relatively flat and close to zero since 2008, the model forecasts
have been much more volatile because our specification does not impose any restrictions related
to the zero lower bound. This is not a deficiency that is specific to our model but a feature of
any affine term structure model that does not account explicitly for the zero lower bound. In fact,
our model forecasts exhibit a fairly realistic dynamics that can be linked to some developments in
monetary policy (quantitative easing programs, FOMC statements etc.) Introducing a shadow rate
as in Wu and Xia (2015) may allow our model to better approximate the behavior of the short end
of the nominal yield curve during the period of unconventional monetary policy.

Another important reason, however, is that once markets for both nominal and real yields are
included in an essentially affine term structure model, no-arbitrage imposes a tight link between
the nominal and real prices of risk. For example, since Ai\ft = Aﬁt + 04, the parameter o, that
governs the inflation process imposes a tight link between Ai\f . and Aﬁt. Therefore, it is challenging
to freely break up risk compensations demanded in both markets. That is, we may be able to
break up the link between risk compensation and interest rate volatility in one market, but it is
quite challenging to break up the link in both markets. This is the key reason why the essentially
affine term structure models that jointly model Treasury and TIPS yields fail to produce accurate
forecasts for nominal yields, although they can still produce accurate forecasts for TIPS yields and

inflation.
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4.3 Information contained in inflation swaps, options, and oil futures

In this subsection, we try to assess and summarize the information content from incorporating infla-
tion derivatives and oil futures. First, we focus on inflation forecasting at quarterly forecast horizons
for which SPF forecasts are available. One natural way of assessing the relative contribution of
the different informational sources is to regress the realized inflation rate on the model-implied
forecasts based on different markets. Specifically, we run the following regression of the realized

inflation rate 7y, at time ¢ + h on survey and model forecasts 7, made at time ¢:

SPF~SPF | NR~NR | NROANRO , NRS~NRS , _NRoil~NRoil
Tiph = Q7 " Ty O Mgy + a0 Ty QT T o Tith s

subject to the constraints:

aSPF + aNR +aNRO +aNRS + aNRoil =1

)

and

aSPF aNRjaNRO,aNRS7aNRozl c [O, 1] )

)

Heuristically, the regression coefficients measure the incremental information content from a specific
market or survey. For example, if the survey-based inflation forecast had completely dominated

SPF

all model-implied forecasts, we would expect to see « close to one with the other coefficients

being close to zero. The regression results are reported in Table 5. From Table 5, we can see that

SPF

the coefficient « is around 0.5, indicating that model-based forecasts are informative as well.

Table 5 also shows that the forecast based on model MY is no longer informative once we include

MNEO contains

forecasts based on inflation derivatives or oil futures. Among the latter, model
most information content for predicting inflation, as suggested by its large regression coefficients.
This is consistent with the earlier evidence shown in Table 1.

Similar exercises can be performed to evaluate information contents in forecasting interest rates.

Specifically, we run the following regression

i  _ RW~iRW , NR~NR , NRO~4,NRO , NRS~,NRS | _NRoil~i,NRoil .
Yirhs = Yipr T Y, O Oy s T Yrhr o fori=N,R,

where g/jﬁhﬁ and gjﬁhJ denote model h-month ahead forecasts of nominal and real yields made
at time t, subject to the same constraints as the regression for inflation forecasts. The results are
reported in Tables 6 and 7, regarding the forecasts of nominal and real interest rates, respectively.

One interesting finding is that incorporating inflation options is no longer useful in forecasting
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interest rates. On the other hand, incorporating oil futures seems to matter a lot especially when
forecasting longer-term interest rates. One possible explanation for this finding is that the conve-
nience yield may contain valuable information about the economy and is thus useful in forecasting

future interest rates.

5 Conclusion

In this paper we examine the forecasting ability of affine term structure framework that links the
markets for Treasuries, inflation-protected securities, inflation derivatives, and oil futures, based
on no-arbitrage restrictions across these markets. In addition to fitting all these asset markets
simultaneously, the model provides measures of inflation expectations, risk premium and model-
implied inflation distributions with wide policy implications.

We contribute to the literature along several dimensions. First, we demonstrate the importance
of no-arbitrage restrictions across different markets for improved forecasting of inflation. Incor-
porating information from inflation options reduces substantially the forecast error for inflation.
Second, we use a novel way to introduce information from the options market into an affine frame-
work. More specifically, we establish that option-implied inflation expectations, under the forward
measure, are affine in the state variables. We link the different (physical, risk-neutral and forward)
measure through common prices of risk and show that inflation options help to identify the price
of risk parameters. Third, we augment the no-arbitrage model for nominal and real yields with the
term structure of oil future prices. Fourth, our results suggest that the empirical success of inflation
forecasts from the survey of professional forecasters can be replicated with a standard affine model
that exploits only information in the nominal and real yield curve. Finally, because the no-arbitrage
restrictions across markets also constrain the flexibility in modeling risk compensation and interest
rate volatility, combining information from these markets poses a challenge to existing affine term

structures models for their ability to simultaneously forecast inflation and interest rates.
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Appendix A: Derivation and Proofs

A.1 Derivation of the Real Pricing Kernel

By Ito’s lemma and the no-arbitrage condition M/f = MtN Q¢, we have

dME/ME = aM]N /MY +dQ/Qr + (dMY /MY - (dQ+/ Q)
= —r)dt — AY[dW,, — AS,dWs,
1 2
+ <7rt + 3 (Jgaq + (of]‘) >> dt + JgdWm + a;‘dWLt + U;Ai\{t
= —rftdt — A, AW,y — A, dWs, + opdW oy,

where the real short rate r* is given by

1 2
o= N om O';Ai,\{t ~3 <U;O'q + (aqL) )

= (o0 + pY'xr + plor + ol se) — (0F + pr'ae + pFoe + pTst)
1 2
+0’; (Aé\fm + )\Jl\fxmt) —3 (aﬁlaq + (0?) )
_ N o7 1 ! + 1 2 + //\N
- ) Po 5 O'qu Uq Uq 0,z
+ (o — pr 4+ ol M)z + () — pF) 0e + () — pT) st
= pg + pim + P50+ plise

and the real prices of risk are given by

R _ N —_ R R
Ax,t - A:c,t —0q= )‘O,x + Al,x$t?
R _ N _ R R
Asy = As, = Xgs + Misor

The parameters in the above equations are given by:

1 2
ol o — pr — 3 <J;0'q + <U(JI'> ) + J;)\é\fx,

pr = py —pp+ oA

ps = py = p;

pt = pi —pl,

and

)‘(1)%@ = )‘g)\,f;t_o-‘b
)‘{—%x = )‘{Yma
)‘OR(S = A{)\,fév
)\{% = )\]1\’75



A.2 Proof of Proposition 1

We derive the pricing formula for nominal bonds. The derivation of the pricing formula for real
bonds is very similar and thus omitted.

Let N
A W,
ANE z,t)’W:< x,t).
! < Agsvt ! W5,t

Then, the Radon-Nikodym derivative of the risk neutral measure P* with respect to the physical

* T T
dP = exp 1 / AN AN ds — / AN aw,
dP J, 2/, ¢

By the Girsanov theorem, dW;* = dW;+ AN dt is a standard Brownian motion under the risk-neutral

measure P is given by

probability measure P*. It implies that under the risk neutral measure,

dry = K" (p* — ) + BdW,,, (A1)
A, = &} (uh — ) dt + o5dW5,, (A2)
dsy = (¢f+ & xs + $301 + Pisy) db + oo dWi,, (A3)
dgr = (5" + 5w + p§ o + pise) dt + ogdWy, + UqldWI,m (A4)

where

K* = K+3AY,, Ku* = Kp—3A),

1as
Ky = Kg+OsAs, Ksly = Kslts — 05N 5
B = Po— TNy Bh = by B5 = b5 — TsALs, B5 = pY
PE = P — NwOq PET = P — AL a0, p5" = P, pa" = Pl

From the fact that exp (— fg r ds) Pt{\; is a martingale under the risk neutral measure, we can
derive the ODE system for the nominal yields by standard argument.

A.3 Proof of Proposition 2

Given the dynamics of s; in Eq.(13), we can show that the oil futures price has the following

exponential-affine form:

P = B [exp (sp1.)] = exp (A1 + BeVay + C26; 4 D2's;)
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Applying the Girsanov’s theorem and using similar arguments as in the proof of Proposition 1, we

obtain the system of ordinary differential equations

dAoil , ' ' 1 '
= (Kn=3205) B + (kops — 05A05) O + <pév = 205) peit
1 _.. o] N2 1 N\ 2
5 BIEYBY 4 2ot (C2) 4 So? (D2)
dBo" . 4
o = (kL) B D
dcoil ' '
= = (ke +aaA) C7Y + (o5 —1) DY,
d??il _ Npet.
T

A.4 Lemma A.1

Under the forward measure, we have

< aP ) _ exp <— ftT révds)

dap* PN

t,T
and
~ T N
) dP | exp (—f r ds) PN t
v, =FE, " = E¥ ](37 ° = ?{[T exp (—/ r?ds)
dP or Pyr Py 0
We have
t.N
exp (—f T ds)
dv, = oy (AP =Pl
0,1

= W [BYSAW,, + CYotaw,|

By Girsanov’s Theorem, we have

- AW
AW, = dW; — ?t AW}
t

or
dWyy = dW; —Y'BNdt
AW, = dwt,
dWsy = dWi,— (05CY + o,DY) dt

The dynamics of the state variables under the risk neutral measure is stated in Eq.(A1)-Eq.(A3).
Applying the Girsanov’s Theorem yields:

do, = K*(u* —z)dt+ 3 (dWx,t +y'BY dt)
= (K*p* +SY'BY — K*zy) dt + SdW,,
= K (i —2) dt +SdW, 4,
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déy = Ky (ps — 0r)dt + osdWy,

Y (ug —0y) dt + o (dW(g,t + (05CY + o,DY) dt)
= (kjus + 05 (05CY + 0sDY) — K36,) dt + o5dW;,
= &g (fig — 0¢) dt + o5dWs

= K

dsy = (@04 ¢y we+ 501 + dise) dt + osdW,
&%+ ¢y + G0y + Bsy) dit + 0 (dm,t + (0sDY + o, EN) dt)
(05 + 05 (05CY + 05 DN)| + ¢ 2 + @356 + ¢lst) dt + o dWisy

(
= (50 + a;xt + 50t + gsst) dt + o 5dWs

(
(

and
dge = (p0" + 5z + p5*o; + plse) dt + of dWy, + oqldWLt
= ([pF* + ol X' BN] + pT"wy + pF 01 + pTse) dt + ol dWoy + o dW 1 4
= (P0+ 00+ 05 00+ pase) dt + o dWoy + o dW
where

K = K*=K+2\Y

1,20

Kii = K'u*+3SY'BY = Ku—S\), + S5'BY,

Rs = Ky=Ks+ 05)\{\775
fsfis = kypy + 05 (05CY + DY) = Ky, — 05)\[])\7[5 + 05 (05CY + 0,DY)
Ti = Po+ Pyt + Pyor + P st
po = py+ 0, BY = pf — N)'oq + 0, X' BY,
Pr = Py =pE— Ao,
A e b

The notations such as pg, etc. denote corresponding parameters under the forward measure
Next, we compute the expected values of the state variables over the period ¢ to ¢t + 7 under

the forward measure. After tedious algebra, we can show that

1 5 ~T I ~ 7
Igtv'r = ;EF [qt-H' - qt] =a; + bTI‘Tt + CT5t + dTSt

1 . 2
U r = ;Varf Q47 — @] = oyoq + (aqL)

where
AT = P+ Py as + pral + pyas,
b= Y0+ b
o= pEb) 4+ prby’,
dr = prbe.
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A.5 Proof of Proposition 3

Using the results in Lemma A.1, the price of a 7-maturity inflation cap with strike K is given by
Qt+T 7') +
-1+ K
(% -a+m

(s (%)) e ) |
= exp (—Ty,fYT) lexp (7 (Z&+ + 1/21U,; 7))
XD (Z [—1In(1+ &)+ T, + Iut,f])

g

CAP N\ P
Pk €xp (_Tyt,T) L

= exp (—Tyi?;) E}?

~(14+K)® (g [—In(1+ K) +Igt,'r]>] )

and the price of a 7-maturity inflation cap with strike K is given by

<(1 +K) - Qt+7‘>+]

FLO N\ P
Pirk = exp (—Tyt,r) L

Qt

(170 ((%52))) |

= exp (—Ty,fYT) [—exp (T (ZE:+ +1/21U, 7))
X ® (-% [~ In (1+ K) +T&y + TUys))

= exp (—TinT) E}F

+(1+ K)o (—g [—In(1+ K) —i—Igt;]N )

where we used the fact that for a normal random variable z ~ N (,u, 02),

. {(aeg—b)+] wexp <M+o'2) o <ln(a/b)+ (,u+a2)> e <ln(a/b)—|—u> |

2 o o

E[(b—aeg)+] - —aexp(u+ﬂ)@(—ln(a/bH(”jLUQ))+bc1><—ln(“/b)+“>.
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Appendix B: Estimation Methodology

B.1 Transition and Measurement Equations

We first consider the discrete-time dynamics of the state variable ¢ between time ¢t — At and t.
From dgq; = mdt + oy dW, + Ué_dWJﬂt, we have

Gt = q-ae + po At + (pf At) 4+ (pf At) 6y + (T At) s + 1
where 7{ = ftt_At (afldWLu +aé‘dWl,u) ~ N (0,Qf 4,) and Qf , = Vari_a:(nf) = (0hoq +

(o)At '
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Similarly, for the state variable x; we have
xy = exp (—KAt) z_ar + (I — exp (—KAL)) p + 1y,

where nf = fOAt exp (—Ku) SdWy,, ~ N (0,97_4,) and
At
QFf Ay =Variae(ny) = / exp (—Ku) B exp (—K'u) du = NEN',
0

with K =NDN~1, D = diag ([d, ..., dy]), and Z;; = [(N715,)(N71%,)], =R EA00D  The

covariance matrix between n? and 7} is given by
At )
Q1 \, = Covi_ne i mi] = /0 exp (—Ku) Yogdu = K™ (I — exp (—KAt)) Yo,,.

where [ signifies the identity matrix.

Next, we consider the state variable d;. From dé; = ks (115 — 0¢) dt + 05dWs 4, we have
0y = exp(—rsAt)dy_ar + g (1 — exp(—rsAt)) + 1?2,

where 79 = s j;t_At exp(ks (u— t))dWs, ~ N (0, Qim) and

t 1 — exp(—2ksAt
Q?—At = B [Ug/t A exp(2ks (u —t))du| = Ug 2(H5 )

Finally, for the state variable s; we have
St — St—At = (PSAt =+ (P;At)/ Ti—At + pSALO_Ar + piAtStht) +ny,
where 1} = 05 ftt—At exp (—p§ (u—1)dWs, ~ N (0, Q?—At)v

' exp(2psAt) — 1
t—ar = Erat [03/ exp(2 (—p3) (u — t))du] — 03 ( p23 . )
t—At e

and

t

t
O, = 050.Frnr [ / exp(ks (u — £))dW; / exp(—pf (u — £))AWs o
t—At t—At

t
— ososEra [ [ elns =) (- t))du}
t—At
1 — exp(— (ks — p3) At)
’ Ks — P§

= o040
In summary, the dynamics of the augmented state vector X; = (g, x}, d¢, st)' follows the VAR

process
Xy = A+ BXi_a¢ + 1y,

26



pgAt ] 1 pg/At PgAt pgAt
_ | e (Kol | |0 exp(—KoAD) =
where A = (1 — exp(—rsAt)) s |’ B=1, 01x3 exp(—rsAt) My =
oS At | 0 P At psAL 1+ p3At
— xql
nt QZ;“ G
i N (0,9 = | Qi
~ ; Qar) and Qpap =
0o Qg_m 09 A
n; QtiAt QszAt

Combining the expressions for nominal and real yields in Proposition 1 and for option-implied

inflation expectations in Proposition 3, the measurement equation’ takes the form

0 1 0Oi1x3 O 0 0
alN 0 by N gy e
Y, = a0 BE o AR X, 4| e
afl)_z'l 0 bg)_il/ C.?.il d?il egil
ag K 0 b?,/K 69’ K dg K ¥
= a4+ bX¢+ ey,

where e; is an m x 1 vector of iid measurement errors with ef’[ﬂ, ~ N (0, ((5?1)2), eﬁn ~ N (0, (68 %),
egil ~ N (0, (53?)2) and e ~ N (0, (52_)2) with 52 =69 forall T € {r1,-,79}.

B.2 Kalman Filter
With the derived state and observation equations, the state-space system is given by

Xt = A‘i‘Bthl"’T]t
Y, = a+0Xi+e

where A, B, a, and b are functions of the underlying parameters of interest § = (vec(K)’, vech(XX')’,

r Nt N+ N N N/ N/ ! r L N N / : :
500 5 Pr s Ps s Ps s >‘O 7U€C(>‘w ) ,,03’ p;r ) PZ;T, p;r? Oqs0q s K6, 068, K )‘0,6a )‘1,6? JS) - The estimation

procedure, based on the Kalman filter, that we adopt in this paper is the following. Denote the
one-period-ahead prediction and variance of X; (or Y;) as Xy;_1 and Py (or Yy and Vyy_q),
respectively. That is,

Xy—1 = B [Xy] and Pyy_y = Varg1 [ Xy

Yt|t—1 = Et_]_ D/t] and Vt|t—1 = Va/r't_]_ [}/;f] .

1. Calculate the unconditional mean and variance of X; as the prediction and variance of Xy,
denoted by X g and Pyo.

2. Compute the one-period-ahead prediction and variance of Xy, given X;_;;_; and P;_y;_;

X1 = A+BX; 101
Pyoy = BPi1p 1B + Qi

"The vector of observables can be further augmented with inflation survey expectations as well as short-term (up
to a year) and long-term (5 to 10 years) forecasts of the spot rate as in D’Amico, Kim and Wei (2014).
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. Compute the one-period-ahead prediction and variance of Y3, given X;_y;_y and Py_q;_;
Yiger = a+0Xy

Viger = bPiqpqb' 4T

. Compute the forecast error in Y; as

€tlt—1 = Y: - Yt\t—l ~N (0, Vt|t—1)

. Update the prediction of X; as

Xep = Xyp1+ Pt\t—lb,VtTtilet\t—l
Py = Pyp1— Pt|t—1b/VtTt1_15Pt|t—1

. Repeat steps 2-5 for t = 1,---,T, the parameter vector § maximizes the following pseudo

log-likelihood function

1 _
L(Vi; X,,0) = max YT [—2 (mn 2m) +1n [Vyy | + €y Vi leﬂtl)] .
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Table 1. RMSEs for Monthly Out-of-Sample Inflation Forecasts.

horizon (months) RW | MVE [ MNRO [ pNES [ pqNERoil
Panel A: 2004-2014

3 0.0119 | 0.6824 | 0.6817 | 0.6815 | 0.6967
6 0.0165 | 0.7273 | 0.7257 | 0.7294 | 0.8212
12 0.0219 | 0.7159 | 0.7116 | 0.7332 | 0.9018
Panel B: 2004-2007

3 0.0098 | 0.6560 | 0.6560 | 0.6449 | 0.6358
6 0.0106 | 0.8167 | 0.8166 | 0.7927 | 0.7401
12 0.0173 | 0.8708 | 0.8709 | 0.8577 | 0.8777
Panel C: 2008-2010

3 0.0181 | 0.6658 | 0.6686 | 0.6667 | 0.7094
6 0.0270 | 0.6925 | 0.6960 | 0.6962 | 0.8379
12 0.0341 | 0.6281 | 0.6290 | 0.6418 | 0.9008
Panel D: 2011-2014

3 0.0070 | 0.8051 | 0.7882 | 0.8128 | 0.7455
6 0.0097 | 0.8058 | 0.7758 | 0.8305 | 0.8161
12 0.0121 | 0.8464 | 0.8088 | 0.9399 | 0.9549

Notes: The table reports the root mean squared errors (RMSE) of the hA-month (h = 3,6,12)
ahead forecasts of annualized CPI inflation for the random walk (RW) model. The results for all
the other models are presented as ratios of their RMSEs to RW’s RMSE. The initial in-sample
period is January 1990 - December 2003 and the out-of-sample period is January 2004 - December
2014. Note that the samples in Panels A to D reflect the time when the forecast is made. MNFE

MNEO yges data from nominal and

denotes the model tat uses data from nominal and real yields;
real yields, as well as inflation option prices; MNES uses data from nominal and real yields, and

inflation swaps; and model MV yges data from nominal and real yields, and oil futures prices.
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Table 2. RMSEs for Quarterly Out-of-Sample Inflation Forecasts.

horizon (quarters) SPF RW | MVE [ MNRO [ pNES [ pqNFRoil
Panel A: 2004-2014

1 0.0075 | 1.5236 | 1.0118 | 1.0101 | 1.0112 | 1.0217
2 0.0110 | 1.4301 | 1.0202 | 1.0179 | 1.0214 | 1.1628
3 0.0133 | 1.4144 | 1.0179 | 1.0154 | 1.0305 | 1.2619
4 0.0149 | 1.4098 | 1.0059 | 1.0025 | 1.0248 | 1.3146
Panel B: 2004-2007

1 0.0063 | 1.5277 | 0.9875 | 0.9875 | 0.9739 | 0.9424
2 0.0084 | 1.2654 | 0.9967 | 0.9967 | 0.9604 | 0.9075
3 0.0113 | 1.0644 | 1.0645 | 1.0645 | 1.0230 | 0.8985
4 0.0144 | 1.1914 | 0.9698 | 0.9698 | 0.9441 | 1.0036
Panel C: 2008-2010

1 0.0109 | 1.5733 | 1.0162 | 1.0205 | 1.0179 | 1.0887
2 0.0167 | 1.5041 | 1.0230 | 1.0306 | 1.0280 | 1.2745
3 0.0193 | 1.5863 | 1.0021 | 1.0118 | 1.0238 | 1.4493
4 0.0197 | 1.6428 | 1.0585 | 1.0692 | 1.0736 | 1.5863
Panel D: 2011-2014

1 0.0051 | 1.3338 | 1.0334 | 1.0090 | 1.0443 | 0.8955
2 0.0073 | 1.3353 | 1.0403 | 0.9952 | 1.0738 | 0.9927
3 0.0090 | 1.2621 | 0.9964 | 0.9462 | 1.0649 | 1.0404
4 0.0107 | 1.0958 | 0.9294 | 0.8774 | 1.0376 | 1.0103

Notes: The table reports the root mean squared errors (RMSE) of the h-quarter (h = 1,2,3,4)
ahead forecasts of annualized CPI inflation from SPF (Survey of Professional Forecasters). The
results for all the other models are presented as ratios of their RMSEs to SPF’s RMSE. The initial
in-sample period is January 1990 - December 2003 and the out-of-sample period is January 2004
- December 2014. Note that the samples in Panels A to D reflect the time when the forecast is
made. See the notes to Table 1 for the description of the different models.
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Table 3a. RMSEs for Out-Of-Sample Nominal Yields Forecasts (2004-2014).

maturity (years) | horizon (months) | RW [ MNE [ MNEO [ pNES [ AN Foil
0.5 3 0.0043 | 0.9344 | 0.9450 | 0.9393 | 0.9805
1 3 0.0044 | 0.9369 | 0.9441 | 0.9372 | 0.9681
2 3 0.0045 | 1.0125 | 1.0122 | 1.0058 | 1.0116
) 3 0.0045 | 1.0324 | 1.0288 | 1.0263 | 1.0106
10 3 0.0044 | 1.0694 | 1.0688 | 1.0710 | 1.0547
0.5 6 0.0072 | 0.9300 | 0.9394 | 0.9283 | 0.9757
1 6 0.0070 | 0.9502 | 0.9521 | 0.9399 | 0.9789
2 6 0.0066 | 1.0369 | 1.0287 | 1.0189 | 1.0312
) 6 0.0062 | 1.0605 | 1.0528 | 1.0534 | 1.0294
10 6 0.0060 | 1.0697 | 1.0688 | 1.0784 | 1.0463
0.5 12 0.0125 | 0.8835 | 0.8865 | 0.8700 | 0.8977
1 12 0.0116 | 0.9290 | 0.9228 | 0.9036 | 0.9231
2 12 0.0101 | 1.0497 | 1.0337 | 1.0141 | 1.0047
) 12 0.0077 | 1.1610 | 1.1456 | 1.1376 | 1.0647
10 12 0.0072 | 1.1153 | 1.1124 | 1.1248 | 1.0322

Table 3b. RMSEs for Out-Of-Sample Nominal Yields Forecasts (2004-2007).

maturity (years) | horizon (months) | RW [ MNE [ MNEO [ pNES [ AN Eoil
0.5 3 0.0062 | 0.8113 | 0.8382 | 0.8278 | 0.8725
1 3 0.0062 | 0.8384 | 0.8635 | 0.8515 | 0.8816
2 3 0.0060 | 0.9255 | 0.9456 | 0.9340 | 0.9452
) 3 0.0048 | 1.0146 | 1.0226 | 1.0143 | 1.0088
10 3 0.0036 | 1.0568 | 1.0520 | 1.0516 | 1.0373
0.5 6 0.0108 | 0.7846 | 0.8144 | 0.7964 | 0.8481
1 6 0.0102 | 0.8141 | 0.8417 | 0.8221 | 0.8636
2 6 0.0091 | 0.8914 | 0.9131 | 0.8951 | 0.9171
5 6 0.0063 | 1.0160 | 1.0205 | 1.0147 | 1.0050
10 6 0.0043 | 1.1579 | 1.1328 | 1.1577 | 1.1220
0.5 12 0.0195 | 0.7632 | 0.7941 | 0.7719 | 0.7988
1 12 0.0179 | 0.7924 | 0.8240 | 0.7982 | 0.8155
2 12 0.0153 | 0.8742 | 0.9021 | 0.8760 | 0.8743
5 12 0.0095 | 1.0586 | 1.0674 | 1.0510 | 1.0190
10 12 0.0055 | 1.3351 | 1.2917 | 1.3252 | 1.2617
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Table 3c. RMSEs for Out-Of-Sample Nominal Yields Forecasts (2008-2010).

maturity (years) | horizon (months) | RW [ MNE [ MNEO [ pNES [ AN Foil
0.5 3 0.0042 | 1.0973 | 1.0801 | 1.0834 | 1.1029
1 3 0.0044 | 1.0635 | 1.0409 | 1.0433 | 1.0584
2 3 0.0051 | 1.0983 | 1.0670 | 1.0692 | 1.0703
) 3 0.0057 | 1.0253 | 1.0016 | 1.0055 | 1.0010
10 3 0.0055 | 1.0150 | 1.0059 | 1.0125 | 1.0144
0.5 6 0.0060 | 1.2302 | 1.1965 | 1.2015 | 1.2197
1 6 0.0063 | 1.2041 | 1.1531 | 1.1567 | 1.1716
2 6 0.0069 | 1.2210 | 1.1582 | 1.1628 | 1.1680
) 6 0.0077 | 1.0812 | 1.0388 | 1.0494 | 1.0576
10 6 0.0072 | 1.0145 | 0.9961 | 1.0126 | 1.0300
0.5 12 0.0081 | 1.2997 | 1.1948 | 1.1997 | 1.2086
1 12 0.0080 | 1.3677 | 1.2217 | 1.2252 | 1.2229
2 12 0.0071 | 1.5889 | 1.4009 | 1.4055 | 1.3627
) 12 0.0068 | 1.4782 | 1.3199 | 1.3380 | 1.2382
10 12 0.0067 | 1.1873 | 1.0876 | 1.1178 | 1.0094

Table 3d. RMSEs for Out-Of-Sample Nominal Yields Forecasts (2011-2014).

maturity (years) | horizon (monthly) | RW | MNE | MNEO [ MNES [ pqNEoil
0.5 3 0.0004 | 5.2621 | 5.1446 | 5.1550 | 5.5538
1 3 0.0005 | 3.8064 | 3.6804 | 3.6929 | 4.0939
2 3 0.0011 | 1.7316 | 1.7277 | 1.7165 | 1.6818
) 3 0.0031 | 1.0921 | 1.1110 | 1.1067 | 1.0400
10 3 0.0042 | 1.1452 | 1.1573 | 1.1563 | 1.1174
0.5 6 0.0005 | 6.5007 | 6.2639 | 6.2905 | 6.7921
1 6 0.0007 | 4.2245 | 4.0460 | 4.0623 | 4.4432
2 6 0.0016 | 2.0485 | 2.0609 | 2.0468 | 1.9846
) 6 0.0046 | 1.0972 | 1.1398 | 1.1314 | 1.0131
10 6 0.0064 | 1.0805 | 1.1062 | 1.1029 | 1.0267
0.5 12 0.0009 | 6.2274 | 5.9043 | 5.9259 | 6.4122
1 12 0.0015 | 3.6988 | 3.5366 | 3.5342 | 3.8131
2 12 0.0021 | 2.6079 | 2.6379 | 2.6053 | 2.6022
) 12 0.0061 | 1.0602 | 1.1549 | 1.1378 | 1.0111
10 12 0.0089 | 0.9837 | 1.0464 | 1.0409 | 0.9713

Notes: The table reports the out-of-sample root mean squared errors (RMSEs) of h-month (h =
3,6,12) ahead forecasts of 7-year to maturity nominal (Treasury) yields. The results for all models,
except for RW, are presented as ratios of their RMSEs to RW’s RMSE. The initial in-sample period
is January 1990 - December 2003 and the out-of-sample period is January 2004 - December 2014.
Note that the sub-sample periods reflect the time when the forecast is made. See the notes to Table

1 for the description of the different models.
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Table 4a. RMSEs for Out-of-Sample Real Yields Forecasts (2004-2014).

maturity (years) | horizon (months) | RW | MNE [ MNEO [ pNES [ A NEoil
2 3 0.0095 | 1.0212 | 1.0277 | 1.1367 | 1.0176
) 3 0.0057 | 1.1348 | 1.1427 | 1.1994 | 0.9802
10 3 0.0041 | 1.5780 | 1.5779 | 1.3979 | 1.4785
2 6 0.0123 | 0.7767 | 0.7909 | 0.8563 | 0.8528
) 6 0.0074 | 0.9826 | 0.9953 | 0.9982 | 0.9313
10 6 0.0054 | 1.4748 | 1.4736 | 1.3346 | 1.4177
2 12 0.0137 | 0.7037 | 0.7115 | 0.7212 | 0.7752
) 12 0.0092 | 0.9121 | 0.9243 | 0.8565 | 0.9222
10 12 0.0073 | 1.3392 | 1.3434 | 1.2143 | 1.3211

Table 4b. RMSEs for Out-of-Sample Real Yields Forecasts (2004-2007).

maturity (years) | horizon (months) | RW | MNE [ MNEO [ pNES [ AN Foil
2 3 0.0069 | 0.9148 | 0.9005 | 0.9002 | 0.7571
) 3 0.0044 | 1.3380 | 1.3015 | 1.2174 | 0.9992
10 3 0.0030 | 2.3167 | 2.2497 | 2.0361 | 1.7105
2 6 0.0097 | 0.8233 | 0.8158 | 0.7889 | 0.7864
) 6 0.0062 | 1.2077 | 1.1734 | 1.0937 | 1.0350
10 6 0.0039 | 2.1614 | 2.0847 | 1.9534 | 1.7106
2 12 0.0156 | 0.8349 | 0.8343 | 0.8289 | 0.9480
) 12 0.0093 | 1.0537 | 1.0323 | 0.9943 | 1.0496
10 12 0.0055 | 1.8497 | 1.7733 | 1.7308 | 1.5806

Table 4c. RMSEs for Out-of-Sample Real Yields Foreca

sts (2008-2010).

maturity (years) | horizon (months) | RW | MNE [ MNEO [ pNES [ AN Foil
2 3 0.0151 | 1.0756 | 1.0956 | 1.2088 | 1.0633
) 3 0.0086 | 1.0481 | 1.0677 | 1.2262 | 0.8881
10 3 0.0055 | 1.1578 | 1.1454 | 1.1790 | 1.0456
2 6 0.0196 | 0.7696 | 0.7938 | 0.8778 | 0.8455
) 6 0.0107 | 0.8135 | 0.8391 | 0.9550 | 0.7615
10 6 0.0065 | 1.1059 | 1.0955 | 1.1115 | 1.0621
2 12 0.0182 | 0.4285 | 0.4411 | 0.4805 | 0.4627
) 12 0.0115 | 0.6305 | 0.6300 | 0.5763 | 0.6094
10 12 0.0075 | 1.1770 | 1.1465 | 0.9874 | 1.1578
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Table 4d. RMSEs for Out-of-Sample Real Yields Forecasts (2011-2014).

maturity (years) | horizon (months) | RW | MNE [ MNEO [ pNES [ A NEoil
2 3 0.0056 | 0.8557 | 0.8004 | 1.0481 | 1.1045
) 3 0.0038 | 1.1553 | 1.1906 | 1.0647 | 1.2506
10 3 0.0039 | 1.5963 | 1.6646 | 1.2348 | 1.8477
2 6 0.0059 | 0.7036 | 0.6930 | 0.8504 | 1.0592
) 6 0.0051 | 1.1106 | 1.1660 | 0.9892 | 1.2282
10 6 0.0058 | 1.3881 | 1.4454 | 1.1674 | 1.5554
2 12 0.0052 | 1.2398 | 1.2866 | 1.2926 | 1.2187
) 12 0.0070 | 1.1080 | 1.1892 | 1.0503 | 1.1748
10 12 0.0085 | 1.1606 | 1.2358 | 1.0610 | 1.2986

Notes: The table reports the out-of-sample root mean squared errors (RMSEs) of h-month (h =
3,6,12) ahead forecasts of 7-year to maturity real (TIPS) yields. The results for all models, except
for RW, are presented as ratios of their RMSEs to RW’s RMSE. The initial in-sample period is
January 1990 - December 2003 and the out-of-sample period is January 2004 - December 2014.

Note that the sub-sample periods reflect the time when the forecast is made. See the notes to

Table 1 for the description of the different models.
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Table 5. Combination of Inflation Forecasts.

horizon PP [ oBW T NRT NRO [ NRS T NRoil

1-quarter | 0.3656 0.2556 0 0.3788
2-quarter | 0.6780 0.1965 | 0.1255 0
3-quarter | 0.6181 0.3819 0 0
4-quarter | 0.5144 0.4856 0 0

o O O O
o o o o

Notes: The table reports the results of regressing realized inflation on survey-based and model-
based inflation forecasts, for forecast horizons of 1- to 4-quarters. Specifically, for a given forecasting

horizon h, we regress the realized inflation rate 7 ;, at time ¢+ h on various forecasts that are made
at time ¢: T h = aSPF;FtS"}I:F + aNR%\iY}? + aNRO%\iY}FO + aNRS%\iY}FS + aNRoil%iY}Fozl
SPF y o NR_ NRO | NRS | NRoil

, subject to the

SPF oNR oNRO (NRS oNRoil ¢ [g 1],

constraints: « =1and o
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Table 6. Combination of Nominal Interest Rate Forecasts.

maturity (years) | horizon (months) | ofW [ oVE | oVEO | oNVES [ N Foil
0.5 3 0.7626 0 0.2374 0 0
1 3 0.7706 0 0.2139 0 0.0155
2 3 0.7065 | 0.0189 | 0.2745 0 0
) 3 0 0.1256 | 0.3391 0 0.5353
10 3 0 0.2497 | 0.2350 0 0.5154
0.5 6 0.5411 0 0 0.4589 0
1 6 0.5290 0 0 0.4710 0
2 6 0.3771 | 0.0195 0 0.6034 0
) 6 0 0.2126 | 0.7034 0 0.0840
10 6 0.1874 | 0.3577 | 0.4549 0 0
0.5 12 0.3165 0 0 0.6835 0
1 12 0.2679 0 0 0.7321 0
2 12 0.1970 0 0 0.8030 0
5) 12 0.1030 0 0 0.6649 | 0.2321
10 12 0.1225 0 0.3802 0 0.4972

Notes: The table reports the results of regressing actual nominal bond yields on model-based
nominal yield forecasts, for forecast horizons of 3-, 6-, and 12-months. Specifically, for a given

forecasting horizon h and a given bond maturity 7, we regress the observed bond yield yﬁ_hﬁ at

time ¢ + h on various h-month ahead forecasts that are made at time t¢: yi\frh ;= aRW@ﬁ’fZV +

~N,N ~N,N ~N,N i1~N,N Roil . .
ozNRyt#hf + oaNROytJr’h fo + aNRSyH’h 71_?,5 + N Roil it fm , subject to the constraints: oW 4

aVR 4 oNRO 4 oNRS | (NRoil — 1 and ofW oNR oNRO oNRS oNRoil ¢ [q 1].
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Table 7. Combination of Real Interest Rate Forecasts.

maturity (years) | horizon (months) | ofW [ oVE | oVEO | oNVES [ N Foil
2 3 0.4291 | 0.1613 0 0 0.4096
) 3 0.2585 | 0.0745 0 0 0.6669
10 3 0.3204 | 0.0579 | 0.1777 0 0.4440
2 6 0.0606 | 0.1830 0 0 0.7564
) 6 0.0101 | 0.0166 0 0 0.9733
10 6 0.2705 | 0.1294 | 0.3428 0 0.2574
2 12 0 0 0.2055 0 0.7945
) 12 0.0371 0 0 0.3445 | 0.6184
10 12 0.1921 0 0 0.4835 | 0.3245

Notes: The table reports the results of regressing actual real (TIPS) bond yields on model-based
nominal yield forecasts, for forecast horizons of 3-, 6-, and 12-months. Specifically, for a given
forecasting horizon h and a given bond maturity 7, we regress the observed bond yield yﬁhﬁ at
time ¢t + h on various h-month ahead forecasts that are made at time ¢: yﬁ_hJ =Yy, T+

aN R/y\]i’]}:[f + oV ROAing + oVBS f]ﬁgfs + a¥ ROil@\ﬁ’ngZl, subject to the constraints: of*" +

aNR 4 aNRO 4 aNRS 4 aNRoil =1 and CVRW,OéNR,OéNRO,OéNRS,CKNROﬂ c [07 1].
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Nominal and Real Yields
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Figure 1: 5-year Treasury and TIPS yields (top graph) and 5-year breakeven inflation (bottom
graph).
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Model MNE Model MNEO
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Figure 2: Actual year-over-year inflation rate (blue solid line), 4-quarter ahead SPF survey forecast
(black crosses), and model forecasts (red circles) from MNE MNEO - pMNES and MNFoil models.
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Option-Implied Inflation Expecations
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Figure 3: 1-year and 3-year option-implied inflation expectations (IE, top graph), and 3-year option-
implied inflation expectations and TIPS-based breakeven inflation rate (BEI, bottom graph).
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Figure 4: Actual inflation (blue solid) versus the 1-, 2-, 3-) and 4-quarter ahead forecasts based on

SPF (black crosses) and MY% (red circles).
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Figure 5: Actual 6-month nominal yield (blue solid line) and its 3-month ahead forecasts (red
circles) from MV MNEO - pNES and MNFoil models.
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