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1 Introduction

This paper studies the optimal determination of government spending, taxes and debt in an envi-

ronment of ambiguity about the cycle. We uncover the central role of the intertemporal elasticity

of substitution (IES) for fiscal policy under ambiguity. Our main finding is that “austerity” can be-

come optimal in such an economy if interest rates are sufficiently responsive to cyclical shocks, that

is, when the IES is below unity. Optimal policy prescribes then front-loaded fiscal consolidations

and convergence to a balanced primary budget in the long-run.

We take seriously the idea that economic agents face uncertainty about the cycle that cannot

be specified with a unique probability measure, and are averse towards it. In our analysis we

treat all margins of fiscal policy as equally important, which is why we endogenize government

consumption by allowing it provide utility. Our study is relevant for answering questions about

the optimal fiscal mix and the optimal debt management under ambiguity aversion.

Our environment features an economy without capital and complete markets as in Lucas and

Stokey (1983). Our government chooses distortionary labor taxes, government consumption and

issues state-contingent debt to maximize the utility of the representative household. To introduce

ambiguity about the cycle, we assume doubts about the probability model of technology shocks.

We use the multiplier preferences of Hansen and Sargent (2001) to capture our household’s aversion

towards this ambiguity.

As a first step, we analyze optimal fiscal policy without ambiguity. To capture distortions at the

government consumption margin, we define a new wedge at the second-best, the public wedge. Our

basic finding in a setup with full confidence in the model is that the optimal allocation, public wedge

and tax rate are history-independent, extending the Lucas and Stokey result to environments with

utility-providing government spending. Using a standard homothetic specification for the utility

of private and government consumption and assuming a constant Frisch elasticity of labor supply

furnishes a comprehensive smoothing result: both the share of government consumption in output

and taxes are constant. Optimal policy prescribes a deficit at the initial period and an acyclical

surplus-to-output ratio afterwards. Public debt remains stationary, without exhibiting negative

or positive drifts. Consequently, neither fiscal consolidations, nor further accumulation of public

debt are optimal.

There are stark differences when we turn to the analysis of the optimal fiscal policy in an

environment with ambiguity. The planner still runs a deficit at the initial period but both the

subsequent acyclicality of distortions and the lack of drifts in public debt break down. We find

that two, diametrically opposite, policies can be optimal, depending on the size of the IES relative

to unity: when the IES is below unity and equilibrium interest rates are very responsive to changes

in consumption, we find that countercyclical tax rates are optimal, i.e. taxes increase in bad times

and decrease in good times.1 Furthermore, it is also optimal to reduce on average public debt and

1The terms countercyclical and procyclical refer respectively to negative or positive correlation with output
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tax rates till debt becomes zero and a balanced primary budget is reached. These two facets of

optimal policy is what we call “austerity” policy. In contrast, the opposite, “anti-austerity,” policy

emerges with an IES larger than unity. Tax rates increase in good times and decrease in bad times.

Furthermore, the procyclicality of tax distortions is coupled with increasing –on average– public

debt and taxes over time.

The main mechanism in an environment with ambiguity is based on the endogenous pessimistic

beliefs of the household, which alter in a non-trivial way the optimal policy problem. In partic-

ular, a cautious household assigns high probability on low utility events. The household’s utility,

and therefore its probability assessments, depend though on policy variables. A Ramsey plan-

ner recognizes this dependence, and by setting taxes, manages the pessimistic expectations of the

household. In particular, high future taxes, by reducing the utility of the household, raise the pes-

simistic probabilities and therefore increase equilibrium prices of state-contingent claims, reducing

therefore the return of state-contingent debt. Similarly, low future taxes decrease equilibrium

prices of state contingent debt and increase the return on debt.

How does the government manage this endogenous pessimism? The government uses the pes-

simistic beliefs of the household in order to amplify the present discounted value of surpluses. This

type of policy takes a very intuitive form when the government issues a portfolio of state-contingent

debt: the government increases –by taxing more– the pessimistic probability weight on high “val-

ues” of surpluses and reduces –by taxing less– the weight on low “values” of surpluses. By “value”

of surpluses we mean surpluses multiplied by the marginal utility of consumption.2 Such a policy

increases the total revenue from debt issuance, relaxing therefore the government budget and the

need for distortionary taxation.

Why does the IES enter the discussion? The response of the “value” of surpluses to shocks,

and therefore the increase or decrease in taxes, depends obviously on the elasticity of marginal

utility, and thus on the IES. To see that, consider an IES that is smaller than unity and assume

a negative productivity shock. Surpluses fall due to a reduction in output. But a contraction of

output, and therefore of consumption, leads to an expansion of marginal utility, making therefore

the behavior of their product – the “value” of surpluses – ambiguous. When the household does not

substitute a lot intertemporally, marginal utility is very elastic, inducing therefore a big increase

in the intertemporal rate of substitution and therefore, a big drop in the state-contingent return of

debt. Thus, when the IES is lower than unity, the decrease in the return in bad times (by means of

marginal utility) over-compensates the decrease in surpluses, leading to an increase in the “value”

of surpluses. Consequently, by issuing more state-contingent debt and taxing more against adverse

times, the planner amplifies –through the pessimistic beliefs– the decrease in recessionary interest

rates and raises additional revenue.

throughout the paper.
2To calculate the presented discounted value of surpluses, the planner needs to take into account both pessimistic

beliefs and marginal utilities.
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The opposite policy is followed when the IES is larger than unity. Marginal utility is not re-

sponsive enough, and thus the “value” of surpluses in good times remains higher than the “value”

of surpluses in bad times. Thus, the planner will again amplify these values through the pes-

simistic beliefs by using now a procyclical tax rate. In the knife-edge case of a unitary IES, values

of surpluses are constant across the cycle, muting therefore the incentives for active expectation

management and leading to the same fiscal policies as without ambiguity. To conclude, by con-

trolling the sensitivity of interest rates to consumption growth, the IES acquires a novel role with

ambiguity aversion: it indicates which states of the world have the most potential for interest rate

manipulation through the channel of the endogenous pessimistic beliefs.

Lastly, if we take the stance that doubts about the model are unfounded, i.e. if we assume that

the probability model that the agents distrust is actually the true data-generating process, then

the IES determines also the long-run results about the drift in taxes and public debt. To see that,

assume that the IES is below unity. Then good times bear low taxes. But good times happen

more often according to the true model than what the pessimistic household expects. Thus, low-

tax events happen relatively often, which leads to a decrease in taxes and debt over time till the

balanced budget is reached, a point where price manipulation becomes irrelevant since public debt

is zero. The opposite is true in the high IES, “anti-austerity” case. Good times are associated

with high taxes, and since they happen relatively often, we have an actual increase of taxes and

debt over time.

1.1 Related literature

Optimal taxation studies typically treat government expenditures as exogenous, abstracting from

questions about the optimal mix of taxes and spending. Teles (2011) raises valid concerns about

this practice, by showing that the exogenous specification of the level or share of government

consumption can alter non-trivially both the interpretation and the welfare consequences of optimal

policy. The positive study of Bachmann and Bai (2013) is a notable exception: they endogenize

spending and build a business cycle model that successfully captures the basic cyclical features of

public consumption. Their setup involves though a balanced budget, and is therefore not useful for

answering questions about public debt.3 Klein et al. (2008) and Debortoli and Nunes (2013) explore

optimal taxation with endogenous spending in a deterministic setup and drop the commitment

assumption.

Our paper is also related to the literature on fiscal consolidations. Taking as given their

necessity, Romei (2014) studies the effects of debt reduction in a heterogenous agents economy,

whereas Bi et al. (2013) focus on the uncertainty that may surround the timing and composition

of consolidation measures. In contrast, Dovis et al. (2016) have studied how the interaction of

3For an early study in the same vein, see Ambler and Paquet (1996). See also Stockman (2001) for the welfare
analysis of balanced-budget rules and Kydland and Prescott (1980) for an early contribution.
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inequality and lack of commitment can optimally lead to cycles between austerity and populistic

regimes.4

Several papers have modeled ambiguity aversion by using the multiplier preferences of Hansen

and Sargent (2001). For example, Bidder and Smith (2012) focused on environments with nominal

frictions, Benigno and Nisticò (2012) on international portfolio choice, Pouzo and Presno (2016)

on sovereign default, whereas Croce et al. (2012) studied the effects of technological and fiscal

uncertainty on long-run growth.5

We follow a smooth approach to ambiguity aversion. Nonetheless, of particular interest is

the work of Ilut and Schneider (2014), who show that confidence shocks can be a substantial

driver of fluctuations at the labor margin. Setups with kinks have also non-trivial implications

for endogenous asset supply (Bianchi et al. (2017)) and can also lead to interesting inertia in

price-setting (Ilut et al. (2016)).6

Fears of model misspecification feature also in the fiscal policy analysis of Karantounias (2013a)

and in the monetary policy analysis of Benigno and Paciello (2014), Barlevy (2009) and Barlevy

(2011). In Karantounias (2013a), the management of the household’s pessimistic expectations

played a prominent role. However, government expenditures were treated as exogenous. Further-

more, the analysis was based on paternalism: the policymaker had full confidence in the model,

whereas the household did not. Here instead, we use a planner that adopts the perspective of the

household in evaluating welfare and proceed also to the numerical evaluation of optimal policy.

This paper uses recursive methods developed in Karantounias (2013b), who provides a com-

prehensive analysis of optimal labor and capital taxation with recursive preferences in the typical

setup of exogenous government expenditures. The connection with the current work comes from

the fact that both recursive utility – if we assume preference for early resolution of uncertainty–

and multiplier preferences, imply –for different reasons– effectively aversion to volatility in contin-

uation utilities, and therefore, lead to a similar mechanism of pricing kernel manipulation.7 The

same would be generally true for any kind of preferences that result in aversion to volatility in

continuation utilities.

The crucial difference in the current setup though is the endogenous government consumption

margin, a feature which may lead to surprising results even for a unitary IES, which is the case

where these two classes of preferences are observationally equivalent. For example, in the current

paper we prove that optimal policy is the same as without ambiguity when we have unitary IES,

whereas Karantounias (2013b) demonstrates that optimal policy is significantly different from the

case where time and risk attitudes are not disentangled, even for unitary IES.

4There is a large empirical literature that looks at fiscal adjustments. See for example the seminal contribution
of Alesina and Perotti (1995).

5Of independent interest is also the work of Boyd (1990), who studies the optimal deterministic growth problem
with the recursive preferences of Koopmans (1960).

6See Epstein and Schneider (2010) for a survey of the implications of ambiguity aversion for asset prices.
7We invite the reader to entertain this alternative interpretation, by calculating timing premia as in Epstein

et al. (2014).
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The difference is coming from the way the “value” of surpluses reacts to shocks when government

spending is exogenous. We show analytically in the last section of the paper that the sharp role

of the size of the IES relative to unity is absent when government spending is exogenous, because

the sensitivity of the “value” of surpluses depends also on other parameters, like the level of taxes

and the share of government spending. Furthermore, we explore quantitatively the implications

of exogenous spending in environments with ambiguity aversion, and find that the “values” of

surpluses are typically procyclical, even when the IES is low. Thus, the “anti-austerity” result is

typically optimal when government spending is exogenous. On a more general level, our analysis

demonstrates that the question of optimal financing of government spending under ambiguity

aversion cannot be independent of what these expenditures do in the economy and how they affect

interest rates.

1.2 Organization

Section 2 describes the economy with full confidence in the model and section 3 sets up the Ramsey

problem with utility-providing government consumption and derives the properties of optimal

policy. Section 4 describes an economy with doubts about the probability model of technology

shocks and displays the problem of a planner that adopts the welfare criterion of the household.

Section 5 analyzes the basic cyclicality and drift properties of optimal policy with ambiguity

aversion and highlights the prominent role of the IES. Section 6 performs numerical exercises and

section 7 contrasts our optimal plan to the case where government consumption is exogenous.

Section 8 concludes. The Appendix provides proofs of propositions and details of the numerical

method. A separate Online Appendix contains details about our expansion around the balanced

budget that may be of independent interest.

2 Economy

Time is discrete and the horizon is infinite. We use a complete markets economy without capital

as Lucas and Stokey (1983). Government expenditures are endogenous and provide utility to the

representative household. Let st denote the technology shock at time t and let st ≡ (s0, s1, ..., st)

denote the partial history of shocks up to period t with probability πt(s
t). There is no uncertainty

at t = 0, so π0(s0) ≡ 1. The operator E denotes expectation with respect to π throughout the

paper. The resource constraint of the economy reads

ct(s
t) + gt(s

t) = stht(s
t), (1)

where ct(s
t) private consumption, gt(s

t) government consumption and ht(s
t) labor. The no-
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tation indicates the measurability of these functions with respect to the partial history st. Total

endowment of time is normalized to unity, so leisure is lt(s
t) = 1− ht(st).

Household. The representative household derives utility from stochastic streams of private con-

sumption, leisure and government consumption. Its preferences are

∑
t=0

βt
∑
st

πt(s
t)U(ct(s

t), 1− ht(st), gt(st)) (2)

where U is monotonic and concave. The household works at the pre-tax wage wt(s
t), pays

proportional taxes on its labor income with rate τt(s
t) and trades in complete asset markets. Let

bt+1(st+1) denote the holdings of an Arrow security that promises one unit of consumption if the

state of the world is st+1 next period and zero otherwise. This security trades at the price of

pt(st+1, s
t) in units of consumption at history st.

In order to ease notation, let x ≡ {xt(st)}t,st stand for an arbitrary stochastic process x. Given

prices (p, w) and government policies (τ, g), the household chooses {c, h, b} to maximize (2) subject

to

ct(s
t) +

∑
st+1

pt(st+1, s
t)bt+1(st+1) ≤ (1− τt(st))wt(st)ht(st) + bt(s

t), (3)

and the constraints ct(s
t) ≥ 0, ht(s

t) ∈ [0, 1], where b0 is given. The household is also subject to

the no-Ponzi-game condition

lim
t→∞

∑
st+1

qt+1(st+1)bt+1(st+1) ≥ 0 (4)

where qt(s
t) ≡

∏t−1
j=0 pj(sj+1, s

j) denotes the price of an Arrow-Debreu contract at t = 0 with the

normalization q0 ≡ 1.

A representative competitive firm operates the linear technology. The government chooses

spending, collects tax revenues and trades with the household in Arrow securities. The government

budget constraint reads

bt(s
t) = τt(s

t)wt(s
t)ht(s

t)− gt(st) +
∑
st+1

pt(st+1, s
t)bt+1(st+1). (5)
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Competitive equilibrium. A competitive equilibrium is a collection of prices (p, w), a private

consumption-labor allocation (c, h), Arrow securities holdings b and government policies (τ, g) such

that 1) given (p, w) and (τ, g), (c, h, b) solves the household’s problem, 2) given w firms maximize

profits, 3) prices (p, w) are such so that markets clear, i.e. the resource constraint (1) holds.8

2.1 Optimality conditions

Profit maximization of the competitive firm equates the wage to the marginal product of labor,

wt = st. Taking government consumption as exogenously given, the household supplies labor

according to

Ul(ct, 1− ht, gt)
Uc(ct, 1− ht, gt)

= (1− τt)wt, (6)

which equates the marginal rate of substitution of consumption and leisure with the after-tax wage.

The optimal decision with respect to Arrow securities is characterized by

pt(st+1, s
t) = βπt+1(st+1, s

t)
Uc(s

t+1)

Uc(st)
, (7)

which equates the marginal rate of substitution of consumption at st+1 for consumption at st

with the price of an Arrow security. The respective price of an Arrow-Debreu contract at t = 0

is qt(s
t) = βtπt(s

t)Uc(s
t)

Uc(s0)
. Note furthermore that the asymptotic condition (4) holds in equilib-

rium with equality, which leads to the exhaustion of the household’s unique intertemporal budget

constraint.

3 Ramsey problem with full confidence in the model

Consider the problem of the Ramsey planner that chooses under commitment at t = 0 government

expenditures, distortionary taxes and state-contingent debt in order to maximize the utility of the

representative household at the competitive equilibrium. Before we proceed to this problem, it is

instructive to understand the first-best allocation, i.e. the allocation that could be sustained as a

competitive equilibrium if lump-sum taxes were available.

8Note that we have not used a separate notation bgt for the government’s asset holdings but have instead used
the fact that in equilibrium bgt = −bt.
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3.1 First-best problem

The first-best problem is to choose the allocation ct, gt ≥ 0, ht ∈ [0, 1] in order to maximize the

utility of the representative household (2) subject to the resource constraint of the economy (1).

The optimal allocation is characterized by the resource constraint and two optimality conditions,

Ug(c, 1− h, g)

Uc(c, 1− h, g)
= 1 (8)

Ul(c, 1− h, g)

Uc(c, 1− h, g)
= s. (9)

Equation (8) equates the marginal rate of substitution of government for private consumption

with the respective marginal rate of transformation, which is unity. Thus, the first-best provision

of government consumption requires that it provides the same marginal utility as private con-

sumption. Equation (9) determines the first-best labor supply by equating the marginal rate of

substitution of leisure for consumption to the marginal rate of transformation, which is equal to

the technology shock.

3.2 Second-best problem

We follow the primal approach of Lucas and Stokey (1983) and express prices and tax rates in

terms of allocations by using (6) and (7). As usual, the Ramsey problem can be stated as follows:

Definition 1. The Ramsey problem is to choose at t = 0 ct, gt ≥ 0, ht ∈ [0, 1] in order to maximize

(2) subject to the implementability constraint

∞∑
t=0

βt
∑
st

πt(s
t)Ω(ct(s

t), ht(s
t), gt(s

t)) = Uc(c0, 1− h0, g0)b0. (10)

and the resource constraint (1), where (s0, b0) given. Ω is defined as Ω(c, h, g) ≡ Uc(c, 1− h, g)c−
Ul(c, 1−h, g)h and stands for consumption net of after-tax labor income, or, equivalently, primary

surplus, in marginal utility of consumption units.

Let Φ denote the multiplier on the unique implementability constraint. We call Φ the excess

burden of taxation throughout the paper. Define also

χ ≡ Ug
Uc
− 1. (11)

We call χ the public wedge, since it captures the deviation of the marginal rate of substitution

9



of government consumption for private consumption from its first-best value. We summarize the

basic results of the full confidence problem in terms of two propositions.

Proposition 1. The optimal allocation (c, h, g) is history-independent. Thus, the optimal public

wedge and labor tax are history-independent.

Proof. See the Appendix.

Proposition 2. 1. The optimal public wedge for t ≥ 1 is

χ =
Φ(1− εcc − εch − εgc − εgh)

1 + Φ(εgc + εgh)
,

where εcc ≡ −Uccc/Uc, εch ≡ Uclh/Uc, the own and cross elasticity (with respect to labor) of

the marginal utility of private consumption, and εgc ≡ Ugcc/Ug, εgh ≡ −Uglh/Ug the cross

elasticities of the marginal utility of government consumption with respect to private con-

sumption and labor.

2. The optimal labor tax for t ≥ 1 is

τ =
Φ(εcc + εch + εhh + εhc)

1 + Φ(1 + εhh + εhc)

where εhh ≡ −Ullh/Ul, εhc ≡ Uclc/Ul, the own and cross elasticity (with respect to private

consumption) of the marginal disutility of labor.

3. The denominators in all expressions are positive, so the sign of the public wedge and the

labor tax depends on the sign of the numerators.

Proof. See the Appendix.

The history independence of proposition 1 refers to the fact that optimal allocations, and there-

fore policies, are functions only of the current shock s and the constant value of the excess burden

of taxation Φ. For example, consumption varies only across shocks, ct = c(st,Φ). Proposition 1

extends the basic result of Lucas and Stokey (1983) to environments with endogenous government

consumption.

Proposition 2 expresses the optimal χ and τ as functions of elasticities and the excess burden of

taxation Φ.9 Elasticities of marginal utilities show up in the determination of the wedges because

9These formulas are in the spirit of the static analysis with exogenous government expenditures of Atkinson and
Stiglitz (1972).
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they capture how the surplus in marginal utility units Ω –the main ingredient in the calculation

of the present discounted values of future surpluses– is affected by the choices of c, h and g. The

proposition implies that when elasticities are constant across states and dates, the public wedge and

the labor tax become constant since they depend only on the constant excess burden of taxation.

In the next section we will consider a utility function that delivers these results.

3.3 Parametric example

Consider the period utility function

U =
u1−ρ − 1

1− ρ
+ v(l), (12)

where u stands for a composite good of private and government consumption and v(l) for the

subutility of leisure. Assume a constant elasticity of substitution (CES) aggregator u

u = [(1− α)c1−ψ + αg1−ψ]
1

1−ψ , α ∈ (0, 1).

We derive results for the public wedge and the share of government consumption in output

that hold independently of the functional form of v(l). The homothetic specification in private

and government consumption allows us to perform our analysis in terms of ratios. Furthermore,

the specification separates between the intertemporal elasticity of substitution (IES), which is

controlled by 1/ρ, and the intratemporal elasticity of substitution between private and government

consumption, which is controlled by 1/ψ. Separating these two attitudes is key for our later

analysis since we will show that the qualitative and quantitative properties of the optimal plan

under ambiguity depend on the size of ρ relative to unity (and not on ψ). In contrast, the size of

the parameter ψ will determine the distortions at the government consumption margin, as we will

soon see. We call c and g substitutes when ψ < 1 and complements when ψ > 1.10

For the utility function in hand the elasticity of the marginal utility of private consumption

is a weighted average of ρ and ψ, εcc = λcρ + (1 − λc)ψ, and the cross elasticity of the marginal

utility of government consumption with respect to private consumption is εgc = (ψ − ρ)λc, with

weight λc ≡ (1− α)( c
u
)1−ψ ∈ (0, 1).11 Therefore, εcc + εgc = ψ, so the public wedge in proposition

2 becomes

10This utility function has been used extensively in macroeconomic setups where government consumption pro-
vides utility. Klein et al. (2008) and Bachmann and Bai (2013) use the case of ρ = ψ = 1. Empirical public finance
studies have also used this specification in order to estimate the degree of substitutability between private and
government consumption. See for example Ni (1995).

11Use the CES aggregator u to get 1 = λc + λg, with λg ≡ α
(
g
u

)1−ψ
. The weight λc simplifies to 1 − α for the

Cobb-Douglas case of ψ = 1.
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χ =
Φ(1− ψ)

1 + Φ(ψ − ρ)λc
. (13)

As stated in proposition 2, the sign of χ is determined by the numerator of (13). Let Λ ≡ g/y

denote the share of government consumption in output. Its first-best value (corresponding to a zero

public wedge) is ΛFB ≡ α1/ψ

α1/ψ+(1−α)1/ψ
. When c and g are substitutes (ψ < 1), (13) implies that there

is a positive public wedge (χ > 0). Thus, the marginal utility of government consumption is higher

that the marginal utility of private consumption, which, by concavity of the utility function, implies

that the government share is small relative to the first-best, Λ < ΛFB. The opposite happens in

the case of complements (ψ > 1): the public wedge is negative (χ < 0), implying a large share

relative to the first-best, Λ > ΛFB. Thus, presumptions that at the second-best the optimal Λ

has to be small relative to the first-best because government consumption has to be financed by

distortionary taxation are not valid. For the knife-edge Cobb-Douglas case of ψ = 1, the planner

does not distort the government consumption margin and sets a zero public wedge, leading to the

first-best government share, Λ = ΛFB = α (levels of g are of course different).

The following proposition summarizes properties of the optimal government share and taxes

for t ≥ 1.

Proposition 3. 1. Assume the homothetic specification in (12). Then,

(a) The share of government consumption in output is function only of Φ and not of the

shocks s, Λt = Λ(Φ). Thus, Λ is constant across shocks.

(b) For ψ ≥ ρ we have sign Λ′(Φ) = sign(ψ − 1). More generally, sign Λ′(0) = sign(ψ − 1).

2. Assume furthermore constant Frisch elasticity, v(l) = −ah (1−l)1+φh
1+φh

= −ah h
1+φh

1+φh
. Then,

(a) The tax rate is function only of Φ, τt = τ(Φ), and therefore is constant across shocks.

Thus, the surplus-to-output ratio, τ(Φ)− Λ(Φ), is acyclical.

(b) For ψ = 1 or ψ = ρ we have τ ′(Φ) > 0. More generally, τ ′(0) > 0.

3. (“Optimality of balanced budgets”). Let the utility function be as in (12) with constant Frisch

elasticity. If initial debt is zero, then a balanced budget is optimal for every period. The

balanced budget τ and Λ do not depend on the stochastic properties of the shocks but only on

preference parameters. If initial debt is positive, then surpluses are optimal for each t ≥ 1,

as long as the initial surplus does not cover the initial level of debt.

Proof. See the Appendix.
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Discussion. With the homothetic utility specification, the history-independence of the share

Λ specializes to constancy across shocks. If we further assume a constant Frisch elasticity, a

comprehensive perfect smoothing result emerges: both the government share and taxes have to be

constant. The dynamics of the optimal plan are pretty simple. If the government starts with zero

debt, it runs a balanced budget forever. With positive initial debt, the government runs a deficit

at t = 0 and then a constant surplus-to-output ratio for each t ≥ 1. There are neither any positive

nor any negative trends in public debt.

The proposition shows also formally that the excess burden of taxation should be interpreted as

an indicator of distortions. This is obvious for the labor supply margin since labor taxes increase as

a function of Φ. Regarding government consumption, increases in Φ reduce the share Λ in the case

of substitutes (ψ < 1), and increase it in the case of complements (ψ > 1). Thus, in both cases,

the deviation of the share of government consumption from its first-best value becomes larger. We

are particularly interested in the excess burden of taxation because it is the key determinant of

the dynamics in an environment with doubts about the probability model of technology shocks.

4 Doubts about the probability model

4.1 Preferences

Until now, we have analyzed an economy where agents have full confidence in the probability

measure π. Consider now a situation where the household considers π (which we will call from now

on the reference measure) a good approximation of the true probability measure but entertains fears

that π may be misspecified. In order to deal with the possibility of misspecification, the household

considers a set of alternative probability measures that are close to π in terms of relative entropy.

We are making the assumption that these measures are absolutely continuous with respect to π for

finite time intervals and express them as a change of measure. More specifically, the non-negative

random variable mt+1 denotes a change of the conditional measure πt+1(st+1|st). In order to be a

proper change of measure it has to integrate to unity, Etmt+1 = 1. The unconditional change of

measure is defined as Mt ≡
∏t

i=1mi,M0 ≡ 1, and is a martingale with respect to π.

We use the multiplier preferences of Hansen and Sargent (2001) in order to capture this ambi-

guity and the household’s aversion towards it,12

Vt = U(ct, 1− ht, gt) + β min
mt+1≥0,Etmt+1=1

[Etmt+1Vt+1 + θEtmt+1 lnmt+1], (14)

where θ > 0. The parameter θ penalizes probability models that are far from the reference

model in terms of relative entropy. Full confidence in the model, and therefore (subjective) expected

12See Strzalecki (2011) for a decision-theoretic foundation of the multiplier preferences.

13



utility is captured by θ =∞.

4.2 Competitive equilibrium under ambiguity

The cautious household forms worst-case scenarios subject to the entropy penalty. Solving the

minimization operation in (14) delivers the worst-case conditional change of measure

mt+1(st+1) =
exp(σVt+1(st+1))∑

st+1
πt+1(st+1|st) exp(σVt+1(st+1))

(15)

where σ ≡ −θ−1 < 0, with σ = 0 corresponding to the expected utility case. Expression (15)

shows that an ambiguity averse household assigns higher probability than the reference measure

on events that bear low continuation utility and smaller probability than the reference measure

on events with high continuation utility. It is important to note that the household’s pessimistic

beliefs are endogenous, since they depend on continuation utility. Using the worst-case model (15)

in (14) delivers the familiar risk-sensitive recursion of Tallarini (2000),

Vt = U(ct, 1− ht, gt) +
β

σ
lnEt exp(σVt+1). (16)

Besides the preferences aspect, the rest of the competitive equilibrium is standard. The static

labor supply condition (6) remains the same. The intertemporal marginal rate of substitution is

altered, leading to an optimality condition with respect to Arrow securities that takes the form

pt(st+1, s
t) = βπt+1(st+1|st)mt+1(st+1)

Uc(s
t+1)

Uc(st)
. (17)

The expression for the equilibrium price of an Arrow security provides the connection between

the household’s endogenous pessimistic beliefs and the fiscal instruments of the planner, which is

at the heart of the optimal policy problem: future tax policies affect future utilities and there-

fore, through the household’s endogenous beliefs, equilibrium prices. In turn, equilibrium prices

determine the desirability of debt and thus, the trade-off between current taxation and new debt

issuance.

4.3 Ramsey problem

As in the case of full confidence in the model, the Ramsey planner chooses the competitive equilib-

rium that maximizes the utility of the representative household.13 We follow a recursive represen-

13The first-best allocation with doubts about the probability model of technology shocks is the same as with full
confidence in the model, due to the essentially static nature of the problem. Let V0 denote the utility index at t = 0.
The first-best is characterized by (−∂V0/∂ht(st))/(∂V0/∂ct(st)) = st and (∂V0/∂gt(s

t))/(∂V0/∂ct(s
t)) = 1. For the
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tation of the commitment problem from period one onward as in the recursive utility analysis of

Karantounias (2013b). Let z ≡ Ucb denote debt in marginal utility units. Debt in marginal utility

units lives in the set Z(s) when the current shock is s. Let V (z, s) denote the value function of

the planner. Assume that shocks are Markov with transition density π(s′|s). Then V is described

by the following Bellman equation:

V (z, s) = max
c,h,g,z′

s′
U(c, 1− h, g) +

β

σ
ln
∑
s′

π(s′|s) exp
(
σV (z′s′ , s

′)
)

subject to

z = Ω(c, h, g) + β
∑
s′

π(s′|s) exp(σV (z′s′ , s
′))∑

s′ π(s′|s) exp
(
σV (z′s′ , s

′)
)z′s′ (18)

c+ g = sh (19)

c, g ≥ 0, h ∈ [0, 1], z′s′ ∈ Z(s′) (20)

Let Φ denote the multiplier on the dynamic implementability constraint (18) and let λ denote

the multiplier on the resource constraint (19). The first-order necessary conditions are

c : Uc + ΦΩc = λ (21)

h : −Ul + ΦΩh = −λs (22)

g : Ug + ΦΩg = λ (23)

z′s′ : Vz(z
′
s′ , s

′)[1 + ση′s′Φ] + Φ = 0 (24)

where η′s′ ≡ z′s′−
∑

s′ π(s′|s)m′s′z′s′ . The variable m′s′ stands for the conditional likelihood ratio,

m′s′ =
exp(σV (z′

s′ ,s
′))∑

s′ π(s′|s) exp(σV (z′
s′ ,s
′))

. Ωi, i = c, h, g stands for the respective partial derivative of the surplus

in marginal utility units Ω.

We call the variable η′s′ the relative debt position in marginal utility units, since it denotes

the size of z′s′ with respect to the “average” debt position. The relative debt position can be

positive (η′s′ > 0) or negative (η′s′ < 0). Furthermore, it is on average zero under the worst-

case model, i.e.
∑

s′ π(s′|s)m′s′ηs′ =
∑

s′ π(s′|s)m′s′z′s′−
∑

s′ π(s′|s)m′s′(
∑

s′ π(s′|s)m′s′z′s′) = 0, since∑
s′ π(s′|s)m′s′ = 1.

multiplier preferences we have ∂V0/∂ht(s
t) = −βtπtMtUl(s

t), ∂V0/∂ct(s
t) = βtπtMtUc(s

t) and ∂V0/∂gt(s
t) =

βtπtMtUg(s
t), which lead to (8) and (9).

15



4.4 Initial remarks

The important element that doubts about the model contribute is an excess burden of taxation

that is not constant anymore. In particular, use the envelope condition Vz(z, s) = −Φ and rewrite

(24) in sequence notation as

1

Φt+1

=
1

Φt

+ σηt+1, t ≥ 0 (25)

where ηt+1 = zt+1 − Etmt+1zt+1. The law of motion (25) will be analyzed in detail in the next

section. It obviously implies that with full confidence in the model (σ = 0), we have Φt = Φ∀t, st.
Following the same steps as in the proofs of propositions 1 and 2, we can write the optimal

allocation (c, h, g) (and therefore the optimal policy instruments τ and Λ) as functions of the

current shock st and the time-varying excess burden, Φt. These functions are exactly the same

functions of (s,Φ) as in the case without doubts about the model. As a result we have:

Proposition 4. (Optimal wedges with doubts about the model) The optimal public wedge and the

optimal tax rate are as in proposition 2, with an excess burden of taxation that follows now the

law of motion (25). Thus, all formulas for our parametric example in proposition 3 go through by

replacing Φ with Φt. The optimal τ and Λ will not be constant anymore, but they will reflect the

variation in Φt.

5 Fiscal policies over states and dates

The goal of the rest of the paper is to understand the dynamics of Φt, which determine the dynamics

of optimal taxes and government consumption.

5.1 Excess burden of taxation and debt in marginal utility units

With doubts about the model, the excess burden of taxation Φt depends on the relative debt

position in marginal units ηt+1. The law of motion (25) implies that the excess burden increases

(Φt+1 > Φt) when there is a positive relative debt position ηt+1 > 0, i.e. when debt in marginal

utility units zt+1 is larger than the average position Etmt+1zt+1, and it decreases (Φt+1 < Φt), when

there is a negative relative position, ηt+1 < 0, so when zt+1 is smaller than the average position.

These changes in the excess burden of taxation take place because the endogenous household’s

beliefs are the source of a novel price effect that the policymaker is manipulating in order to make

debt less costly. To see that, consider an increase in the state-contingent position z′s′ at s′. More

debt decreases utility (since debt has to be repaid with distortionary taxation) and, as a result, it

increases the probability that the pessimistic household assigns to this state of the world, according
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to (15). Thus, the respective Arrow security becomes more expensive, as can been seen from (17).

This increase in price is beneficial to the planner if he takes a positive relative debt position, since

the price at which he sells debt increases (and therefore the state-contingent return on debt falls)

and harmful in the opposite case. Therefore, instead of keeping the excess burden constant over

states and dates, the planner increases the excess burden of taxation at states of the world next

period against which it is cheaper to issue debt, and decreases distortions at states of the world

for which debt is relatively expensive.14

An equivalent, perhaps more intuitive, interpretation of the law of motion of the excess burden

is available if we thought in terms of the policy instrument of the planner, say tax rates τt+1.

High tax rates decrease the utility of the household and increase equilibrium prices through the

pessimistic beliefs. By increasing future taxes against states of the world for which zt+1 is high and

reducing future taxes against states of the world where zt+1 is low, the overall value of the portfolio

of new state-contingent claims increases, an outcome which relaxes the current government budget

constraint and increases therefore welfare.

Finally, note from (25) that Φt remains constant if the relative debt positions are zero for

all dates and states, ηt+1 = 0, t ≥ 0. That is, the price manipulation mechanism through the

endogenous beliefs is relevant only if state-contingent debt in marginal utility units does vary

across shocks or if it is actually necessary to issue debt. Otherwise, the effect of model uncertainty

on policy is muted, and the full confidence fiscal plan is followed:

Proposition 5. (“Muting the effect of doubts on policy”) Let Ω?(s,Φ) denote the optimal surplus

in marginal utility units as a function of (s,Φ).

1. Assume that Ω?(s,Φ) = Ω?(s′,Φ),∀Φ, ∀s 6= s′. Then Φt = Φno doubts, where Φno doubts is the

excess burden of taxation of the economy with full confidence in the model.

2. Assume that b0 = 0 and that there exists a Φ̄ such that Ω?(s, Φ̄) = Ω?(s′, Φ̄) = 0,∀s 6= s′.

Then Φt = Φ̄ and the planner runs the same balanced budget as in an economy without

doubts.

In both cases, the allocation (c, h, g) and policies (τ,Λ) are the same as in an economy without

doubts. Only equilibrium asset prices are different.

Proof. See the Appendix.

The set of period utility functions that generate the above results is not empty:

Corollary. If 1) the utility function is as in (12) with ρ = 1 and we have any subutility of leisure

v(l) or if 2) initial debt is zero and the utility function is as in (12) with constant Frisch elasticity,

then doubts about the model leave the second-best allocation and policies unaltered.
14This mechanism has been previously partially uncovered in Karantounias (2013a), where it was counteracted by

a paternalistic incentive of the planner, and is present – for different reasons– in environments with preference for
early resolution of uncertainty, as in Karantounias (2013b). See the related literature section in the Introduction.
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Proof. See the Appendix.

5.2 Managing expectations and the prominent role of the IES

The previous section shows that the planner manages the pessimistic expectations of the household

with an ultimate goal of making debt cheaper, improving the trade-off between taxing today versus

issuing state-contingent debt, i.e. versus taxing in the future. The planner always taxes more

against states of the world for which the “value” of debt, i.e. debt in marginal utility units, zt+1,

is high. Such a taxation scheme amplifies the market value of government debt since a high tax

increases equilibrium prices and increases therefore the revenue from new debt issuance.

But why is debt in marginal utility units the relevant object for the increase of excess burden

and not just debt? The reason is squarely based on the logic of the intertemporal budget constraint

of the government. The present discounted value of future surpluses entails both an adjustment

for model uncertainty, through the pessimistic expectations, and an adjustment for risk, through

marginal utility. The planner uses the new tool, the pessimistic expectations, to increase essentially

the weight on high “values” of debt in order to make the present value of surpluses higher, and

relax therefore the fiscal constraint.

Thus, the response of the “value” of debt to the cycle is our ultimate object of interest. We

will provide a sharp characterization of the value of debt in terms of the intertemporal elasticity

of substitution, which determines the elasticity of marginal utility and therefore, the reaction

(partially) of interest rates to technology shocks. We will show that when the IES is smaller than

unity (so ρ > 1), then values of debt (zt+1) are high when technology shocks are low, leading to

high taxes in recessions, or otherwise “austerity” policies. In contrast, when the IES is large and

therefore equilibrium interest rates not so responsive, then values of debt are high when technology

shocks are high, leading to high taxes in good times, or “anti-austerity” policies.

5.2.1 The role of the IES in a two-period economy

To see clearly the mechanism, proceed first to a two-period version of our economy. Debt in

marginal utility units z simplifies to surplus in marginal utility units, Ω, a fact which allows a

simple characterization for small doubts about the model.

Proposition 6. Assume that shocks take two values, sL < sH and let i = L,H denote the state

of the world at t = 1 with an excess burden of taxation

1

Φi

=
1

Φ0

+ σηi where ηi = Ωi −
∑
i

πimiΩi, i = L,H.

Let Ωσ=0
i , i = L,H denote the surplus in marginal utility units that pertains to the full confidence

analysis, σ = 0. Then:
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1. If Ωσ=0
H > Ωσ=0

L , then ΦH > Φ0 > ΦL for small σ. If Ωσ=0
H < Ωσ=0

L , then ΦH < Φ0 < ΦL for

small σ.

2. Let the utility function be as in (12) with constant Frisch elasticity. Then, the optimal surplus

in marginal utility units as function of (s,Φ) takes the following form:

Ω?(s,Φ) =
(
τ(Φ)− Λ(Φ)

)
J(Φ) ·

[
y(s,Φ)

]1−ρ
, (26)

where J(.) > 0 defined in the Appendix. Assume that we have surpluses at t = 1 for σ = 0,

τ > Λ. Expression (26) implies that when σ = 0, the surplus in marginal utility units is

countercyclical if ρ > 1 (Ωσ=0
H < Ωσ=0

L ), and procyclical (Ωσ=0
H > Ωσ=0

L ) if ρ < 1. Thus, part

1) implies that for small σ, the excess burden is countercyclical (ΦH < ΦL) if ρ > 1 and

procyclical (ΦH > ΦL) if ρ < 1.

Proof. See the Appendix.

The proposition allows us to use the behavior of surpluses in the full confidence economy as

an indicator of distortions in the economy with doubts. This is neat because the full confidence

economy is easily characterized, due to a constant excess burden.

Expression (26) shows that the surplus in marginal utility units is proportional to a multiple

of output in the power of (1 − ρ). Keeping Φ constant (which implies a constant policy τ and

Λ), surpluses are procyclical, since a positive technology shock leads to output expansion. An

expansion in output and therefore an expansion in consumption is counteracted though by a

contraction in marginal utility, which is controlled by ρ, the inverse of IES. If ρ > 1, marginal

utility is very elastic and therefore the negative marginal utility effect dominates, offsetting the

cyclicality of surpluses. As a result, surpluses in marginal utility units become countercyclical,

leading to a countercyclical excess burden. In contrast, when ρ < 1 and therefore when the

intertemporal elasticity of substitution is high (IES > 1), surpluses in marginal utility units, and

thus, the excess burden, remain procyclical.15

Therefore, the role of the IES with ambiguity aversion is to indicate which states of the world

have the most potential for interest rate manipulation through the channel of the endogenous

pessimistic beliefs. Tax rates follow the same pattern as the excess burden of taxation. Hence,

when the IES is smaller than unity, “austerity” measures become optimal : taxes increase in bad

times and decrease in good times, amplifying the cycle. In contrast, a high IES leads to an

“anti-austerity” policy: taxes are high in good times and low in bad times, attenuating the cycle.

15Note that for ρ = 1, Ω stays constant across shocks, as we expect from the corollary of proposition 5. Note
also that the response of Ω is controlled only by ρ for constant Φ, despite the fact that Uc depends on both ψ and
ρ (recall that 1/ρ captures the IES of the composite good u). The reason behind that is the fact that ψ affects the
results through the determination of the government share Λ (together with ρ), which enters through the function
J(Φ). For constant Φ, Λ becomes constant, leading to a clean dependence of the cyclicality of Ω on ρ.
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Intuitively, the IES matters because it captures the equilibrium interest rate sensitivity to

shocks. When the marginal utility is very elastic, ρ > 1, and therefore when the household does

not substitute a lot intertemporally, shocks to output and consumption induce a big change to

the intertemporal rate of substitution and therefore big changes to interest rates. A bad shock

tomorrow implies –through the increase in marginal utility– a decrease in the state-contingent

return of debt. If this decrease in interest rates is large enough (which is the case when ρ > 1),

then the planner has an incentive to amplify the reduction through the pessimistic beliefs of the

household: he issues more state-contingent debt and taxes more against bad shocks. The opposite

happens for a good technology shock tomorrow. The planner taxes less against the good shock

and issues less debt, since the state-contingent yield rises too much when ρ > 1, and therefore the

revenue from debt issuance against a good shock decreases.

5.2.2 Infinite horizon and IES near the balanced budget

In an infinite horizon economy the behavior of debt in marginal utility units becomes more entan-

gled since zt+1 depends on both surpluses in marginal utility units and on the pessimistic beliefs.

We are able though to fully characterize optimal policy by focusing on the vicinity of the balanced

budget.

Consider any period utility function that delivers a tax rate and a government share that are

functions only of Φ. This type of utility function exhibits the convenient feature that the level of

excess burden of taxation Φ∗ that delivers a balanced budget, τ(Φ∗) = Λ(Φ∗), is a fixed point of

the law of motion (25). If this point is ever reached, i.e. if government debt becomes zero, then

it is optimal to run a balanced budget forever, with doubts about the model affecting only asset

prices, as shown in proposition 5. Our strategy here is to treat Φt as a state variable with law of

motion (25) and proceed with an approximation of the equilibrium around Φ∗.

Let the shocks take N values, and let them be enumerated by the index i from the smallest

to the largest. Let Φj|i(Φ) denote the excess burden of taxation next period at the realization of

the technology shock j when the current shock and excess burden are i and Φ respectively. The

approximate law of motion of the excess burden takes the form

Φj|i(Φ) ' Φ∗ + Φ′j|i(Φ
∗)(Φ− Φ∗), i, j = 1, ..., N. (27)

The object of interest is Φ′j|i(Φ
∗), which stands for the derivative of the excess burden, when

we have the transition from i to j, evaluated at the balanced budget.16 Let m∗j|i denote the

conditional likelihood ratio from i to j evaluated at the balanced budget. Let Π ≡ [π(j|i)] denote

the transition matrix of the Markov process and let M ≡ [m∗j|i],Φ ≡ [Φ′j|i(Φ
∗)] denote the matrices

16Note that in contrast to typical approximations around the deterministic steady state, we do not turn off
uncertainty, a fact which makes the derivatives Φ′j|i depend on shocks.
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that collect m∗j|i and Φ′j|i(Φ
∗) at the i-th row and j-th column. We have the following properties

for the approximate excess burden of taxation.

Proposition 7. (“Properties of the excess burden of taxation near the balanced budget”)

1. (“Monotonicity”) Let the current excess burden of taxation be larger than its balanced budget

value, Φ > Φ∗, which is the case when we have positive debt. Then, (27) implies that

• If Φ′j|i(Φ
∗) > (<)1⇒ Φj|i(Φ) > (<)Φ.

• If Φ′k|i(Φ
∗) > (<)Φ′l|i(Φ

∗)⇒ Φk|i(Φ) > (<)Φl|i(Φ)∀k, l, i.

2. (“Martingale”) We have

∑
j

π(j|i)m∗j|iΦ′j|i(Φ∗) = 1, ∀i. (28)

Property (28) implies that the excess burden of taxation is a martingale with respect to the

worst-case measure,
∑

j π(j|i)m∗j|iΦj|i(Φ) = Φ,∀i. Thus, the matrix A ≡ Π ◦M ◦Φ, where

◦ denotes element-by-element multiplication, is stochastic.

3. (“Drifts”) When m∗j|i decreasing in j (i.e. when the household’s worst case model puts less

probability mass on high technology shocks), we have:

• If Φ′j|i(Φ
∗) is decreasing in j, then

∑
j π(j|i)Φ′j|i(Φ∗) < 1. This implies

∑
j π(j|i)Φj|i(Φ) <

Φ when Φ > Φ∗, so there is a negative drift with respect to π when we start with positive

debt.

• If Φ′j|i(Φ
∗) is increasing in j, then

∑
j π(j|i)Φ′j|i(Φ∗) > 1. This implies

∑
j π(j|i)Φj|i(Φ) >

Φ when Φ > Φ∗, so there is a positive drift with respect to π when we start with positive

debt.

Proposition 7 shows that we can characterize the cyclicality and drifts of the excess burden of

taxation by considering the entries of the matrix Φ. If for each row i, Φ′j|i(Φ
∗) are decreasing in

j, then their weighted average according to the reference model π is smaller than unity (since the

non-pessimistic reference model assigns smaller probability mass on low technology shocks that

bear high excess burden) and we have both countercyclicality of distortions and a negative drift

with respect to π. In contrast, if the entries of each row i are increasing in the column j, we have

procyclicality of distortions and a positive drift with respect to π. Note that to derive proposition

7, we only assumed that (τ,Λ) depend solely on Φ. The next proposition considers parametric

forms that deliver this assumption and utilizes proposition 7 by connecting the monotonicity of

Φ′j|i(Φ
∗) to the IES.

21



Proposition 8. (“IES and austerity near the balanced budget”)

1. Let the utility function be as in (12) with constant Frisch elasticity and assume that N = 2.

If τ ′(Φ∗) > Λ′(Φ∗) we have the following:

• (“Austerity”) Assume that ρ > 1. Then, Φ′1|i(Φ
∗) > 1 > Φ′2|i(Φ

∗), i = 1, 2. So the

excess burden is countercyclical. Furthermore, the excess burden exhibits a negative drift

with respect to π when Φ > Φ∗, if m∗j|i is decreasing in j ∀i.

• (“Anti-austerity”) Assume that ρ < 1. Then, Φ′1|i(Φ
∗) < 1 < Φ′2|i(Φ

∗), i = 1, 2. So

the excess burden is procyclical. Furthermore, the excess burden exhibits a positive drift

with respect to π when Φ > Φ∗, if m∗j|i is decreasing in j ∀i.

2. Assume the balanced-growth consistent preferences U = u1−ρ−1
1−ρ , where u = cα1lα2gα3 , αi >

0,
∑

i αi = 1. Both the results of the two-period economy of proposition 6 and the results of

part (1) of the current proposition go through.

Proof. See the Online Appendix for the derivations behind propositions 7 and 8.

Discussion. Proposition 8 generalizes the two-period results of proposition 6 to an infinite hori-

zon setup.17 Furthermore, it shows that our results hold for a broader set of preferences that satisfy

balanced-growth restrictions. The same mechanisms are in play as in the two-period model; the IES

controls the sensitivity of z with respect to shocks in the expected way. High elasticity of marginal

utility offsets the procyclicality of debt, making debt in marginal utility units, and therefore the

excess burden, countercyclical.

The new element that arises in infinite horizon involves drifts in the excess burden of taxation,

which are non-existent in full confidence economies. This is not an arbitrary consequence of

the balanced budget approximation in propositions 7 and 8, but a general feature of the policy

problem. As in recursive utility environments like Karantounias (2013b), the inverse of Φt is a

martingale with respect to the worst-case measure in the non-linear economy, due to the fact

that the average relative debt position is zero, Etmt+1ηt+1 = 0. Therefore, the excess burden

of taxation is a submartingale with respect to the worst-case measure, Etmt+1Φt+1 ≥ Φt. So,

distortions increase on average over time with respect to the pessimistic beliefs. The drift with

respect to π depends on the conditional covariance of the household’s worst-case beliefs mt+1 with

Φt+1, since EtΦt+1 ≥ Φt − Covt(mt+1,Φt+1). The covariance is positive if ρ > 1, opening the

possibility of a negative drift with respect to π, and negative if ρ < 1, maintaining the positive

drift.18

17The restriction that the slope of the tax schedule at the balanced budget is larger than the slope of the share
of government expenditures (τ ′(Φ∗) > Λ′(Φ∗)) is similar to the assumption in proposition 6 that τ > Λ and is
typically satisfied for our parametric examples.

18Recall that for ρ > 1 the excess burden increases in bad times, leading to a positive covariance, since bad times
are weighed more by the pessimistic household. The opposite happens when ρ < 1.
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To summarize, two different cases emerge:

• Front-loading of distortions when IES < 1 (ρ > 1): distortions are countercyclical. The

planner both increases taxes in bad times, and decreases on average taxes over time if un-

certainty is actually generated by π, so a front-loaded fiscal consolidation becomes optimal.

We expect decumulation of government debt, until it becomes zero and the primary budget

is balanced.

• Back-loading of distortions when IES > 1 (ρ < 1): distortions are procyclical and there is a

positive drift in Φt if π drives uncertainty. This back-loading of distortions implies that the

tax rate and government debt increase on average over time.

These two cases will be valid also outside the vicinity of the balanced budget, as we numerically

show in the next section.

6 Numerical simulations

Besides being helpful for deriving theoretical results, the approximate law of motion (27) can be

used also for the numerical solution of the problem, as long as we constrain ourselves to the vicinity

of the balanced budget.19 We are interested here in the case where initial debt is large, so we will

resort to a global solution method.

The global solution of the problem is non-trivial due to the presence of the value functions

in the constraints which hinder the contraction property. We provide details about our solution

method in the Appendix.

6.1 Calibration

We use a standard calibration for our parametric example (12) with a constant Frisch elasticity. We

set (β, φh) = (0.96, 1) to get an annual frequency and a unitary Frisch elasticity. Let the logarithm

of technology shocks at ≡ ln st follow an AR(1) process, at = ρaat−1 + εt, with εt ∼ N(0, σ2
ε ). We

set the persistence parameter to ρa = 0.954 = 0.8145 and σε = 0.0174. These values imply a 3%

unconditional standard deviation of the technology shock, σa = 0.03. We take the stance that this

autoregressive process, which is the reference model π that the household doubts, is also the true

data-generating process, i.e. the household’s fears of model misspecification are unfounded. We

approximate the AR(1) process with two points using the Rouwenhorst method of Kopecky and

Suen (2010) and get (sL, sH) = (0.9704, 1.0305), and π(i|i) = 0.9073, i = L,H.

The crucial parameter for the allocation of distortions with doubts about the model is ρ. We

set ρ = 2 for our baseline calibration and consider also the case of a high IES with ρ = 0.5. For

19The Online Appendix details an algorithm for finding the matrix Φ. Results using the expansion are available
upon request.
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Figure 1: The left graph depicts p as function of 1/θ for (ρ, ψ) = (2, 1). The longer the length of the sample,
the smaller the detection error probability for a given level of σ. For each θ 100, 000 sample paths were generated
according to the reference and the worst-case model. The vertical dotted line at σ = −0.45 corresponds to p =
30.21% for T = 50, p = 26.24% for T = 75 and p = 23.11% for T = 100. The right graph depicts the timing
premium as function of 1/θ for (ρ, ψ) = (2, 1). For each θ the premium was computed using a fixed time horizon of
T = 1, 000 years and 1, 000 simulations. The vertical dotted line at σ = −0.45 corresponds to a timing premium of
0.3025%.

our baseline analysis we set ψ = 1, which implies a zero public wedge and constant government

share that is independent of Φ. We explore later the implications of model uncertainty on Λ. We

set (α, ah) = (0.2, 25.77) so that Λ is 20% and the household works 40% at the first-best when

shocks are at their average value of unity. The initial shock is s0 = sL, and initial debt is b0 = 0.2,

which corresponds to 50% of first-best output.

Detection error probabilities. We discipline the choice of σ ≡ −1/θ, the parameter that cap-

tures the decision maker’s doubts about π, by using the detection error probabilities methodology

of Anderson et al. (2003).20 The detection error probability stands for the probability of rejecting a

particular model with a likelihood ratio test, when this model is actually the true data-generating

process. Probability models that are “close” to each other imply a high probability of a detection

error. The further apart two models are, so the higher σ in absolute value, the easier it is to

statistically distinguish them, and the lower the detection error probability.

Let model A and model B stand for the reference model π and the worst-case model respectively,

and remember that Mt stands for the unconditional likelihood ratio of the worst-case model to the

reference model. The detection error probabilities for the two models for data of length T are

20See also Hansen and Sargent (2008) and Barillas et al. (2009) for further examples.
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pA = Prob(reject A|data generated by A) = Prob(MT > 1|data generated by A)

pB = Prob(reject B|data generated by B) = Prob(MT < 1|data generated by B).

If we think that the two models are a priori equiprobable, then the detection error probability

is p = 0.5 · pA + 0.5 · pB. The left graph in figure 1 plots this probability as function of 1/θ for the

baseline scenario of ρ = 2. Note that when θ is very high, i.e. when there are small doubts about

the model, the two models are essentially the same and the detection error probability becomes

close to 50%. The graph plots p for sample paths that are 50, 75 or 100 periods (years) long. We

set σ = −0.45 that corresponds to a detection error probability of 30% when T = 50, or 26% and

23% for sample paths of 75 or 100 years length respectively. For the case of high IES, ρ = 0.5,

we re-calibrate σ to −1.7. This value corresponds to a detection error probability of 41% when

T = 50.21 Overall, our choices of σ do not imply large doubts about the model; Hansen and

Sargent (2008) regard a detection error probability as low as 10% as justifiable.

Timing premium. The detection error probability exercise treats seriously the notion of model

uncertainty for the calibration of the parameter σ. The equivalence of the multiplier preferences

(14) with the risk-sensitive recursion (16) allows us to explore a different avenue and associate σ

to the timing premium of Epstein et al. (2014).22

Epstein et al. (2014) define as the timing premium the fraction of the consumption stream that

the decision maker would be willing to give up in order for all risk to be resolved at t = 1. This

is a thought experiment that puts in perspective the strength of preference for early resolution of

uncertainty, as captured by preference parameters and the specification of the exogenous stochastic

processes. We perform the same exercise, modified appropriately for an economy with production

and optimal policy.23 The right panel of figure 1 plots the timing premium as function of 1/θ.

The timing premium is zero when σ = 0. The larger 1/θ – which in a recursive utility world

would translate to a larger aversion to future consumption risks– the larger the timing premium.

For σ = −0.45 the timing premium is 0.3%, i.e. the household would give up up to 0.3% of its

consumption stream, in order to live in a world where all uncertainty is resolved at t = 1. The

magnitude of timing premia is small because there is no growth risk in our economy.
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Figure 2: The left graph considers the case of an IES smaller than unity and depicts the difference between the
policy functions for debt contingent on a high shock next period minus debt contingent on a low shock next period.
The current shock is low, s = sL. The right graph performs the same exercise for an IES larger than unity. Since
the government issues debt for t ≥ 1, the relevant parts of the policy functions are for z > 0.

Table 1: Correlations of the excess burden of taxation and the tax rate.

ρ = 2 ρ = 0.5

Correlation of ∆Φ with s -0.5138 0.5934

Correlation of ∆Φ with y -0.5054 0.5941

Autocorrelation of Φ 0.9897 0.9792

Correlation of ∆τ with s -0.5145 0.6106

Correlation of ∆τ with y -0.5062 0.6113

Autocorrelation of τ 0.9897 0.9792

The table depicts mean statistics for the cases of low and high IES. We simulated 10, 000 paths and used
the first 200 periods of each sample path for the calculation of the respective statistic.

6.2 Policy functions and correlations

Figure 2 plots the policy functions for state-contingent debt in marginal utility units next period

for the case of a low and high IES. As expected from the analysis in the previous section, the value

21The larger σ is in absolute value, the stronger the non-convexities of the optimal policy problem. Strong non-
convexities create convergence problems to our solution algorithm. This is why we refrained from trying to reach a
detection error probability of 30% as in the low IES case.

22See Strzalecki (2013) for the analysis of ambiguity aversion and the temporal resolution of uncertainty.
23The details are provided in the Appendix.
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Figure 3: Amplifying pessimistic expectations for IES smaller than unity (left graph) and mitigating pessimistic
expectations for IES larger than unity (right graph). Each plot depicts the difference in conditional likelihood ratios,
m(s′|s) under optimal policy minus msub(s′|s) under passive policy.

of debt is countercyclical (z′H < z′L) when the IES is low and procyclical (z′H > z′L) when the IES

is high. Thus, the results of proposition 8 near the balanced budget extend to the global solution.

The excess burden is countercyclical for the low IES case (“the austerity” case) and procyclical

for the high IES case. Taxes are a monotonic function of the excess burden of taxation, and,

therefore, exhibit the same behavior. Table 1 provides estimates of linear correlation coefficients of

the change in the excess burden of taxation and the tax rate with technology shocks and output.

Amplifying versus mitigating pessimistic expectations. The incentives to manage ex-

pectations are always associated with the respective benefits of manipulating debt values, which

depend on the IES. Figure 3 contrasts the optimal conditional likelihood ratio mt+1 with the likeli-

hood ratio that would emerge if the planner did not recognize the effects of the endogenous beliefs

on asset prices and followed a “passive” policy of a constant excess burden of taxation. The opti-

mal policy prescribes to tax more in bad (good) times when the IES is lower (larger) than unity.

Thus, relative to the passive policy, the planner is either amplifying the pessimistic expectations

by decreasing utility more in bad times through a higher tax (IES < 1), or he is mitigating the

pessimism of the household by reducing taxes in bad times (IES > 1). These small differences

between the passive and the optimal pessimistic beliefs actually result in great differences in the

long-run dynamics of optimal policy, as we show in the next section.
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Figure 4: Typical sample path for ρ = 2. It displays long-run convergence to the balanced primary budget with
zero public debt. The balanced budget tax rate is 20%. The government runs at t = 0 a deficit that is 6.15% of
output.
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Figure 5: Moments of the tax rate and the debt-to-output ratio over time for σ ∈ {−0.47,−0.45,−0.40}. These
values of σ imply a p of 29.24%, 30.21% and 32.23% respectively for T = 50. 10, 000 sample paths were used for
each σ.

6.3 Long-run dynamics

When initial debt is positive, the Ramsey plan prescribes a deficit in the initial period. In the

subsequent periods, the planner is running either a decreasing or an increasing surplus-to-output
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ratio, depending on the IES. In the first case, the planner repays the entire stock of debt. In the

second case, the planner is postponing distortions to the future and increases public debt over

time. Recall that in the full confidence case there are no drifts.

6.3.1 IES < 1: fiscal consolidations and long-run balanced budgets

For the baseline calibration of ρ = 2, we find that there is a negative drift with respect to π, as we

expect from proposition 8. Figure 4 displays a typical sample path that captures the front-loading

of distortions. Public debt converges to zero and the tax rate converges to its balanced-budget

value. The intuition of this result is as follows: good times (high technology shocks) are associated

with smaller taxes than bad times. Since the doubts of the household are unfounded, good times,

which bear low taxes, happen more often according to π –the data-generating process– than what

the pessimistic household thinks. Good times actually happen so often, so that the tax rate and

public debt fall on average over time.

Doubts about the model and speed of convergence. The fiscal adjustment is initially

steep and becomes flatter close to the balanced budget. Figure 5 plots the mean and standard

deviation of the tax rate and the debt-to-output ratio over time for different values of σ, which

imply different detection error probabilities p. The larger the doubts about the model, i.e. the

lower p, the lower the mean tax rate and debt-to-output ratio and the quicker the convergence to

a balanced budget. The standard deviation of the tax rate and the debt-to-output ratio behave

in a non-monotonic way over time, featuring a hump-shaped pattern. The maximum standard

deviation is larger for high doubts about the model. This is because the larger the doubts, the

more the planner manipulates the pessimistic expectations of the agents in order to make debt

cheaper and therefore the larger the changes in the tax rate and in debt, leading initially to large

volatility. Then, the standard deviation of the tax rate and the debt-to-output ratio eventually

decreases, till it reaches zero at the balanced budget.24

6.3.2 IES > 1: back-loading of distortions

Figure 6 displays the mean and the standard deviation of the tax rate and the debt-to-output ratio

when the IES is larger than unity. As expected, there is a positive drift in the tax rate, which is

reflected in the debt-to-output ratio. The intuition is similar as before: since good times happen

more often according to the data-generating process than what the pessimistic household thinks,

24To understand the initial increase of volatility, assume for instance that the tax rate was a stationary AR(1)
with autocorrelation φ and conditional standard deviation σε. Then, the standard deviation would increase over
time till it reached its stationary counterpart, σε/

√
1− φ2. In our case of a non-stationary process that becomes

eventually deterministic, after the initial increase, the standard deviation starts decreasing till it reaches zero at
the balanced budget. The higher the doubts about the model, the quicker the standard deviation reaches its peak,
and the quicker it approaches zero.
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Figure 6: Mean and standard deviation of the tax rate and the debt-to-output ratio when (ρ, ψ) = (0.5, 1). Doubts
about the model are set to σ = −1.7, that corresponds to a detection error probability of 40.94% for T = 50, and
a timing premium of 0.17%.

and since now good times bear higher taxes than bad times, average tax rates (and debt) increase

over time.

Varying share Λ. We focused here on a constant Λ by setting ψ = 1. In the Online Appendix

we provide the analysis of the case of substitutes (ψ < 1) and complements (ψ > 1). While the

government share now varies, changes in this share are quantitatively small.25 In addition, none of

our results regarding short- and long-run properties of optimal distortions change. Thus, the exact

nature of government consumption, substitute or complement to private consumption, is not key

to our findings. In contrast, the fact that spending is endogenous, is. We discuss this in the next

section.

7 Exogenous government spending

We have been interested in analyzing all relevant types of fiscal adjustment in an environment of

ambiguity about the business cycle: taxes, government consumption and debt issuance. For that

reason, we endogenized government spending by allowing it provide utility to the representative

household. Typical optimal taxation studies treat government expenditures as exogenous and

25 Additional shocks to the utility of government consumption, as in the work of Bachmann and Bai (2013), could
potentially generate more variation in the government share.

30



-0.1 0 0.1 0.2 0.3 0.4
current z

0

0.05

0.1

0.15

z
′ H
−

z
′ L

Difference in debt position

ρ = 0.5

-0.5 0 0.5 1
current z

0

0.05

0.1

0.15

0.2
Difference in debt position

ρ = 1

-1 0 1 2current z

0

0.5

1

1.5
Difference in debt position

ρ = 2

1 50 100 150

t

0

2.5

5

7.5

%

Mean debt-to-output ratio

ρ = 0.5

1 50 100 150

t

0

2

4

6

8

Mean debt-to-output ratio

ρ = 1

1 50 100 150

t

0

20

40

60

80
Mean debt-to-output ratio

ρ = 2

Figure 7: The top three panels from left to right depict the difference in the policy functions for next period’s
state-contingent debt in marginal utility units, z′H − z′L, for ρ ∈ {0.5, 1, 2} respectively. The current shock is high,
s = sH . The bottom three panels depict from left to right the respective mean debt-to-output ratio over time for
ρ ∈ {0.5, 1, 2}; 10, 000 sample paths were used for each ρ. Doubts about the model are kept constant at σ = −0.45,
and initial debt is set to b0 = 0. In all cases, z′H > z′L and debt-to-output ratios increase on average over time.

wasteful though.26 In what follows, we show that the government consumption margin is crucial

for our fiscal austerity results.

Recall that by using utility-providing government consumption and by adopting a homothetic

specification we obtained a sharp characterization of the cyclicality and the dynamics of the optimal

plan in terms of the IES only, as we showed in propositions 6 and 8 analytically and in the previous

section numerically. When government expenditures are exogenous, the Ramsey problem is the

same as in section 4.3, with the exception that g is not a control variable anymore. As a result,

we get the same law of motion (25) for the excess burden of taxation and therefore, the same

incentives for price manipulation through the worst-case beliefs of the household.

However, as we emphasized earlier, the ultimate object of interest is the response of the “value”

of surpluses and debt to shocks (in a two-period and infinite horizon economy, respectively). It

is natural to conjecture that, when spending is exogenous, a positive technology shock, which

increases surpluses, will translate to a reduction in marginal utility and therefore, to a reduction in

marginal-utility-adjusted surpluses Ω, depending on the elasticity of marginal utility, thus the IES.

Nevertheless, proposition 9 below shows that the cyclicality of Ω, and therefore, the cyclicality of

the excess burden, does not depend solely on the IES and its size relative to unity. Instead, it

26See Teles (2011) for a criticism of this approach.
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depends also on the size of the surplus through the level of taxes and the government share. These

features of the economy were not relevant to our homothetic endogenous spending specification.

Proposition 9. Assume that government consumption does not provide utility and consider a

period utility function with Ucl = 0. Then, ∂Ω/∂s > (<)0 ⇐⇒ τ(1− Λ) > (<)εcc(τ − Λ).

Proof. See the Appendix.

To get an idea about magnitudes, assume for example that Λ = 20 percent and that τ = 22.42

percent, as in our benchmark model in the previous section without robustness. Then, Ω remains

procyclical as long as εcc < 7.42 and becomes countercyclical otherwise. Thus, recalling proposition

6, the excess burden of taxation would be procyclical in a two-period economy and the austerity

case irrelevant, unless we assumed implausibly high values of εcc. From a different angle, assume

that εcc > 1− Λ. Then Ω is procyclical if the tax rate is sufficiently small, τ < εccΛ/(εcc − 1 + Λ)

and countercyclical otherwise. For (εcc,Λ) = (2, 0.2) the proposition implies that if the tax rate is

below 33.3 percent (so if the surplus-to-output ratio is smaller than 13.3 percent), Ω is procyclical.

For larger tax rates, corresponding to very large surpluses (or debt in infinite horizon), the opposite

would hold.

We dig deeper into these findings by computing global solutions to the Ramsey problem with

exogenous government spending in infinite horizon. To stay close to our endogenous spending case,

we use the following utility function:

U =
c1−ρ − 1

1− ρ
− ah

h1+φh

1 + φh
.

The level of g is constant and calibrated to be equal to 20 percent of output on average at the

first-best. The technology shocks and the rest of the preference parameters are calibrated as in the

numerical exercises section. The top panels of figure 7 display the difference in policy functions for

state-contingent debt in marginal utility units for ρ ∈ {0.5, 1, 2}. For all parameterizations, debt

in marginal utility units is procyclical, z′H > z′L, leading to a procyclical excess burden of taxation,

Φ′H > Φ′L. Therefore, for “reasonable” calibrations, whether or not the IES is smaller, equal to,

or larger than unity, taxes are procyclical, and the optimal fiscal plan exhibits a positive drift in

public debt, as shown in the bottom panels of figure 7.

To conclude, utility-providing government expenditures are crucial for both the sharp depen-

dence on the IES and for the quantitative relevance of the novel austerity result. On a more

general level, these results show that the question of optimal financing of government expenditures

cannot be independent of what these expenditures do in the economy and how they affect interest

rates. If we think of government expenditures as war and peace shocks, as in the typical optimal

taxation problem, then procyclical taxes and a positive drift in debt are optimal in environments

with ambiguity about the cycle, altering non-trivially the acyclicality of taxes and lack of drifts of

expected utility setups. In contrast, if we think of government expenditures as providing utility, as
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in the work of Bachmann and Bai (2013), then fiscal consolidations and balanced budgets can be

optimal in the long-run if interest rates are sufficiently responsive, i.e. if the IES is smaller than

unity.

8 Concluding remarks

In this paper we studied the optimal design of taxes, spending and pubic debt, when there is

ambiguity about the cycle. We found that two, diametrically opposite, policies can be optimal:

“austerity” policies, i.e. cycle-amplifying taxes and front-loaded fiscal consolidations when the IES

is below unity, and “anti-austerity” policies, i.e. cycle-mitigating taxes and an increasing public

debt over time when the IES is larger than unity. Typical calibrations of the IES feature values

below unity, which, given this study, make the austerity case difficult to dismiss.27

In our study we abstracted from many other features that are in principle relevant for fiscal

policy. For instance, we did not consider under-utilization of resources or any kind of default risk,

that may annul or favor fiscal consolidation arguments.28 Incorporating market incompleteness

as in Bhandari et al. (2016) would be another interesting extension. Despite these limitations in

scope, we find it interesting and somewhat unexpected the fact that when there are pessimistic

scenarios about the economic cycle, it may actually be optimal to promote austerity measures and

amplify the endogenous pessimism of the households, in order to reduce interest rates in recessions.

27 See Guvenen (2006) and references therein for the debate on the size of the IES.
28Interesting work incorporating default risk and fiscal policy considerations is done by Cuadra et al. (2010), Bi

(2012) and Arellano and Bai (2016).
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A Full Confidence in the model

A.1 First-order conditions of second-best problem

Let Φ denote the multiplier on the unique implementability constraint and let βtπt(s
t)λt(s

t) denote

the multipliers on the resource constraint at each t, st. First-order necessary conditions for t ≥ 1

are

ct(s
t) : Uc(s

t) + ΦΩc(s
t) = λt(s

t) (A.1)

ht(s
t) : −Ul(st) + ΦΩh(s

t) = −λt(st)st (A.2)

gt(s
t) : Ug(s

t) + ΦΩg(s
t) = λt(s

t) (A.3)

where Ωi, i = c, h, g stands for the respective partial derivative of the surplus in marginal utility

units Ω.

The presence of initial debt modifies the first-order conditions for t = 0. In particular, we have

c0 : Uc0 + Φ(Ωc0 − Ucc0b0) = λ0 (A.4)

h0 : −Ul0 + Φ(Ωh0 + Ucl0b0) = −λ0s0 (A.5)

g0 : Ug0 + Φ(Ωg0 − Ucg0b0) = λ0 (A.6)

A.2 Proof of Proposition 1

Eliminate λt from (A.1), (A.2) and (A.3) to get

Ug + ΦΩg

Uc + ΦΩc

= 1 (A.7)

Ul − ΦΩh

Uc + ΦΩc

= s. (A.8)

Expressions (A.7) and (A.8) capture the optimal wedges at the two margins and contrast to (8)

and (9) of the first-best allocation (which correspond to the case of Φ = 0). Using (A.7) and (A.8)

together with the resource constraint (1) allows us to solve for the optimal second-best allocation

(c, h, g) in terms of the current technology shock st and the multiplier Φ, ct = c(st,Φ), ht =

h(st,Φ), gt = g(st,Φ), t ≥ 1, which proves the history-independence property. Furthermore, since

the public wedge and the labor tax τ = 1− Ul/(Ucs) are functions of the optimal allocation, they

also inherit the history-independence property, χt = χ(st,Φ), τt = τ(st,Φ).

Performing the same exercise at t = 0 we get
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Ug0 + Φ(Ωg0 − Ucg0b0)

Uc0 + Φ(Ωc0 − Ucc0b0)
= 1 (A.9)

Ul0 − Φ(Ωh0 + Ucl0b0)

Uc0 + Φ(Ωc0 − Ucc0b0)
= s0 (A.10)

which lead to an initial allocation that depends on (s0, b0,Φ). The value of the multiplier Φ is such

that the implementability constraint holds, i.e. the present value of government surpluses is equal

to initial debt.

A.3 Proof of Proposition 2

The public wedge and labor tax at t = 0 are

χ0 =
Φ(1− εcc − εch − εgc − εgh + (εcc + εgc)c

−1
0 b0)

1 + Φ(εgc + εgh − εgcc−1
0 b0)

τ0 =
Φ(εcc + εch + εhh + εhc − (εcc + εhc)c

−1
0 b0)

1 + Φ(1 + εhh + εhc − εhcc−1
0 b0)

and the same comment about the positivity of the denominators applies.

To prove proposition 2 express (A.7) as Ug
Uc
· 1+ΦΩg/Ug

1+ΦΩc/Uc
= 1 and use the definition of the public

wedge (11) to get χ = Φ(Ωc/Uc−Ωg/Ug)

1+ΦΩg/Ug
. Similarly, express the optimal wedge in labor supply (A.8)

as Ul
Uc
· 1−ΦΩg/Ul

1+ΦΩc/Uc
= s, which can be written in terms of the labor tax as τ = −Φ(Ωc/Uc+Ωh/Ul)

1−ΦΩh/Ul
, since

τ = 1− Ul/(Ucs). The partial derivatives of Ω scaled by the respective marginal utilities take the

form Ωc/Uc = 1− εcc− εch, Ωh/Ul = −1− εhh− εhc and Ωg/Ug = εgc + εgh. Use these expressions to

finally get the optimal public wedge and labor tax stated in the proposition. Use (A.9) and (A.10)

and follow the same steps for t = 0. For the signs of the denominators, use (A.2) and (A.3) to get

1 + Φ(1 + εhh + εhc) = λs/Ul > 0 and 1 + Φ(εgc + εgh) = λ/Ug > 0 since λ > 0. Similarly, use (A.5)

and (A.6) for t = 0.

A.4 Proof of Proposition 3

The marginal rate of substitution of government for private consumption is Ug/Uc = Aκ−ψ, where

A ≡ α/(1− α) and κ ≡ g/c, the ratio of government to private consumption. At the first-best we

have κ = κFB ≡ A1/ψ.

1a) In order to determine the optimal value of χ we need to solve the equation Ug/Uc = 1 + χ,

which can be expressed in terms of κ as
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Aκ−ψ = 1 +
Φ(1− ψ)

1 + Φ(ψ − ρ)[1 + Aκ1−ψ]−1
. (A.11)

This equation is derived by expressing the weight λc as a function of κ, λc(κ) = [1 +Aκ1−ψ]−1.

Equation (A.11) does not depend on the shocks s and defines implicitly κ as a function of the

excess burden of taxation Φ, κ(Φ), with κ(0) denoting the first-best solution. Since Φ is constant,

κ and the public wedge χ become constant at the second-best and do not vary across states and

dates. Thus, the share of government consumption in output Λ ≡ κ/(1 + κ) becomes a function

of Φ, Λ = Λ(Φ), and does not vary across states and dates either.

1b) Aside from the first-best, there is no closed-form solution of (A.11) unless specific as-

sumptions are made. For example, for ψ = 1 we have κ(Φ) = κ(0) = A. Furthermore, if we

don’t differentiate between intratemporal and intertemporal substitution and set ψ = ρ, we get

χ = Φ(1 − ψ) and κ = (A/(1 + Φ(1− ψ))1/ψ. More generally, we can use the implicit function

theorem to show the existence of κ and its sensitivity with respect to the excess burden of tax-

ation. Note at first that since Λ′(Φ) = κ′(Φ)/(1 + κ)2, we have sign Λ′(Φ) = signκ′(Φ). Define

H(κ,Φ) ≡ Aκ−ψ − 1− Φ(1− ψ)[1 + Φ(ψ − ρ)(1 + Aκ1−ψ)−1]−1 and write (A.11) as H(κ,Φ) = 0.

By the implicit function theorem, there exists a function κ(Φ) in a neighborhood of a solution

of the equation with derivative κ′(Φ) = −HΦ/Hκ as long as Hκ 6= 0 at the solution. We have

HΦ = (ψ− 1)[1 + Φ(ψ− ρ)λc]
−2 and Hκ = −Aκ−ψ

[
ψκ−1 + (ψ− ρ)Φ2(1− ψ)2[λ−1

c + Φ(ψ− ρ)]−2
]
.

The sign of HΦ depends only on ψ being larger or smaller than unity, signHΦ = sign (ψ − 1). The

partial Hκ is always negative for ψ ≥ ρ. So for ψ ≥ ρ we have sign(κ′(Φ)) = sign(ψ−1). For ψ < ρ

the sign of Hκ is ambiguous. But it is easy to see that around the first-best solution, we have

Hκ(κ
FB, 0) = −ψ/κFB and κ′(0) = (ψ − 1)κFB/ψ. Thus, sign Λ′(0) = signκ′(0) = sign(ψ − 1).

2a) The optimal tax rate in proposition 2 becomes τ = Φ(εcc(κ)+φh)
1+Φ(1+φh)

. The elasticity εcc depends on

the ratio κ through the weight λc(κ). A constant excess burden of taxation Φ leads to a constant

κ and therefore εcc does not vary across shocks. Therefore, the labor tax becomes constant across

states and dates, τt = τ(Φ), t ≥ 1.

2b) Differentiating the tax rate with respect to Φ delivers

τ ′(Φ) =
εcc + φh + Φε′cc(κ)κ′(Φ)(1 + Φ(1 + φh))

(1 + Φ(1 + φh))2
.

with ε′cc(κ) = (ρ − ψ)(ψ − 1)Aκ−ψλ2
c . For the case of ψ = 1 or the ψ = ρ, where we have

εcc = α+ (1− α)ρ and εcc = ρ = ψ respectively, the tax rate becomes an increasing function of Φ.
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More generally, for a small deviation from the first-best we have τ ′(0) = εcc(κ
FB) + φh > 0.

3) Assume that b0 = 0. Then the initial tax rate and government share are the same as in

the subsequent periods, so τt = τ(Φ),Λt = Λ(Φ)∀t ≥ 0. The intertemporal budget constraint

reads 0 = (τ(Φ) − Λ(Φ))
∑∞

t=0

∑
st qt(s

t)yt(st) and therefore τ(Φ) = Λ(Φ). This equation, which

is to be solved for Φ, does not depend on the shocks but only on the preference parameters

(α, ρ, ψ, φh). Thus, Φ and therefore the optimal tax rate and share Λ will not depend on stochastic

properties of the shocks. When b0 > 0, the intertemporal budget constraint can be rearranged to

get τ(Φ)−Λ(Φ) = (b0−(τ0−Λ0)y0)/
∑∞

t=1

∑
st qt(s

t)yt(st). If b0 > (τ0−Λ0)y0, then the government

always runs surpluses τ(Φ) > Λ(Φ) for each t ≥ 1. The value of the excess burden of taxation Φ

that satisfies the budget constraint will depend on the properties of the shocks.

B Doubts about the model

B.1 Initial period problem

The recursive problem from period one onward uses as an input the value of the state variable at

t = 1, when the shock takes value is s, z1,s. This value is chosen optimally at t = 0, together with

the initial allocation (c0, h0, g0) to solve the problem

max
c0,g0≥0,h0∈[0,1],z1,s∈Z(s)

U(c0, 1− h0, g0) +
β

σ
ln
∑
s

π(s|s0) exp(σV (z1,s, s))

subject to

Uc(c0, 1− h0, g0)b0 = Ω(c0, h0, g0) + β
∑
s

π(s|s0)
exp(σV (z1,s, s))∑

s π(s|s0) exp(σV (z1,s, s))
z1,s

c0 + g0 = s0h0

The optimality conditions with respect to (c0, h0, g0) are the same as in the problem without

doubts (A.4)-(A.6), with the qualification that the multiplier on the initial implementability con-

straint is indexed by t = 0, Φ0. Similarly, the optimality condition with respect to z1,s is given by

(24) with the same qualification.

B.2 Proof of Proposition 5

1) We will show that, given the assumption, a constant Φ satisfies the optimality conditions

of the Ramsey problem with doubts about the probability model (assuming implicitly that they
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are sufficient for the characterization of the solution). Debt in marginal utility units is zt =

Et
∑∞

i=0 β
i Mt+i

Mt
Ω?(st+i,Φt+i). For any constant Φ we get zt = z = Ω?/(1− β), t ≥ 1, since Ω? does

not vary across shocks and EtMt+i = Mt, i ≥ 0. Thus, ηt+1 is identically zero ∀t ≥ 0 and the law

of motion for Φt (25) delivers Φt = Φ, t ≥ 0, confirming that a constant Φ satisfies the optimality

conditions. The constant Φ has to satisfy the implementability constraint at t = 0, which reduces

to Uc0b0 = Ω0 + βΩ?/(1 − β). This is the same equation that Φ has to satisfy at the second-best

with full confidence in the model. Let the solution to it be Φ̄ and the result follows.

2) Given the assumption, there is a Φ̄ for which the government runs a balanced budget for

every realization of the shock (if there is more than one, we always pick the smallest one). For

the given Φ̄ we have zt = 0∀t ≥ 1 and therefore ηt+1 ≡ 0, t ≥ 0. Thus, we have Φt = Φ̄, t ≥ 0

by (25). This Φ̄ satisfies the implementability constraint at t = 0 since initial debt is zero. This

is the same condition as with full confidence in the model and the result follows. Note that it

is important to have zero initial debt. If b0 6= 0, the implementability constraint would become

Uc0b0 = Ω0. However, Ω0 depends on (s0, b0, Φ̄) through the initial allocation (c0, h0, g0) and there

is no guarantee that the constraint holds for the given Φ̄ that furnishes a balanced budget. Other

values of a constant Φ could lead to non-zero positions zt+1 that vary across shocks, leading to a

time-varying excess burden by the law of motion (25) and annulling the conclusion.

B.3 Proof of corollary to Proposition 5

1) We will show that Ω? doesn’t vary across shocks for any subutility of leisure v(l) if ρ = 1.

For a generic v(l) the elasticity of marginal disutility of leisure (which is the inverse of the Frisch

elasticity) depends on h, εhh(h) = −v′′(1 − h)h/v′(1 − h), which could in principle lead to a

varying tax rate across shocks for a given Φ, since τ = Φ(εcc(κ)+εhh(h))
1+Φ(1+εhh(h))

according to the formula

in proposition 2. We will show that for ρ = 1, optimal labor is only a function of Φ, a fact

that ultimately delivers the result. For ρ = 1, Uc = λc(κ)c−1 and εcc(κ) = ψ + (1 − ψ)λc(κ).

Thus, the optimal wedge (A.8) becomes v′(1−h)
λc(κ)

· 1+Φ(1+εhh(h))
1+Φ(1−εcc(κ))

c = s. Setting c = (1 − Λ)sh, leads

to the elimination of the shocks s from the optimal wedge equation, furnishing a labor that is

only a function of Φ. As a result, the tax rate becomes a function of only Φ (albeit a different

function than in the constant Frisch case). The optimal surplus is marginal utility units becomes

Ω∗ = λc(κ)(τ − Λ)c−1y = λc(κ)(τ − Λ)/(1− Λ), which depends only on Φ.

2) In that case, balanced budgets are optimal according to proposition 3. Therefore, Ω?(s, Φ̄) =

Ω?(s′, Φ̄) = 0,∀s 6= s′, for the Φ̄ that satisfies τ(Φ̄) = Λ(Φ̄).
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B.4 Proof of Proposition 6

1) Express all variables in the law of motion of Φ as functions of σ to get Φi(σ)(1+σηi(σ)Φ0(σ)) =

Φ0(σ), i = L,H. For σ = 0 the excess burden is Φ(0) and we have Φi(0) = Φ0(0) = Φ(0), i = L,H.

Let ηi(0) = Ωσ=0
i −

∑
i πiΩ

σ=0
i , i = L,H denote the relative debt position for σ = 0. Differentiate

with respect to σ and set σ = 0 to get Φ′i(0) = Φ′0(0) − Φ(0)2ηi(0).29 To first-order we have

Φi(σ) ' Φ(0)+σΦ′i(0) and Φ0(σ) ' Φ(0)+σΦ′0(0). Therefore, Φi(σ)−Φ0(σ) = σ(Φ′i(0)−Φ′0(0)) =

−σΦ(0)2ηi(0). Since σ < 0, ΦH(σ) > Φ0(σ) > ΦL(σ) , when Ωσ=0
H > Ωσ=0

L . The opposite holds

when Ωσ=0
H < Ωσ=0

L .

2) Consider first equilibrium labor and output. Use the labor supply condition (6) and express

the marginal utility of consumption as Uc = (1 − α)
(
c
u

)ρ−ψ
c−ρ to solve for labor h and then for

output, y = sh. We have

h(s,Φ) = H(Φ) · s
1−ρ
ρ+φh , and y(s,Φ) = H(Φ) · s

1+φh
ρ+φh , where

H(Φ) ≡

[
1− τ
ah

(1− α)
(
c
u

)ρ−ψ
(1− Λ)ρ

] 1
ρ+φh

Note that c/u is a function of κ, c/u =
[
1 − α + ακ1−ψ] 1

ψ−1 . Therefore, H is function only

of Φ, through τ(Φ),Λ(Φ) and κ(Φ). The income and substitution effects in labor supply are

controlled only by ρ for this utility function (and not by ρ and ψ). The surplus is S(s,Φ) =

(τ(Φ) − Λ(Φ))y(s,Φ). Since ∂y/∂s > 0, the surplus is increasing in s for τ > Λ. To get Ω?,

multiply S with Uc (expressed again as previously) and use c = (1− Λ)y. The expression for J is

J(Φ) ≡ (1−α)( cu)
ρ−ψ

(1−Λ)ρ
> 0, and is a function only of Φ (and not s), since the ratio c/u depends only

on Φ. With full confidence in the model Φ is constant, and therefore ∂Ω?/∂s determines the size

of the surplus in marginal utility units across shocks. We have obviously sign ∂Ω?/∂s = sign(1−ρ)

when τ > Λ. The result follows.

C Numerical solution method

The code which computes global solutions is divided into three parts. First, we solve the static

problem of finding the optimal allocation (c, g, h) for a given level of surplus in marginal utility

29 For simplicity, we use the same notation as in some parts of proposition 3, where we wanted to express small
deviations from the first-best, Φ = 0.
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units and a given technology shock, (Ω, s). We compute the function U(Ω, s), defined as:

U(Ω, s) = max
c,g,h

U(c, g, h) s.t.

sh = c+ g

Ω = Ucc+ Uhh

We approximate this function with cubic splines for each realization of the shock s. We obtain

policy functions C(Ω, s), G(Ω, s), H(Ω, s) as the argmax of the problem stated above.

In the second step of the algorithm, we perform value function iteration. We solve the following

problem:

V (z, s) = max
{Ω,zs′}

U(Ω, s) +
β

σ
ln
∑
s′|s

π(s′|s) exp(σV (s′, z′s′)) s.t. (C.1)

Ω = z − β
∑
s′|s

π(s′|s) exp(σV (s′, z′s′))z
′
s′∑

s′|s π(s′|s) exp(σV (s′, z′s′))
(C.2)

As an initial guess for the iteration we compute value functions as if the planner was making

Φ constant over states and dates, a policy which would be suboptimal. Then, we conduct value

function iteration using a simple grid search to find the optimal portfolio choice {z′s′} for each

point of the state space (z, s); the value function is updated using two loops: first an inner loop,

where V is only updated in (C.1), then an outer loop, in which V is also updated in (C.2). Finally,

we use the value function obtained through the grid-search optimization as a first guess for a value

function iteration algorithm that uses a continuous optimization routine. We approximate the value

functions with cubic splines and provide also analytical derivatives to the optimization routine. We

iterate until convergence to obtain V (z, s). At this stage, we have also obtained policy functions

Z(z, s; s′) and Ω̂(z, s). The implied policy functions for allocations are C(z, s) ≡ C(Ω̂(z, s), s),

G(z, s) ≡ G(Ω̂(z, s), s), and H(z, s) ≡ H(Ω̂(z, s), s).

After solving for the value function that represents the value of the commitment problem from

t = 1 onward, we turn to the solution of the time-zero problem. Given the initial conditions (s0, b0),

we find the optimal allocation (c0, g0, h0) and the optimal initial value of the pseudo-state variable,

z1,s1 , that maximizes the utility of the household at t = 0.

D Timing premium

In Epstein et al. (2014) the timing premium is defined as the fraction of the current and future

consumption stream that the decision maker would be willing to give up for all risk to be resolved

at t = 1. The decision maker faces an exogenous stochastic stream of consumption. Utility of

the consumption stream when uncertainty is resolved gradually is compared to utility obtained at
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t = 0 when uncertainty is resolved at t = 1, that is, when all future shocks, and therefore all future

allocations, are known at t = 1.

In the context of an optimal policy problem, the definition of the timing premium is more

involved. In particular, we allow the planner to choose optimally policy for the case when uncer-

tainty is resolved at t = 1. Our planner faces, say, N deterministic paths at t = 1, that are random

from the perspective of t = 0. We retain the complete market assumption by allowing the planner

to issue at t = 0 debt contingent on these N paths.

The algorithm is as follows. Let V0 denote the utility when uncertainty is resolved gradually.

We compute optimal policy when risk is resolved at t = 1, using a fixed time horizon of T = 1, 000

years (pasting V (z, s) as the continuation value at T ) and N = 1, 000 simulations.30 For each

history n, we obtain an initial allocation {crr0 , hrr0 , grr0 }, allocations from t = 1 up to t = T − 1

{{crrt (n), hrrt (n), grrt (n)}Nn=1}T−1
t=1 and a final debt position {zrrT (n)}Nn=1. Finally, we compute the

fraction πtiming that the decision-maker would be willing to give up such that:

W rr(πtiming) = V0

where W rr(πtiming) is the utility at t = 0 under the scenario of early resolution of risk when the

decision maker gives up a fraction πtiming of the consumption stream. This number is computed in

two steps. For each possible history n we compute

Wn(πtiming) ≡
T−1∑
t=1

βt−1U((1− πtiming)crrt (n), 1− hrrt (n), grrt (n)) + βT−1V (zrrT (n), srrT (n)) ∀n,

where srrT (n) stands for the realization of the shock at period T for history n. At t = 0, we have

W rr(πtiming) ≡ U((1− πtiming)crr0 , 1− hrr0 , grr0 ) +
β

σ
ln

N∑
n=1

1

N
exp(σWn(πtiming)).

Another avenue we could follow would be to treat consumption, hours worked, and government

spending as exogenous stochastic variables, in order to be closer to the spirit of Epstein et al. (2014).

Such a treatment of the allocations captures the pure desire for early resolution of consumption

(and leisure and government consumption) uncertainty, so no part of the timing premium can be

attributed to any kind of planning advantage due to the early resolution of the inherent uncertainty

that drives the economy– the technology shocks in our case. In the context of the calculation above,

for each history n we would use the allocation that was found to be optimal for the same history

of shock realizations when uncertainty is resolved gradually – which is obviously a suboptimal

allocation given the new specification of uncertainty. This way of approaching the problem would

30We are restricted computationally in the size of N given the optimal choice of N history-contingent contracts
at t = 0.
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lead to a smaller πtiming. We conducted this exercise as well and found that numbers were virtually

identical.

E Proof of Proposition 9

Assume that government expenditures are exogenous and constant. The system

Ul(c, 1− h) = Uc(c, 1− h)(1− τ)s

c+ g = sh = y

determines implicitly the allocation (c, h) as function of (s, τ). Differentiate with respect to s to

get the system(
Ucl − s(1− τ)Ucc s(1− τ)Ucl − Ull

1 −s

)(
∂c
∂s
∂h
∂s

)
=

(
(1− τ)Uc

h

)

Assume Ucl ≥ 0. The determinant of the system is ∆ = s2(1 − τ)Ucc − s(2 − τ)Ucl + Ull < 0.

Then, we have

∂c

∂s
=

∂y

∂s
=
−s(1− τ)(Uc + Uclh) + Ullh

∆
> 0

∂h

∂s
=

Uclh− s(1− τ)Ucch− (1− τ)Uc
∆

The sign of ∂h/∂s is ambiguous and depends on the strength of income and substitution effects.

Consider now the surplus. We have S(s, τ) = τsh(s, τ) − g, with ∂S/∂s = τ∂y/∂s > 0. The

surplus in MU units is Ω(s, τ) ≡ Uc(c, 1− h)[τsh− g]. Differentiating with respect to s we get:

∂Ω

∂s
= (Ucc

∂c

∂s
− Ucl

∂h

∂s
)[τy − g] + Ucτ

∂y

∂s

The second term is always positive since it depicts the increase in surplus due to an increase

in output. The first term can be negative if S > 0 due to decreasing marginal utility. Assume

Ucl = 0 and use the fact that ∂c/∂s = ∂y/∂s and that y/c = 1/(1− Λ), to get:

∂Ω

∂s
=

∂y

∂s
Uc
[Ucc
Uc

[τy − g] + τ
]

=
∂y

∂s
Uc
[
−εcc

τ − Λ

1− Λ
+ τ
]
.

The result follows.
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Benigno, Pierpaolo and Salvatore Nisticò. 2012. International portfolio allocation under model

uncertainty. American Economic Journal: Macroeconomics 4 (1):144–89.

Benigno, Pierpaolo and Luigi Paciello. 2014. Monetary policy, doubts and asset prices. Journal of

Monetary Economics 64:85–98.

Bhandari, Anmol, David Evans, Mikhail Golosov, and Thomas J. Sargent. 2016. Fiscal Policy and

Debt Management with Incomplete Markets. Quarterly Journal of Economics Forthcoming.

Bi, Huixin. 2012. Sovereign Default Risk Premia, Fiscal Limits and Fiscal Policy. European

Economic Review 56 (3).

Bi, Huixin, Eric M. Leeper, and Campbell Leith. 2013. Uncertain Fiscal Consolidations. Economic

Journal 123 (566).

43



Bianchi, Francesco, Cosmin Ilut, and Martin Schneider. 2017. Uncertainty shocks, asset supply

and pricing over the business cycle. Forthcoming, Review of Economic Studies.

Bidder, Rhys M. and Matthew E. Smith. 2012. Robust animal spirits. Journal of Monetary

Economics 59 (8):738–750.

Boyd, John H.III. 1990. Recursive utility and the Ramsey problem. Journal of Economic Theory

50.

Croce, Mariano M., Thien T. Nguyen, and Lukas Schmid. 2012. The market price of fiscal uncer-

tainty. Journal of Monetary Economics 59 (5):401–416.

Cuadra, Gabriel, Juan M. Sanchez, and Horacio Sapriza. 2010. Fiscal policy and default risk in

emerging markets. Review of Economic Dynamics 13:452–469.

Debortoli, Davide and Ricardo Nunes. 2013. Lack of commitment and the level of debt. Journal

of the European Economic Association 11 (5):1053–1078.

Dovis, Alessandro, Mikhail Golosov, and Ali Shourideh. 2016. Political Economy of Sovereign

Debt: A Theory of Cycles of Populism and Austerity. Mimeo, Princeton University.

Epstein, Larry G. and Martin Schneider. 2010. Ambiguity and asset markets. Annual Reviews of

Financial Economics 2:315–334.

Epstein, Larry G., Emmanuel Farhi, and Tomasz Strzalecki. 2014. How Much Would You Pay to

Resolve Long-Run Risk? American Economic Review 104 (9):2680–97.

Guvenen, Fatih. 2006. Reconciling conflicting evidence on the elasticity of intertemporal substitu-

tion: A macroeconomic perspective. Journal of Monetary Economics 53 (7):1451–1472.

Hansen, Lars Peter and Thomas J. Sargent. 2001. Robust Control and Model Uncertainty. Amer-

ican Economic Review 91 (2):60–66.

———. 2008. Robustness. Princeton University Press.

Ilut, Cosmin, Rosen Valchev, and Nicolas Vincent. 2016. Paralyzed by Fear: Rid and Discrete

Pricing under Demand Uncertainty. Mimeo, Duke University.

Ilut, Cosmin L. and Martin Schneider. 2014. Ambiguous business cycles. American Economic

Review 104 (8):2368–99.

Karantounias, Anastasios G. 2013a. Managing pessimistic expectations and fiscal policy. Theoret-

ical Economics 8 (1):193–231.

44



———. 2013b. Optimal fiscal policy with recursive preferences. Federal Reserve Bank of Atlanta

WP 2013-7.
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A Balanced budget approximation

A.1 Preliminaries

We proceed with an approximation around the balanced budget by treating Φ as a state variable.

Let Φ∗ denote the value of the excess burden that leads to a balanced budget, τ(Φ∗) = Λ(Φ∗).

Whenever necessary, we use the asterisk ∗ to denote the evaluation of a function at Φ∗. Assume

shocks take N values and that they are ranked as s1 < s2 < ... < sN . To ease notation, we let

Ωi(Φ), zi(Φ) and Ui(Φ), Vi(Φ) denote the level of surplus and debt (in MU units), together with

the period and discounted value of utility when the excess burden of taxation is Φ and the shock

is st = si.
1 At the balanced budget we have obviously Ωi(Φ

∗) = zi(Φ
∗) = 0, ∀i. Since Φ∗ is an

absorbing state, we can also calculate Vi(Φ
∗) from the recursion

Vi(Φ
∗) = Ui(Φ

∗) +
β

σ
ln
∑
j

π(j|i) exp(σVj(Φ
∗)),∀i, (1)

which delivers the respective conditional distortions m∗j|i at Φ∗. The matrix of distortions and the

distorted transition matrix are defined respectively as

M ≡

 m∗1|1 ... m∗N |1

m∗1|N ... m∗N |N

 , Π∗ ≡ Π ◦M,

where ◦ denotes element-by-element multiplication. Furthermore, we collect the derivatives of the

excess burden of taxation in the N ×N matrix

Φ ≡


Φ′1|1(Φ∗) ... Φ′N |1(Φ∗)

...

Φ′1|N(Φ∗) ... Φ′N |N(Φ∗)


A.2 Approximate law of motion

Recall that the approximate law of motion of the excess burden takes the form

Φj|i(Φ) ' Φ∗ + Φ′j|i(Φ
∗)(Φ− Φ∗), i, j = 1, ..., N. (2)

To find the entries of Φ proceed as follows. Let the current shock be i and the current excess

1For simplicity we do not differentiate our notation in this section and still use Ω for the indirect function of
s,Φ. So Ωi does not stand anymore for the derivative of Ω with respect to c, h, g.
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burden of taxation Φ. Let Φj denote the excess burden of taxation next period at shock j. Define

Fj|i(Φ1,Φ2, ...,ΦN ,Φ) ≡ Φj

[
1 + σηj|i(Φ1,Φ2, ...,ΦN)Φ

]
− Φ,∀j.

where

ηj|i(Φ1,Φ2, ...,ΦN) ≡ zj(Φj)−
∑
k

π(k|i)mk|i(Φ1,Φ2, ...,ΦN)zk(Φk),∀j

mj|i(Φ1,Φ2, ...,ΦN) ≡ exp(σVj(Φj))∑
k π(k|i) exp(σVk(Φk))

,∀j

Define the vector function Fi ≡ [F1|i, ..., FN |i]
T ,∀i, where T denotes transpose. Given the

current shock i, the law of motion for the inverse of the excess burden of taxation implies the system

Fi = 0, where 0 is the N × 1 zero vector. Apply the implicit function theorem at Φi = Φ = Φ∗,∀i
to get the coefficients Φ′j|i(Φ

∗) of the approximate law of motion (2). In particular, we have N

systems

J∗i


Φ′1|i(Φ

∗)
...

Φ′N |i(Φ
∗)

 = −∂Fi
∗

∂Φ
, ∀i,

where J∗i the Jacobian of Fi evaluated at Φ∗,

J∗i ≡


∂F ∗

1|i
∂Φ1

...
∂F ∗

1|i
∂ΦN

∂F ∗
N|i

∂Φ1
...

∂F ∗
N|i

∂ΦN

 .

Derivatives of the system. The derivatives of the functions Fj|i are

∂Fj|i
∂Φ

= σηj|i(Φ1, ...,ΦN)Φj − 1⇒
∂F ∗j|i
∂Φ

= −1

∂Fj|i
∂Φj

= 1 + σηj|i(Φ1, ...,ΦN)Φ + σΦjΦ
∂ηj|i
∂Φj

⇒
∂F ∗j|i
∂Φj

= 1 + σ(Φ∗)2
∂η∗j|i
∂Φj

∂Fj|i
∂Φk

= σΦjΦ∂
ηj|i
∂Φk

, k 6= j ⇒
∂F ∗j|i
∂Φk

= σ(Φ∗)2
∂η∗j|i
∂Φk

, k 6= j

The simplifications at Φ∗ are coming from the fact that the relative debt positions are equal to
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zero, η∗j|i = 0,∀i, j. So we have

∂Fi
∗

∂Φ
= −1 and J∗i = I + σ · (Φ∗)2J∗ηi ,

where 1 the N × 1 unit vector, I the identity matrix and J∗ηi the Jacobian of the vector of the

relative debt positions ηi ≡ [η1|i, ..., ηN,i]
T , evaluated at Φ∗. Thus, the i-th system becomes

[
I + σ · (Φ∗)2J∗ηi

]
·


Φ′1|i(Φ

∗)
...

Φ′N |i(Φ
∗)

 = 1, ∀i. (3)

Derivatives of the relative debt position. Consider now the matrix J∗ηi . The derivatives of

the relative debt positions ηj|i are

∂ηj|i
∂Φj

= z′j(Φj)−
[∑

k

π(k|i)
∂mk|i

∂Φj

zk(Φk) + π(j|i)mj|iz
′
j(Φj)

]
⇒

∂η∗j|i
∂Φj

= (1− π(j|i)m∗j|i)z′j(Φ∗)

∂ηj|i
∂Φl

= −
∑
k

π(k|i)
∂mk|i

∂Φl

zk(Φk)− π(l|i)ml|iz
′
l(Φl), l 6= j ⇒

∂η∗j|i
∂Φl

= −π(l|i)m∗l|iz′l(Φ∗), l 6= j

Thus, the Jacobian of ηi takes the form

Jηi∗ =


[
1− π(1|i)m∗1|i

]
z′1(Φ∗) −π(2|i)m∗2|iz′2(Φ∗) ... −π(N |i)m∗N |iz′N(Φ∗)

−π(1|i)m∗1|iz′1(Φ∗)
[
1− π(2|i)m∗2|i

]
z′2(Φ∗) ... −π(N |i)m∗N |iz′N(Φ∗)

−π(1|i)m∗1|iz′1(Φ∗) −π(2|i)m∗2|iz′2(Φ∗) ...
[
1− π(N |i)m∗N |i

]
z′N(Φ∗)


=

[
I − 1 · (eTi Π∗)

]
diag {z′}, (4)

where diag denotes a diagonal matrix with the vector z′ ≡ [z′1(Φ∗), ..., z′N(Φ∗)]T on the diagonal.

Thus, in order to solve the system (3), we need the sensitivity of the debt positions with respect

to the excess burden of taxation z′.

We are going to work under the following assumption.

Assumption 1. Doubts about the model are such so that

1 + σ(Φ∗)2 max
i
z′i(Φ

∗) > 0 (5)
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This assumption imposes bounds on the doubts about the model if maxi z
′
i(Φ
∗) > 0, since in

that case σ has to be small enough in absolute value, σ > −1/((Φ∗)2 maxi z
′
i(Φ
∗)). The restriction

is implicit, in the sense that (5) depends on endogenous objects, which themselves depend on σ.

It was always holding for the σ that we considered numerically.

A.3 Three lemmata

Lemma 1. The excess burden of taxation is a martingale with respect to the worst-case transition

matrix Π∗ at a first-order approximation around Φ∗.

Proof. We will show that ∑
j

π(j|i)m∗j|iΦ′j|i(Φ∗) = 1,∀i (6)

If (6) holds, then the approximate law of motion (2) implies that
∑

j π(j|i)m∗j|iΦj|i(Φ) = Φ and

the result follows. To show (6) remember that the relative debt positions add to zero according to

the worst-case model,

∑
j

π(j|i)mj|i(Φ1|i(Φ), ...,ΦN |i(Φ))ηj|i(Φ1|i(Φ), ...,ΦN |i(Φ)) = 0,∀i.

Differentiate implicitly with respect to Φ to get

∑
j

π(j|i)
[∑

k

∂mj|i
∂Φk

Φ′k|i(Φ)
]
ηj|i +

∑
j

π(j|i)mj|i
[∑

k

∂ηj|i
∂Φk

Φ′k|i(Φ)
]

= 0

At Φ∗ this expression simplifies to

∑
j

π(j|i)m∗j|i
[∑

k

∂η∗j|i
∂Φk

Φ′k|i(Φ
∗)
]

= 0, or eTi Π∗J∗ηi ·


Φ′1|i(Φ

∗)
...

Φ′N |i(Φ
∗)

 = 0,∀i, (7)

where ei the vector with unity at position i and zero otherwise. Pre-multiply system (3) with

eTi Π∗ to get
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eTi Π∗ ·


Φ′1|i(Φ

∗)
...

Φ′N |i(Φ
∗)

+ σ · (Φ∗)2eTi Π∗J∗ηi ·


Φ′1|i(Φ

∗)
...

Φ′N |i(Φ
∗)

 = eTi Π∗ · 1 = 1.

The second term at the left-hand side above is by (7) zero, a fact which delivers ultimately (6).

Lemma 2. Assume assumption 1 holds. We have

Φ′j|i(Φ
∗) =

1 + σ(Φ∗)2
∑

j π(j|i)m∗j|iΦ′j|i(Φ∗)z′j(Φ∗)
1 + σ(Φ∗)2z′j(Φ

∗)
,∀i, j. (8)

Therefore:

• If σ = 0, Φ′j|i(Φ
∗) = 1,∀i, j.

• More generally, we have Φ′j|i(Φ
∗) > 0, so (6) implies that A ≡ Π ◦M ◦ Φ is a stochastic

matrix.

• If there is no variation in the derivatives of debt, i.e. z′j(Φ
∗) = z′i(Φ

∗)∀i, j, then Φ′j|i(Φ
∗) =

1,∀i, j, so Φj|i(Φ) = Φ∀i, j.

• If z′k(Φ
∗) > z′l(Φ

∗) then Φ′k|i(Φ
∗) > Φ′l|i(Φ

∗).

• If z′j(Φ
∗) > (<)

∑
j π(j|i)m∗j|iΦ′j|i(Φ∗)z′j(Φ∗) then Φ′j|i(Φ

∗) > (<)1.

Proof. Use the expression for J∗ηi in system (3) to get

[
I + σ · (Φ∗)2

[
I − 1 · (eTi Π∗)

]
diag {z′}

]
·ΦT ei = 1

Rewrite the above as

[I + σ · (Φ∗)2 diag {z′}]ΦT ei = 1(1 + σ · (Φ∗)2eTi Π∗ diag {z′}ΦT ei),

The matrix that premultiplies the left-hand side is the sum of two diagonal so it is also diagonal.

We can express the system above as

ΦT ei = diag {1 + σ(Φ∗)2z′}−1
1(1 + σ · (Φ∗)2eTi Π∗ diag {z′}ΦT ei). (9)

The inverse of the diagonal matrix is
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diag {1 + σ(Φ∗)2z′}−1
=


1

1+σ(Φ∗)2z′1(Φ∗)
0 0

0 ... 0

0 0 1
1+σ(Φ∗)2z′N (Φ∗)


Furthermore, eTi Π∗ diag {z′}ΦT ei =

∑
j π(j|i)m∗j|iΦ′j|i(Φ∗)z′j(Φ∗). Thus, writing explicitly sys-

tem (9) delivers (8). For σ = 0 the result is obvious from (8). Furthemore, assumption 1 implies

that 1 + σ(Φ∗)2z′i(Φ
∗) > 0∀i. Therefore, (8) implies that Φ′j|i(Φ

∗) > 0. If there is no variation in

the sensitivity of the debt positions with respect to the excess burden of taxation, then formula

(8), implies again Φ′j|i(Φ
∗) = 1, by using (6). Furthermore, the same formula implies that the

monotonicity of the entries of each row i of the matrix Φ, and therefore the allocation of tax

distortions across shocks, depends on the monotonicity of the sensitivity of the debt positions,

z′j(Φ
∗). The same comment applies for the sensitivity of the debt positions and the size of the

Φ′j|i(Φ
∗) with respect to unity.

Formula (8) connects the allocation of distortions across states and states to the sensitivity of

the debt positions in the proximity of the balanced budget, z′j(Φ
∗). The relative debt sensitivity,

i.e. the sensitivity at j relative to the “average” sensitivity (average according to the probability

measure encoded in matrix Π ◦M ◦Φ), determines the increase or decrease of the excess burden

over time and states. Formula (8) provides also the direct analogue to the results of proposition

5 in the text: if there is no variation of the sensitivity of debt positions across shocks, then there

is no room for price manipulation through the worst-case beliefs, and therefore no reason to vary

the excess burden across states and dates.

Lemma 3. The sensitivity of debt positions depends on the sensitivity of surplus in marginal utility

units through the present discounted value formula:

z′ =
(
I − β(Π∗ ◦Φ)

)−1

Ω′, (10)

where Ω′ ≡ [Ω′1(Φ∗), ...,Ω′N(Φ∗)]T , i.e. the vector that collects the sensitivity of the surplus in

marginal utility units, Ω′i(Φ
∗).

Proof. Consider the implementability constraints

zi(Φ) = Ωi(Φ) + β
∑
j

π(j|i)mj|i(Φ1|i(Φ), ...,ΦN |i(Φ))zj(Φj|i(Φ)),∀i

7



Differentiate implicitly with respect to Φ to get

z′i(Φ) = Ω′i(Φ) + β
∑
j

π(j|i)
[∑

k

∂mj|i

∂Φk

Φ′k|i(Φ)
]
zj(Φj) + β

∑
j

π(j|i)mj|iz
′
j(Φj)Φ

′
j|i(Φ)

which at Φ∗ becomes

z′i(Φ
∗) = Ω′i(Φ

∗) + β
∑
j

π(j|i)m∗j|iΦ′j|i(Φ∗)z′j(Φ∗)∀i

The differentiated implementability constraints can be written as a system, z′ = Ω′+β(Π∗◦Φ)z′,

and the result follows.

A.4 Proof of proposition 7

Part 1 is a direct consequence of the approximate law of motion (2). Part 2 is proved in lemmata

1 and 2. To prove part 3 note that under the assumption of decreasing m∗j|i in j, the reference

model first-order stochastically dominates the worst-case model. Then, when Φ′j|i(Φ
∗) is increasing

in j, i.e. if the derivatives are increasing functions of the shock, we have
∑

j π(j|i)Φ′j|i(Φ∗) >∑
j π(j|i)m∗j|iΦ′j|i(Φ∗) = 1, where the first inequality comes from the properties of first-order

stochastic dominance and the second equality from lemma 1. The opposite inequality holds if

Φ′j|i(Φ
∗) is decreasing in j. Use the approximate law of motion (2) to get the corresponding

positive and negative drifts when Φ > Φ∗.

A.5 Proof of proposition 8

Write the surplus in marginal utility units as

Ωi(Φ) = Uc(i,Φ)(τ(Φ)− Λ(Φ))y(i,Φ)

Differentiating with respect to Φ and evaluating at Φ∗ delivers

Ω′i(Φ
∗) =

(
τ ′(Φ∗)− Λ′(Φ∗)

)
Uc(i,Φ

∗)y(i,Φ∗) (11)

Thus, when τ ′(Φ∗) > Λ′(Φ∗), the sensitivity of the surplus in marginal utility units across shocks,

Ω′i(Φ
∗), depends on the variation of output in marginal utility units, Uc(i,Φ

∗)y(i,Φ∗), at the

balanced budget.
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Part 1. Consider now the constant Frisch elasticity utility function. We showed in proposition

6 in the text that for ρ > 1, output in marginal utility units decreases as the shock increases, and

therefore Ω′i(Φ
∗) is decreasing in i. For ρ < 1, output in marginal utility units is procyclical, and

therefore Ω′i(Φ
∗) is increasing in i.

Expression (11) allows us to connect the monotonicity of Ω′i(Φ
∗) to the IES, which holds for

any number of shocks N . For the determination of distortions, we can connect the monotonicity of

Ω′i(Φ
∗) to z′i(Φ

∗) through lemma 3. We would like to show that if Ω′i(Φ
∗) is increasing (decreasing)

in i, then z′i(Φ
∗) is increasing (decreasing) in i. If the monotonicity of the sensitivity of surplus is

bequeathed to the sensitivity of debt, we can use lemma 2 and talk about countercyclicality and

procyclicality of distortions for the case of ρ > 1 and ρ < 1 respectively and get the results of the

proposition. The result on the negative or positive drift under a worst-case model that assigns

higher probability to bad (low TFP) shocks follows as in proposition 7.

Given the monotonicity of Ω′i(Φ
∗), the monotonicity of z′i(Φ

∗) depends in general on the per-

sistence properties of the stochastic matrix A ≡ Π ◦M ◦Φ in the present value formula (10). Let

N = 2 and let the vector y = [y1, y2]T be determined by the present value formula y = (I−βA)−1x

with x = [x1, x2]T and

A ≡

(
a 1− a

1− b b

)
, a, b ∈ (0, 1).

We have then

y1 =
1

|I − βA|
[
(1− βb)x1 + β(1− a)x2

]
y2 =

1

|I − βA|
[
β(1− b)x1 + (1− βa)x2

]

where |I − βA| = (1 − β)
[
1 + β(1 − (a + b))

]
> 0 (the i.i.d. case corresponds to a + b = 1).

This implies that y1 > y2 ⇔ x1 > x2. Reinterpret then x as Ω′ and y as z′, and the result follows.

Thus, if ρ > 1 we have z′1(Φ∗) > z′2(Φ∗) and therefore Φ′1|i(Φ
∗) > Φ′2|i(Φ

∗). Note that since N = 2

and since the derivatives Φ′j|i(Φ
∗) > 0 sum to unity by (6), we have Φ′1|i(Φ

∗) > 1 and Φ′2|i(Φ
∗) < 1.

The opposite results hold for ρ < 1.

When we have more than two values of the shock, N > 2, z′i will inherit the monotonicity of Ω′i

depending on the persistence properties of the matrix A. It is obvious that if the induced measure

(which is more complicated than the worst-case measure at the balanced budget since it depends

on Φ′j|i(Φ
∗)) is i.i.d., then the monotonicity of Ω′i(Φ

∗) is directly bequeathed to the present value

of these coefficients, z′i(Φ
∗), for any N > 2. The same holds if the induced measure is also very

9



persistent (which is something we expect).2

Part 2. The entire expansion is valid for any kind of period utility function that generates a tax

rate and a government share that are functions solely of Φ, i.e. τt = τ(Φt),Λt = Λ(Φ). In that

case, Φ∗ such that τ(Φ∗) = Λ(Φ∗) is always a fixed point of the law motion and all the results up

to now can be used.

Consider now the utility function U = u1−ρ−1
1−ρ , where u = cα1lα2gα3 , αi > 0,

∑
i αi = 1, which

satisfies balanced growth restrictions for the case also for ρ 6= 1. We show first that τ and Λ are

only functions of Φ. For these preferences the intratemporal marginal rates of substitution take

the form Ul
Uc

= α2

α1

c
l

and Ug
Uc

= α3

α1
κ−1, κ ≡ g/c. The elasticities of the utility function are

εcc = 1− α1(1− ρ)

εch = α2(1− ρ)
h

l

εhh = (1− α2(1− ρ))
h

l
εhc = α1(1− ρ)

εgc = α1(1− ρ)

εgh = −α2(1− ρ)
h

l

Remember that the public wedge for t ≥ 1 depends on the elasticities as follows:

χ =
Φ(1− εcc − εch − εgc − εgh)

1 + Φ(εgc + εgh)

and note that

εcc + εch + εgc + εgh = 1.

Thus, χ = 0 and the government share is the same as in the first-best. In particular, we have

κFB = α3

α1
and Λ = ΛFB ≡ α3

α1+α3
. So we have a constant Λ independent of Φ.3

The optimal tax rate depends on the labor/leisure ratio as follows:

2In numerical experiments we played around with N = 11 and we always faced the case where the monotonicity
of Ω′i was bequeathed. The induced matrix A was always very persistent.

3We were getting the same result for the basic parametric example of the paper when we had unitary elasticity
of substitution between c and g, ψ = 1. So the zero public wedge result extends for the non-separable case when
we allow also unitary elasticity substitution with leisure.
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τ =
Φ(1 + h

l
)

1 + Φ(1 + h
l

+ (1− ρ)[α1 − α2
h
l
])

Since we do not have a constant Frisch elasticity as in the basic parametric example, the tax

rate could in principle depend through labor on the shock s. This is not the case though. To see

that, consider the optimal wedge equation that takes the form

Ul
Uc

=
α2

α1

c

l
=

1 + Φ(1− εcc − εch)
1 + Φ(1 + εhh + εhc)

s

But since c = (1 − Λ)y = (1 − Λ)sh, we can eliminate the technology shock and finally get the

following equation

α2

α1

(1− Λ)
h

l
=

1 + Φ(1− ρ)(α1 − α2
h
l
)

1 + Φ(1 + h
l

+ (1− ρ)[α1 − α2
h
l
])

This equation determines a quadratic in h/l which allows to solve for labor as a function of

Φ, h = h(Φ). Thus, the optimal tax rate becomes function only of Φ, τ(Φ), and not of the shock

s. The reason behind this result is obviously the fact that the income and substitution effect in

labor supply cancel out for these preferences, making labor constant (given a constant Φ). Note

that output is then y = sh(Φ) and that the surplus takes the form S = (τ(Φ) − Λ)y(s,Φ). The

balanced budget Φ∗ satisfies τ(Φ∗) = Λ = ΛFB. Thus, the balanced budget approximation can be

used.

To finish the proof of part 2, we need to associate the IES of the composite good 1/ρ to the

allocation of distortions. Note that marginal utility takes the form Uc = α1c
α1(1−ρ)−1lα2(1−ρ)gα3(1−ρ).

Using c = (1−Λ)y, g = Λy and the fact that leisure is only function of Φ, this can be rewritten as

Uc = K(Φ) · y(α1+α3)(1−ρ)−1

K(Φ) ≡ α1(1− Λ)α1(1−ρ)−1Λα3(1−ρ)l(Φ)α2(1−ρ) > 0

Thus, the optimal surplus in marginal utility units as function of the shock i and the excess

burden of taxation Φ is

Ωi(Φ) = K(Φ)(τ(Φ)− Λ)y(i,Φ)(α1+α3)(1−ρ)

Thus, for τ(Φ) > Λ, the surplus in marginal utility units is procyclical when ρ < 1 and countercycli-
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cal when ρ > 1, so the results of proposition 6 go through. Furthermore, since τ ′(Φ∗) > Λ′(Φ∗) = 0,

the monotonicity of Ω′i(Φ
∗) depends on output in marginal utility units, as seen from expression

(11) (there was no assumption for the utility function for its derivation). Given our derivation

above, the sensitivity with respect to shock s is controlled again by the parameter ρ: Ω′i(Φ
∗) is

increasing in i if ρ < 1 and decreasing in i if ρ > 1. The results of part 1 follow.

Period utility at the balanced budget. The results about the drifts according to the reference

measure in propositions 7 and 8 are based on the assumption (which always holds numerically)

that at the balanced budget the worst-case measure assigns higher probability on low technology

shocks. This would be so if we could show that Vi(Φ
∗) is increasing in shock i in (1). We will show

here that the period utility function is an increasing function of the shock, so Ui(Φ
∗) is increasing

in i. We show this result for any kind of utility functions that generate optimally a τ and Λ that

are solely functions of Φ, so both of our parametric examples are covered.

V(s,Φ) ≡ U(c(s,Φ), 1− h(s,Φ), g(s,Φ)) = U
(
(1− Λ(Φ))y(s,Φ), 1− h(s,Φ),Λ(Φ)y(s,Φ)

)
.

We obviously have Ui(Φ
∗) = V(si,Φ

∗). Differentiate with respect to s to get

∂V
∂s

= Uc(1− Λ(Φ))
∂y

∂s
− Ul

∂h

∂s
+ UgΛ(Φ)

∂y

∂s

= Uc

[∂y
∂s
− Ul
Uc

∂h

∂s
+ Λ(Φ)[

Ug
Uc
− 1]

∂y

∂s

]

Use now Ul/Uc = (1− τ)s and Ug/Uc = 1 + χ to get

∂V
∂s

= Uc

[∂y
∂s
− (1− τ)s

∂h

∂s
+ Λ(Φ)χ

∂y

∂s

]

Now, note that ∂y/∂s = h+ s∂h/∂s. Use this fact to get

∂V
∂s

= Uc
[
(τ(Φ) + χΛ(Φ))

∂y

∂s
+ (1− τ(Φ))h

]
Note that there could be a potentially negative effect of s to the period utility if there is a

negative public wedge (or a labor subsidy – which is not optimal for our parametric examples).

At the balanced budget the expression simplifies to
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∂V∗

∂s
= U∗c

[
(τ(Φ∗)(1 + χ∗)

∂y∗

∂s
+ (1− τ(Φ∗))h∗

]
> 0,

since 1 + χ = Ug/Uc > 0 and ∂y/∂s > 0. Thus, Ui(Φ
∗) is increasing in i.

A.6 An algorithm

The approximation can be used also for computational purposes, as long as we stay in the vicinity

of the balanced budget. To see how, we sketch here an algorithm.

Solve first for the worst-case measure at the balanced budget m∗j|i, by calculating utilities from

recursion (1). Solve afterwards for N2 +N unknowns (Φ′j|i(Φ
∗) and z′i(Φ

∗)) from N2 +N equations

((3) and (10)) through the following iterative procedure:

• Make a guess for Φ. Derive induced derivatives of the relative debt positions z′ from (10).

• Use z′ to get the Jacobian J∗ηi ,∀i from (4) and update the guess for Φ by solving the systems

(3).

• Iterate till convergence.

We use as a first guess Φ0 = 1N×N . When updating the guess we also use damping in order

to improve the convergence properties of the loop. For small σ (in absolute value), we could find

a solution that was also robust to different initial guesses. For large σ though the non-convexities

of the problem become pronounced and there is no guarantee of convergence of the algorithm.

We used this algorithm for N = 11 and for the various calibrations used in the text. Results are

available among request. The text features results from the global solution for N = 2.

It is sufficient to use the linear approximation around Φ∗ only for the excess burden of taxation

and for the debt in marginal utility units z. We choose the initial value Φ0 and the initial allocation

(c0, h0, g0) by using the optimality conditions at t = 0 and requiring that the implementability

constraint at t = 0 holds. For the allocation and policy at t ≥ 1, we can use the non-linear

functions for (τ(Φ),Λ(Φ)) and (c(Φ), h(Φ), g(Φ)), where Φ follows the approximate law of motion

(2). So the method we illustrate is “hybrid”.
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B Government consumption share

In our baseline experiments we abstracted from variation in the government consumption share Λ

and focused on ψ = 1. Consider now the case of substitutes (ψ < 1) and complements (ψ > 1).

We consider four pairs of (ρ, ψ) and calibrate all other parameters as previously. For each pair, we

always re-calibrate (α, ah), so that the same first-best government share and labor are targeted.

Table 1: Correlation of ∆Λ with the technology shock.

Substitutes (ψ = 0.9) Complements (ψ = 1.1)

Low IES (ρ = 2) 0.4884 -0.5364

High IES (ρ = 0.5) -0.5883 0.5543

The table depicts Corr(∆Λ, s) for 4 different sets of (ρ, ψ). For each set of parameters we generated 10,000
sample paths of 200-period length. The reported numbers are mean statistics across sample paths.

Table 1 displays the correlations of Λ with technology shocks. Recall from our analysis in

proposition 3 that a higher distortion (in the sense of Φ) implies a lower (higher) government share

Λ when we have substitutes (complements). Consider first the case of a low IES (ρ > 1), where

distortions are negatively correlated with the cycle and exhibit a negative drift. High distortions in

bad times and low distortions in good times imply a government share that decreases in bad times

and increases in good times if we have substitutes. The opposite happens for the complements

case.

So, changes in Λ are procyclical (countercyclical) if we have ψ < 1 (ψ > 1), as the first

row of table 1 shows. Furthermore, since the excess burden is reduced on average over time till

its balanced-budget value Φ∗ is reached, the respective distortions at the provision of government

consumption are also reduced till the rest point Λ(Φ∗). Hence, in the case of substitutes, where Λ is

initially below its balanced-budget value, we have a positive drift of the government share over time.

Consequently, front-loaded taxes are accompanied with back-loaded government expenditures. In

contrast, in the case of complements, where the share of government consumption is initially above

its balanced-budget value, Λ exhibits a negative drift over time.

When the IES is high (ρ < 1), distortions are procyclical and exhibit a positive drift over time.

Obviously, a higher distortion when the technology shock is high implies then a lower Λ in the

substitutes case and a higher Λ in the complements case, which explains the sign of the correlations

in the second row of the table. Similarly, Λ exhibits a negative drift for ψ < 1 and a positive drift

when ψ > 1.

Figure 1 summarizes the mean dynamics of the government share. We note that the changes

in the government share over time are small for all pairs of (ρ, ψ), a fact which may justify the

focus on ψ = 1.
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Figure 1: Evolution of the mean government share over time. The two graphs on the top consider the case of
ρ = 2. The two graphs on the bottom consider the case of ρ = 0.5. Graphs on the left correspond to the substitutes
case (ψ = 0.9) and graphs on the right to the complements case, (ψ = 1.1). When ρ = 2 we have convergence
to the balanced-budget government share that is either below (substitutes) or above (complements) the first-best
government share of 20%. When ρ = 0.5, the government share diverges.
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