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1 Introduction

Many long-term contractual relationships feature learning, as uncertainty arises if either project

quality or agent ability is unknown when a long-term contract is signed. Dynamic learning is most

relevant for venture capital �rms investing in companies with new technologies or �rms hiring fresh

graduates. Unfortunately, with learning, it is generally challenging to study long-term contracting,

for reasons stated later.

We introduce uncertainty and learning into the classic Holmstrom and Milgrom (1987) model

with a constant absolute risk aversion (CARA) agent. We choose Holmstrom and Milgrom (1987)

for two reasons. First, the Holmstrom and Milgrom (1987) model has a tractable dynamic CARA-

normal framework which accommodates learning nicely, and we consider an in�nite-horizon varia-

tion of Holmstrom and Milgrom (1987) with stationary learning to maintain tractability. Second,

against the Holmstrom and Milgrom (1987) benchmark in which the optimal contract is linear,

we show that uncertainty and learning make the optimal compensation contract option-like, i.e.,

incentives rise following good performance.

In our model the principal signs a long-term contract with the agent, with commitment on

both parties. The observable output each period is the sum of the agent�s unobservable e¤ort, the

project�s unknown pro�tability (or the agent�s unknown ability), and some transitory noise. To

focus on learning only (rather than adverse selection), we assume that both the principal and agent

share a common prior on the project�s pro�tability when signing the long-term contract.

Unlike Holmstrom and Milgrom (1987), incentive provisions over time become intertemporally

linked because of learning. The intertemporal linkage of incentive provisions is rooted in the

hidden information problem.1 Along the equilibrium path the principal knows as much as the

agent knows, as both start with the common prior. However, along o¤-equilibrium paths the

agent knows strictly more, because only the agent knows how much his actual e¤ort deviates from

the recommended level. Speci�cally, imagine that the agent has followed the recommended e¤ort

policy in the past; thus both parties share the same correct belief about the project�s pro�tability.

If the agent shirks today by exerting some e¤ort below the recommended level, then the lower e¤ort

decreases today�s output on average. With Bayesian learning, the principal who anticipates a higher

e¤ort today would mistakenly attribute today�s weak performance to lower pro�tability. Thus, by

1This is in contrast to the standard hidden action dynamic agency models where the agent�s unobservable shirking
has only a short-lived e¤ect. For recent development of dynamic contracting in �nance, see DeMarzo and Fishman
(2007), Biais et al. (2007), DeMarzo and Sannikov (2006), He (2009), Piskorski and Tchistyi (2010), DeMarzo et al.
(2012), Malenko (2013), etc.
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shirking today the agent can distort downward the principal�s inference about pro�tability from

today onward, which is long-lasting (i.e., persistent hidden information). This belief manipulation

e¤ect is bene�cial to the agent, as the principal will mistakenly reward the agent whenever future

performance beats the principal�s downward distorted expectations. We refer to this potential

bene�t due to o¤-equilibrium private information as the agent�s information rent.

In solving the optimal contract with learning, we need the information rent as the second

state variable, in addition to the agent�s continuation value. The information rent captures the

marginal bene�t of the agent�s shirking due to the belief manipulation e¤ect, and hence enters the

agent�s incentive compatibility constraint. The higher the future incentives (i.e., pay�performance

sensitivity), the greater the information rent, and the lower the agent�s current motivation to

expend e¤ort. We show that the information rent can be conveniently expressed as the sum of

properly discounted future incentives, and the agent�s optimal e¤ort is simply the instantaneous

incentive minus the information rent due to the belief manipulation e¤ect. Thanks to the CARA

preference that has no wealth e¤ect, the agent�s continuation value separates from the problem,

and the optimal contract is fully characterized by an ordinary di¤erential equation (ODE) with the

information rent as the only state variable. Although we use the �rst-order approach to solve for

the optimal contract, we verify the validity of the �rst-order approach in Section 4.4 by identifying

an upper bound of the agent�s deviation value. Section 4.5 discusses how CARA preferences and

private savings render the tractability in our model.

Relative to the existing literature of long-term contracting with learning, which focuses on

implementing a constant �rst-best e¤ort (DeMarzo and Sannikov, 2014; Prat and Jovanovic, 2014),

our paper highlights two interesting features in the optimal contract. First, in our model the optimal

e¤ort policy, which is always distorted downward relative to the �rst-best benchmark, has a negative

drift, thus exhibiting a front-loaded or time-decreasing pattern. This is somewhat surprising. We

have explained that under a given contract the information rent makes the agent want to work

less in earlier periods, and casual readers might conclude that in the optimal contract the agent

should work less earlier. However, the opposite holds in the optimal contract: the principal will

purposefully give higher incentives early on so that the agent works harder in earlier periods in

equilibrium.

In Section 5.1 we solve in closed form the optimal deterministic contract (i.e., the optimal one

among the contracts in the subspace that implements deterministic but time-varying incentives

only), and show analytically that the optimal deterministic e¤ort policy decreases over time. This
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pattern holds in the optimal stochastic contract, and the intuition is a result of the belief ma-

nipulation e¤ect. As mentioned, later incentives increase the agent�s current information rent for

shirking. This implies that future pay�performance sensitivities impair the agent�s motivation for

expending e¤ort in earlier periods, but not the other way around. Given that later incentives are

more costly, the optimal contract implements less e¤ort in later periods.2

Second, the optimal contract is stochastic with higher incentives after good performance, ex-

hibiting an option-like feature.3 The intuition is the result of reducing the agent�s belief manipula-

tion in a long-term relationship. For a risk-averse agent, the amount of information rent not only

depends on the bene�ts of belief manipulation that increase with future pay�performance sensitiv-

ities, but also the agent�s marginal utility at future states when receiving those bene�ts. Raising

incentives after good performance introduces a negative correlation between pay-for-performance

and marginal utility. That is, greater future bene�ts from belief manipulation are associated with

the states when the agent cares less. Hence, the option-like compensation contract lowers the

agent�s information rent standing today.

We emphasize that it is the combination of long-term contracting and learning that drives front-

loaded and option-like incentives. On the one hand, with long-term contracting but no learning,

the model is a simple extension of Holmstrom and Milgrom (1987) and a constant e¤ort policy is

optimal (Section 4.3). On the other hand, with learning but short-term contracting, the absence

of commitment due to the nature of short-term contracting relationships implies that principals at

di¤erent times will not take the aforementioned belief manipulation e¤ect into account. In that

case, similar to Holmstrom (1999), the Gaussian setting with stationary Bayesian learning gives

rise to a constant e¤ort process in equilibrium (Section 5.3).

We rely on speci�c assumptions (i.e., CARA preferences, private savings, stationary Gaussian

2 Interestingly, the pattern of time-decreasing e¤ort policy in our paper with post-contracting information asym-
metry is opposite to the dynamic contracting setting with pre-contracting asymmetric information in Garrett and
Pavan (2012). In that paper, the agent privately observes his productivity when signing the contract and under the
assumption that the e¤ect of initial productivity on future productivity is declining over time, the optimal e¤ort
policy is time-increasing. Intuitively, in Garrett and Pavan (2012), downward distortion required for rent extraction
is more severe in earlier periods when the major friction is pre-contracting private information. It is intriguing that
pre-contracting private information and post-contracting information have opposite predictions for the time-series
pattern of e¤ort distortion, but the di¤erence in Garrett and Pavan (2012) also lies in the agent being risk-neutral
without wealth constraint. Relatedly, Sannikov (2014) allows the agent�s current e¤ort to a¤ect future fundamental,
and Marinovic and Varas (2016) study the optimal contract when the agent can engage in manipulation to boost his
short-term performance but with negative long-term consequences.

3This result of e¤ort policy being history-dependent is surprising given our setting. With a standard CARA-
normal setting and learning, as the posterior variance only changes deterministically over time (in our stationary
setting, it is a constant), the resulting equilibrium e¤ort pro�le is usually deterministic (e.g., Gibbons and Murphy,
1992; Holmstrom, 1999). In contrast, in our model with learning, the optimal long-term contract has an option-like
feature in that pay-for-performance rises following good performance.
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setting) to fully characterize the optimal long-term contract with learning. However, the economic

forces that are driving our main results do not depend on CARA preferences or Gaussian processes.

First, in any long-term contracting environment with learning, the agent�s information rent due

to belief manipulation� that is, the agent�s desire to shirk so as to distort the principal�s future

belief downward� is general. This general result implies that later incentives enter the agent�s

forward-looking information rent in earlier periods (but not the other way around). Consequently,

later incentives are more costly than earlier ones, giving rise to the time-decreasing e¤ort policy.

Second, the option-like feature relies solely on the concavity of the agent�s utility function, so that

the marginal value of earning future (potential) belief manipulation bene�t is lower for the agent

after good performance; hence higher compensation. Since these economic forces are fairly general,

our two main qualitative results�front-loaded e¤ort policy and option-like compensation�are likely

robust to other more general settings.

Our model o¤ers some interesting empirical implications. In particular, it provides a mechanism

that demonstrates why option-like payo¤s are desirable in managerial compensation. There is no

doubt that in practice the use of option-based compensation is pervasive.4 Interestingly, traditional

static models typically do not predict option grants.5 For example, Dittmann and Maug (2007)

calibrate a standard static structural model and �nd that most CEOs should hold more straight

equity, hold no stock options, and receive lower salaries. The option-like features of the optimal

contract in our paper shed light on the �2-20�and high-water-mark contracts that are widely used

in the hedge fund industry. As shown in our paper, that hedge fund contracts exhibit option-like

features may well be due to learning about persistent unobservable managerial ability as well as

the commitment associated with long-term contracting in the hedge fund industry. In addition,

our model also predicts that industries with higher uncertainty should grant more stock options

to their managers. The latter cross-sectional prediction is consistent with the evidence in Ittner,

Lambert, and Larcker (2003) and Murphy (2003) who document more extensive use of stock options

in new-economy �rms (e.g., computer-related �rms).

Our paper is closest to DeMarzo and Sannikov (2014) and Prat and Jovanovic (2014). As

mentioned earlier, both papers deal with long-lasting belief manipulation e¤ect in dynamic agency

settings with learning, but restrict attention to the optimal contract that implements a constant

4Hall and Liebman (1998), for example, show that there has been a large increase in the use of stock options in
CEO compensation for incentive provisions.

5There are a few exceptions in a dynamic framework. For instance, Edmans and Gabaix (2011) show that the
convexity of the contract depends on the marginal cost of e¤ort. In Ju and Wan (2012), stock options become optimal
when the agent has to be paid above a certain subsistence level.
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�rst-best level of e¤ort. Prat and Jovanovic (2014) focus on the role of intertemporal commitment

in optimal contracting. DeMarzo and Sannikov (2014) impose limited liability constraint on the

agent and study the optimal payout and termination policies. In contrast, we solve for the optimal

e¤ort policy jointly with the optimal long-term compensation contract and emphasize the general

economic mechanisms that shape the optimal e¤ort policy in long-term optimal contracting. As

discussed previously, the two main results of our optimal contract, i.e., front-loaded e¤ort policy

and option-like incentives, cannot hold in the contracting space with constant e¤ort policy.

The long-lasting belief manipulation in dynamic contracting also exists in Bergemann and Hege

(1998) and Horner and Samuelson (2012). In Bergemann and Hege (1998), an agent keeps working

on a project which may succeed with some probability depending on its quality, and the game ends

once the project succeeds.6 The project quality and the agent�s e¤ort a¤ect the project success in

a multiplicative way, i.e., success may occur only if the project is good and the agent is working.

In contrast, our model features an additive production function in which the marginal productivity

of e¤ort is independent of the project quality.

The topic of optimal contracting with endogenous learning also relates to the recent literature

studying optimal long-term contracts with adverse selection and moral hazard (e.g., Baron and

Besanko, 1984; Sung, 2005; Sannikov, 2007; Garrett and Pavan, 2012; Gershkov and Perry, 2012;

Halac, Kartik, and Liu, 2012; and Cvitanic, Wan, and Yang, 2013).7 In general, when the agent

has pre-contracting private information that is persistent, a mechanism design approach naturally

arises (e.g., Pavan, Segal and Toikka, 2012; Golosov, Troshkin, and Tsyvinski, 2012).8 However,

because our paper focuses on the problem without pre-contracting private information, we do not

need to solve for the optimal menu for the agent�s truthful reporting when signing the contract.

6This assumption is crucial for the tractability of Bergemann and Hege (1998). It is worth noting that the �real
option�mentioned in the abstract of Bergemann and Hege (1998) is di¤erent from our result. In our paper, �option-
like incentives� refer to the fact that incentives rise after good performance; but in their paper the game ends after
any good performance (i.e., project success).

7There are other papers that are related to learning but do not deal with the belief manipulation e¤ect. Adrian
and Wester�eld (2009) focus on the disagreement between the principal and the agent about the agent�s ability, where
the agent is dogmatic about his belief (i.e., the agent never updates his posterior belief about pro�tability from past
performance), which eliminates the belief manipulation e¤ect. In that paper, although the agent could distort the
principal�s belief by shirking, the dogmatic agent (who does not realize that the �rm�s pro�tability is, in fact, higher
than that perceived by the principal) will not gain anything from this channel, and as a result there is no belief
manipulation e¤ect. More recently, Cosimano, Speight, and Yun (2011) study the long-term contracting problem
with binary unobservable productivity states, and show that the optimal contract tends to be sticky. They assume
that the agent�s e¤ort is observable but not contractible, and hence both the principal and the agent always have the
same information set, on both equilibrium and o¤-equilibrium paths.

8Pavan, Segal, and Toikka (2012) and Golosov, Troshkin, and Tsyvinski (2012) use the �rst-order approach to
solve the agent�s problem. This is the same approach used in Williams (2009, 2011) and Zhang (2009), who study
persistent information in a continuous-time principal-agent setting. We also use the �rst-order approach to solve the
agent�s problem, and verify the validity of the �rst-order approach in Section 3.4.
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2 The Model

2.1 Setting

Consider a continuous-time in�nite-horizon principal-agent model with a common constant discount

rate r > 0. The project generates a cumulative output Yt up to time t, which evolves according to

dYt = (�t + �t) dt+ �dBt; (1)

where fBtg is a standard Brownian motion on a complete probability space (
;F ;P), �t is the

agent�s unobservable e¤ort level, �t is the project�s pro�tability, and the constant � > 0 is the

volatility of cash �ows. Moral hazard arises from the agent�s unobservable e¤ort choice, which

a¤ects the instantaneous cash-�ow dYt.

The risk-neutral principal (hereinafter she) o¤ers the CARA agent (hereinafter he) a contract

fct; �tg, so that the agent is recommended to take the e¤ort policy � = f�tg and is compensated by

the wage process c = fctg. Both elements are measurable to Yt � F fYs : 0 � s � tg, which is the

�ltration generated by the output history. Both parties can commit to the long-term relationship

at t = 0, at which point the agent has no personal wealth and has an exogenous reservation utility

of v0. Without loss of generality, we assume the principal has all the bargaining power.

Relative to Holmstrom and Milgrom (1987), we introduce the project�s unknown pro�tability �t

into the output process in equation (1). Equivalently, one can interpret �t as the agent�s unknown

ability. We assume that pro�tability f�tg follows a martingale process so that

d�t = ��dB
�
t ;

where the Brownian motion
�
B�
	
is independent of fBg, and � > 0 is a constant. At time 0, the

principal and the agent share the common normal prior: �0 � N
�
m0;�

�
0

�
. We mainly focus on

stationary learning; we discuss non-stationary learning for robustness check in Internet Appendix.

For learning to be stationary, the prior uncertainty is assumed to satisfy ��0 = �2�, so that the

posterior variance ��t = �
�
0 for all t and Bayesian updating is time-independent. When � = 0, our

model features no uncertainty (or, �t is perfectly observable), and thus is reduced to the benchmark

model of Holmstrom and Milgrom (1987), as analyzed in Section 4.3.

We further assume that the agent can privately save (i.e., hidden savings, or consumption is not

contractible) to smooth his consumption intertemporally, if he wishes. It is a well-known result that

CARA preferences do not have a wealth e¤ect, and the issue of private savings can be easily dealt

with (e.g., Fudenberg, Holmstrom, and Milgrom, 1990; Williams, 2009; He, 2011). We explain in
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Section 4.5 why the agent�s ability to smooth his own consumption renders extra tractability for

this model.

Private savings imply that the agent�s actual consumption can di¤er from wage ct. Denote the

agent�s actual consumption by bct and actual e¤ort by b�t; then the agent with a CARA preference
(exponential utility) has an instantaneous utility of9

u (bct; b�t) = �1a exp [�a (bct � g (b�t))] ;
where a > 0 is the agent�s absolute risk-aversion coe¢ cient, and g (b�t) � 1

2b�2t is the instantaneous
quadratic monetary cost of exerting e¤ort b�t. The quadratic form of g (�) simpli�es our results, but
our analysis holds as long as g (�) is strictly increasing and strictly convex.

2.2 Bayesian Learning and E¤ort

Recall that at time 0, the principal and the agent share the common normal prior �0 � N
�
m0;�

�
0

�
:

From now on we normalize m0 = 0. Both parties update their beliefs based on their own re-

spective information sets. Recall that Yt = F fYs : 0 � s � tg is the augmented �ltration gener-

ated by output path Y . Given any contract fct; �tg, the principal�s information set at time t is

F fYs; �s : 0 � s � tg, as the principal knows the recommended e¤ort policy � � f�tg. However, the

agent�s information set also includes his actual e¤ort policy b� � fb�tg, i.e., F fYs; �s; b�s : 0 � s � tg.
Intuitively, relative to the principal, the agent knows (weakly) more because he knows his actual

past e¤ort choices b�, which may deviate from the recommended policy �. This distinction is

important for our analysis.

If the agent follows the recommended e¤ort policy �, the principal�s posterior belief about �t is

correct and fully summarized by the �rst two moments:

m�
t � E [�t jYt; � ] and �

�;�
t � E

h
(�t �m�

t )
2 jYt; �

i
:

A standard �ltering argument (e.g., Theorem 12.2 in Liptser and Shiryayev, 1977) implies that

��;�t = �2� for all t (due to the stationary assumption ��0 = �
2�), and

dm�
t = �

�;�
t

dYt � (�t +m
�
t ) dt

�2
= ��dB�t with m0 = 0; (2)

where B�t is a standard Brownian motion under the measure induced by the e¤ort policy �:

dB�t �
dYt � (�t +m

�
t ) dt

�
: (3)

9 In the tradition of Holmstrom and Milgrom (1987), the CARA preference allows for negative consumption, i.e.,
both ct and bct can take negative values. In contrast, in DeMarzo and Sannikov (2014) the agent is protected by limited
liabilities, and hence the endogenous contract termination arises. It is unclear how the limited-liability restriction
a¤ects the qualitative results of our paper.

7



Conditional on the actual e¤ort policy fb�tg, the agent forms his posterior belief as
mb�
t � E [�t jYt; b� ] and ��;b�t � E

��
�t �mb�

t

�2
jYt; b�� :

The superscript b� emphasizes the dependence on the agent�s actual e¤ort policy b� (which the
principal does not know). Similarly, ��;b�t = �2� for all t; and

dmb�
t = �

�;b�
t

dYt �
�b�t +mb�

t

�
dt

�2
= ��dBb�t ; with m0 = 0; (4)

where Bb�t is a standard Brownian motion under the measure induced by the actual e¤ort policy b�:
dBb�t � dYt �

�b�t +mb�
t

�
dt

�
: (5)

2.3 Formulating the Optimal Contracting Problem

We �rst state the agent�s problem. Denote by St the balance of the agent�s savings account, which

earns interest at the constant rate r > 0. Given the contract fct; �tg the agent�s problem is

max
fbc;b�gEb�0

�Z 1

0
e�rtu (bct; b�t) dt� (6)

s.t. dYt =
�b�t +mb�

t

�
dt+ �dBb�t ;

dSt = rStdt+ ctdt� bctdt with S0 = 0;
with the transversality condition, say the saving balance St has to be bounded.10 Here, Eb� [�]
denotes the expectation under the probability measure induced by the actual e¤ort policy fb�tg,
and fbctg is the actual consumption policy. Denote the optimal solution to Problem (6) by fc?t ; �?t g.

We call the contract fct; �tg incentive-compatible and no-savings if, given the contract fct; �tg,

the solution to the agent�s problem in equation (6) is c?t = ct and �
?
t = �t, which further implies

St = 0 for any t (i.e., no private savings at any time). In other words, the agent �nds it optimal to

consume his wages and work as recommended. As a standard result in the literature, the following

lemma shows that there is no loss of generality by restricting attention to incentive-compatible and

no-savings contracts. The idea is similar to the revelation principle. Once the principal knows the

agent�s actual e¤ort policy, she will perform correct Bayesian updating based on that policy; and

since the principal can fully commit to the contract, she can save for the agent. Note, the optimal

no-savings contract also can be implemented by some other compensation scheme in which the

agent saves for himself.
10 In Appendix A.3, we explicitly impose the assumption of private savings being bounded in Assumption 1 in the

proof of Proposition 1.
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Lemma 1 It is without loss of generality to focus on contracts that are incentive-compatible and

no-savings.

Proof. All proofs are in Appendix.

The optimal contract solves the principal�s problem:

max
fct;�tg is incentive-compatible and no-savings

E�0

�Z 1

0
e�rt (dYt � ctdt)

�
; (7)

so that dYt = (�t +m
�
t ) dt+ �dB

�
t ; and

E�0

�Z 1

0
e�rtu (ct; �t) dt

�
= v0: (8)

Equation (8) is the agent�s participation constraint at t = 0 for the agent with a reservation value

v0. Since negative transfers are allowed, this participation constraint at t = 0 must bind.

3 The Agent�s Problem

In this section we illustrate heuristically the necessary conditions for a contract fct; �tg to be

incentive-compatible and no-savings.

3.1 Continuation Value and Incentives

Given the incentive-compatible and no-savings contract fct; �tg, the agent�s continuation value,

which is his expected payo¤ from the continuation contract, is de�ned as:

vt � E�t
�Z 1

t
e�r(s�t)u (cs; �s) ds

�
: (9)

According to the standard martingale representation argument (e.g., Sannikov, 2008), there exists

some progressively measurable process f�tg so that

dvt = rvtdt� u (ct; �t) dt+ �t (�arvt) (dYt � �tdt�m
�
t dt) (10)

= rvtdt� u (ct; �t) dt+ �t (�arvt)�dB
�
t .

We can interpret �t as the dollar incentive on the agent�s unexpected performance. To see this, from

Sannikov (2008) we know that �t (�arvt) can be interpreted as the incentive loading�measured in

the agent�s utilities�on his unexpected performance dYt�m�
t dt. We show shortly that (�arvt) > 0

is the agent�s marginal utility from consumption at time t; i.e., uc (ct; �t). As a result, dividing

utility incentives �t (�arvt) by the marginal utility yields dollar incentives received by the agent.

This is important for model tractability: As we show later in Section 3.4.1, using dollar incentive
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allows us to cancel (�arvt) and derive a simple expression for the agent�s incentive compatibility

condition that is independent of his continuation value vt.

Later we refer to pay�performance sensitivities f�tg simply as incentives. Throughout the paper,

we impose a further technical condition for ease of our analysis. Essentially, we restrict the feasible

incentive slopes f�tg to be bounded, i.e., there exists some su¢ ciently large constant M such that

�t 2 [�M;M ]. This assumption ensures that the endogenous state variable in the problem, the

expected (properly) discounted future incentives, is bounded for any feasible contracts. Later we

will show that, given this restriction, the optimal incentives are independent of the exogenous bound

M .11

3.2 No Savings

Following He (2011), we �rst show that the no-savings condition under CARA preferences implies

that

rvt = u (ct; �t) = �
1

a
exp [�a (ct � g (�t))] : (11)

We have the following lemma for any compensation contract denoted by �.

Lemma 2 At any time t � 0, consider a deviating agent who has some arbitrary savings S and

faces the continuation contract �t. Denote by vt (S; �) his deviation continuation value. We have

vt (S; �) = vt (0;�) � e�arS = vt � e�arS, (12)

where we have used the fact that vt (0;�) is the agent�s continuation value vt along the no-savings

path de�ned in equation (9).

The driving force behind this result is simple. Due to CARA preferences, the agent�s problem

is translation-invariant with respect to his underlying wealth level, as evident by u (cs + rS; �s) =

e�arSu (cs; �s). Thus, for a CARA agent, given the extra savings S, his new optimal deviation

policy is to take the optimal consumption-e¤ort-learning policy without savings�which explains vt

in equation (12), and to consume an extra rS more uniformly across all future dates/states�which

explains the adjusting factor e�arS in equation (12).

11This boundedness assumption shares the same spirit as imposing a transversality condition. For instance, in
the standard consumption-portfolio problem, to rule out Ponzi schemes one often imposes the agent�s wealth being
bounded from below. In that context, the optimal portfolio strategy is also independent of the lower bound for the
agent�s wealth.
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The optimality of the agent�s consumption-savings policy implies that his marginal utility from

consumption must equal his marginal value of wealth. Equation (12) then implies that:

uc (ct; �t) =
@vt (S; �)

@S

����
S=0

due to (12)
= �arvt: (13)

Equation (11) follows immediately from equation (13) because under CARA preferences, the agent�s

utility level is linear in his marginal utility:

au (ct; �t) = �uc (ct; �t) : (14)

Once we have established the key result in (11), we can plug it back into equation (10), and

�nd that vt follows an (exponential) martingale:12

dvt = �t (�arvt)�dB
�
t , vs = vt exp

�
�
Z s

t
ar�u�dB

�
u �

1

2

Z s

t
a2r2�2u�

2du

�
for s > t. (15)

Intuitively, a good performance dB�u = 1
� (dYt � �tdt�m

�
t dt) for u 2 [t; s] increases vs (recall vt < 0

for CARA preferences), all else being equal. That vs=vt only depends on incentives f�ugs�u�t is

key to tractability for later analysis.

3.3 E¤ort and Belief Distortion

The di¢ culty of introducing learning into the dynamic moral hazard problem is not learning per

se. Rather, the challenge is to deal with the issue of belief manipulation: the agent, simply by

shirking from the recommended e¤ort today, can distort the principal�s future beliefs about project

pro�tability downward.

Consider the following thought experiment. Suppose that at time t the agent exerts an e¤ort

level b�t below the recommended e¤ort �t, and thus output is lower than what is expected by the
principal on average. Crucially, however, the principal thinks the agent is exerting an e¤ort of �t�

thus she (through learning) mistakenly attributes lower output to a lower value of pro�tability �t.

In contrast, the agent updates pro�tability �t based on his true e¤ort level b�t, leading to a positive
wedge mb�

t �m
�
t = E [�t jYt; b� ]�E [�t jYt; � ] between the beliefs of the agent and principal. In other

words, by shirking, the agent makes the principal (mistakenly) underestimate pro�tability. This

belief manipulation is bene�cial to the agent in a dynamic setting� when future outputs turn out

to be high, the agent gets rewarded for high pro�tability (based on the agent�s correct information

set) rather than his e¤ort.

12Because j�j < M is bounded, the local martingale fvtg is indeed a martingale. This result can also be understood
by combining two observations: First, the agent can smooth out his consumption intertemporally, and hence his
marginal utility has to follow a martingale. Second, his continuation value vt is linear in his marginal utility uc
because of equations (13) and (14).
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The above logic implies that any current e¤ort deviation has a long-lasting e¤ect in distorting the

principal�s belief, and we now formalize this e¤ect. When the agent deviates from the recommended

e¤ort path f�g by choosing e¤ort policy fb�g, the principal�s belief about �s for s > t is distorted
downward. This distortion, denoted by �s, has the following intuitive expression:13

�s � mb�
s �m�

s = �

Z s

0
e��(s�u) (�u � b�u) du. (16)

Intuitively, the current belief distortion at time s equals the agent�s cumulative e¤ort deviations in

the past u 2 [0; s], with a discount factor of �. When � = 0, the zero prior uncertainty ��0 = �2� = 0

eliminates any belief divergence, and the issue of belief manipulation is absent.

Figure 1 heuristically illustrates the long-lasting belief distortion e¤ect for a one-time e¤ort

deviation. The left panel shows that the solid line�which is the agent�s actual e¤ort fb�g�lies below
the dashed line�which is the recommended e¤ort f�g�only at time interval [t; t+ dt], for some t.

Let us say b�t = �t � �, and for illustration we have assumed that f�g takes a constant value.

The right panel shows that this one-shot deviation triggers a long-lasting belief distortion with a

decaying factor �:

�s = m
b�
s �m�

s = � � �e��(s�t)dt for s > t: (17)

Intuitively, as new information �ows in, this belief divergence persists but decays over time expo-

nentially at the rate of �. As a result, even at time s > t, the principal mistakenly thinks the

project is of a worse quality than the agent thinks.

As suggested by equation (10), the contract relies on the agent�s �unexpected� performance

along the equilibrium path dYs � (�s +m
�
s ) ds. This equals �dB

�
s under the equilibrium measure

and has a mean of zero. For the agent who deviates by exerting b� 6= �, under his information

set the above �unexpected� performance no longer has zero mean. Suppose that the agent has

deviated before s so that b�t 6= �t where t < s. Even if the agent exerts the same e¤ort at time s so
that �s = b�s, equation (5) implies that

dYs �
�b�s +mb�

s

�
ds = dYs �

�
�s +m

b�
s

�
ds (18)

has zero mean under the agent�s information set. Hence, the �unexpected� performance dYs �
13According to equations (2) and (4), we have:

d�t = dm
b�
t � dm

�
t = �

�
dYt �

�
�̂t +m

�̂
t

�
dt
�
� � (dYt � (�t +m

�
t ) dt) = � (�t � b�t ��t) dt;

which leads to the expression of �t in (16). Here, we have used �0 = 0, as both parties share the common prior
when signing the contract.
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Figure 1: Long-lasting belief distortion (right panel) due to a one-time e¤ort deviation (left panel). For
illustration we have assumed �t takes a constant value. The agent shirks at [s; s+ ds] so that b�s = �s � �;
this triggers a long-lasting belief distortion �t = m

b�
t �m

�
t = � � �e��(t�s) so that the agent knows that the

project is better than the principal thought (in o¤-equilibrium path).

(�s +m
�
s ) ds displays a positive drift under the agent�s information set:

dYs � (�s +m�
s ) ds =

h
dYs �

�
�s +m

b�
s

�
ds
i

| {z }
zero mean under agent�s info. set

+ �sds| {z }
belief divergence

;

As in the previous example, a one-shot deviation in the past b�t < �t with t < s implies that �s > 0.
Intuitively, the principal would mistakenly think the project is worse than it actually is (under the

agent�s correct measure), and the agent can easily beat the principal�s expectation and hence gain

by �sds > 0 for all future s > t.

3.4 Incentive-Compatibility Constraint and Intuition

Proposition 1 characterizes the agent�s incentive compatibility constraint, along with the equilib-

rium consumption and continuation value heuristically derived above. We provide a rigorous proof

for Proposition 1 in Appendix A.3. We also highlight that the agent�s incentive-compatibility con-

straint in Proposition 1 is essentially the agent�s �rst-order condition in his e¤ort decision, and

we further show that the �rst-order condition is also su¢ cient for the agent�s global optimality in

Section 4.4, given certain conditions imposed on the derived optimal contract.

Proposition 1 Agent�s Incentive-Compatibility Constraint. For the contract fct; �tg to be

incentive-compatible and no-savings, f�tg must satisfy

�t = �t|{z}
instantaneous incentive

� E�t
�Z 1

t
�e�(�+r)(s�t)

�svs
vt
ds

�
| {z }

future information rent pt

= �t � pt (19)
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where pt denotes � information rent�

pt � E�t
�Z 1

t
�e�(�+r)(s�t)�s exp

�
�
Z s

t
ar�u�dB

�
u �

1

2

Z s

t
a2r2�2u�

2du

�
ds

�
; (20)

as the exp term inside the bracket equals vs=vt, using equation (15). In addition, equation (11)

implies that consumption (or wage) follows

ct = g (�t)�
ln (�arvt)

a
; (21)

and the continuation payo¤ from the contract is

vt = v0 exp

�
�
Z t

0
ar�s�dB

�
s �

1

2

Z t

0
a2r2�2s�

2ds

�
: (22)

In a standard dynamic agency problem without pro�tability uncertainty (e.g., � = 0), the

agent�s e¤ort �t at time t should depend only on the time-t incentive �t o¤ered by the contract

(i.e., �t = �t; recall the quadratic e¤ort cost g (�t) = �
2
t =2). With learning and associated belief-

manipulation, the agent�s e¤ort decisions across periods are interlinked, as evident by the forward-

looking nature of the second downward adjustment term in equation (19).

The forward-looking downward adjustment term represents the information rent to the agent.

Intuitively, this term captures the marginal bene�t of manipulating the principal�s future belief

downward.14 Also, the expression in (19) implies that the agent�s continuation payo¤s fvg drop

out, which allows us to write the agent�s incentive-compatibility constraint independent of fvg.

This convenient property is crucial for the tractability of our problem.

3.4.1 Intuition of Incentive-Compatibility Constraint

The rest of this subsection is devoted to understanding the key incentive compatibility constraint

(19). Consider again the example in Section 3.3 in which the agent reduces his e¤ort to slightly

below the recommended e¤ort level �t, say �t � �, only at the time interval [t; t+ dt]. In other

words, given the recommended policy f�g, the deviation e¤ort policy is

�� �
�

�s for s =2 [t; t+ dt] ;
�s � � otherwise.

(23)

What is the impact of this deviation e¤ort policy on the agent�s total payo¤ from time t onwards,

including his instantaneous utility?

14This information rent term captures the marginal rent that the agent may enjoy by deviating from the recom-
mended e¤ort slightly, rather than the rent that the agent actually enjoys in equilibrium; in equilibrium the principal
knows the agent�s actual e¤ort exactly. Nevertheless, as in any typical moral hazard model, the marginal deviation
bene�t (marginal rent) is important in characterizing the agent�s incentive-compatibility condition.
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In Appendix A.4 we show that, under the new e¤ort policy ��, the agent�s continuation payo¤

together his instantaneous �ow payo¤ at t can be written as

u (ct; �t � �) dt+ vt + E
��

t

�Z 1

t
e�r(s�t)dvs

�
; (24)

where E�
�

t emphasizes that the agent forms his expectation based on his information set induced

by ��. Using the result in equation (15), we can rewrite (24) heuristically as:

u (ct; �t � �) dt+ vt + E
��

t

8<: �t (�arvt) (dYt (�t � �)� �tdt�m
�
t dt)+R1

t+dt
e�r(s�t)�s (�arvs) [dYs � (�s +m�

s ) ds]

9=;
= u (ct; �t � �) dt

saving e¤ort cost instantaneously
+ vt +

E�
�

t

8>>>>>>>><>>>>>>>>:

�t (�arvt) (dYt (�t � �)� �tdt�m
�
t dt)| {z }

hurting performance instantaneously

+

Z 1

t+dt

e�r(s�t)�s (�arvs)

24 �
dYs �

�
��s +m

��

s

�
dt
�

martingale under info set generated by �

+ �sds
future belief divergences

35
| {z }

creating belief divergence persistently

9>>>>>>>>=>>>>>>>>;
(25)

There should be another correction term in (��s � �s) ds in the second equality, but it is zero because

of (23), i.e., we consider a one-shot deviation at time t from the equilibrium e¤ort policy.

There are two channels through which shirking at time t a¤ects the agent�s continuation value.

The �rst channel captures the instantaneous performance e¤ect, i.e., the agent�s e¤ort a¤ects

instantaneous performance dYt and, thus, his continuation value. To see this, write performance

dYt (�t) over [t; t+ dt] as a function of time-t e¤ort �t. Exerting e¤ort �t � � hurts the short-term

performance over [t; t+ dt] because

dYt (�t � �) = (�t � �) dt+m
�
t dt+ �dB

�
t = dYt (�t)� �dt:

Modulated by incentives, this leads to a drop in the agent�s continuation value by �t (�arvt) � �dt,

via the channel of �hurting performance instantaneously.� The second channel is the persistent

e¤ect due to belief manipulation. As discussed in Section 3.3, the agent�s shirking at time t shifts

the belief divergence path f�sg away from the equilibrium path f�s = 0g for s > t, according to

equation (16).

We show that the incentive-compatibility constraint in equation (19) is implied by equation

(25). By �reducing e¤ort cost instantaneously� in equation (25), the agent�s marginal gain from

shirking at t is �u� (ct; �t) � �dt. Since u� (ct; �t) = �uc (ct; �t)�t = arvt�t, this marginal gain

is (�arvt)�t � �dt. On the other hand, shirking �hurts performance instantaneously� in equation

(25), which gives rise to a marginal cost of �t (�arvt) � �dt. In standard models without belief
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manipulation, these two forces fully determine the agent�s trade-o¤ in choosing his optimal e¤ort

at time t.

Next we analyze the novel term �creating belief divergence persistently�in (25). There, because

dYs �
�
��s +m

��
s

�
dt has zero mean, this term equals

E�
�

t

�Z 1

t
e�r(s�t)�s (�arvs)�sds

�
: (26)

Recall that equation (17) says that the belief divergence in any future time s > t is �s = �e��(s�t) �

�dt. Plugging in to (26), the marginal impact of shirking via the channel of belief manipulation is15

E�t

264Z 1

t
�e�(�+r)(s�t) �s|{z}

future incentives

(�arvs)| {z }
marginal utility

ds

375 � �dt+ o (�dt)
Intuitively, if the principal mistakenly believes that the project is less pro�table than it should

be, the agent�s normal performance will be considered superb. The higher-powered the future

incentives f�sg, the greater the information rent. And, for a risk-averse agent, the information rent

depends on the agent�s future marginal utility (�arvs) when receiving these manipulation bene�ts.

Combining three pieces together (canceling �dt and ignoring higher-order terms), and dividing

both sides by time-t marginal utility (�arvt), we arrive at the agent�s incentive-compatibility

constraint as equation (19).

4 The Principal�s Problem and Optimal Contracting

From now on we focus on incentive-compatible contracts such that both parties will have the same

information set along the equilibrium path. As a result, we write dB�t and E� [�] as dBt and E [�]

respectively, for ease of notation.

4.1 Rewriting the Principal�s Problem

In light of Proposition 1, we �rst rewrite the principal�s problem in equation (7). Proposition 1

establishes an important link between recommended e¤ort f�tg and incentives f�tg in any incentive-

compatible contracts. Moreover, the principal can choose the optimal f��t g to maximize her value,

and the corresponding optimal consumption process fc�t g and the optimal e¤ort policy f��t g are
15The di¤erence between E�

�

t [�] and E�t [�] is at the order of �dt; multiplying by �dt further explains o (�dt) in the
second term on the right-hand side. Note that this statement is meant to be heuristic for the purpose of illustrating
the intuition. For rigorous argument, see Appendix A.8 for the proof of Proposition 1.
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determined by equation (21) and equation (19), respectively. Therefore, the principal is as if

choosing incentives f�tg only:

max
f�tg

E
�Z 1

0
e�rt (dYt � ctdt)

�
(27)

s:t: dYt = (�t +mt)dt+ �dBt and dmt = ��dBt; (28)

ct = g (�t)�
ln (�arvt)

a
; where g (�t) =

1

2
�2t ; (29)

dvt = �t (�arvt)�dBt, given v0; (30)

�t = �t � pt: (31)

Here, equation (28) describes the dynamics of output and posterior belief; equations (29)�(31) are

derived from equations (19)�(22) in Proposition 1; and pt in equation (31) is given by equation

(20).

Thanks to the CARA preference, the agent�s continuation value vt separates from the problem

and the optimal contracting problem can be rewritten without vt. Start from the principal�s

objective in equation (27). In Appendix A.5 we show that

E
�Z 1

0
e�rt (dYt � ctdt)

�
= E

�Z 1

0
e�rt�tdt

�
expected output

�
�
� ln (�arv0)

ar

�
C.E. of outside option v0

� E
"Z 1

0
e�rt

 
g (�t)
e¤ort cost

+ ar�2�2t =2
risk comp.

!
dt

#
; (32)

The discounted expected output is driven by the agent�s e¤ort (recall that we normalize the project�s

initial pro�tability as m0 = 0). The total compensation cost is the certainty equivalent (i.e.,

� ln (�arv0) = (ar)) of delivering the agent�s outside option v0, plus the monetary e¤ort cost (i.e.,

g (�t) = �2t =2), and the discounted risk compensation due to incentive provisions. Thus, the

certainty equivalent separates from the problem, and the optimal solution f��t g will be independent

of the agent�s initial outside option v0. This result comes from the lack of wealth e¤ect under CARA

preferences.

Combining equations (32) and (31), the principal�s problem is simpli�ed to

max
f�tg

E
�Z 1

0
e�rt

�
�t �

1

2
�2t �

1

2
ar�2�2t

�
dt

�
(33)

s:t: �t = �t � pt with pt as given in (20).

Importantly, only incentives f�g, but not continuation payo¤s fvg, enter the problem (pt depends

on f�g only).
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4.2 Recursive Formulation

We now recursively formulate the principal�s problem in (33) and solve it by dynamic programming.

Let the continuation value in problem (33) be

V (p) � Et
�Z 1

t
e�r(s�t)

�
�s �

1

2
�2s �

1

2
ar�2�2s

�
ds

�
: (34)

Consequently, the information rent pt serves as the only state variable for the principal when

designing the optimal contract. The information rent captures the marginal bene�t of the agent�s

shirking due to the belief manipulation e¤ect. Recall the de�nition of the information rent in

equation (20), which, together with the martingale representation theorem, implies that there

exists some progressively measurable process f�pt g so that the dynamics of pt follows (see Appendix

A.6)

dpt = [(�+ r) pt + �t (ar��
p
t � �)] dt+ �

p
tdBt: (35)

From now on, we interpret f�pt ; �tg as our control because the pair determines the drift and di¤usion

of pt in (35). As we will derive �
p
t and �t as a function of the state variable pt, the control pair

f�pt ; �tg gives the full history of f�t : t � 0g that we are after.

Remark 1 Strictly speaking, the value function in equation (34) is only a part of the principal�s

full value function. Following the same steps as in equation (32), one can write the principal�s full

value function J (mt; vt; pt), which depends on project posterior mean mt, the agent�s continuation

value vt, and the agent�s information rent pt, as

J (mt; vt; pt) � Et
�Z 1

t
e�r(s�t) (dYs � csds)

�
=

mt

r
expected proj. value

+
ln (�arvt)

ar
C.E. of agent�s vt

+ V (pt)
value function

:

(36)

The additive structure in equation (1) gives rise to the �rst term, which captures the expected

project value mt=r without e¤ort; and the CARA preference allows us to separate the agent�s cer-

tainty equivalent given his continuation value vt (the second term) from the problem.16 Maximizing

J (mt; vt; pt) is equivalent to maximizing V (pt). As a result, we refer to V (pt) simply as the prin-

cipal�s value function wherever no confusion arises.

The optimal contract can now be fully characterized by an Ordinary Di¤erential Equation

(ODE), which is the Hamilton-Jacobi-Bellman (HJB) equation for the problem (33):

rV (p) = max
�;�p

(� � p)� 1
2
(� � p)2 � ar�

2

2
�2 + Vp [(�+ r) p+ � (ar��

p � �)] + 1
2
Vpp (�

p)2 : (37)

16The certainty equivalent is the amount of money that an individual would view as equally desirable as a stream
of risky cash�ows. Consuming ln(�arv)

a
per period forever delivers a value of v for the CARA agent in our model.

For why this separation works, see Section 4.5.
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We will verify in Proposition 2 that 1 + ar�2 + a2r2�2 (Vp)
2 =Vpp > 0 and Vpp < 0. Then, the

�rst-order optimality conditions for the optimal control
�
�p�t ; �

�
t

	
are given by:

�� =
1 + p� �Vp

1 + ar�2 + a2r2�2
(Vp)

2

Vpp

and �p� = �ar��� Vp
Vpp

: (38)

Plugging them back into the HJB equation (37), we have

rV (p) =
1

2

(1 + p� �Vp (p))2

1 + ar�2 + a2r2�2
[Vp(p)]

2

Vpp(p)

� p� 1
2
p2 + (�+ r) p � Vp (p) : (39)

We solve the problem in (37) by analyzing the above ODE in (39).

4.3 Optimal Contracting

Before we start analyzing the optimal contract, we �rst consider a (trivial) benchmark case. Suppose

that the pro�tability �t is observable. This is essentially the classic Holmstrom and Milgrom (1987)

model, except that the optimal contract always benchmarks the agent�s performance to �t. Using

the incentive constraint �t = �t, the optimal solution is

�HMt = �HMt =
1

1 + ar�2
; (40)

and the principal�s value is V HM = 1=
�
2r
�
1 + ar�2

��
. The optimal contract can be implemented

by a constant equity share 1=
�
1 + ar�2

�
(with proper benchmarking). What is more, the value

V HM serves as an upper bound for our value function V (p) when pro�tability is unobservable:

V (p) � V HM =
1

2r (1 + ar�2)
: (41)

This is because V HM will be the principal�s value in our model but after seeing the additional

(precise) information about �t (and she can dispose this information freely).

To solve for the optimal contract, we analyze the ODE (39) with the boundary condition in

equation (68) using the technique of dynamic programming. The following proposition is our

main result, which characterizes the properties of the value function, and hence the optimal policy

f��; �p;�g as in equation (38). We impose the following parametric condition throughout the paper,

which restricts � to be relatively small:

(r + �)3

�
<
r2

2a

�
1 + ar�2

�
: (42)

The sole purpose of this condition is to ensure the concavity of V (p) in the proof method we

employ.17

17We emphasize that we require this condition for our particular proof for the concavity of the value function V (p).
When condition (42) fails, there might exist other proof methods to show the concavity of V (p).
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Proposition 2 Property of Value Function of Optimal Contracting. Suppose that equation

(42) holds. We have the following properties for V (p) 2 C2 which characterize the optimal contract.

1. V (0) = 0 and Vp (0) = 1=�.

2. V (p) is strictly concave over a compact interval, and 1 + ar�2 + a2r2�2 (Vp)
2

Vpp
> 0.

3. There exists a unique p 2
�
0; pd

�
such that Vp (p) = 0, where the constant

pd � 2�

(2�+ r) ar�2 + r +

r
(2�+ r)2 a2r2�4 + 2ar�2

h
(�+ r)2 + �2

i
+ r2

> 0: (43)

Under the optimal policy, p is an upper entrance-no-exit boundary, and 0 is a lower absorbing

boundary 0 with V (0) = 0. This implies that under the optimal policy the endogenous state

variable p�t never exits the interval [0; p].

In the optimal contract, the principal sets the initial information rent p�0 to be p. Afterwards,

the state variable p�t evolves according to equation (35), and the optimal control is characterized

by equation (38). Interestingly, property 3 in Proposition 2 states that the information rent p�t will

never wander out of an endogenous interval [0; p], which suggests that it is suboptimal to promise

too much future incentives (recall information rent p�t is the discounted promised future incen-

tives). This result is related to Holmstrom and Milgrom (1987) in which the optimal incentivesn
�HMt = 1

1+ar�2

o
remain constant over time. In our model with learning, the optimal incentives

f��t g become stochastic, but the information rent fp�t g and hence incentives f��t g remain endoge-

nously bounded due to stationary model primitives (CARA-normal setting, additive technology in

equation (28), stationary learning, and the e¤ort cost becomes prohibitive for unbounded �).

Remark 2 Though we are able to theoretically analyze the ODE (39) in Proposition 2, numerically

solving (39) and then investigating the properties of optimal contracting are far from an easy task.

This is because the ODE in (39) has two singular points at both p = 0 and p = p: the coe¢ cient in

front of the second-order derivative becomes zero at both end points (i.e., �p (0) = �p (p) = 0), and

as a result the ODE collapses to one of the �rst order. In addition, the singular point p is a free

boundary itself that we need to pin down. We are able to develop a numerical algorithm to solve

the ODE based on the approach of numerical integration with a desirable degree of accuracy and

numerical stability. The details about the algorithm as well as Matlab programs can be found in the

companion Internet Appendix.18

18As an alternative approach, we have also conducted an asymptotical analysis that is tractable but may lead to
inaccurate approximation results when the agent is not su¢ ciently risk tolerant. The details about the asymptotical
analysis can be found in the companion Internet Appendix.

20



4.4 Validity of the First-Order Approach

In deriving the optimal contract in Proposition 2, we rely on the agent�s incentive-compatibility

constraint (19), which is the agent�s �rst-order condition in his e¤ort decision. This is the so-

called �rst-order approach, and in the dynamic agency literature it is challenging to show that

the necessary local �rst-order condition for the agent�s problem is indeed su¢ cient for the agent�s

global optimality.

We have shown that in the optimal contract, the optimal policy
�
��t ; �

p�
t

	
are bounded. In

this section, we show that we are able to guarantee the validity of the �rst-order approach, after

imposing certain su¢ cient conditions on the volatility of information rent pt, i.e., �
p�
t , in the optimal

contract. More speci�cally, we show that the �rst-order conditions in Proposition 1 are su¢ cient to

ensure the agent�s global optimality by following an upper-bound approach employed in Sannikov

(2014).

Proposition 3 Validity of the First-Order Approach. Suppose that in the optimal contract���p;�t �� is not too large, so that either (77) or (78) in the proof in Appendix A.8 holds. Then under
the usual transversality condition, given the optimal contract the policy in Proposition 1 solves the

agent�s problem in (6).

To illustrate the basic idea, suppose that the agent facing the employment contract has de-

viated in the past, by having saved a bit and/or shirked a bit. For private savings, the agent�s

deviation state is his saving balance St =
R t
0 e

r(t�s) (cs � bcs) ds; while for shirking that distorts
the principal�s current and future beliefs, the relevant deviation state is the belief distortion �t =

�
R t
0 e

�(s�t) (�s � b�s) ds. Given these two deviation states, we de�ne a function W (vt; pt;St;�t)

which is constructed to be the upper bound of the agent�s deviation value given the optimal con-

tract and these two deviation states:

W

0B@ vt; pt| {z }
eqbm contract

; St;�t| {z }
dev. states

1CA � vt|{z}
eqbm cont. payo¤

� exp (�arSt)| {z }
dev. value from savings

� exp
�
�ar

�
1

�
�tpt + 0:5k�

2
t

��
| {z }

dev. value from belief distortions

:

(44)

In (44), two deviation states�private savings St and belief manipulation �t�enter the proposed

upper bound of the agent�s deviation value in a multiplicative way, capturing the potential inter-

dependence between the agent�s deviating incentives of consumption and e¤ort.

The functional form of W (vt; pt;St;�t) is intuitive. When the agent never deviates, i.e., St =

�t = 0, then W (vt; pt;St;�t) = vt is the agent�s equilibrium continuation payo¤ achieved by the
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equilibrium strategy satisfying the �rst-order conditions. The second term exp (�arSt) in (44) is

the extra value that the agent gains by having a private saving of S and hence always consuming rS

extra in all future states. The third term is about the gain from belief distortion due to past e¤ort

deviations. We know that the �rst-order gain from belief manipulation is the information rent pt,

which explains the linear coe¢ cient pt=� in front of the belief distortion �t inside the parentheses.

The quadratic coe¢ cient k is an appropriately chosen constant (see the proof of Proposition 3 in

Appendix A.8) to ensure W (vt; pt;St;�t) being the upper bound of the agent�s deviation value,

given his current deviation state-pair (St;�t).19 Because this upper bound satis�es the property

of W (v0; p0 = p;S0 = 0;�0 = 0) = v0, the strategy satisfying �rst-order conditions achieves this

upper bound, and hence is indeed optimal for the agent who is endowed with zero savings and zero

belief distortion.

The proof of Proposition 3 goes through if the volatility of information rent �p�t in the optimal

contract is not excessively high. For instance, in the proof in Appendix A.8, one su¢ cient condition

(78) requires that (�pt )
2 � �2�2

�
r + 2�� �2

�
, and (77) is a bit weaker; both conditions are easily

satis�ed in our numerical examples. A similar condition for the volatility of the endogenous state

is required in Sannikov (2014). Intuitively, all else equal, the agent�s global deviation value tends

to be increasing in the volatility �p�t of the state, because the agent has the �option�to adjust his

optimal strategy swiftly following a sequence of deviations and performance shocks.

4.5 Discussion of Assumptions

We make two simplifying assumptions in this paper: one is the assumption of CARA utility function

and the other is private savings. We now discuss the roles played by these two assumptions in

making the model tractable. In short, CARA preference without wealth e¤ect is the key to reducing

the dimensionality into a uni-dimensional problem; while private savings, under CARA preferences,

helps simplify the solution greatly. As discussed in Concluding Remarks, both assumptions are not

responsible for our key qualitative results.

4.5.1 First-order approach and state variables

We �rst brie�y outline the general �rst-order approach that is widely used in the literature in

solving this class of problems. For any general utility function u (c; �), following the same steps

19 It is worth noting that W (vt; pt;St;�t) is not exactly the deviation value of the agent; it just provides an
upper bound for the agent�s deviation value. This result is established by showing that the auxiliary gain processR t
0
e�rsu (bcs; b�s) ds+ e�rtW (vt; pt;St;�t) follows a supermartingale for any feasible policy fbct; b�tg. For more details,

see the proof for Proposition 3 in Appendix A.8.
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as in Section 3.4.1, we can derive the �rst-order incentive-compatibility condition for the (interior)

optimal e¤ort policy as:

�u� (ct; �t) = e�t � ept; (45)

where e�t the di¤usion term, expressed in utilities, in the process of continuation value vt (see
equation (10)): e�t � (�arvt) � �t; (46)

and ept the information rent that captures the additional value of shirking due to belief manipulation:
ept � Et �Z 1

t
�e�(r+�)(s�t)e�sds� : (47)

In the case of private savings, there is an additional incentive constraint for the agent�s optimal

consumption policy, as the agent can privately save:

uc (ct; �t) = eqt; (48)

where eqt is a new state variable capturing the marginal value of private savings (or consumption).
There are two major obstacles in solving the general problem using the �rst-order approach

outlined above. The �rst issue is dimensionality: In general, besidesmt which captures the project�s

quality, the principal�s value function depends on the state variables vt and ept, and also eqt if private
savings are further allowed. Given the additive cash-�ow technology in (1), mt enters the principal�s

value additively with mt=r, and we will focus on the function eJ (vt; ept; eqt) from now on.

Oftentimes, the solution eJ can only be obtained by numerical methods. This leads to the
second� and more important� concern: This �rst-order approach might not be valid. In other

words, numerical solutions typically make it harder to rigorously verify that, facing the proposed

optimal contract, the agent cannot have strictly pro�table (global) deviations. In contrast, in

our model, the combination of the CARA preference and private savings allows us to give a full

characterization of the solution and to further verify the validity of the �rst-order approach in

Section 4.4.

4.5.2 CARA preferences

For CARA preferences, the state variable, vt (i.e., the agent�s continuation payo¤) always separates

out from the problem, regardless whether we allow for private savings or not. More speci�cally,
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when the agent has CARA preferences, the principal�s value function is in the form of20

eJ (vt; ept; eqt) = eJ (�1; ept; eqt) + ln (�vt)
ar

: (49)

The intuition is as follows. Since u (ct + �c; �t) = e�a�cu (ct; �t), shifting the CARA agent�s con-

sumption by a constant �c in all states multiplies the agent�s utility by the same factor e�a�c

under both the recommended strategy and all deviations. As a result, shifting consumption by

�c = � ln(�v)
a , which shifts the agent�s continuation payo¤ multiplicatively by a factor of �v > 0,

does not change the incentive compatibility of the contract. Applying this argument to the optimal

contract, (49) simply says that the principal is as if facing an agent with a normalized continua-

tion value of �1, but then shifting the agent�s consumption all the states by � ln(�v)
a at the cost

of � ln(�v)ar in present value. This argument holds regardless whether the no-saving constraint is

present or not.

For general utility functions, we typically need to solve a Partial Di¤erential Equation (PDE)

with v being one of the state variables. For simplicity, suppose that the agent cannot privately

save, so that the principal�s value function can be written as eJ (vt; ept). Standard argument implies
that eJ (�; �) satis�es the following PDE:

r eJ (v; ep) = max
c;e�;e
 �

�
c; e�; ep�� c+ eJv �rv � u�c; ��c; e�; ep���+ eJep �(r + �) ep� �e�� (50)

+
�2

2

h eJvve�2 + eJ2epepe
2 + 2 eJvepe�e
i :
Given the optimal consumption c�, �

�
c�; e�; ep� denotes the agent�s optimal e¤ort satisfying the

�rst-order condition �u�
�
c�; �

�
c�; e�; ep�� = e� � ep in equation (45), and e
 is the di¤usion term

associated with ep. Solving (50) is a daunting task in general.21
4.5.3 What if the agent cannot privately save?

We have also assumed that the agent can privately save to smooth his consumption over his life

time. Although for general utility functions allowing for private savings demands another state

variable qt, for CARA preferences it does not. To see this, Lemma 2 and equation (13) imply

that eqt = �arvt always, rendering eqt to be redundant given vt. The intuition is simple: Private
savings imply that the marginal value of saving equals the marginal value of consumption, which

is proportional to the level of utility under the CARA utility.

20The certainty equivalent term ln(�arvt)
ar

in (36) di¤ers from ln(�vt)
ar

by a constant ln(ar)
ar

which is absorbed ineJ (�1; ept; eqt).
21For papers studying dynamic contracting problems with private savings where the agent has non-CARA prefer-

ences, see Kocherlakota (2004), He (2012), and more recently, Di Tella and Sannikov (2016).
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As a result, under CARA preferences, we only need to keep track of the agent�s information rent

as the single state variable, whether or not private savings are allowed. This paper fully solves the

case with private savings; and Appendix A.9 outlines the derivations for the case without private

savings. There, we show that similar to the private saving case, the key state variable for the

optimal contract is again (recall (46) and (47)) pt = ept= (�arvt), and we derive the ODE for the
principal�s value function V ns (p).

We emphasize that allowing for private savings under CARA preferences greatly simpli�es our

problem, which facilitates our rigorous characterization of the optimal contract in Proposition 2

and hence the veri�cation of the �rst-order approach in Proposition 3. We illustrate this point by

comparing the agent�s key Incentive-Compatibility condition for the setting with private savings to

that without. Under both settings, the agent�s Incentive-Compatibility condition is �u� (ct; �t) =e�t � ept in (45), which, after rewriting in terms of � and p, is
arvt (�t � pt) = u� (ct; �t)

CARA
= a�t � ut ) �t = (�t � pt) �

rvt
ut
:

Here, we use the property of CARA utility in the second equation. With private savings, the

agent�s consumption smoothing implies ut = rvt as in (11), rendering the simple and intuitive

Incentive-Compatibility condition

�t = �t � pt: (51)

In contrast, when the agent cannot smooth his consumption, the principal optimally chosen the

agent�s current consumption ct to control the ratio between the agent�s instantaneous utility ut

and his continuation payo¤ vt, and as shown in Appendix A.9 the resulting optimal e¤ort in the

optimal contract satis�es

�t
�
1 + a�2t � a�t

�
=
�
1� arpt � V nsp (pt)

�
(�t � pt) :

Comparing to (51), this is a cubic equation in �t, with right-hand-side involving the �rst-order

derivative of the value function V nsp (p).22 What is more, the �nal ODE (85) for V ns (p) derived in

Appendix A.9 seems dauntingly complicated for rigorous analytical analysis on its key properties

as in Proposition 2, and we await future research to make progress on this front.

22When the principal chooses the agent�s e¤ort �t (while �xing the agent�s consumption ct), it a¤ects the agent�s
instantaneous utility ut (ct; �t) and hence the drift of vt, i.e., ut � rvt as in (10). Because the drift of vt enters the
drift of pt = ept= (�arvt), the principal takes into account the �rst-order impact V ns

p (pt) in choosing �t. In contrast,
when the agent can control his own consumption, ut � rvt = 0 holds always thanks to the consumption smoothing
by the agent.
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5 Model Implications

To better understand our results, we �rst analyze the case in which we restrict the incentives f�tg

to be deterministic. We then turn to the general case where the optimal policies are stochastic and

compare it to both the Holmstrom and Milgrom (1987) benchmark and the contract with optimal

deterministic incentives. The discussion focuses on two qualitative features of optimal contracting:

front-loaded incentives and option-like incentives.

5.1 Contract with Deterministic Incentives

We will show that the optimal incentives are front-loaded (or, time decreasing) in dynamic con-

tracting with learning. This result is best illustrated when we constrain the incentives f�g to be

deterministic (but can vary over time), a case in which we can derive the time-decreasing incen-

tives analytically. This case also provides an important benchmark for the fully stochastic optimal

contract, because deterministic contracts do rule out the option-like feature (i.e., raising incentives

following good performance).

The reason that f�g being deterministic helps is that we can move the conditional expectation

in equation (20) inside the integral,23 so that the information rent pt = �
R1
t e

�(�+r)(s�t)�sds is

a deterministic process with �p = 0. Denote by V d (p) the value function with deterministic

policies, where the superscript �d�stands for �deterministic.�Plugging �p = 0 into (37), we have

�d (p) =
�
1 + p� �V dp

�
=
�
1 + ar�2

�
, with the resulting HJB equation as:

rV d (p) =
1

2

�
1 + p� �V dp (p)

�2
1 + ar�2

� p� 1
2
p2 + V dp (p) (�+ r) p:

The following proposition solves the above ODE in closed form.

Proposition 4 Optimal Deterministic Contracts. Within the class of deterministic contracts,

the value function V d (p) is quadratic

V d (p) = �1
2
Adp2 +Bdp: (52)

The evolution of information rent, incentive, and e¤ort are given by:

pdt =
Bd

Ad
e��t; �dt =

1 +Ad�

1 + ar�2
pdt ; and �

d
t = �

d
t � pdt =

Ad�� ar�2
1 + ar�2

pdt : (53)

23This is because of the property of exponential martingale (recall f�g being bounded):

Et
h
exp

�
�ar�

R s
t
�udBu �

(ar�)2

2

R s
t
�2udu

�i
= 1.
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where � � ��� r + 1+Ad�
1+ar�2

� > 0, Bd � 1=� and

Ad �
(2�+ r) ar�2 + r +

r
(2�+ r)2 a2r2�4 + 2ar�2

h
(�+ r)2 + �2

i
+ r2

2�2
: (54)

Note that pd in equation (43) equals pd0, which maximizes the time-0 principal�s value under deter-

ministic contracts.

The above proposition shows that in the optimal deterministic contract, the information rent pdt ,

the incentive �dt , and the optimal e¤ort �
d
t all follow certain exponentially decaying paths (toward

zero). Moreover, at t = 0, from equation (53) we have

�d0 =
Ad�� ar�2
1 + ar�2

pd0 =
1� ar�2pd0
1 + ar�2

<
1

1 + ar�2
= �HM0 :

Thus, the entire optimal e¤ort path is below the Holmstrom and Milgrom (1987) benchmark.

The optimality of the front-loaded e¤ort policies comes from the forward-looking nature of

information rent. From the agent�s incentive-compatibility condition in equation (19), the belief

manipulation e¤ect implies that giving incentives later tends to make the agent shirk earlier, but

not the other way around. This implies that later incentives are more costly than early ones, and,

consequently, the optimal contract implements higher e¤ort in earlier periods. Clearly, this result

relies on the commitment ability in long-term contracting. Indeed, in Section 5.3 we show that

equilibrium incentives and e¤ort policies are constant over time when relationships are short term.

Both Prat and Jovanovic (2014) and our model �nd front-loaded incentives to be optimal.

Because Prat and Jovanovic (2014) implements a constant e¤ort,24 the forward-looking nature

of information rent implies that the compensation contract has to o¤er front-loaded incentives.

Our model allows the optimal contract to adjust on the e¤ort margin (not just incentives), and

cheaper incentive provisions in earlier periods naturally push the optimal contract to implement a

front-loaded e¤ort pro�le.

The front-loaded e¤ort policies also arise in models with career concerns (e.g., Gibbons and

Murphy, 1992; Holmstrom, 1999), but through a distinct mechanism. There, agents in their early

careers face higher uncertainty in their abilities, and thus work harder to impress the market (but

the market will not be fooled in equilibrium, a standard signal-jamming problem). This force is not

24Both DeMarzo and Sannikov (2014)) and Prat and Jovanovic (2014) assume that the e¤ort cost is linear over
the feasible interval [0; 1] and focus on implementing the highest e¤ort level 1. In addition, Prat and Jovanovic
(2014) study the non-stationary case where the underlying pro�tability � (as a parameter) never changes, and as time
passes both parties eventually get to learn the true pro�tability. In Internet Appendix we show that the pattern of
time-decreasing e¤ort pattern is robust to this assumption.
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Figure 2: Value function and optimal policies in the optimal contract. Solid lines correspond to the optimal
stochastic contract, dashed lines correspond to the optimal deterministic contract. The parameters are
r = 0:5; a = 1; � = 8; � = 0:5. The Holmstrom-Milgrom (1987) benchmark has V HM = 1

2r(1+ar�2) = 0:03

and �HM = �HM = 1
1+ar�2 = 0:03 under the parameter speci�cation.

present in our stationary model, as the uncertainty of the pro�tability/ability (i.e., the posterior

variance of �t) stays constant over time.

5.2 Value Function and Optimal Policies

Now we return to the contracting space of fully stochastic incentives, and illustrate two qualitative

properties of our optimal contract. First, similar to the case of deterministic contracts studied

in Section 5.1, the fully stochastic optimal contract features front-loaded incentives. Second, the

optimal management of the agent�s information rent leads to an option-like feature in the optimal

contract, i.e., incentives rise after good performance. As explained, this option-like feature is

explicitly ruled out in deterministic contracts.

5.2.1 How does the optimal stochastic contract help?

From now on we always refer to optimal policies, and without risk of confusion we omit the su-

perscript �*�. Figure 2 plots the value function V (p), the optimal control f� (p) ; �p (p)g, and the

associated optimal policy �t (p) = �t (p) � p in solid lines. For comparison, in each panel we also

plot the corresponding deterministic counterparts in dashed lines, and the Holmstrom and Milgrom

28



(1987) benchmark in dotted lines.

The value delivered by the optimal stochastic contract must exceed the one under the deter-

ministic counterpart, as shown in Panel A in Figure 2. Panel B plots the volatility of the agent�s

information rent, �p, which is zero when the contract is restricted to be deterministic. A positive

�p in the optimal stochastic contract implies that the information rent rises after good performance

shocks, an interesting property which will be discussed shortly.

What drives the stochastic contract to be superior to the deterministic one? It is because the

stochastic contract implements a more e¢ cient e¤ort policy, closer to the higher Holmstrom and

Milgrom (1987) e¤ort benchmark. Panel C shows that incentives � (p) sit above the deterministic

counterparts for almost the entire range (and, thus, gets closer to the Holmstrom and Milgrom

(1987) benchmark level), except for low p�s, which are close to zero. A similar pattern holds for

the implemented e¤ort � (p) = � (p)� p in Panel D of Figure 2.

Interestingly, though not evident in Figure 2, when p is close to zero both the incentive � (p)

and e¤ort � (p) lie below their deterministic counterparts. This result is a robust feature of the

model. Indeed, with the aid of asymptotic analysis (see Proposition B.1 in the companion Internet

Appendix), one can analytically verify that the di¤erence between the deterministic and stochastic

contracts is negative by setting p ' 0. The seemingly counterintuitive result is rooted in the

�option-like�feature in the optimal contract, to which we turn next.

5.2.2 Option-like incentives

In our model it is optimal to implement a history-dependent e¤ort policy. This is surprising: As

the posterior variance only changes over time deterministically in a standard CARA-normal setting

with learning (in our stationary setting, the posterior variance is a constant in particular), usually

the resulting equilibrium e¤ort pro�le is a deterministic process as well (e.g., Holmstrom, 1999).

To understand the economic mechanism that drives this result, we study how history-dependent

e¤ort policies improve over deterministic policies. To this end, we investigate the response of

incentive � (or, e¤ort �) to unexpected shocks. This is captured by the di¤usion term of d� (pt) (or,

d� (pt)), i.e., �0 (pt)�pdBt (or
�
�0 (pt)� 1

�
�pdBt), and, as shown in the top panels in Figure 3, these

di¤usion terms are positive. There, we also plot the drift and di¤usion for the key state variable

pt, i.e., information rent. This interesting result implies that incentive (or, e¤ort) rises following

good performance, suggesting that the optimal contract is �convex� in output. In conclusion, in

contrast to the Holmstrom and Milgrom (1987) benchmark where the optimal contract features a

constant equity share, with learning the optimal contract has an option-like feature.
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Figure 3: Di¤usion and drift for incentives �t, e¤ort �t, and information rent pt in the optimal contract. Solid
lines correspond to the optimal stochastic contract, and dotted lines correspond to the optimal deterministic
contract. The parameters are r = 0:5; a = 1; � = 8; and � = 0:5:

The optimality of this option-like feature is a result of reducing the agent�s information rent in

a long-term relation. As explained in Section 3.4, the thrust of endogenous learning in dynamic

contracting is that the agent can (marginally) manipulate the principal�s future belief downward

by shirking today, and thus enjoy the potential information rent:

pt =
1

uc (ct; �t)
Et
�Z 1

t
�e�(�+r)(s�t)�suc (cs; �s) ds

�
:

The information rent captures the agent�s additional future rewards when the principal mistakenly

attributes the higher-pro�tability-driven good performance to the agent�s e¤ort, and this is why

future incentives f�sgmatter. Equally important, for a risk-averse agent, the amount of information

rent also depends on his marginal utilities uc (cs; �s) when receiving manipulation bene�ts in those

future states.

Because future incentives �s and future marginal utilities uc (cs; �s) enter the information rent

pt multiplicatively, a negative correlation between �s and uc (cs; �s) lowers pt today. Intuitively,

information rent can be reduced if the contract allocates greater belief manipulation bene�ts in

states where the agent cares less. Interestingly, the option-like feature achieves this negative corre-

lation. To see this, following a positive output shock, the agent becomes wealthier, implying a lower

marginal utility uc (cs; �s) = �arvs.25 By making the optimal contract option-like, the principal
25Formally, we have the evolution of marginal utility as d (�arvt) = �ar�t (�arvt) dBt, which has a negative
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Figure 4: Simulated paths of e¤ort policies in optimal contract. We simulate the model under the baseline
parameter speci�cation: r = 0:5; a = 1; � = 8; � = 0:5 for 10,000 rounds. In each round we simulate a path
of 250 months of equilibrium e¤orts starting at the initial optimal value p.

raises incentives after good performance and thus imposes a negative correlation between incentives

and the agent�s marginal utility.

The option-like feature explains the intriguing result that the agent works less in the optimal

stochastic contract than the deterministic one when p is close to zero, as discussed toward the end

of Section 5.2.1. A positive di¤usion of incentive � (e¤ort �) implies that the optimal contract

allocates lower incentives in states with poor historical performance (and hence a high marginal

utility). Because the information rent p is positively correlated with performance as indicated by

Panel B in Figure 2, the stochastic optimal contract implements lower incentives in states with

p ' 0.

5.2.3 Time-decreasing e¤ort policies

We have shown analytically in Section 5.1 that, because of forward-looking information rent, the

e¤ort policy is decreasing over time in the optimal deterministic contract. Not surprisingly, this

pattern persists in the fully stochastic optimal contract. Graphically, the front-loaded e¤ort policy

is re�ected by the negative drifts of incentives � and e¤ort � in the bottom panels in Figure 2.

di¤usion coe¢ cient in front of the performance shock dBt.
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The feature of declining e¤ort under the optimal contract is further con�rmed by Monte Carlo

simulations. Speci�cally, we simulate the model under the baseline parameter speci�cation for

10,000 rounds. In each round we simulate an equilibrium path of 250 months starting at the initial

optimal state p. As shown in Panel A, e¤ort policies in all simulated paths tend to decrease over

time. The average equilibrium e¤ort decreases to close to zero after 100 months (Panel B). One

interesting observation is that although the average e¤ort monotonically decreases over time, its

volatility increases initially, and then subsequently decreases (Panel C). This is because the di¤usion

of pt equals zero at both boundaries 0 and p, and achieves its maximum at an intermediate value

in between.

5.2.4 Comparative statics on uncertainty

We study comparative static results with respect to the uncertainty parameter �. Economically, �

measures the degree of informational uncertainty relative to cash �ow risk in the model,26 which

highlights our contribution to the literature (� = 0 corresponds to the classic Holmstrom and

Milgrom model). Figure 5 plots the equilibrium outcomes under the baseline parameter speci�cation

� = 0:5 (the solid line) as well as the one with � = 0:75 (the dashed line), while keeping other

parameters unchanged. A higher informational uncertainty can be considered as the situation with

more severe agency con�icts, since all else being equal the agent enjoys greater information rents.

This explains that, as a result of raising � = 0:5 to � = 0:75, the principal ends up with a lower

value function (Panel A, lower V (�)) and the agent works less (Panel B, lower �). To mitigate the

agent�s excessive information rents and curb his rent-seeking behavior, the optimal contract sets

lower incentives (Panel C, lower �) and becomes more option-like (Panel D, higher �p).

5.3 Short-term Contractual Relationship

We want to emphasize that the two foregoing features, i.e., front-loaded and option-like incentives,

are due to the interaction between long-term contracting and learning. The case of observable �t

shuts down learning, and, as in Holmstrom and Milgrom (1987), the optimal e¤ort and incentives

are constant over time. What if there is learning, but contractual relationships are restricted to be

short-term (say, due to lack of commitment)?

Imagine the following setting with short-term contracting, in which a long-lived agent with

unknown ability �t is working for a continuum of principals. At any time t > 0 there is one

principal who signs a short-term incentive contract with the agent. The relationship, however, only

26Recall that � = ��0=�
2 where ��0 is the prior uncertainty of � and �

2 is the volatility of cash �ows.
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Figure 5: Comparative statics with respect to the uncertainty parameter �. Solid lines correspond to the
optimal stochastic contract under the parameter speci�cation: r = 0:5; a = 1; � = 8; and � = 0:5. The
dotted lines correspond to the optimal stochastic contract under the same parameter speci�cation, except
� = 0:75.

lasts for the interval [t; t+ dt]. The short-term contract consists of a �xed wage �t, an incentive

�t, and the recommended e¤ort �t, so that given date t belief Et [�t] = mt the agent receives a

compensation �ow of

�tdt+ �t (dYt � �tdt�mtdt)

at the end of period t+dt. Afterwards, the relationship breaks and the agent signs another contract�
�t+dt; �t+dt

	
with another principal indexed by t+ dt. Importantly, short-term relationships rule

out inter-period commitment, implying each principal takes other principals�equilibrium o¤ers as

given.

For simplicity, to determine the history of �xed wages f�tg, we assign all the bargaining power

to principals (as we have assumed in Section 2.1). We have the following proposition:

Proposition 5 Short-term Relationships. Suppose that contractual relationships are short-

term and principals have all the bargaining power. Then the equilibrium incentive �STt is constant

over time:

�STt =
�+ r

r + ar�2 (�+ r)
for all t;
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and the equilibrium e¤ort �STt is constant over time as well

�STt =
r

�+ r
�STt =

r

r + ar�2 (�+ r)
for all t:

When the principals have all the bargaining power, Proposition 1 still applies to the agent�s

problem.27 Thus, given today�s incentive �STt and future incentives
�
�STt+s : s > 0

	
, the agent

exerts �STt = �STt � pSTt , where pSTt , the properly discounted future incentives
�
�STt+s : s > 0

	
, is

de�ned analogously as in equation (20). The time-t principal takes pSTt as given and maximizes

the expected output �STt � pSTt +mt, minus the total compensation which is the sum of the e¤ort

cost
�
�STt � pSTt

�2
=2 and the risk compensation 1

2ar�
2
�
�STt

�2
. Ignoring the given project quality

mt, the time-t principal maximizes the �ow payo¤ in equation (33) only:

max
�STt

�
�STt � pSTt

�
� 1
2

�
�STt � pSTt

�2 � ar�2
2

�
�STt

�2 ) �STt =
1 + pSTt
1 + ar�2

: (55)

Stationarity implies that both �STt and pSTt are constants, and the result in Proposition 5 follows.

Intuitively, without commitment, in short-term contracting each principal at di¤erent points

of time solves her individual myopic optimization problem in (55). In contrast, with long-term

contracting, a long-lived single principal not only maximizes the �ow payo¤ in (55) but also takes

into account the e¤ect of �t+s on the forward-looking information rent pt.
28 This forward-looking

force in the full commitment environment, combined with learning, makes the optimal e¤ort policy

time decreasing and stochastic.

5.4 Empirical Implications

5.4.1 Labor and CEO compensation

Our model has a few key empirical implications. First, the optimal long-term contract with learning

implements front-loaded e¤ort policies. This is consistent with the �ndings in Medo¤ and Abraham

(1981), who measure the productivity of di¤erent age groups and �nd that young people are more

productive, controlling for job categories. Their �ndings support the prediction that young workers

supply more labor if workers in the same job category have roughly similar abilities.

27When the agent does not have any bargaining power, the proof in Proposition 5 shows that for the agent�s
problem, the short-term incentives

�
�STt

	
here play the same role as the incentives f�tg in long-term contracts

analyzed in Proposition 1.
28This result is in contrast to Fudenberg, Holmstrom, and Milgrom (1990), in which learning is not present. They

show that, with dynamic moral hazard only, the optimal long-term contract can be implemented by short-term ones
under CARA preferences. In a way, their result suggests that commitment itself�when learning is absent�is not that
important. In contrast, our model shows that the commitment in long-term contracting is important because of the
long-lasting belief manipulation e¤ect with endogenous learning.
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Our model suggests that it is more e¢ cient to assign higher incentives after good performance,

because the agent has a lower marginal utility at that time (and hence less information rent).

This option-like feature of the optimal contract lends support to the pervasive use of option-based

compensation in practice (e.g., Hall and Liebman, 1998). There is further empirical support for

this prediction: Core and Guay (1999) �nd that the annual grant of options and stocks to a CEO is

increasing in past stock returns, and Bergman and Jenter (2006) document that option and stock

grants per manager are increasing in past stock returns. More recently, He et al. (2014) �nd that

managerial incentives increase with past �rm-level pro�tability.29

Pushing this point a bit further, our model also implies that managerial incentives should be

procyclical at the aggregate level. The idea is simple: Although aggregate economic conditions

should be indexed out in the optimal contract, the fact that the agent tends to have a marginal

utility in good times implies that it is relatively cheaper to assign incentives there. This prediction

is consistent with the empirical �nding in Eisfeldt and Rampini (2008), who show that the Hodrick-

Prescott-�ltered executive compensation is remarkably procyclical.

Last, as suggested by the comparative static result in Panel D in Figure 5, industries or �rms

with higher uncertainty should have more option-based contracts for managerial compensation.

There is no doubt that, compared to traditional industries, new-economy �rms (such as computer,

software, the Internet, or telecommunication companies) tend to be associated with higher un-

certainty. Consistent with our model predictions, both Ittner, Lambert, and Larcker (2003) and

Murphy (2003) �nd that new-economy �rms indeed grant more stock options to their managers.

There is one caveat in linking our optimal contracting results to compensation contracts in

practice. As emphasized, we focus on long-term contracting with full commitment, which is the-

oretically appealing because it gives the upper bound of other long-term relations with partial

commitment. In practice, without full commitment career concerns (Gibbons and Murphy, 1992;

Holmstrom, 1999) are another theoretically important and empirically relevant force,30 especially

when the labor market is mobile and agents/workers can easily move. Therefore, our model applies

more to the situation where human capital is more �rm-speci�c and thus long-term job security is

29He et al.(2014) emphasize the di¤erent roles of uncertainty and risk in shaping optimal executive compensation,
which potentially helps distinguish our uncertainty-based mechanism from the leading explanation that the purpose
of option-based compensation is to provide CEOs with incentives for taking risk (e.g., Smith and Stulz, 1985).
30Although both Gibbons and Murphy (1992) and our paper feature an optimal front-loaded e¤ort policy, the

predictions regarding optimal incentive pro�les are di¤erent. Due to career concerns, in Gibbons and Murphy (1992)
the agent works hard even without high-powered in-job incentives. In contrast, all incentives in our model are from
the long-term contract, and the front-loaded e¤ort pro�le requires a front-loaded incentive contract. This is a common
feature in a dynamic contracting model with full commitment and learning, such as in Prat and Jovanovic (2014)
and DeMarzo and Sannikov (2014).
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a primary concern.

5.4.2 Incentive contracts in asset management

Our analysis also sheds light on the di¤erence between compensation contracts observed in the

hedge fund and mutual fund industries. Hedge funds tend to compensate their managers based

on long-term �explicit incentives,�and the option feature is embedded in the widely used �2-20�

and high-water-mark contracts. That hedge fund contracts exhibit option-like features may well be

related to learning about the manager�s persistent unobservable ability in asset trading. In contrast,

mutual fund managers are often compensated by �implicit incentives,�which are management fees

proportional to assets under management. This is in line with the result that linear compensation

remains optimal for short-term contracting, a case analyzed in Section 5.3 when both parties

cannot commit to a long-term relationship.31 The di¤erence between these two industries seems

to be consistent with the casual observation that, compared with the hedge fund industry, there

is greater job mobility in the mutual fund industry because the human capital of mutual fund

managers is more fungible across di¤erent funds.32

Within the hedge fund industry, some interesting empirical predictions can be made based on

our main theoretical �ndings that: i) relative to shorter-term contracting, the agent in a longer-

term contracting relationship shirks more for the purpose of information rent extraction (equation

(19) in Proposition 1); and ii) to mitigate such motives, incentives tend to increase following

good performance. The former �nding (i) predicts that hedge fund managers in a longer-term

contracting relationship (e.g., a longer lock-in period) tend to work less, all else being equal (e.g.,

�xing incentives). Translating to observable measures, our model predicts that hedge fund managers

with a longer-term contracting relationship tend to be associated with worse fund returns, all else

being equal. The latter point (ii) speaks to the relationship between pro�t sharing and high-

water-mark. Because the high-water mark increases following superior performance, it is optimal

to assign managers a greater share of pro�ts whenever his high-water mark rises. This suggests

that the current practice of �xing the pro�t share, say at the 20% level, could be improved. Of

course, this conclusion might not be robust to other �rst-order factors (say, limited liability) that

are missing in our analysis.

31 It is worth noting that compared to the canonical Berk and Green (2004) model for mutual funds, our paper
features symmetric learning but abstracts away the endogenous fund �ows (and hence the endogenous fund size or
assets under management).
32 In practice, although it is common for hedge fund managers to sign a so-called non-compete clause when hired,

mutual fund managers rarely sign these types of clauses, especially for funds o¤ering passive investment products
(e.g., Dimensional).
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6 Concluding Remarks

We introduce pro�tability uncertainty into Holmstrom and Milgrom (1987) and study optimal long-

term contracting with endogenous learning. Although along the equilibrium path the principal

and the agent hold the same belief about project pro�tability, the agent�s potential deviation

by exerting e¤ort below the recommended level leads to potential long-lasting belief divergence

between both parties, and thus, a �hidden information�problem. Utilizing the convenient property

of CARA preferences, we show that the optimal contracting can be reformulated to a dynamic

programming problem with only one state variable, and we characterize the optimal contract by the

solution to an ODE. We show that optimal e¤ort decreases with tenure, and the optimal contract

exhibits an option-like feature in the sense that incentives/e¤ort rise after positive performance

shocks. These two properties rely on the combination of learning and long-term contracting, as

we show the resulting equilibrium e¤ort pro�le is constant over time in the case of either long-

term contracting without learning (Holmstrom and Milgrom, 1987), or short-term contracting with

learning (Holmstrom, 1999).

Although we are able to give a full characterization of the optimal long-term contract only

under a speci�c setting (e.g., CARA preferences, Gaussian processes, etc), the foregoing two key

qualitative results, i.e., front-loaded e¤ort policy and option-like feature, will likely be robust to

more general settings. The main reason we think the results extend is that the economic force behind

these results do not depend on CARA preferences or Gaussian processes. The agent�s information

rent due to belief manipulation, i.e., the agent�s inclination to shirk to distort the principal�s future

belief downward, is general in any long-term contracting environment with learning. Because later

incentives enter the agent�s forward-looking information rent in earlier periods, but not the other

way around, later incentive provisions are more costly, rendering the optimality of front-loaded

e¤ort policy. Additionally, the option-like feature comes from the fact that the agent is risk averse,

so that the marginal value of belief manipulation bene�ts is lower after good performance.
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A Appendix A: Proofs

A.1 Proof for Lemma 1

The argument is similar to He (2011). Consider any contract � = fct; �tg which induces an optimal policy fc?t ; �?t g
from the agent with a value v?0 , so that

v?0 = E�
?
�Z 1

0

e�rtu (c?t ; �
?
t ) dt

�
s.t. dYt =

�
�?t +m

�?

t

�
dt+ �dB�?

t ;

dSt = rStdt+ ctdt� c?t dt with S0 = 0;

The principal knows the resulting optimal e¤ort policy f�?t g, and she updates her belief according to f�?t g rather
than the recommended e¤ort policy f�tg. From the agent�s budget equation, we have

St =
R t
0
er(t�s) (cs � c?s) ds;

which gives the agent�s optimal savings path. Note that if St is bounded, then the transversality condition holds for

all measures induced by any feasible e¤ort policies.

By invoking the replication argument similar to revelation principle, we consider giving the agent a direct contract

�? = fc?t ; �?t g. Clearly, taking consumption-e¤ort policy fc?t ; �?t g is feasible for the agent with no private-savings.
Now we show that fc?t ; �?t g is optimal for the agent given this contract.

Suppose, counter-factually, that given the contract �?, the agent �nds that fc0t; �0tg yields a strictly higher payo¤
v00 > v

?
0 in her problem, with associated savings path

S0t =
R t
0
er(t�s)

�
c?s � c0s

�
ds;

which satis�es the transversality condition. Formally, we have

v00 = E�
0
�Z 1

0

e�rtu
�
c0t; �

0
t

�
dt

�
> v?0

s.t. dY 0
t =

�
�0t +m

�0

t

�
dt+ �dB�0

t ;

dS0t = rS
0
tdt+ c

?
t dt� c0tdt with S0 = 0:
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Now we construct an contradiction to the preassumption that �given � = fct; �tg the agent�s optimal policy
is fc?t ; �?t g with a value of v?0 .� Suppose that given � = fct; �tg, the agent takes the policy fc0t; �0tg instead of
fc?t ; �?t g which is claimed to be optimal. Because v00 > v?0 this alternative policy strictly dominates fc?t ; �?t g; the
only thing left is to verify whether the consumption plan is feasible given some saving policy. But, the saving policy

S00t = St + S
0
t =

R t
0
er(t�s) (cs � c0s) ds achieves fc0tg given the income process fctg, because

dS00t = dSt + dS
0
t = rStdt+ ctdt� c?t dt+

�
rS0tdt+ c

?
t dt� c0tdt

�
= r

�
St + S

0
t

�
dt+ ctdt� c0tdt

= rS00t + ctdt� c0tdt;

which also satis�es the transversality condition limT!1 E
�
e�rTS00T

�
= 0 if both St and S0t satisfy the transversality

condition. Thus, given the original contract �, the saving rule fS00t g supports fc0t; �0tg but delivers a strictly higher
payo¤ v00. This contradicts with the optimality of fc?t ; �?t g under the contract �.

Finally, because the principal knows that fc?t ; �?t g is optimal for the agent, the principal still correctly knows
the agent�s actual optimal e¤ort policy f�?t g and thus perform the correct Bayesian updating, and her payo¤ is the

same as that under the contract � = fct; �tg. Hence it is without loss of generality to focus on contracts that are
incentive-compatible and no-savings.

A.2 Proof for Lemma 2

Fix any constant S. Given any savings St = S and a contract � = fcg, from time-t on the agent�s problem is

max
fbcsg,fb�sg Eb�

�Z 1

t

� 1

a
e�a(bcs� 1

2
b�2s)�r(s�t)ds

�
(56)

s:t: dSs = rSsds+ csds� bcsds; St = S; s > t
dYs =

�b�t +mb�t � dt+ �dBb�s ;
given his information set. Note that the agent will learn actively. Denote by fc?s ; �?sg the solution to the above
problem, and by vt (S; �) the resulting agent�s value.

Now consider the problem with S = 0, which is the continuation payo¤ along the equilibrium path:

max
fbcsg,fb�sg Eb�

�Z 1

t

� 1

a
e�a(bcs� 1

2
b�2s)�r(s�t)ds

�
s:t: dSs = rSsds+ csds� bcsds; St = 0; s > t

dYs =
�b�t +mb�t � dt+ �dBb�s ;

We claim that the solution to this problem is fc?s � rS; �?sg, and therefore the value is vt (0;�) = earSvt (S; �). There
are two steps to show this. First, this solution is feasible. Second, suppose that there exists another policy

�bc0s; b�0s	
that is superior to fc?s � rS; �?sg, so that the associated value v0t (0;�) > e�arSvt (S; �). Consider

�bc0s + rS; b�0s	,
which is feasible to the problem in equation (56). Under this plan, however, the agent�s objective is

e�arS �maxEb�t
�Z 1

t

� 1

a
e�
(bc0s� 1

2
b�02s )�r(s�t)ds

�
= e�arSv0t (0;�) > vt (S; �) ;

which contradicts with the optimality of fc?s ; �?sg. As a result, vt (S; �) = e�arSvt (0;�).

A.3 Proof for Proposition 1

Denote the fc; �g to be the agent�s (proposed) optimal consumption-e¤ort policy given the compensation contract
that satis�es the �rst-order condition stated in the proposition. The agent�s continuation payo¤ vt follows dvt =

(�arvt)�t�dB
�
t where f�g are incentives speci�ed by the contract. We will use the following property of fvg later:

vt = v0 exp

�Z t

0

ar�u�dB
�
u �

Z t

0

0:5a2r2�2u�
2du

�
= v0 �

Z t

0

arvs�s�dB
�
s : (57)
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It is to show that when j�j < M is bounded, vt follows a martingale (Revuz and Yor, 1999, p. 139). This also veri�es

that vt is the agent�s equilibrium continuation payo¤ following the equilibrium consumption-e¤ort policy.

We now establish the necessary conditions stated in the proposition by considering deviation strategies on e¤ort

and consumption polices respectively. First consider the deviation policy in e¤ort, i.e. fbct; b�tg = fct; �t+"�tg, where
the deviation policy f�t 6= 0g is arbitrary. Due to CARA preference, we have

u (bct; b�t) = u (ct; �t) ea�t"�t+0:5a"2�2t :
The agent�s value under the deviation policy indexed by " is simply

bv0(") � Eb�0 �Z 1

0

e�rtrvte
a�t"�t+0:5a"

2�2t dt

�
;

note that the expectation is under the measure induced by deviating e¤ort pro�le b�. Equations (3), (5) and (16)
imply that the e¤ort pro�le b�, which depends on ", induces a change of measure relative to � by

�dB�
t � �dB

b�
t =

�b�t +mb�t � �t �m�
t

�
dt =

�
"�t +m

b�
t �m

�
t

�
dt (58)

=

�
"�t � �

Z t

0

e��(t��) ("�� ) d�

�
= ("�t � "�t) dt;

where, as in (16), we denote

�s � �
Z s

0

e��(s�u)��udu: (59)

Hence we introduce the exponential martingale Nt, indexed by ":

Nt (") � exp
�Z t

0

"�s � "�s

�
dB�

s �
Z t

0

("�s � "�s)
2

2�2
ds

�
; with N0 (") = 1,

so that according to Girsanov theorem, we have

bv0(") = Eb�0 �Z 1

0

e�rtrvte
a�t"�t+0:5a"

2�2t dt

�
= E�0

�Z 1

0

Nt (") e
�rtrvte

a�t"�t+0:5a"
2�2t dt

�
:

Now, we take derivative of bv0(") with respect to ", and evaluate it at " = 0. Because
dNt(")

d"

����
"=0

= Nt (") �
�Z t

0

�s ��s

�
dB�

s �
Z t

0

" (�s ��s)
2

�2
ds

�����
"=0

=

Z t

0

�s ��s

�
dB�

s ;

we have

dbv0(")
d"

����
"=0

=

8<:E�0
�Z 1

0

dNt(")

d"
� e�rtrvtea�t"�t+0:5a"

2�2t dt

�
+ E�0

24Z 1

0

Nt(")e
�rtrvt

d
�
ea�t"�t+0:5a"

2�2t

�
d"

dt

359=;
������
"=0

= E�0
�Z 1

0

�Z t

0

�s ��s

�
dB�

s

�
� e�rtrvtdt

�
| {z }

AA

+ E�0
�Z 1

0

e�rtarvt�t�tdt

�
: (60)

The �rst term AA equals to (using (57)):

AA = E�0
�Z 1

0

re�rt
�Z t

0

�s ��s

�
dB�

s

�
�
�
v0 �

Z t

0

arvs�s�dB
�
s

�
dt

�
= E�0

�Z 1

0

re�rt
�Z t

0

�s ��s

�
dB�

s

��
�
Z t

0

arvs�s�dB
�
s

�
dt

�
= �E�0

�Z 1

0

re�rt
Z 1

s

ar�svs (�s ��s) ds

�
= �E�0

�Z 1

0

e�rtar�tvt (�t ��t) dt

�
;
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where the last line uses change of order of integration. Plugging this result back into (60), and using (57), we have

dbv0(")
d"

����
"=0

= arv0E�0
�Z 1

0

e�rt�
R t
0 ar�u�dB

�
u�
R t
0 0:5a

2r2�2u�
2du [(�t � �t) �t + �t�t] dt

�
= arv0E�0

�Z 1

0

e�rt�
R t
0 ar�u�dB

�
u�
R t
0 0:5a

2r2�2u�
2du [(�t � �t) �t] dt

�
+arv0E�0

�Z 1

0

e�rt�
R t
0 ar�u�dB

�
u�
R t
0 0:5a

2r2�2u�
2du�t�tdt

�
| {z }

BB

: (61)

Let us furhter simplify the term BB in (61). Denote Zt � �
R t
0
ar�u�dB

�
u�

R t
0
0:5a2r2�2u�

2du so that E�s [exp (Zt)] =
exp (Zs) for s < t under the condition of j�j < M being bounded (see, e.g., Revuz and Yor, 1999, P139). Then by

changing the order of integration, we can get (recall (59)):

BB = E�0
�Z 1

0

e�rt+Zt�t�tdt

�
= E�0

�Z 1

0

e�rt+Zt�t�

�Z t

0

e��(t�s)�sds

�
dt

�
= E�0

�Z 1

0

�s�E�s
�Z 1

s

e�rt+Zte��(t�s)�tdt

�
ds

�
= E�0

�Z 1

0

e�rs+Zs�s�E�s
�Z 1

s

eZt�Zse�(r+�)(t�s)�tdt

�
ds

�
:

As a result, we have

dbv0(")
"

j"=0 = arv0E�0
�Z 1

0

e�rt+Zt�t

�
�t � �t + �E

�
t

�Z 1

t

�se
�(r+�)(s�t)eZs�Ztds

��
dt

�
:

This implies that any incentive-compatible and no-saving policy must satisfy

�t = �t � �E
�
t

�Z 1

t

�se
�(r+�)(s�t)eZs�Ztds

�
; a:s:

Otherwise, we can choose negative �t when �t > �t � �E�t
hR1
t
�se

�(r+�)(s�t)eZs�Ztds
i
, and positive �t when

�t < �t��E
�
t

hR1
t
�se

�(r+�)(s�t)eZs�Ztds
i
(note that arv0 is negative). Then a deviation strategy fct; �t+ "�tg for

su¢ ciently small " will be pro�table, leading to a contradiction.

The necessary conditions for the equilibrium consumption plan are much more standard. Fixing �, it is easy to

show that the necessary �rst-order condition for the agent�s consumption-saving problem is that his marginal utility

from consumption, i.e., uc (ct; �t), follows a martingale. Because uc (ct; �t) = �au (ct; �t) for exponential utility, and
vt = E�t

hR1
t
e�r(s�t)u (ct; �t) dt

i
, the result follows easily. Q.E.D.

A.4 Appendix for Section 3.4.1

To see that the �rst line is the agent�s total payo¤ from time t onwards given any e¤ort policy b� and bc, de�ne
G (t) �

R t
0
e�rsusds + e

�rtvt and G (1) is the agent�s total payo¤. Due to private savings, us = rvs, and we have

dG (t) = e�rtdvt. Therefore the total payo¤ (in�ated by ert) is Eb�t �ertG (1)� = ertG (t) + Eb�t
hR1
t
e�r(s�t)dvs

i
,

which is u (bct; b�t) dt+ vt + E�t hR1t e�r(s�t)dvs
i
by ignoring utilities occurring before t. Under equilibrium e¤ort, vs

is martingale, and thus E�t
hR1
t
e�r(s�t)dvs

i
= 0.

A.5 Appendix for Section 4.1

First of all, as mt follows a martingale with m0 = 0, we have

E
�Z 1

0

e�rtdYt

�
= E

�Z 1

0

e�rt(�t +mt)dt

�
= E

�Z 1

0

e�rt�tdt

�
:
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And, for wage cost, we have,

E
�Z 1

0

�e�rt 1
a
ln (�arvt) dt

�
= E

�Z 1

0

ln (�arvt)
ar

d
�
e�rt

��
= � ln (�arv0)

ar
� E

�Z 1

0

e�rt
d ln (�vt)

ar

�
= � ln (�arv0)

ar
+ E

�Z 1

0

1

2
e�rtar�2�2tdt

�
;

where we have used equation (30) in the last equality and the fact that �t�s are bounded (so E
hR1
0
e�rt dvt

vt
dt
i
=

�E
�R1
0
e�rtar�t�dBt

�
= 0).

A.6 Appendix for Section 4.2

Now we derive the evolution of pt. De�ne ept � (�arvt) pt. The de�nition of pt (see Eq. (20)) implies ept =
Et
hR1
t
� (�arvs�s) e�(�+r)(s�t)ds

i
. Based on the martingale representation theorem applied to epte�(�+r)t, there

existssome progressively measurable process e
t so that
dept = ((r + �) ept � � (�arvt�t)) dt+ e
t�dBt:

Note that dvt = (�ar�tvt)�dBt and de�ne 
t � e
t= (�arvt), we have
dpt =

dept
(�arvt)

+
ept

(arv2t )
dvt +

1

2

�
� 2ept
arv3t

(dvt)
2 +

2

arv2t
hdept; dvti�

=
((r + �) ept � � (�arvt�t)) dt+ e
t�dBt

(�arvt)
+

ept
(arv2t )

(�arvt�t)�dBt

� ept
arv3t

(�arvt�t)
2 �2dt+

1

arv2t
�2 (�arvt�t) e
tdt

=
�
(r + �) pt � ��t + ar�

2�t (
t + arpt�t)
�
dt+ � (
t + arpt�t)| {z }

��pt

dBt

� [(r + �) pt + �t (ar��
p
t � �)] dt+ �

p
t dBt:

A.7 Proof for Proposition 2

We will prove the key Proposition 2 in several steps. As a preparation, we will �rst show that for any feasible contract,

pt is bounded in [�Mp;�Mp]. In other words, in Proposition 2, V (p) is strictly concave over an compact interval

[�Mp;�Mp].

A.7.1 Step 0: Relaxed problem and parameter restrictions

Recall that we restrict the feasible incentive slopes f�tg to be bounded, i.e., there exists some su¢ ciently large
constant M such that �t 2 [�M;M ]. This is in the same spirit as imposing the transversality condition, because
given bounded incentives f�tg, the promised information rent p�as expected future discounted incentives� is also
bounded. This boundedness result holds for any feasible contract, not just the optimal one.

De�ne �Mp � � �M
�+r

: The following lemma shows that the information rent pt is bounded in [�Mp;�Mp] if

incentives f�tg are bounded in [�M;M ]. Further, the boundaries for pt, if ever reached (might be o¤ equilibrium),
are absorbing.

Lemma 3 Suppose that �t 2 [�M;M ] where M is a given constant. Then the state variable pt reaches �Mp if, and

only if, �s = �M;8s � t, which implies that �Mp are absorbing states for p. As a result, when p = �Mp, V (�Mp)

is quadratic in M as in (68).

Proof. Suppose that the control variable is constrained such that �t 2 [�M;M ], where M > 0 is an arbitrarily large,

but �xed constant. Recall the de�nition of pt; and we have

pt = E
�Z 1

0

��te
�(�+r)te(�

R t
0 ar�v�dBv�

1
2

R t
0 a

2r2�2v�
2dv)dt

�
� E

�Z 1

0

�Me�(�+r)te(�
R t
0 ar�v�dBv�

1
2

R t
0 a

2r2�2v�
2dv)dt

�
=

�M

�+ r
=Mp;
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where the equality is obtained only if �t = M for all t. Thus, at any time the feasible state variable p is bounded.

Similarly, we can show that p � � �M
�+r

= �Mp. Moreover, this result implies that whenever pt = �Mp, we must have

that for 8s � t,
�s = �M;ps = �Mp; and �s = �s � ps = �

rM

�+ r
.

Therefore, once pt hits �Mp, the state ps will stay there from then on. In this sense �Mp are absorbing boundaries.

Now we can write problem (33) in the standard dynamic programming language. Substituting �t = �t � pt in
the principal�s objective, we have

V (p) = max
f�t;�ptg

E
�Z 1

0

e�rt
�
(�t � pt)�

1

2
(�t � pt)

2 � 1

2
ar�2�2t

�
dt

�
(62)

s:t: dpt = [(�+ r) pt + �t (ar��
p
t � �)] dt+ �

p
t dBt for all t > 0, and p0 = p

�s 2 [�M;M ] , pt 2 [�Mp;+Mp] , and pt = �Mp are absorbing.

We are after the optimal policy f��t ; �
p;�
t g as functions of the state variable pt. And Lemma 3 implies that we know

the value function at the boundaries �Mp:

V (�Mp) =

Z 1

0

e�rt
 
� rM

�+ r
� 1

2

�
rM

�+ r

�2
� 1

2
a2r2�2M2

!
ds

= � M

�+ r
� r

2

�
1

(�+ r)2
+ a2�2

�
M2: (63)

For ease of argument, we �rst consider the principal�s relaxed maximization problem given M (and Mp =
�M
�+r

):

V (p;M) � max
f�t;�ptg

E
�Z 1

0

e�rt
�
�t �

1

2
�2t �

1

2
ar�2�2t

�
dt

�
(64)

s:t: dpt = [(�+ r) pt + �t (ar��
p
t � �)] dt+ �

p
t dBt for all t > 0, and p0 = p

pt is absorbing at�Mp,

�t can exceed M (but remains �nite) when pt 2 (�Mp;Mp) . (65)

Problem (64) is a relaxed version of the principal�s original problem (33), due to equation (65). Essentially, given

M , in the original problem (33) we require �t 2 [�M;M ] for any time t; while in problem (64) we only require

�t 2 [�M;M ] whenever pt hits �Mp in light of Lemma 3. Thus, when p = �Mp, the boundary conditions are the

same between these two problems. However, this relaxation helps because the relaxed problem (64) allows us to use

the interior �rst-order condition of � when p 2 (�Mp;Mp). We will show that for su¢ ciently large M the value

achieved in the relaxed problem is the same as that in the original problem, which implies that the solution to the

relaxed problem is also that to the original problem.

Let us de�ne two functions, which prove to be useful in saving notations:

H1 (p) � 1

�
p� 1

2

r

�2
p2 � a�2 (�+ r)2

2�2
p2;

H2 (p) � 1

r

�
1

2

(1 + p)2

1 + ar�2
� p� 1

2
p2
�
:

Recall the constant pd in Proposition 2 is given in (43).

We state assumptions required for the proof next.

Assumption 2: The parameters satisfy the following condition, which is equivalent to (42)

a

"
2

�
�

r
+ 1

�3
� ��2

#
<
�

r
: (66)
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Assumption 3: The feasible policy space for incentives is bounded given state p, i.e., � (p) <1 (though � (p)

may exceed M given M).

To solve the relaxed problem, we �rst focus on the following key ODE, with the boundary condition (68) given

in equation (63):

rV (p) =
1

2

(1 + p� �Vp (p))2

1 + ar�2 + a2r2�2
(Vp(p))

2

Vpp

� p� 1

2
p2 + Vp (p) (�+ r) p; (67)

s:t:V (�Mp) = H1 (�Mp) : (68)

We proceed with the following four steps:

Step 1: We �rst focus on the ODE in equation (67). We show that at p = 0, we have V (0) = 0 and Vp (0) = 1
�
.

Step 2: Under assumption 2, this ODE in equation (67) satis�es concavity and positivity of the denominator
condition.

(a), Prove the concavity and positivity of the denominator at p = 0.

(b), Prove the concavity and positivity of the denominator for general p > 0.

(c), Prove the concavity and positivity of the denominator for p < 0.

(d), Prove that the lower boundary 0 is absorbing and the upper boundary �p is entrance-no-exit (heuristically,

at �p the volatility of �p (�p) = 0 but its drift is strictly negative).

Step 3: From Steps 2.a-2.d, it follows from a standard veri�cation theorem that the solution to the ODE in

equation (67) is the value function of the principal�s relaxed problem. Furthermore, it is never optimal to run outside

the region [0; p] for the relaxed problem.

Step 4: Show that the value function for the relaxed problem is also the value function for the principal�s original

problem and �p is independent of M for su¢ ciently large M .

A.7.2 Step 1: V (0) = 0 and Vp (0) = 1
� .

We show that V (0) = 0 and Vp (0) = 1
�
in three steps:

Step 1.a: We �rst show that there must exist a solution to the following equation:

T (p) � 1 + p� �Vp = 0:

We know that V (0) � 0, which is the value of deterministic policy. We also know that

V (�Mp) = H1 (�Mp) < 0 and V (Mp) = H1 (Mp) < 0.

Then according to the intermediate value theorem, there exists p1 > 0 so that

T (p1) = 1 + p1 � �Vp (p1) = 1 + p1 � �
V (Mp)� V (0)

Mp
> 1;

and there also exists p2 < 0 such that

T (p2) = 1 + p2 � �Vp (p2) = 1 + p2 � �
V (0)� V (�Mp)

Mp
< 0;

for su¢ ciently high Mp. Therefore, we can �nd a point p such that

1 + p� �Vp
�
p
�
= 0: (69)

Step 1.b: Suppose that 1 + ar�2 + a2r2�2
V 2
p (p)

Vpp(p)
6= 0. We aim to show that p = 0 so that equations (69) and

(67) imply V (0) = 0 and Vp (0) = 1
�
. Di¤erentiating the HJB in equation (67) with respect to p at p, we have

rVp
�
p
�
= �1� p+ Vpp

�
p
�
(�+ r) p+ Vp

�
p
�
(�+ r) ;

46



which, together with equation (69), imply that

Vpp
�
p
�
p = 0:

Therefore, either p = 0 or Vpp
�
p
�
= 0. We �rst rule out the case of Vpp

�
p
�
= 0. Note that this case implies the

denominator of the �rst term in the right-hand side of equation (67) is in�nite, so that V must satisfy

rV
�
p
�
= �p� 1

2
p2 +

�
1 + p

��
1 +

r

�

�
p, (70)

Further, it follows from Taylor expansion that

V
�
p+ �

�
= V

�
p
�
+
1

�

�
1 + p

�
�+ o

�
�2
�

(71)

Vp
�
p+ �

�
=

1

�

�
1 + p

�
+ o (�) .

Thus, evaluating the HJB equation (67) at p+ �, we have

rV
�
p+ �

�
=

1
2
(�� o (�))2

1 + ar�2 + a2r2�2
V 2
p (p+�)

Vpp(p+�)

� p� ��
�
p+ �

�2
2

+
1

�

�
1 + p

�
(�+ r)

�
p+ �

�
+ o

�
�2
�

= �p� 1

2
p2 +

�
1 + p

��
1 +

r

�

�
p� �� p�� 1

2
�2 +

�
1 + p

��
1 +

r

�

�
�+ o

�
�2
�

= rV
�
p
�
+
r

�

�
1 + p

�
�� 1

2
�2 + o

�
�2
�
;

where the second equality uses the fact that
V 2
p (p+�)

Vpp(p+�)
goes to in�nity as � goes to zero because the continuity of

Vpp
�
p
�
implies that Vpp

�
p+ �

�
is at the order of o (1), and the last equality follows from equation (70). But this

contradicts equation (71), since they do not match at the second order �2. As a result, p = 0 and thus Vp (0) = 1
�
.

Step 1.c: Now suppose that 1 + ar�2 + a2r2�2
V 2
p (p)

Vpp(p)
= 0, i.e.,

Vpp
�
p
�
= �

a2r2�2V 2
p

�
p
�

1 + ar�2
= � a2r2�2

1 + ar�2
1

�2
�
1 + p

�2
; (72)

which implies that we cannot ignore the term with 1 + p� �Vp. Due to L�Hospital�s rule,

(1 + p� �Vp)2

1 + ar�2 + a2r2�2
V 2
p

Vpp

=
2 (1 + p� �Vp) (1� �Vpp)
a2r2�2

2VpV 2
pp�V 2

p Vppp

V 2
pp

: (73)

Di¤erentiating the HJB equation (67), we have,

rVp =

�
1 + p� �Vp

�
(1� �Vpp)

1 + ar�2 + a2r2�2
V 2
p

Vpp

� 1

2

�
1 + p� �Vp

�2�
1 + ar�2 + a2r2�2

V 2
p

Vpp

�2 �a2r2�2 2VpV 2
pp � V 2

p Vppp

V 2
pp

�
�1� p+ Vp (�+ r) + Vpp (�+ r) p.

Plugging equation (73) into the above equation, we �nd that the two terms in the �rst line cancel each other, and

0 = �1� p+ Vp�+ Vpp (�+ r) p = Vpp (�+ r) p;

which is the same as before. Therefore, either we have

p = 0, and Vp (0) =
1

�
;
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or we have Vpp
�
p
�
= 0 and p = �1, due to equation (72). Furthermore, in the second case, we have

Vpp (�1) = 0; Vp (�1) = 0, and
V 2
p (�1)
Vpp (�1)

= �1 + ar�
2

a2r2�2

In Lemma A.4 in the companion Internet Appendix,33 we will show that for any p; if

Vpp (p) = Vp (p) = 0 and lim
V 2
p (p)

Vpp (p)
! �q;

then q = 0 or 1
ar
. Therefore, the second alternative results in a contradiction and we must have p = 0, and Vp (0) = 1

�
.

We still need to show that V (0) = 0 under the assumption 1 + ar�2 + a2r2�2
V 2
p (p)

Vpp(p)
= 0. Suppose that

V (0) = v > 0. First, the HJB in equation (67) implies that

lim
p!0

(1 + p� �Vp)2

1 + ar�2 + a2r2�2
V 2
p

Vpp

= 2rv > 0.

Thus, it follows from equation (38) that the policy function � (p) at p = 0 has the value

� (0) = lim
p!0

(1 + p� �Vp)2

1 + ar�2 + a2r2�2
V 2
p

Vpp

� 1

1 + p� �Vp

= lim
p!0

2rv
1

1 + p� �Vp
=1:

This contradicts with Assumption 3 that our policy space is restricted to be bounded at p = 0.

A.7.3 Step 2: Prove the concavity and positivity

We delegate the proof of this step to the companion Internet Appendix.

A.7.4 Step 3: Veri�cation

De�ne the auxiliary gain process, as a function of the contract �, as

Gt (�) =

Z t

0

e�rs
�
(�s � ps)�

1

2
(�s � ps)

2 � 1

2
a2r2�2�2s

�
ds+ e�rtV (p) :

De�ne � as the hitting time when p reaches �Mp, which could be in�nite. Obviously, G� (�) is the actual payo¤

from the contract �. For given t, it is easy to show that

Et
�
ertdGt

�
=

24 �rV (p) + (�t � pt)� 1
2
(�t � pt)

2 � ar�2

2
�2t

+Vp
�
(�+ r) pt + �t

�
ar��P � �

��
+ 1

2
Vpp (�

p
t )
2

35 dt+ Vp�pt dBt:
Therefore,

dGt = �G (p) dt+ e
�rtVp�

p
t dBt:

Due to construction of the ODE in the HJB equation, under the optimal policy �� we have �G (p) = 0, whereas

for other policies we have �G (p) � 0. Also, since Vp is bounded, and we restrict the policy f�pt g to be well-
behaved (square integrable in the usual sense),

R t
0
e�rtVp�

P
s dBs is a martingale. Therefore, under the optimal contract

E [G� (��)] = G0 (��) = V (p0).
Given any T > 0, we have

E [G� (�)] = E
�
GT^� (�) + 1T��

�Z �

T

e�rs
�
(�s � ps)�

1

2
(�s � ps)

2 � 1

2
a2r2�2�2s

�
ds+ e�r�V (p� )

��
� G0 + e

�rTE
�Z �

T

e�r(s�T )
1

2
ds

�
where E

hR �
T
e�r(s�t) 1

2
ds
i
is the �rst-best project value. Therefore, let T !1, then we have E [G� (�)] � G0 = V (p).

This implies that the proposed contract solves the relaxed problem.

33 It is important to point out that the proof for Lemma A4 in the companion Internet Appendix does not use any
results from step 1 here. Thus, there is no circular argument.
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A.7.5 Step 4: �p is independent of M

We now show that �p is independent ofM . Take some su¢ ciently largeM1, and consider the solution obtained with the

upper entry-no-exit boundary �p1. Note that �p1 < M1 strictly, because V (�p1;M1) > 0 while at Mp;1 =
�
1 + r

�

�
M1

the value is strictly negative. And, for p 2 [0; �p1], we have

V (p;M1) = E
�Z 1

0

e�rt
�
(�t � pt)�

(�t � pt)
2

2
� 1

2
a2r2�2�2t

�
dt

���� p0 = p� :
It is clear that given �p1, this function is independent of M1, because under the optimal policy p 2 [0; �p1], and M does

not a¤ect the �ow payo¤ per se (note that �t is assumed to be unconstrained in the relaxed problem).

Now consider M2 2 (�p1;M1). The next lemma follows.

Lemma 4 V (p;M1) � V (p;M2) for p 2 [0; �p1].
Proof. Denote the corresponding Mp�s as Mp;i. Since M1 > M2 and Mp;1 > Mp;2, the policy space for the semi-

constrained problem with M1 is strictly larger than the policy space in the problem with M2. To see this, note that for

the problem 1 (with M1), the principal can choose �s =
�
1 + r

�
p
�
for s > t once pt 2 [Mp;2;Mp;1], which is exactly

the constraint for the policy space of problem 2 with M2. As a result, V (p;M2) � V (p;M1) for p 2 [0; �p1].

However, given M2, consider the exact same policy under M1 with endogenous upper entry-no-exit boundary

�p1, which generates the same value as V (p;M1). As a result, the policy under M1 also solves the problem with M2.

Therefore we must have the same solution for both Mi�s, and �p1 = �p2.

A.7.6 Step 5: Relaxed problem solves the original problem

We now show that the relaxed problem (64) solves the original problem (62). As explained before, our original

problem in equation (62) has more stringent constraints than the relaxed problem (64): In the original problem we

require �t � M always, while for the relaxed problem we only require that �t � M whenever pt hits �Mp. As a

result, we have V (p) � V C (p) always. Here, V C (p) denotes the value for the principal�s original problem.

To prove our theorem, it su¢ ces to show that in the region [0; p] ; we have V (p) = V C (p), i.e., the relaxed

problem and the original problem achieve the same value for su¢ ciently high M . Take the solution V (p) and its

corresponding incentive policy �M (�); and de�ne

� (M) � max
0�p��p

����M (p)
��� ;

where �M (p) emphasizes the possibility of the dependence of the optimal policy on the parameter value M . If we

can show that we can choose su¢ ciently high M so that � (M) �M holds, then the additional constraints are never

binding in the original problem, and both problems share the same solution obtained in Proposition 2.

We show that � (M) is independent of M for su¢ ciently high M , which immediately implies our result. Clearly,

it is su¢ cient to show that both the relaxed value function V (p) and �p are independent of M . We have shown that

�p is independent of M when M is su¢ ciently high. Moreover, since the endogenous state p never goes outside the

region [0; �p], we have

V (p) = E0
�Z 1

0

e�rt
�
(�t � pt)�

(�t � pt)
2

2
� 1

2
a2r2�2�2t

�
dt

���� p0 = p�
to be independent of M . As a result, max0�p��p

���M (p)
�� is independent of M , and our result follows.

A.8 Proof for Proposition 3

Consider any alternative policy fbc; b�g deviating from the original policy fc; �g, with an expected payo¤Eb�0 �R10 e�rsu (bcs; b�s) ds�.
To prove that this deviation payo¤ cannot exceed the equilibrium payo¤ v, we are follow Sannikov (2014) and con-

struct an upper bound for the deviation policies. We take the optimal contract as given, which gives f��t ; �
p�
t g. In

this proof, we omit �*�on f��t ; �
p�
t g without any risk of confusion.
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To construct the upper bound for deviation payo¤s, we will show that it is su¢ cient to keep track of two deviation

state variables that matter to the agent�s potential deviation value. The �rst deviating state variable captures the

agent�s private saving:

St �
Z t

0

er(t�s) (cs � bcs) ds:
The second deviating state variable is the belief wdge as de�ned in (16) captures the persistent belief manipulation

e¤ect:

�t = �

Z t

0

e�(s�t) (�s � b�s) ds:
Given these two deviating variables, we propose a candidate of an upper bound for the agent�s deviation value,

which is de�ned as

W (vt; pt;St;�t) � vt|{z}
equ ilibrium contract

� exp (�arSt)| {z }
deviation value from savings

� exp
�
�ar

�
1

�
�tpt + 0:5k�

2
t

��
| {z }
deviation value from belief d istortions

: (74)

The linear coe¢ cient pt in front of �t re�ects the �rst-order gain of the information rent pt from belief-manipulation;

the quadratic coe¢ cient k will be chosen shortly to ensure W (vt; St;�t) being the upper bound of the agent�s

deviation value.

We further require the following assumptions on the agent�s deviation strategies for the usual transervasality con-

ditions, which are standard in in�nite-horizon consumption/saving problems. More speci�cally, there exist (however

large) positive constants Ls and L�, so that the agent�s deviation strategies satisfy

jStj < Ls, and j�tj < L�:

We have the following key lemma showing that W (vt; pt;St;�t) is the upper bound of the agent�s deviation value.

Lemma 5 Facing the contract fct; �tg, suppose that the agent�s deviation history leads to a pair of deviation states
as (St;�t) at time t. Then the agent�s deviation value from time t onwards is bounded above by W (vt; pt;St;�t), if

either (77) or (78) holds.

Proof. We �rst give the outline of the argument. To prove W (vt; St;�t) is an upper bound for the agent�s deviation

value, de�ne the auxiliary gain process Gt associated with any feasible policies fbc; b�g as
Gt
�
fbcs; b�sg1s=0� � Z t

0

e�rsu (bcs; b�s) ds+ e�rtW (vt; pt;St;�t):

Clearly, Eb�0 [G1] = Eb�0 �R10 e�rsu (bcs; b�s) ds� is the expected payo¤ under the feasible policy, given the transversality
condition lim

s!1
Eb�0 �e�rtWt

�
= 0 (which is implied by Assumption 1 for transversality conditions). On the other hand,

G0 = W (v0; S0;�0) is the proposed upper bound of the agent�s deviation value given the current relevant deviation

states (S0;�0). Obviously, one su¢ cient condition for Eb�0 [G1] � G0 = W (v0; S0;�0), i.e., the upper bound (74) is

valid, is that the auxiliary gain process Gt is a supermartingale for any deviation policy under the agent�s information

set.

Now we start the proof. For ease of notation, denote

�t = �̂t � �t; but � u (bct; b�t) , ut � u (ct; �t) , with ut = rvt:
Under the measure �̂, we have evolutions

dpt =

�
(�+ r) pt + �t (ar��

p
t � �) +

�pt
�
(�t +�t)

�
dt+ �pt dB

�̂
t ;

dvt = �vtar�t(�dB
�̂
t + [�̂t +�t]dt);

dSt = (rSt + ct � ĉt)dt; and d�t = ��(�t +�t)dt:
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It follows that

ertdGt = [but � rWt] dt+Wtdvt � arWt

�
dSt + d

�
1

�
�tpt + 0:5k�

2
t

��
+ (�ar

�
�t)

Wt

vt
hdvt; dpti

= [but � rWt] dt+Wtdvt � arWt

�
dSt + d

�
1

�
�tpt + 0:5k�

2
t

�
��t

ar

�
�t��

p
t dt

�
= �ar�tWt�dB

b�
t + [but � rWt] dt� arWt

1

�
�tdpt

�arWt

�
�t [�t +�t] dt+ dSt +

�
1

�
pt + k�t

�
d�t ��t

ar

�
�t��

p
t dt

�
= [�ar�tWt� � arWt

1

�
�t�

p
t ]dB

b�
t � rWt

a

�
�t

�
(�+ r) pt + �t (ar��

p
t � �) +

�pt
�
(�t +�t)

�
dt

+rWt

�
e
�a(bct� 1

2
b�2t )+a(ct� 1

2
�2t )+ar

�
St+

1
�
pt�t+0:5k�

2
t

�
� 1
�
dt

+rWt

�
�a�t [�t +�t]� a(rSt + ct � ĉt) + a (pt + �k�t) (�t +�t) + �t

a2r

�
�t��

p
t

�
dt:

Because ex � 1 + x and Wt < 0 (since vt < 0), the drift of ertGt is bounded above by

rWt

8<: � a
�
�t

h
(�+ r) pt + �t (ar��

p
t � �) +

�
p
t
�
(�t +�t)

i
� a

�bct � 1
2
b�2t �+ a �ct � 1

2
�2t
�

+ar
�
St +

1
�
pt�t + 0:5k�

2
t

�
� a(rSt + ct � ĉt)� a(�t � pt � �k�t)(�t +�t) + �t

a2r
�
�t��

p
t

9=;
= arWt

�
1

2
�2t + (�k �

�pt
��
)�t�t + (0:5rk + �k �

�pt
��
)�2

t

�
= rWt

"
1

2

�
�t +

�
�k � �pt

��

�
�t

�2
+

 
(0:5rk + �k � �pt

��
� 1

2

�
�k � �pt

��

�2!
�2
t

#
: (75)

Notice that all the terms that are linear in the instantaneous devation �t and cumulative past deviations �t all get

cancelled, thanks to the �rst-order Incentive Compatibility condition for the agent.

Our goal is to show that the sum of all the quadratic terms in (75) is negative always. Then, because the drift

of ertGt is bounded above by (75), it immediately implies the drift for dGt is always negative. For all possible

instantaneous deviations �t and cumulative past deviations �t, because Wt < 0, the necessary and su¢ cient condition

for (75) to be negative always is that the term in the bracket is positive for the all equilibrium values �pt in the optimal

contract. In other words, we require that for we choose some k so that for in the optimal contract, �pt satis�es

1

2

�
�k � �pt

��

�2
�
�
0:5rk + �k � �pt

��

�
� 0

, �2k2 � (r + 2�+ 2�
p
t

�
)k + (

�pt
��

+ 1)2 � 1 � 0 (76)

Obviously, this imposes certain su¢ cient condition on the range of f�pt g in the optimal contract. We give two

particular examples of the su¢ cient conditions.

1. Proposition 2 shows that f�pt g is bounded in the optimal contract. What is more, although we cannot prove
it rigorously, the optimal contract exhibits the �option-like� feature so that �pt > 0 which holds in all of our

numerical examples. Denote the range of �pt by [0; L�p ] with L�p � sup�pt > 0. Then the two real roots for

the left side of the quadratic equation (76), denoted by k� (�
p
t ) < k+ (�

p
t ), are

k+ (�
p
t ) =

r + 2�

2�2
+
�pt
��2

+

q
4�2 + r2 + 4r(�+

�
p
t
�
)

2�2
;

k� (�
p
t ) =

r + 2�

2�2
+
�pt
��2

�

q
4�2 + r2 + 4r(�+

�
p
t
�
)

2�2
:
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Since �pt > 0, both roots are increasing in �pt because
@k+
@�

p
t
= 1

��2
(1 + rp

(2�+r)2+4r�
p
t =�

) > 0, and @k�
@�

p
t
=

1
��2

(1 � rp
(2�+r)2+4r�

p
t =�

) > 0. As a result, if k�
�
�pt = L�p

�
< k+ (�

p
t = 0), then there exists a positive k

lying inside the interval

k 2
�
k�
�
�pt = L�p

�
; k+

�
�pt = L�p

��
;

so that the drift for dGt is always negative for all �
p
t 2 [0; L�p ]. To summarize, we need the following su¢ cient

condition

L�p

��2
�

q
4�2 + r2 + 4r(�+

L�p
�
)

2�2
� r + 2�

2�2
; where L�p � sup�pt and �

p
t > 0: (77)

Because the left hand side is increasing in L�p > 0, this condition requires the volatility of information rent

�pt cannot be too high. A slightly more relaxed su¢ cient condition for (77) is to set the L�p inside the square

root to be zero, and the condition simpli�es to L�p � � (r + 2�) :

2. If we do not impose that �pt > 0, one can still follow the above logic to give a similar but more complicated

su¢ cient condition for the range of f�pt g. But there is a natural choice of k = 1 that makes the condition (76)
transparent without �pt > 0. In this case, (76) can be simpli�ed to

(�pt )
2 � �2�2

�
r + 2�� �2

�
; k = 1 (78)

which gives an upper bound on the absolute magnitude of �pt . Note this condition does not require the preas-

sumption that �pt > 0.

To summarize, we have shown that under the measure induced by b�,
dGt = negative drift+ [�ar�tWt� � arWt

1

�
�t�

p
t ]dB

b�
t ;

if the volatility of information rent, �pt , is not excessively high (in the sense of either (77) or (78), which easily holds

in our numerical example). Intuitively, all else equal, the agent�s global deviation value tends to be increasing in the

volatility �pt of his deviation state variable, because the agent�s has the �option� to adjust his optimal strategy swiftly

following a sequence of deviations and performance shocks.

The last routine step to ensure Gt being a supermartingale is to check the following condition:

Eb�0
�Z T

0

(ar�tWt� + arWt
1

�
�t�

p
t )dB

b�
t

�
= 0 for all T .

Since jStj, j�tj, jptj, j�tj and j�
p
t j are bounded, we only need to ensure the square integrability condition (Revuz and

Yor, 1999, p. 139):

Eb�0
�Z T

0

�
e�rtvt

�2
dt

�
<1 for all T .

Under b�, using (58) we have dvt
vt
= �ar�t�dB

b�
t � ar�t (�t ��t) dt; which implies that

vt = v0 exp

�Z t

0

�ar�s�dB
b�
s �

Z t

0

0:5a2r2�2s�
2ds�

Z t

0

ar�s[�s ��s]ds

�
:

Denote L� and M so that j�tj < L� and j�tj < M . Then we have����Z t

0

ar�s[�s ��s]ds

���� = ar ����Z t

0

�s

�
�s � �

Z t

s

e�(s�u)�udu

�
ds

���� < ar Z t

0

j�sj
�����s � �Z t

s

e�(s�u)�udu

���� ds
< ar

Z t

0

2L�max

�
�s; �

Z t

s

e�(s�u)�udu

�
ds < 2arL�Mt;����Z t

0

0:5a2r2�2s�
2ds

���� < 0:5a2r2�2M2t:
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Hence,Z T

0

�
e�rtvt

�2
dt =

Z T

0

�
e�rtv0

�2
exp

�Z t

0

�2ar�s�dB
b�
s �

Z t

0

a2r2�2s�
2ds�

Z t

0

2ar�s[�s ��s]ds

�
dt

<

Z T

0

(v0)
2 e4arL�Mt�2rt exp

�Z t

0

�2ar�s�dB
b�
s �

Z t

0

2a2r2�2s�
2ds

�
exp

�Z t

0

a2r2�2s�
2ds

�
dt

<

Z T

0

(v0)
2 e4arL�Mt+a2r2M2�2t�2rt exp

�Z t

0

�2ar�s�dB
b�
s �

Z t

0

2a2r2�2s�
2ds

�
dt:

Because
R t
0
(2ar�s�)

2 ds < (2arM�)2 t for all t, exp
hR t
0
�2ar�s�dBb�s � R t0 2a2r2�2s�2dsi is an exponential martingale

under the measure induced by b�. Therefore, for all T , we have
Eb�0
�Z T

0

�
e�rtvt

�2
dt

�
<

Z T

0

e4arL�Mt+a2r2�2M2t�2rt (v0)
2 Eb�0

�
exp

�Z t

0

�2ar�s�dB
b�
s �

Z t

0

2a2r2�2s�
2ds

��
dt

= (v0)
2

Z T

0

e4arL�Mt+a2r2�2M2t�2rtdt <1:

Now, given the fact that Gt is a supermartingale, we have

W (S0;�0) = G0 � Eb�0 lim
t!1

[Gt] = Eb�0
�Z 1

0

e�rsu (bcs; b�s) ds+ lim
t!1

�
e�rtWt

��
= Eb�0

�Z 1

0

e�rsu (bcs; b�s) ds� ;
which is the agent�s deviation payo¤. Here, the last equality requires the transversalilty condition which is ensured by

the assumption of bounded jStj and j�tj. This implies that (74) is indeed the upper bound for the agent�s deviation
value.

We have shown that W (vt; pt;St;�t) is an upper bound for the agent�s potential deviation value given the

deviated states (St;�t). Then, for an agent who has not deviated yet with St = �t = 0, the upper bound of his

deviation value is just vt. Because the equilibrium strategy achieves this upper bound vt, the equilibrium strategy is

indeed globally optimal. As a result, we have shown that the equilibrium strategy that achieves vt is indeed optimal.

Q.E.D.

A.9 What if the agent cannot privately save?

This appendix analyzes the case in which the agent cannot private save. Recall the following de�nitions

vt � Et
�Z 1

t

e�r(s�t)u (cs; �s) ds

�
; ept � Et �Z 1

t

�e�(r+�)(s�t)e�sds� ; e�t = (�arvt)�t;
and the associated volatilities e�t and e
t so that

dvt = (rvt � ut) dt+ e�t�dBt;
dept =

�
(r + �) ept � �e�t� dt+ e
t�dBt:

Denote the principal�s value function by eJ (v; ep) (ignoring the posteior mean of the project m) which satis�es the
HJB

r eJ = max
c;e�;e
 �

�
c; e�; ep�� c+ eJv �rv � u�c; ��c; e�; ep���+ eJep �(r + �) ep� �e��+ �2

2

h eJvve�2 + eJepepe
2 + 2 eJvepe�e
i ; (79)
with the agent�s optimal e¤ort �

�
c; e�; ep� satisfying the �rst-order condition �u� �ct; ��ct; e�t; eplt�� = e�t � ept.

De�ne

pt �
ept

(�arvt)
;�t �

e�t
(�arvt)

; 
t �
e
t

(�arvt)
; and �pt � � (
t + arpt�t) :
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A similar derivation as in Appendix A.6 leads to the evolution of pt in the no private savings case (with rvt 6= ut) as

dpt =

�
(r + �) pt �

pt
vt
(rvt � ut) + �t (ar��

p
t � �)

�
dt+ �pt dBt:

Furthermore, the agent�s optimal e¤ort policy can be rede�ned as � (c; �; v; p). For simplicity, we omit (v; p) in the

expression. As explained in the main text, the agent�s incentive-compatibility condition is u� (ct; �t) = arvt (�t � pt),
and since under CARA we have u� = a�u, it becomes

u (ct; �t) =
rvt
�t
(�t � pt) :

This implies that

ct =
1

2
�2t �

1

a
ln (�arvt)�

1

a
ln
�t � pt
�t

: (80)

The principal�s value function can be rede�ned as J (v; p) � eJ �v; ept
�arvt

�
; and (79) implies that

rJ = max
c;�;�p

� (c; �)� c+ Jv (rv � u (c; � (c; �))) + Jp
�
(r + �) p� p

v
(rv � u (c; � (c; �))) + � (ar��p � �)

�
+
1

2

h
�2Jvv (�arv)2 �2 + Jpp (�p)2 + 2Jvp (�arv)���p

i
:

Given the CARA preferences, we conjecture that (ns stands for �no savings�)

J (v; p) =
ln (�arv)

ar
+ V ns (p) ;

with Jv = 1
arv
; Jp = V

ns
p ; Jvv = � 1

arv2
and Jpp = V ns

pp : Using the expression of c in (80), and observing that v cancels,

one can simplify the HJB equation to the following ODE for V (p):

rV ns = max
�;�;�p

�� 1

2
�2 +

1

a
ln
� � p
�

+
1

a

�
1� � � p

�

�
� 1

2
ar�2�2 (81)

+ V ns
p

�
�� (� � p) + rp� � p

�
+ ar��p�

�
+
1

2
(�p)2 V ns

pp ;

with the following �rst-order-conditions:

�
�
1 + a�2 � a�

�
=

�
1� arpV ns

p

�
(� � p) ; (82)

�p = �ar�V
ns
p

V ns
pp

�; (83)

� =
1

ar�2
(1� �)

�
1� arpV ns

p

�
1 + a�2 � a� + V ns

p �
�
� �

ar�2
+
�p

�

�
: (84)

Remark 3 Comparing to private savings case in which � = � � p, now in (82) we have � to solve a cubic equation

�
�
1 + a�2 � a�

�
=
�
1� arpV ns

p

�
(� � p) ;

with its right hand side being dependent on the value function itself via V ns
p . The reason why V ns

p matters is that when

changing �, the principal controls the agent�s utility (recall c can be �xed when there are no private savings). This

a¤ects the drift of vt which is rvt � u (ct; �t) (recall (30)), and in turn the evolution of the information rent ept
(�arvt) .

In contrast, with hidden savings, the agent�s consumption adjusts with implemented �t so that ut = rvt always.

We also have a much more complicated �ow term in (81), which involves two new highly nonlinear terms
1
a
ln ��p

�
+ 1

a

�
1� ��p

�

�
. In contrast, these two terms vanish when � = � � p in the case of private savings.
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The �nal ODE about V (p) becomes extremely complicated. We have tried the following. From Eq. (83) and

(84), we have

� =

1
ar�2

(1��)(1�arpV ns
p )

1+a�2�a� � �
ar�2

V ns
p

1 + ar
(V ns

p )2

V ns
pp

and �p = �ar�V
ns
p

Vpp

1
ar�2

(1��)(1�arpV ns
p )

1+a�2�a� � �
ar�2

V ns
p

1 + ar
(V ns

p )2

V ns
pp

:

Substituting these two equations into the HJB, we have

rV ns = max
�
�� 1

2
�2 +

1

a
ln

1
ar�2

(1��)(1�arpV ns
p )

1+a�2�a� � �
ar�2

V ns
p � p

�
1 + ar

(V ns
p )2

V ns
pp

�
�

�
1 + ar

(V ns
p )2

V ns
pp

� (85)

+
1

a

0BB@1�
1

ar�2
(1��)(1�arpV ns

p )
1+a�2�a� � �

ar�2
V ns
p � p

�
1 + ar

(V ns
p )2

V ns
pp

�
�

�
1 + ar

(V ns
p )2

V ns
pp

�
1CCA� 1

2
ar�2

0B@ 1
ar�2

(1��)(1�arpV ns
p )

1+a�2�a� � �
ar�2

V ns
p

1 + ar
(V ns

p )2

V ns
pp

1CA
2

+ Vp

0BBBBBBBBBBBBBB@

��

0@ 1
ar�2

(1��)(1�arpV nsp )
1+a�2�a�

� �

ar�2
V ns
p

1+ar
(V nsp )2
V nspp

� p

1A
+rp

1
ar�2

(1��)(1�arpV nsp )
1+a�2�a�

� �

ar�2
V ns
p �p

 
1+ar

(V nsp )2
V nspp

!

�

 
1+ar

(V nsp )2
V nspp

!

�a2r2�2 V
ns
p

V ns
pp

0@ 1
ar�2

(1��)(1�arpV nsp )
1+a�2�a�

� �

ar�2
V ns
p

1+ar
(V nsp )2
V nspp

1A2

1CCCCCCCCCCCCCCA
+
a2r2�2

2

�
V ns
p

�2
V ns
pp

0B@ 1
ar�2

(1��)(1�arpV ns
p )

1+a�2�a� � �
ar�2

V ns
p

1 + ar
(V ns

p )2

V ns
pp

1CA
2

:

This is way more complicated than the �nal ODE (39) in the case with private savings; note that in the above ODE

we have not even expressed the optimal � explicitly yet.

We conclude by stating that it is quite challenging to even numerically solve the case without privates savings.

In unreported results that are available upon request, we analyze an important benchmark case with deterministic

contracts (i.e. implies �p = 0). Recall that in the private saving case, the resulting value function under deterministic

contracts is a quadratic function, and the solution is derived in closed form (see Proposition 4). This solution to this

benchmark case helps quite a bit in guessing the structure of value function in the general case (p = 0 and p = pd).

Unfortunately, in the case of no private savings, the ODE for deterministic contracts becomes highly non-linear in p,

and no longer tractable as in the case of private savings.

A.10 Proof for Proposition 4

We �rst conjecture that the value function for the deterministic policy, V d (p), has the following quadratic form

V d (p) = �1
2
Adp2 +Bdp+ Cd:

Plugging the above conjecture into the following ODE for the deterministic value function

rV d (p) =
1

2

�
1 + p� �V d (p)

�2
1 + ar�2

� p� 1

2
p2 + V d

p (p) (�+ r) p;

we can easily show that Bd = 1
�
, Cd = 0, and Ad satis�es

�1
2
rAdp2 =

1

2

�
1 + �Ad

�2
p2

1 + ar�2
� 1

2
p2 �Ad (�+ r) p2:

Rearranging the above equation, we have

�2
�
Ad
�2
�Ad�

�
r

�

�
1 + ar�2

�
+ 2ar�2

�
� ar�2 = 0;
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which gives the solution for Ad:

Ad =
1

2�

24 r
�

�
1 + ar�2

�
+ 2ar�2 +

s�
r

�
(1 + ar�2) + 2ar�2

�2
+ 4ar�2

35 :
The optimal initial pd0 =

Bd

Ad
follows easily from the �rst-order equation.

The incentive, as a function of information rent pt, is

�dt =
1 + pt � V d

p �

1 + ar�2
=
1 +Ad�

1 + ar�2
pt:

Using equation (35), we can derive the evolution of information rent pt to be

dpdt
pdt

= (�+ r) dt� �dt
pt
�dt =

�
�+ r � 1 +Ad�

1 + ar�2
�

�
dt � ��dt:

To show that � = 1+Ad�
1+ar�2

�� (�+ r) > 0, it is equivalent to show that Ad >
�
1 + r

�

�
ar�2

�
+ r

�2
, which always holds

by Lemma A.2 in the companion Internet Appendix. Finally, the optimal e¤ort can be calculated as �dt = �
d
t � pdt .

A.11 Proof for Proposition 5

Suppose along the equilibrium path the agent�s continuation payo¤ is vt. Similar to equation (15), we want to show

that dvt = �arvt�t (dYt � �t �mtdt) where �t is the short-term incentive slope o¤ered along the equilibrium path.

Because the agent�s future rents are always zero (principals have all the bargaining power), it is easy to show that

under the optimal saving policy the private saving balance follows St = � 1
ar
ln (�arvt) with consumption policy

ct = g (�t)� 1
a
ln (�arvt) : Because the principal has all the bargaining power, the �xed wage �t satis�es

�t = g (b�t) + 1

2
ar�2�2t : (86)

Intuitively, the principal reimburses the agent�s e¤ort cost b�2t
2
, and compensates the risk premium 1

2
ar�2�2t borne by

the agent; they are just enough to convince the agent to take the o¤er. Then, in equilibrium, �t = b�t and the agent�s
budget constraint reads

dSt = rStdt� ctdt+ �tdt+ �t (dYt � �t �mtdt)

=
1

2
ar�2�2tdt+ �t (dYt � �t �mtdt) :

Since vt = � 1
ar
exp (�arSt), using Ito�s lemma we have

dvt = exp (�arSt) dSt +
ar

2
exp (�arSt) (dSt)2 = �arvt�t (dYt � �t �mtdt) :

Thus, the agent�s continuation value process is identical to equation (15). This also veri�es that �t in equation (86)

is the minimum �xed wage needed to attract the agent.

Proposition 1 implies that the agent�s incentive compatibility constraint satis�es

�t = �t � Et
�Z 1

t

��se
�(�+r)(s�t) exp

�
�
Z s

t

ar�u�dBu �
1

2

Z s

t

a2r2�2u�
2du

�
ds

�
= �t � pt:

Importantly, because the principal t takes future �t+s as given, the principal t is taking pt as given and choosing �t
to maximize

Et [dYt] =dt� Et [�tdt� �t (dYt � �tdt�mtdt)] =dt

= �t +mt � �t = (�t � pt) +mt � g (�t � pt)�
1

2
ar�2�2t :
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Hence, the �rst-order condition for the optimal incentive �t is 1� (�t � pt)� ar�2�t = 0, which implies that

�t =
1 + pt
1 + ar�2

:

We will see that this optimality condition does not hold in the long-term contracting case.

Conjecture that �t = �ST and pt = pST are constants (we will verify this property shortly.) Then, since

pST = �
�+r

�ST ,

�ST =
�+ r

r + ar�2 (�+ r)
; pST =

�

r + ar�2 (�+ r)
;

and the equilibrium e¤ort is

�ST = �ST � pST = r

r + ar�2 (�+ r)
:

Now let us rule out the case of timing-varying �. Recall that the feasible set of �t is bounded by [�M;M ].
De�ne � � sup f�tg 2 [�M;M ]. The optimality of short-term incentive implies that there exists t, so that pt =�
1 + ar�2

�
� � 1� " for some su¢ ciently small ". However, similar to the argument in Lemma 3, pt � �

�+r
�, which

implies �
1 + ar�2

�
� � 1� " � �

�+ r
� )

�
r

�+ r
+ ar�2

�
� � 1 + ": (87)

Similarly, de�ne � � inf f�tg 2 [�M;M ], and we will have

�
1 + ar�2

�
� � 1 + " � �

�+ r
� ) �

�
r

�+ r
+ ar�2

�
� � �1 + ": (88)

Summing equation (87) and (88), we have

� � � � 2"
r

�+r
+ ar�2

:

Since " is arbitrarily small, it must be � = �, and �t is constant. Q.E.D.
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