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1 Introduction

Stochastic discount factor (SDF) models are routinely rejected when confronted with data. We

examine certain aggregations of these models when all are assumed to be misspeci�ed and the true

SDF process is not included in the choice set. To be sure, all models are misspeci�ed by design

as they are constructed to be simple approximations to a complex �Data Generation Process�

(DGP). The DGP is a �latent object�, and models of it are simpli�ed/directed/partial maps. This

is especially true when these models are incompletely speci�ed and are estimated by moment

matching. Despite the obvious nature of the statement above, its accommodation in practice

remains inconsistent and even contradictory in many instances. We argue that the traditional

inference objectives require a more careful consideration when all models are expressly allowed to

be misspeci�ed.

The analysis of misspeci�ed moment condition models is still in its infancy. This is a fertile

ground for important future research; see Lars Hansen�s Nobel lecture, Hansen (2013). When there

are several candidate models, their respective �pseudo-true�objects that may allow a misspeci�cation-

consistent analysis, are relative objects, speci�c to each model and even to the estimation criteria

that quantify them (GMM, Kullback-Leibler, Likelihood). Model selection and model averaging,

and certainly policy analysis, do not have clearly de�ned objectives in this setting.

Partial e¤ects, for instance, would refer to di¤erent conditional distributions and parameters,

as provided by each model. This problem is only partially mitigated in some situations, as in the

context of comparing misspeci�ed asset pricing models using the Hansen-Jagannathan (Hansen and

Jagannathan, 1991, 1997) distance that uses the inverse of the same second moment matrix of the

test assets to weigh the pricing errors for all candidate models. But there is a larger problem here

that is inherent to �model selection�which is designed to choose only one of the candidate models

and ignores the information in the remaining models. Model selection may be meaningful only if

the �true�DGP model were in the set of candidate models (the dictionary) and the procedure is

consistent. This is a highly unrealistic situation as all models are misspeci�ed. Indeed, �consistency�

in selection seems dubious when the true DGP is not included. A better alternative that has

been favored for informal reasons, and has recently received further theoretical justi�cation is

�aggregation�which includes averaging and pooling.

Bernando and Smith (1994) o¤er a characterization and a taxonomy of the di¤erent views

regarding model comparison and selection. The �rst perspective, that includes Bayesian model
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averaging and frequentist model selection, is conditioned on one of the models being �true�. In

this approach, the ambiguity about the true model is resolved asymptotically and in the limit,

the mixture that summarizes the beliefs about the individual models assigns a weight of one to

one of the models. Diebold (1991) provides an illuminating example of this in the context of

Bayesian forecast combination. Another possibility is also to assume that a �true model/DGP�

exists but is too complicated or cumbersome to implement, and all of the candidate models are

viewed as approximations and hence misspeci�ed. The third view dispenses completely with the

self-contradictory notion of a �true model�and treats the candidate models as genuinely misspeci�ed

either because they are believed to represent di¤erent aspects of the underlying DGP or because

the underlying structure is completely unknown. �If models are misspeci�ed in an indeterminate

manner, then we should not be aiming at the discovery of the �true data generating process��

(Maasoumi, 1993). Reasonable models may be statistically consistent with aspects of the data

emanating from the latent DGP.

Earlier attempts to accommodate misspeci�ed models in econometrics date back to the mid

and late 70s.1 These attempts stayed with the dominant statistical paradigm, then and now,

of inference on parameters and the risk of decision making and forecasting, driven by parameter

estimation uncertainty. A very important recent strand of the literature in mathematical sciences

and engineering places risk of model choice at the center of statistical inquiry. This proves to be

much more appropriate and productive when all candidate models are misspeci�ed and we seek to

aggregate over them. We give a brief overview of this approach in the next section as it is equally

adept at handling searches for best aggregative densities, regression functions, and other similar

objects.2

In this paper, we take the view that the DGP/�true model�is not known to be among the com-

peting models. This is similar in spirit to Geweke and Amisano (2011, 2012) for prediction pooling

of misspeci�ed models. We develop a generalized entropy-based approach to mixing information

from di¤erent models. The minimum Shannon entropy or Kullback-Leibler (KL) information crite-

rion used by Geweke and Amisano (2011, 2012) and Hall and Mitchell (2007) is a special case of this

framework. In this paper, our generalization is facilitated by the fact that we are not mixing den-

sities so that the combination does not need to commute with any possible marginalization of the

distributions involved (McConway, 1981; Genest, Weerahandi and Zidek, 1984). More importantly,

1To exemplify, see Maasoumi (1977, 1978, 1990).
2An early example of thinking of unknown functions as an aggregation problem is Maasoumi (1987).
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unlike Geweke and Amisano (2011), we choose a divergence measure for selecting the mixture

weights which is a proper measure of distance since it is symmetric and it satis�es the triangle

inequality. Generalized entropy also allows us to relax the perfect substitutability of the candidate

models which is implicitly embedded in the linear pooling procedures.3 Our closeness measure is

also useful for clustering subsets of models which might be particularly useful and informative if the

set of candidate models is large. The model clustering will identify similar attributes across models

and act e¤ectively as a dimension reduction device by reducing the set of information-enhancing

models. This is a �big data�problem and we will brie�y allude to penalization methods that are

similar in spirit.

The SDF framework for asset pricing provides an arguably perfect laboratory studying the

problem of model aggregation. It is widely documented that most, if not all, asset pricing models

of equity returns are strongly rejected by the data.4 Despite this evidence of misspeci�cation,

these asset pricing models can still collectively provide a useful guide for investment decisions

or measuring investment performance. Gospodinov, Kan and Robotti (2013) propose a general

methodology for model comparison and ranking of competing, possibly misspeci�ed, asset pricing

models that are estimated and evaluated using the Hansen-Jagannathan distance. Stutzer (1995)

considers an information-theoretic approach to diagnosing asset pricing models. In a recent paper,

Ghosh, Julliard and Taylor (2017) develop an entropy-based modi�cation of the SDF that may

price assets correctly. Unlike these papers, we use the generalized entropy measures of divergence

to combine information from a set of misspeci�ed models and elicit some features of the SDF. The

latter is our �latent�object or process.

Our contributions can be summarized as follows. On methodological side, we propose an

information-theoretic approach to aggregating information in misspeci�ed asset pricing models.

The optimal aggregator takes a harmonic mean form with geometric and linear weighting schemes

as special cases. The generalized entropy criterion that underlies our approach allows us to circum-

vent two serious drawbacks of the standard linear pooling. First, it ensures that the divergence

measure between the densities of the pricing errors of candidate models is a proper distance mea-

sure that is positive, symmetric and satis�es the triangular inequality (Maasoumi, 1993). Second,

3Linear aggregation is dominant in the stochastic optimization literature and elsewhere.
4 It is possible that the null of correct speci�cation is not rejected even when the model is misspeci�ed due to

a failure of the rank condition. Gospodinov, Kan and Robotti (2016) show that the power of invariant tests for
overidentifying restrictions in linear asset pricing models does not exceed the nominal size when the rank condition
is violated.
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the use of the harmonic mean as an aggregator relaxes the in�nite substitutability assumption be-

tween models which is implicit in linear aggregation. On the practical side, our mixing procedure

employs information from all models by assigning weights depending on the model�s contribution

to the overall reduction of the pricing errors. The weighted stochastic discount factor preserves

the integrity of each structural model and pools the relevant information from each model in a

bounded risk sense. This stands in sharp contrast with the existing methods in the literature that

either select factors from a set of candidate factors or choose a single (�least misspeci�ed�) model

from a set of candidate models. Both of these cases result in loss of information from omitting

factors or models. Our empirical analysis reports non-trivial improvements (in terms of pricing

error reduction) from aggregation.

Ultimately, the reason why so many studies �nd that almost all kinds of pooling and mixing

methods �perform well�can be readily gleaned from the classical results in a standard linear regres-

sion. Constraints (such as omitted components), even false constraints, are variance (uncertainty)

reducing, with a cost on correct centering (bias). But the latter has an uncertain characteriza-

tion when the true DGP/model is not known. Stochastic optimization techniques, paired with

information criteria as suitable risk measures, re�ect more deeply this phenomenon.

The rest of the paper proceeds as follows. Section 2 introduces the stochastic optimization par-

adigm. Section 3 discusses the main setup for evaluating asset pricing models/SDFs and introduces

our ideal aggregate functions as well as the stochastic, risk-based approach to model aggregation.

Section 4 describes the candidate consumption-based asset pricing models and presents the empir-

ical results. Section 5 concludes.

2 Stochastic Optimization as a General Paradigm

2.1 Some Preliminaries

Consider the case where one is interested in estimating a functional f (�). If the true form of this

functional is �unknowable�, estimation and inference would appear infeasible. However, one could

infuse information from a set of auxiliary (partially speci�ed) models that could elicit some aspects

of the functional f (�) with bounded risk involving oracle inequalities. Examples of f (�) include

conditional mean functions in regression models, densities, and other latent objects such as sto-

chastic discount factors (SDFs). It becomes convenient, possibly inevitable, to shift the statistical

paradigm away from optimal (parameter) estimation to a �stochastic optimization�paradigm that
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is detailed below.

Suppose there is a �nite list (dictionary) F of candidate auxiliary models that embed certain

theoretical or empirical features of the underlying DGP. The aggregation/stochastic optimization

approach we adopt does not require a fully articulated structural model and does not assume

that this dictionary contains a �true�model. All models contained in the dictionary are statistical

approximations. The proposed method will construct an aggregator that mimics (in terms of

some data-dependent metric) the performance of the best (or least misspeci�ed) model in the

class. The aggregation estimator minimizes an empirical risk function that satis�es certain oracle

inequalities (Rigollet, 2012; Rigollet and Tsybakov, 2012). Model selection, that assigns weights

of one or zero to individual models, proves to be suboptimal. When the dictionary contains a

mixture of linear and nonlinear, possibly non-nested, auxiliary models, this aggregation scheme

arrives at a �comprehensive�model. The aggregation provides an approximate mapping between the

comprehensive and auxiliary models but this mapping, unlike in the standard case of a fully speci�ed

structural model, is perturbed by a component that re�ects uncertainty about the underlying object

f(�).

For simplicity, we introduce the main ideas and notation in the context of probability density

functions but they can be easily adapted to more general functions of �xed mass. Let Z1; :::; ZT

denote observations of the random variable Z with an unknown density f 2 F , and L : Z �F !R

be a measurable loss function with a corresponding risk function R : F !R de�ned as

R(fZ ; f) = E[L(fZ ; f)]; f 2 F ; (1)

where fZ denotes any candidate distribution for Z. The oracle f� is de�ned as

f� = argmin
f2F

R(fZ ; f) (2)

or R(fZ ; f�) � R(fZ ; f) for all f 2 F . Let

RT (fT ; f) =
1

T

XT

t=1
L(ft; f) (3)

be the empirical version of the risk function R(fZ ; f), where fT is the sample analog of fZ . In the

case of quadratic risk, for example, it takes the form RT (fT ; f) = kfT � fk2 = 1
T

XT

t=1
(ft � f)2,

where k�k2 denotes the L2 norm.

When the interest lies in density or model aggregation, the stochastic optimization problem

constructs a sample aggregator ~fT of available functions f1; :::; fM in the F dictionary by mimicking
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the oracle inff2F R(fZ ; f). The functions f1; :::; fM are either given or obtained from a prior

training sample (by sample splitting, for example). In the construction of the aggregator, these

functions are evaluated at the sample values Z1; :::; ZT . Then, for a constant C � 1, we have some

version of the following �expectations�oracle inequality (Rigollet, 2015)

E[RT ( ~fT ; f)] � C inf
f2F

R(fZ ; f) +4T;M ; (4)

where 4T;M > 0 is a remainder term that characterizes the performance of the aggregator ~fT .5

Furthermore, for every � > 0, the following error probability bound is established:

Pr

�
RT ( ~fT ; f) � C inf

f2F
R(fZ ; f) +4T;M;�

�
� 1� �: (5)

More generally, a balanced oracle inequality takes the form

E[RT ( ~fT ; f)] � C
�
inf
f2F

R(fZ ; f) + ~4T;M (f)

�
; (6)

with 4T;M = C supf2F ~4T;M (f). An exact or sharp oracle inequality is obtained when C = 1.

One popular example focuses on quadratic risk and the regression model

Yt = g(Xt) + �t; (7)

where �t isN(0; �2). g(�) is unknown and is modelled by functions in the dictionary F = ff1; :::; fMg.6

Consider the linear aggregator

~f
(w)
T =

MX
i=1

wifi: (8)

The bound for the risk E[RT ( ~f (w)T ; f)], where ŵ denotes the least squares estimator of w =

(w1; :::; wM )
0

ŵ = argmin
w2RM

1

T

TX
t=1

(Yt � ~f
(w)
T (Xt))

2; (9)

is provided in Rigollet and Tsybakov (2012) and Rigollet (2015). A few remarks are warranted here.

First, infwR(f (w); f) > 0 when the candidate models are misspeci�ed and a �true�model is not

part of the dictionary. Obtaining a sharp oracle inequality (C = 1) in this case is important since

it minimizes the impact of this systematic bias term (Rigollet and Tsybakov, 2012). Alternatively,

one could construct adaptive weights by judiciously parameterizing the parameter space of w as

54T;M is free of f and ~fT and varies depending on the process and underlying assumptions; often for iid samples.
6The functions fi, i = 1; :::;M , are either given or estimated with prior data samples.

6



a function of the sample size in such a way that this bias vanishes asymptotically. Finally, to

minimize the magnitude of the remainder term in bounding the empirical risk, one could resort

to penalized convex aggregation as discussed below (see also Rigollet and Tsybakov, 2012). Birgé

(2013) shows that in the case of quadratic risk, the remaining term can be quite large and suggests

a di¤erent way of aggregation based on T-estimators (Birgé, 2006).

Another interesting example is the density function of a variable Yt : f(Yt). Suppose we have

M density forecast models for the conditional density of YtjXit for i = 1; :::;M , f(YtjXit) = fi. We

would like to aggregate the information in the M candidate models to form a density forecast for

Yt. Since we are interested in the unconditional density of Yt, the aggregation weights should be

based on the divergence between f(Yt) and the unconditional version of f(YtjXit):

git = EXi ff(YtjXit)g =
Z
f(Ytjx)dPit(x); (10)

where Pit is the marginal distribution of Xit. If P̂it denotes an estimate of Pit, then

g�it =

Z
f(Ytjx)dP̂it(x): (11)

This can be performed by resampling only the predictors Xit, and g�it is an empirical average of

f(YtjXit) over the Xit.

2.2 Convex Aggregation

The distinction between �model selection�and �model aggregation�is important. The former has a

zero-one weighting scheme that picks the model with smallest risk. This is known to be suboptimal

relative to �model aggregation�in which weights and aggregation penalties are obtained over a set

of models in order to optimize a risk measure (Yang, 2000; Rigollet and Tsybakov, 2012).

The approach outlined below o¤ers generality with respect to the risk function R( ~f; f). As

before, the arguments in this section are developed for probability density functions but can be

extended to more general functions. Assumption 1 below states some regularity conditions on the

data.

Assumption 1. Let (Z;A) be a measurable space and v be a �-�nite measure on (Z;A). Let

(Z1; :::; ZT ) denote a sample of T iid observations from an unknown density f on Z with respect

to v. Finally, let F be a �nite dictionary of cardinality M of density functions ff1; :::; fMg such

that maxfi2F kf=fik1 <1.
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Further, consider the �at simplex for a set of model weights w = (w1; :::; wM ) :

WM =

�
w 2 RM : wi � 0;

XM

i=1
wi = 1

�
: (12)

Then, the convex (weighted average) aggregator of the candidates ff1; :::; fMg is given by

f (w) =
MX
i=1

wifi, w 2 WM , (13)

with its estimator denoted by ~f (w)T . Model selection is a special case with w � ei = (0; 0; :::; 1; 0; :::; 0)

with i = 1; :::;M .

Let the pseudo-true density aggregator be de�ned as

f�w = argmin
w2WM

E[L(f (w); f)]: (14)

Oracle inequalities are established relative to R(f�w; f) = E[L(f�w; f)] both in terms of expectations

and probability. The following lemma summarizes these results.

Lemma 1. Suppose that Assumption 1 holds. Then, for some C � 1,

E[RT ( ~f (w)T ; f)] � C min
w2WM

R(f (w); f) +4T;M (15)

and for every � > 0;

Pr

�
RT ( ~f (w)T ; f) � C min

w2WM
R(f (w); f) +4T;M;�

�
� 1� �; (16)

where 4T;M and 4T;M;� are remainder terms that do not depend on f or fi, i = 1; :::;M .

When the density properties of the w are recognized, one may incorporate penalties for de-

partures of the distribution of weights (w) from a priori distributions or desired distributions of

weights (�) that may re�ect an ordering of the models. For example, consider the linear aggregator

~fw =
PM
i=1wifi of an unknown regression function f . Then, the aggregation weights may solve the

following penalized optimization problem

min
w2WM

"
MX
i=1

wiRT ( ~f (w)T ; f) +
�

T
KL(w; �)

#
; (17)

where � > 0 is a penalty parameter, KL(w; �) =
PM
i=1wi ln

�
wi
�i

�
is the Kullback-Leibler divergence

between w and �, and � 2 WM is a prior probability density. This could also be a convenient device
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when M is large relative to T , as in variable selection problems with �big data�attributes. The so-

lution for the above penalized optimization problem is driven by the form of the entropy divergence

function. With the Kullback-Leibler divergence, the aggregation weights take an exponential form

w�i =
exp(�TRT ( ~f (w)T ; f)=�)�iPM
j=1 exp(�TRT ( ~f

(w)
T ; f)=�)�j

: (18)

Note that this is the quasi-Bayesian approach of Chernozhukov and Hong (2003) where the estimates

of w can be obtained using MCMC methods.

Rigollet and Tsybakov (2012) show that the aggregator ~f (w)T =
PM
i=1w

�
i fi in the regression

setup above with � � 4�2 satis�es the following balanced oracle inequality

E[RT ( ~f (w)T ; f)] � min
w2WM

"
MX
i=1

wiR(fi; f) +
�

T
KL(w; �)

#
: (19)

Furthermore, by restricting R(fi; f) to the vertices of the simplex WM with the choice of � to be

the uniform distribution on f1; :::;Mg we have the oracle inequality7

E[RT ( ~f (w)T ; f)] � min
1�i�M

R(fi) +
� ln(M)

T
: (20)

By contrast, a model selection procedure that selects only one function in the dictionary is subopti-

mal as its remainder term is of higher order
p
ln(M)=T (see Rigollet and Tsybakov, 2012) whereas

ln(M)=T is the desired minimax rate.

2.3 General Aggregation

To infer the form of the aggregator, we follow a general entropy-based approach proposed by

Maasoumi (1986) for characterizing the solution for ~f by selecting a distribution which is as close

as possible to the multivariate distribution of fi�s. Maasoumi (1986) shows that generalizing the

pairwise criteria of divergence to a general multivariate context results in the following measure of

divergence:

~D�( ~f; f ;w) =
MX
i=1

wiRT;�( ~f; fi); (21)

where

RT;�( ~f; fi) =
1

�(�+ 1)

TX
t=1

~ft

" 
~ft
fi;t

!�
� 1
#
: (22)

7Note that the vertices are the selector vectors ei, i = 1; :::;M , introduced above and
PM

i=1 wiR(fi; ~f) =PM
i=1 eiR(fi; f) = R(fi).
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RT;�( ~f; fi) is the generalized entropy divergence between the aggregator ~f and each of the prospec-

tive models fi. The aggregator that minimizes ~D�( ~f; f ;w) subject to
XM

i=1
wi = 1 is given by

~f�t /
"
MX
i=1

wif
��
i;t

#�1=�
: (23)

Note that the linear and convex pooling of models are obtained as special cases. For example, the

dominant (convex) aggregator ~f (w)t =
PM
i=1wifi;t is an ideal aggregator function by the Kullback-

Leibler divergence (� = �1).

What emerges from the literature is quite compelling. First, risk of aggregator functions dom-

inates the model selection approach in terms of oracle bounds on expected losses. Second, the

commonly used L2 risk function has bounds that depend on dominating measure, and risk may be

unbounded (see Birgé, 2006, 2013). Finally, quadratic risk is not a distance between distributions

as it depends on the particular dominating measure. Hellinger distance is invariant to this and is

a measure of distance between distributions and suitable regression functions.

This aspect of distance functions for distributions is emphasized in Maasoumi�s (1993) survey of

entropy functions and relative entropy functions. Granger, Maasoumi and Racine (2004) advocate

a member of the generalized entropy divergence measures (see also Cressie and Read, 1984) which

is a scaled normalization of the Hellinger distance. More speci�cally, let P and Q be probability

measures with densities p and q with respect to a dominating measure �. The generalized entropy

or Cressie-Read divergence from Q to P is given by

D�(P;Q) =

Z
�� (dQ=dP ) dQ; (24)

where

��(x) =
1

�(� + 1)

�
x�+1 � 1

�
(25)

is the Cressie-Read power divergence family of functions. More speci�cally,

D�(P;Q) =

Z �
1�

�
p

q

���
qd� for � 2 R. (26)

When � ! 0, we obtain the Kullback-Leibler divergence measure

D0(P;Q) =

Z
ln

�
p

q

�
qd� = KL(P;Q). (27)

Similarly, the case � = �1=2 corresponds to the Hellinger distance measure

D�1=2(P;Q) =

Z �
p1=2 � q1=2

�2
d� = H(P;Q). (28)
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Unlike the other measures in the Cressie-Read divergence family, the Hellinger distance is a proper

measure of distance since it is positive, symmetric and it satis�es the triangle inequality. Kitamura,

Otsu, and Evdokimov (2013) show the robustness of the Hellinger distance to perturbations of

probability measures.

To �x the notation for what follows, let ~f (w) =
�XM

i=1
wif

1=2
i

�2
be the aggregator based on the

Hellinger distance for the dictionary ff1; :::; fMg with ~f (w)T being its sample analog. Furthermore,

H( ~f (w); f) is the corresponding risk function, where H denotes the Hellinger distance. Finally, let

inf ~f (w) supf2F H( ~f (w); f) denote the minimax risk over F . The following result is adapted from

Birgé (2006) and provides a justi�cation for our proposed aggregation approach in the rest of the

paper.

Lemma 2. Suppose that Assumption 1 holds. Then,

E[HT ( ~f (w)T ; f)] � C
�
min
w2WM

H( ~f (w); f) +4T;M

�
; (29)

where C � 1 and 4T;M is a remainder term. Moreover, the minimax risk over F is bounded by

C4T;M .

As mentioned above, H( ~f (w); f) > 0 under model misspeci�cation. But with Hellinger distance

and minmaxity, the risk remains under control even if the models are misspeci�ed.

The bounds so far are established under the assumption that the data are iid. The extensions to

the time series context are more involved and can be implemented using the conditional predictive

density approach of Yang (2000) or the composite marginal likelihood approach (see Varin, 2008;

Varin, Reid and Firth, 2011; among others). While our empirical application uses time series data,

the returns and the risk factors are largely serially uncorrelated. Some of the bound results may

continue to hold if the independence is replaced by a martingale di¤erence assumption. However,

a rigorous treatment of the time series case is left for future research.

3 Aggregation of Misspeci�ed Asset Pricing Models

In the SDF setup considered below, the distance minimization is performed subject to restrictions

imposed by the asset pricing model. The primal problem which targets the unknown functional

of interest can be conveniently transformed to a dual problem. The immutable part (unknown

functional) of the risk function falls out of the dual problem. It is important to stress that while

this approach explicitly recognizes that the auxiliary models are misspeci�ed, the �oracle SDF�is
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still guided and proscribed by economic theory. An alternative would be a data-driven (model-free)

approach to approximating the unknown function using (semi) non-parametric methods (see, for

example, Donoho and Johnstone, 1994; Cai, Ren, and Sun, 2015). This approach is better tailored

for model �t or prediction (as in machine learning) and will not be considered in this paper. In

contrast, our aggregation method can be regarded as formal information nesting (information-

theoretic) of various theory-based factor models that would inform policy makers and investors of

data based support. Our data dependent model weights, wi, will rank competing models, if so

desired.

3.1 SDF and Hansen-Jagannathan Distance

Let R denote the returns on N test assets and m 2M be an admissible stochastic discount factor

(SDF) that prices the test assets correctly,

E[Rm] = q; (30)

where q denotes an N�1 vector of payo¤s (a vector of ones if R are gross returns). Furthermore, let

y(
) be a candidate stochastic discount factor that depends on a k-vector of unknown parameters


 2 �, where � is the parameter space of 
. If y(
) prices the N test assets correctly, then the

vector of pricing errors, e(
), of the test assets is exactly zero:

e(
) = E[Ry(
)]� q = 0N : (31)

However, the pricing errors are nonzero when the asset-pricing model is misspeci�ed. The squared

Hansen-Jagannathan (Hansen and Jagannathan, 1991, 1997) distance

�2 = min

2�

min
m2M

E[(y(
)�m)2] (32)

provides a misspeci�cation measure of y(
) and can be used for estimating the unknown parameters


. This is the standard L2 norm between the functionals y(
) and m. It is sometimes more

convenient to solve the following dual problem:

�2 = min

2�

max
�2<N

E[y(
)2 � (y(
)� �0R)2]� 2�0q; (33)

where � is an N �1 vector of Lagrange multipliers. Note that �0R provides the smallest correction,

in mean squared sense, to y(
) in order to make it an admissible SDF. Note that for a given SDF
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y(
) and 
, the vector of Lagrange multipliers and the squared Hansen-Jagannathan distance can

be expressed as

� = U�1e(
); (34)

and

�2(
) = e(
)0U�1e(
); (35)

where U = E[RR0].

Importantly, Hansen and Jagannathan (1991) provide a maximum pricing error interpretation

of the distance �(
). Consider a portfolio a with unit second moment, i.e., a0Ua = 1. By the

Cauchy-Schwartz inequality, the squared pricing error of this portfolio is

(a0e(
))2 = (a0U
1
2U�

1
2 e(
))2 � (a0Ua)[e(
)0U�1e(
)] = �2(
): (36)

Speci�cally, the portfolio a = U�1e(
)=�(
) has a pricing error �(
). Then,

max
a: a0Ua=1

ja0e(
)j = �(
); (37)

and �(
) can be interpreted as the maximum pricing error that one can obtain from using y(
) to

price the test assets.

The Hansen-Jagannathan distance has an information-theoretic interpretation too. Let P be

the data generating measure and � denote a family of probability measures that satisfy the asset

pricing restrictions (m 2 M). The goal is to �nd a probability measure Q with minimal entropy

divergence from the empirical measure P , de�ned as the solution to the following inverse problem

min
Q2�

D�(P;Q) =

Z
�� (dQ=dP ) dQ (38)

subject to
Z
e(
)dQ = 0N ; (39)

where �� (�) denotes again the Cressie-Read divergence family. A candidate SDF y(
) de�nes a

measure Qy with density dQy = y(
)
E[y(
)]dP and a relative entropy (with respect to P ) given by

E
h

y(
)
E[y(
)]��

�
y(
)
E[y(
)]

�i
. The model (SDF) y(
) is misspeci�ed if y(
) =2M.

Almeida and Garcia (2012) show that for a �xed vector of parameters 
, the primal and dual

problems in the SDF framework can be written as

��(
) = min
m2M

E

�
(1 +m� y(
))�+1 � 1

�(� + 1)

�
(40)
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and

��(
) = max
�2<N

�0q � E
"
(��0R)

�+1
�

� + 1
+ (y(
)� 1)�0R+ 1

�(� + 1)

#
; (41)

respectively. The dual problem for the Hansen-Jagannathan distance is obtained for � = 1 (see

Almeida and Garcia, 2012; Ghosh, Julliard and Taylor, 2017).

There is a small but growing literature on evaluating asset pricing models using entropy measures

(Stutzer, 1995; Kitamura and Stutzer, 2002; Almeida and Garcia, 2012; Backus, Chernov and Zin,

2014; Bakshi and Chabi-Yo, 2014; Ghosh, Julliard and Taylor, 2016; among others). Several of

these papers derive optimal lower bounds on the SDFs and develop diagnostics that measure how

far a model deviates from these entropy bounds. However, this analysis does not fully embrace the

inherent misspeci�cation of all asset pricing models and is still conducted in a �model selection�

mode. Also, while some of the used entropy divergence measures nicely help to demonstrate how

higher-order moments of the distribution can account for much of the entropy of the SDFs, they are

not �distance�measures (metricness). Our point of departure from the existing literature is two-

fold. First, we adopt an entropy-driven approach to model aggregation that explicitly recognizes

the misspeci�cation of the candidate SDFs. Second, we employ the Hellinger distance, due to

its metricness and other theoretical and robustness properties, in estimating and aggregating the

individual models.

3.2 SDF Aggregator

Suppose there are M proposed misspeci�ed models, ŷi;t = yi;t(
̂i), i = 1; :::;M and t = 1; :::; T , for

the unknowable true model m. While ŷi;t is evaluated at t = 1; :::; T , they are based on estimates 
̂i

from a prior training sample of size N . In this respect, the e¤ective number of sample observations

is N+T , where the candidate models are estimated using observations 1; :::; N and the aggregation

weights are estimated using observations N + 1; :::; N + T . We allow for both linear and nonlinear

SDF speci�cations as well as nested and non-nested SDFs. For the sake of argument, we assume

that the model parameters for each model are estimated by minimizing the Hansen-Jagannathan

distance. Our approach in this paper is to treat each model as an incomplete �indicator�of the

latent DGP. Then, a model averaging rule would aggregate information from all of these models

and construct a pseudo-true model ~y.

Here, we follow Maasoumi (1986) in characterizing the solution for ~y. Let yt = (ŷ1;t; :::; ŷM;t)0

be the i-th row of the T �M matrix Y and ~y = h(ŷ1; :::; ŷM ), where h is an aggregator or index
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function. Note that it might be more convenient to work with the estimated pricing errors ei(
̂i),

i = 1; :::;M , instead of ŷi�s. We are interested in �nding the aggregator ~yt with a distribution that

is as close as possible to the multivariate distribution of ŷi�s. Maasoumi (1986) generalized the

pairwise criteria of divergence to a general multivariate context, as follows:

D�(~y; Y ;w) =
MX
i=1

wi

(
TX
t=1

~yt

��
~yt
yi;t

��
� 1
�,

�(�+ 1)

)
; (42)

The aggregator that minimizes D�(~y; Y ;w) subject to
XM

i=1
wi = 1 is given by

~y�t /
"
MX
i=1

wiy
��
i;t

#�1=�
: (43)

Note that the linear pooling of models is obtained as a special case when � = �1 and the Hellinger

distance aggregator is obtained for � = �1=2.

In order to implement the above aggregation scheme, we need to estimate the unknown para-

meters w = (w1; :::; wM )0 and �. We propose two methods for estimating these parameters.

The �rst method is, for given (ŷ1;t; :::; ŷM;t)0 obtained in a preliminary step by minimizing the

Hansen-Jagannathan distance for each model, set � = �1 and construct the pricing errors of the

aggregator

~eT (w) =
1

T

TX
t=1

Rt

"
MX
i=1

wiŷi;t

#
� q: (44)

Then, the unknown aggregation weights w are obtained as

ŵ = argmin ~eT (w)
0

 
1

N

NX
t=1

RtR
0
t

!�1
~eT (w) (45)

subject to the restrictions wi � 0 for i = 1; ::;M and
XM

i=1
wi = 1. Note also that these parameters

can be estimated by any member of the Cressie-Read divergence family. We use the Hansen-

Jagannathan distance estimator due to its computational simplicity and maximum pricing error

interpretation.

The other possibility is to estimate w by minimizing the distance of the aggregator�s distribution

from a desired distribution. Let P be a probability measure associated with some benchmark model

with density p; and q denote the density of the Hellinger distance aggregator ~yt(w) =

"
MX
i=1

wiŷ
1=2
i;t

#2
.

Using the generalized entropy (Cressie-Read) divergence from Q to P de�ned in (24)-(25) and
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imposing � = �1=2, we obtain the scaled Hellinger distance H / D�1=2(P;Q)

H =
1

2

Z �
p1=2(x)� q1=2(x)

�2
dx: (46)

Estimate of x is obtained by minimizing H with respect to w, subject to the relevant restrictions.

In practical implementation, we estimate p and q by a kernel density estimator and the integral in

(46) is evaluated numerically. The choice of a benchmark model is discussed in the next section.

4 Empirical Analysis

4.1 Data and Asset-Pricing Models

We analyze �ve popular nonlinear asset-pricing models. The SDF for these models is log-linear in

the factors and takes the form yt(
) = exp(

0 ~ft).

1. CAPM of Brown and Gibbons (1985):

yCAPMt (�; �) = �(1� k)��R��m;t (47)

or

ln(yCAPMt (
)) = 
0 + 
1 ln(Rm;t); (48)

where Rm is the gross market return, � is the discount rate, � > 0 is the coe¢ cient of relative

risk aversion, k is the proportion of wealth consumed in every period, 
0 = �� ln(�(1 � k))

and 
1 = ��.

2. Consumption CAPM (CCAPM):

yCCAPMt (�; �) = �
�

Ct
Ct�1

���
(49)

or

ln(yCCAPMt (
)) = 
0 + 
1ct; (50)

where C denotes real per capita consumption of non-durable goods (seasonally adjusted),

ct = ln(Ct)�ln(Ct�1) is the growth rate in nondurable consumption, 
0 = ln(�) and 
1 = ��.

3. Ultimate consumption (UC) model of Parker and Julliard (2005):

yUCt (�; �) = �
�
Ct+s
Ct�1

���
(51)
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or

ln(yUCt (
)) = 
0 + 
1c
s
t ; (52)

where cst = ln(Ct+s)� ln(Ct�1) and s > 0.

4. Non-expected utility (EZ) model of Epstein and Zin (1989, 1991) and Weil (1989):

yEZt (�; �; �) = �
1��
1��

�
Ct
Ct�1

���( 1��1�� )
R

���
1��
m;t ; (53)

where 1=� � 0 is the elasticity of intertemporal substitution. Note that the restriction � = �

reduces the model to the standard expected utility model (nonlinear CCAPM). The logarithm

of the SDF is given by

ln(yEZt (
)) = 
0 + 
1ct + 
2 ln(Rm;t); (54)

where 
0 = 1� ln(�), 
1 = �
(1��)(�(1��)+�)

1�� , and 
2 =
���
1�� .

5. Durable consumption CAPM (D-CCAPM) of Yogo (2006):

yD�CAPMt (�; �; �; �) = �
1��
1��

�
Ct
Ct�1

���( 1��1�� )
�

Cd;t=Ct
Cd;t�1=Ct�1

��(1��)
R

���
1��
m;t ; (55)

where Cd is consumption of durable goods and � 2 [0; 1] is the budget share of durable

consumption. When � = 0; we have the classical non-expected (Epstein-Zin) utility model.

By imposing the additional restriction � = �, we obtain the standard expected utility model

(nonlinear CCAPM). After taking logarithms, we have

ln(yD�CAPMt (
)) = 
0 + 
1ct + 
2cd;t + 
3 ln(Rm;t); (56)

where 
0 = 1� ln(�), 
1 = �
(1��)(�(1��)+�)

1�� , 
2 = �(1� �), and 
3 = ���
1�� .

In summary, the traditional CCAPM is nested within the EZ model when � = � while D-

CCAPM nests EZ (� = 0) and CCAPM (� = 0 and � = �). The UC model is strictly non-nested

with all the other models.

As a benchmark model (�pivot�) for computing the Hellinger distance, we use the three-factor

(FF3) model of Fama and French (1993)

yFF3t (
) = 
0 + 
1rm;t + 
2smbt + 
3hmlt; (57)

where rm denotes the excess return on the market portfolio, smb is the return di¤erence between

portfolios of stocks with small and large market capitalizations, and hml is the return di¤er-

ence between portfolios of stocks with high and low book-to-market ratios (�value�and �growth�
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stocks, respectively). The FF3 model is one of the most successful empirical models and the in-

formation contained in the smb and hml factors is somewhat orthogonal to the information in the

consumption-based CAPM models considered above.8

The test asset returns are the monthly gross returns on the value-weighted 25 Fama-French

size and book-to-market ranked portfolios, and the 17 industry portfolios from Kenneth French�s

website. The sample period is February 1959 to December 2015. The consumption data that is used

to construct the growth rates ct, cst and cd;t, is real per capita, seasonally adjusted consumption

of non-durable and durable goods from the Bureau of Economic Analysis. The excess return rm;t

on the value-weighted stock market index (NYSE-AMEX-NASDAQ) is obtained from Kenneth

French�s website. The gross market return is constructed by adding the one-month T-bill rate to

the excess return. The data for the smb and hml factors is also collected from Kenneth French�s

website. For the UC model of Parker and Julliard (2005), we use s = 23. This reduces the e¤ective

sample period to February 1959 �December 2013 or 659 observations. The only persistent factor is

the accumulated consumption growth cst in the UC model. All other factors, as well as the returns

on the test assets, do not exhibit serial correlation and the their statistical properties provide a

reasonable approximation to the regularity conditions in our theoretical framework.

All models are estimated using a �xed �training�sample of size N = 419. This is kept �xed in

this paper. The remaining (20 years) part of the sample N + 1; :::; N + T , where T = 240, is used

for estimation of wi and evaluation of the aggregate model. This allows us to treat the estimated

functionals (SDFs) as given in estimating and evaluating the aggregator. An additional advantage

of this setup is that misspeci�cation of the model re�ects not only its pricing ability but also its

parameter stability over time. In the �rst set of results, we leave the last 20 years of the sample

(January 1994 to December 2013) for model aggregation and evaluation. In a second experimental

design, the training sample is the most recent part of the sample period and the evaluation is over

the initial 20 years (February 1959 to January 1979).

Unknown parameters are estimated by minimizing the Hansen-Jagannathan distance in (33)

over the training sample which is equivalent to


̂ = argmin

2�

eT (
)
0
�
1

N

XN

t=1
RtR

0
t

��1
eT (
); (58)

8Another candidate for a benchmark model would be the non-parametric estimate of a comprehensive model.
Such a model is exampli�ed in Cai, Ren, and Sun (2015). On the other hand, a robust pivot can be provided by a
constant SDF model which is the least favorable speci�cation for pricing the test assets.
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where eT (
) denotes the sample pricing errors of the model. Plugging in the estimated parameters

but using data for the second part of the sample N +1; :::; N +T , the sample Hansen-Jagannathan

distance is given by

�̂ =

s
eT (
̂)0

�
1

T

XN+T

t=N+1
RtR0t

��1
eT (
̂): (59)

4.2 Results

As described in the previous section, the parameters, and hence the SDF, for each individual model

are estimated by minimizing the Hansen-Jagannathan distance over N observations in a training

sample. We consider two aggregators. The �rst aggregator is a linear aggregator
�XM

i=1
wiŷi;t

�
coupled with a vector of weight w that are obtained by minimizing the Hansen-Jagannathan distance

as in (45). The second aggregator is the aggregator
�XM

i=1
wiy

1=2
i;t

�2
with a weight vector that

minimizes the Hellinger distance between the densities of the aggregator and the pivot (3-factor

Fama-French model-FF3) as in (46). Both aggregators estimate the aggregation weights over the

remaining T observations. Starting values for weights are the inverse of the Hansen-Jannathan

distances, i.e., ŵi = (1=�̂i)=
PM
i=1(1=�̂i) for i = 1; :::;M .

Regardless of the form of the aggregators, all models are evaluated in terms of the HJ distance,

computed over observations N +1 to N +T (T = 240). It should be emphasized that the Hellinger

distance aggregator is put at disadvantage since its risk function used for aggregation and estimation

of weights is di¤erent than the one used for evaluation.9 Nevertheless, it is useful to document the

robustness properties of this aggregator even though we expect its performance to be inferior to

the performance of the HJD aggregator.

Tables 1 and 2 report the values of the Hansen-Jagannathan (HJ) distances of the �ve consumption-

based asset pricing models, the benchmark (FF3) model and the aggregator. The HJ distances for

the individual models are computed with data from the evaluation sample but using the parameter

estimates from the training sample. For the aggregator, the candidate SDFs are estimated from

the training sample and treated as �xed. The aggregation weights, which are also reported in the

Tables 1 and 2, are then estimated over the evaluation sample either by minimizing the Hansen-

Jagannathan distance (ŵ�1) or the Hellinger distance (ŵ�1=2) and the resulting aggregator SDF is

9The HJ distance is, in fact, a non-optimal GMM estimator with a �xed weighting matrix. The �xed weighting
matrix, set to the inverse of the second moment matrix of the test asset returns, provides an objective criteria for
comparing pricing errors across competing asset pricing models. While maximum-entropy estimation, including the
Hellinger distance estimator, can also be interpreted as a GMM-type estimator, it results in an implicit weighting
matrix that is model-speci�c and makes the comparison of pricing performance across models di¢ cult.
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used for computing the corresponding HJ distance. Note that the risk functions for model evalu-

ation and estimation are di¤erent and our choice of HJ distance for model evaluation is dictated

by our desire to ensure consistency across the di¤erent models and the appealing economic inter-

pretation of this risk function. Speci�cation test (HJ distance test) comfortably rejects the null of

correct speci�cation for all models. Thus, aggregation is over misspeci�ed models.

In order to assess the robustness of the aggregation procedure across di¤erent portfolios of test

assets, we consider the following portfolios: (1) 25 Fama-French and 17 industry portfolios, (2) only

25 Fama-French portfolios, and (3) only 17 industry portfolios. As documented in the literature,

the 3-factor Fama-French model performs best for pricing the 25 Fama-French portfolios. This

should present a challenge for our aggregation since none of the consumption-based models provide

proxies of the smb and hml factors in the FF3 model.

Table 1 presents the results for the evaluation sample January 1994 � December 2013 and

Table 2 reports the results for the evaluation sample February 1959 �January 1979. These results

clearly illustrate the advantages of our aggregation method. Aggregation reduces the pricing errors

relative to the candidate models. It also fares very well relative to the empirical best, here the Fama-

French, model when the 25 Fama-French portfolios are used as test assets. This is reassuring since

in general practice, the latter may be unknown or indeterminate. Another interesting observation

is that CAPM dominates FF3 model in Table 1 even for the 25 Fama-French test assets. This may

appear surprising since the Fama-French factors are constructed by sorting the underlying portfolio

returns. But since our model evaluation is performed �out-of-sample�, the higher pricing errors of

the FF3 model re�ect its larger parameter instability over time.

The aggregator functions (linear and Hellinger) do about equally well in both evaluation periods.

But they suggest widely di¤erent weights to di¤erent models �tted to the same or di¤erent sample

periods. Performance of both average functions is better for the most recent evaluation sample

including the Great recession. Candidate model�s performance is erratic, but aggregate model�s

performance, whatever the aggregator, is stable and reliable. Aggregation would seem to be robust,

and adapt to what is commonly regarded as �regime change�in econometric jargon.

The HJD aggregator largely dominates across models, assets and evaluation periods. It is

interesting to note that the HJD weight estimation is coupled with linear aggregation. That is

the case of in�nite substitution between models. The model with the smallest HJD will ultimately

get the highest weight. In this sense, the HJD aggregation is acting like model selection as the

shrinkage is done towards the model that minimizes the HJ distance. In the case of the Hellinger
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distance, the models are ��nitely substitutable.� This implies more �hedging� by the Hellinger

distance aggregation as it takes away weight from CAPM and assigns it to the EZ model.

Figure 1 plots the SDFs for each model and the Hellinger weighted SDF that uses information

from all models for the combined 25 Fama-French and 17 industry portfolios. The aggregator

SDF strikes a balance between volatility of the di¤erent models. Although the aggregation method

shrinks the SDF towards the SDF of the FF3, it cannot match fully the performance of this

pivot.10 But it is still interesting to see that the aggregator closely resembles the dynamics and

performance (in terms of pricing errors) of the benchmark model despite of the di¤erent information

sets.11 It should be emphasized again that the aggregator based on the Hellinger distance uses

di¤erent estimation (Hellinger) and evaluation (Hansen-Jagannathan) risk functions. This makes

its performance even more impressive as in most cases its pricing ability exceeds or is very close to

the best performing candidate model.

The aggregation methods are also quite robust to di¤erent sets of test assets as they adapt and

recalibrate the weights across the di¤erent models. It is interesting to note that for the evaluation

sample January 1994 �December 2013, the aggregators load largely on the CAPM and EZ models

with the weights on the other models being near zero. This sparsity of the aggregation scheme

may prove to be particularly bene�cial when the set of candidate models is large. Overall, the

robust performance of the proposed aggregation method suggests that combining information from

di¤erent, possibly misspeci�ed models, may o¤er substantial advantages. Even if the aggregator

is dominated by an individual model, we can not know, a priori, which model will do well over

a particular sample for a particular set of test assets. Therefore, in the risk sense, the model

aggregation is ideal.

4.3 Simulations

We conduct a small Monte Carlo simulation experiment to assess the properties of the proposed

model aggregators. The time series sample size is N + T = 600 with N = 360 and T = 240, and

the number of Monte Carlo replications is 1,000. Let Yt = [f 0t; r
0
t]
0; where rt = ln(Rt), with

� = E[Yt] =

"
�1

�2

#
(60)

10This phenomenon is expected from the oracle inequalities mentioned earlier. While the model corresponding to
infi=1;:::;M RT (fi; f) is not discoverable here, the �risk�of the Fama-French model is the smallest.
11 In unreported results, we relax the positivity constraint on w which allows some poorly behaved models to receive

a negative weight in the aggregation procedure. Interestingly, this provides further, and often substantial, reduction
of the pricing errors which is accompanied by a much higher volatility of the pricing kernel.
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and

V = Var[Yt] =

"
V11 V12

V21 V22

#
: (61)

We use two sets of test asset returns: (i) the 25 Fama-French portfolios, and (ii) the 17 industry

portfolios. We consider four consumption-based models �CAPM, CCAPM, EZ and D-CCAPM

�with factors ln(Rm;t); ct, and cd;t. As in the empirical application, the benchmark model is the

Fama-French 3 factor model with factors rm;t, smbt, and hmlt. We assume that"
ft

rt

#
� N

 "
�1

�2

#
;

"
V11 V12

V21 V22

#!
: (62)

The covariance matrix of the simulated factors and returns, V , is is set equal to the sample covari-

ance matrix from the data.

We investigate two scenarios: �rst, when all of the models are misspeci�ed and second, when one

of the models (CAPM, in particular) is correctly speci�ed. In the �rst case (misspeci�ed models),

the means of the simulated returns are set equal to the sample means of the actual returns since

all of the estimated models are rejected by the data. For generating data from a correctly speci�ed

model, we use the properties of the log-normal distribution and write the pricing errors for a

log-linear SDF as

e(
) = E[Rtyt(
)]� 1N = E[exp(rt + 
0 + 
01ft)]� 1N

= exp
�

0 + �2 + 0:5


0
1V11
1 + V21
1 + 0:5Diag(V22)

�
� 1N : (63)

It then follows that a model is correctly speci�ed if and only if

�2 = �0:5Diag(V22)�
�

0 + 0:5


0
1V11
1

�
1N � V21
1: (64)

Thus, we can set the mean of the simulated returns �2 as in (64) to ensure that one of the models

is correctly speci�ed.

Note that, by construction, the statistical nature of the underlying data generating mechanism

is the same in the training and evaluation samples. This was not the case in the empirical example

which spans several business cycles, crisis periods and possible parameter shifts. This lack of regime-

switching in the data generating process allows the aggregators to assign weights based purely on

pricing performance and not on the statistical stability of the models. This is expected to induce

more mixing across models.

Tables 3 and 4 report the simulation results for the individual asset pricing models and the two

aggregators based on the Hansen-Jagannathan distance (HJD) and Hellinger distance (HEL). The
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aggregators use information in the four consumption-based models �CAPM, CCAPM, EZ and D-

CCAPM �while FF3 is used as a pivot for the HEL aggregation. The estimation of the parameters

and the construction of the aggregators is exactly the same as described in the previous sections.

Tables 3 and 4 report the mean, median, 10% and 90% quantiles of the empirical distribution of

the Hansen-Jagannathan distance as a metric for evaluating the pricing performance of all models

and aggregators. The tables also present the median of the Monte Carlo distribution of estimated

weights that the aggregators assign to each model.

For the case when all models are misspeci�ed (Table 3), SDF aggregation o¤ers a substantial

improvement in pricing performance. The HJD aggregator dominates uniformly the HJD measures

of individual models used for aggregation and fares favorably even to the FF3 model which is the

most successful empirical model for pricing the 25 Fama-French portfolios. For the 17 industry

portfolios, for example, the HJD aggregator readily outperforms the Fama-French 3 factor model.

The Hellinger distance aggregator again appears to robustify away from the best performing indi-

vidual model and distribute the weights more evenly across models. Despite the mismatch between

the risk functions for aggregation and pricing performance evaluation, the HEL aggregator achieves

some of the smallest pricing errors.

When one of the models is true (Table 4), it is not surprising to see that this model (CAPM)

dominates the other individual models although it is probably somewhat surprising that the ag-

gregation weights are still fairly equally distributed over competing models. This is partly due to

the fact that CAPM is nested within some of the other consumption-based models. But, more

importantly, this also illustrates the �insurance�value of mixing by attaching a �premium�to the

possibility of choosing catastrophically false individual models.

5 Conclusions

Economic models are misspeci�ed by design as they try to approximate a complex and often an

unknown (and possibly unknowable) true data generating process. Instead of selecting a single

model for pricing assets, decision making or forecasting, aggregating information from all these

models may adapt better to the underlying uncertainty and result in a more robust approximation.

Information theory and generalized entropy provide the natural theoretical foundation for dealing

with these types of uncertainty and partial speci�cation. We capitalize on some insights from

the information-theoretic approach and propose a mixture method for aggregating information
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from di¤erent misspeci�ed asset pricing models. The optimal aggregator takes a harmonic mean

form with geometric and linear weighting schemes as special cases. In addition, the generalized

entropy criterion that underlies our approach allows us to circumvent some serious drawbacks of the

standard linear pooling. The application of the aggregator to combining consumption-based asset

pricing models demonstrates the advantages of our approach. Density forecasting using a large

set of diverse, partially speci�ed models is another natural application of the proposed method.

Extending the oracle inequality approach, which is used to bound the risk of the aggregation

method, to time series data and more general entropy measures is a promising venue for future

research.

24



References

Almeida, C., and R. Garcia, 2012, Assessing misspeci�ed asset pricing models with empirical like-

lihood estimators, Journal of Econometrics 170, 519�537.

Backus, D., M. Chernov, and S. Zin, 2014, Sources of entropy in representative agent models,

Journal of Finance 69, 51�99.

Bakshi, G., and F. Chabi-Yo, 2014, New entropy restrictions and the quest for better speci�ed asset

pricing models, Dice Center WP 2014-07, Ohio State University.

Bernardo, J., and A. Smith, 1994, Bayesian Theory, Wiley.

Birgé, L., 2006, Model selection via testing : An alternative to (penalized) maximum likelihood

estimators, Annales de l�Institut Henri Poincaré (B) Probabilités et Statistiques 42, 273�325.

Birgé, L., 2013, Model selection for density estimation with L2-loss, unpublished manuscript.

Brown, D. P., and M. Gibbons, 1985, A simple econometric approach for utility-based asset pricing

models, Journal of Finance 40, 359�381.

Cai, Z., Y. Ren, and L. Sun, 2015, Pricing kernel estimation: A local estimating equation approach,

Econometric Theory 31, 560�580.

Chen, X., and S. C. Ludvigson, 2009, Land of addicts? An empirical investigation of habit-based

asset pricing models, Journal of Applied Econometrics 24, 1057�1093.

Chernozhukov, V., and H. Hong, 2003, An MCMC approach to classical estimation, Journal of

Econometrics 115, 293�346.

Cressie, N., and T. Read, 1984, Multinomial goodness of �t tests, Journal of the Royal Statistical

Society B 46, 440�464.

Diebold, F. X., 1991, A note on Bayesian forecast combination procedures, in Economic Structural

Change: Analysis and Forecasting (P. Hackl and A. H. Westlund, eds.), 225�232.

Donoho, D. L., and I. M. Johnstone, 1994, Ideal spatial adaptation by wavelet shrinkage, Biometrika

81, 425�455.

Epstein, L. G., and S. E. Zin, 1989, Substitution, risk aversion, and the temporal behavior of

consumption and asset returns: A theoretical framework, Econometrica 57, 937�968.

Epstein, L. G., and S. E. Zin, 1991, Substitution, risk aversion, and the temporal behavior of

consumption and asset returns: An empirical investigation, Journal of Political Economy 99, 555�

576 .

25



Fama, E. F., and K. R. French, 1993, Common risk factors in the returns on stocks and bonds.

Journal of Financial Economics 33, 3�56.

Genest, C., S. Weerahandi, and J. V. Zidek, Aggregating opinions through logarithmic pooling,

Theory and Decision 17, 61�70.

Geweke, J., and G. Amisano, 2011, Optimal prediction pools, Journal of Econometrics 164, 130�

141.

Geweke, J., and G. Amisano, 2012, Prediction with misspeci�ed models, American Economic Re-

view: Papers & Proceedings 102, 482�486.

Ghosh, A., C. Julliard, and A. P. Taylor, 2017, What is the consumption-CAPM missing? An

information-theoretic framework for the analysis of asset pricing models, Review of Financial Stud-

ies 30, 442�504.

Gospodinov, N., R. Kan, and C. Robotti, 2013, Chi-squared tests for evaluation and comparison

of asset pricing models, Journal of Econometrics 173, 108�125.

Gospodinov, N., R. Kan, and C. Robotti, 2016, Spurious inference in reduced-rank asset-pricing

models, unpublished manuscript.

Granger, C. W., E. Maasoumi, and J. C. Racine, 2004, A dependence metric for possibly nonlinear

processes, Journal of Time Series Analysis 25, 649�669.

Hall, S. G., and J. Mitchell, 2007, Combining density forecasts, International Journal of Forecasting

23, 1�13.

Hansen, L. P., 2013, Uncertainty outside and inside economic models, Nobel Prize Lecture.

Hansen, L. P., and R. Jagannathan, 1991, Implications of security market data for models of

dynamic economies, Journal of Political Economy 99, 225�262.

Hansen, L. P., and R. Jagannathan, 1997, Assessing speci�cation errors in stochastic discount factor

models, Journal of Finance 52, 557�590.

Kitamura, Y., T. Otsu, and K. Evdokimov, Robustness, in�nitesimal neighborhoods, and moment

restrictions, Econometrica 81, 1185�1201.

Kitamura, Y., and M. Stutzer, 2002, Connections between entropic and linear projections in asset

pricing estimation, Journal of Econometrics 107, 159�174.

Maasoumi, E, 1977, A Study of Improved Methods for the Estimation of the Reduced Forms of

Simultaneous Equations based on 3SLS Estimators, Ph.D. Thesis, London School of Economics.

Maasoumi, E, 1978, A modi�ed Stein-like estimator for the reduced form coe¢ cients of simultaneous

equations, Econometrica 46, 695�703.

26



Maasoumi, E., 1986, The measurement and decomposition of multi-dimensional inequality, Econo-

metrica 54, 991�997.

Maasoumi, E., 1987, Unknown regression functions and information e¢ cient functional forms: An

interpretation, Advances in Econometrics 5, 301�309.

Maasoumi, E., 1990, How to live with misspeci�cation if you must, Journal of Econometrics 44,

67�86.

Maasoumi, E., 1993, A compendium to information theory in economics and econometrics, Econo-

metric Reviews 12, 137�181.

Maasoumi, E., and J. S. Racine, 2002, Entropy and predictability of stock market returns, Journal

of Econometrics 107, 291�312.

McConway, K. J., 1981, Marginalization and linear opinion pools, Journal of the American Statis-

tical Association 76, 410�414.

Parker, J. A., and C. Julliard, 2005, Consumption risk and the cross section of expected returns,

Journal of Political Economy 113, 185�222.

Rigollet, P., 2012, Kullback�Leibler aggregation and misspeci�ed generalized linear models, Annals

of Statistics 40, 639�665.

Rigollet, P., 2015, High Dimensional Statistics, Lecture Notes, MIT.

Rigollet, P., and A. B. Tsybakov, 2012, Sparse estimation by exponential weighting, Statistical

Science 27, 558�575.

Stutzer, M., 1995, A Bayesian approach to diagnosis of asset pricing models, Journal of Economet-

rics 68, 367�397.

Varin, C., 2008, On composite marginal likelihoods, Advances in Statistical Analysis 92, 1�28.

Varin, C., N. Reid, and D. Firth, 2011, An overview of composite likelihood methods, Statistica

Sinica 21, 5�42.

Weil, P., 1989, The equity premium puzzle and the risk-free rate puzzle, Journal of Monetary

Economics 24, 401�421.

Yang, Y., 2000, Mixing strategies for density estimation, Annals of Statistics 28, 75�87.

Yogo, M., 2006, A consumption-based explanation of expected stock returns, Journal of Finance

61, 539�580.

27



Table 1: Empirical results for individual models and SDF aggregators.

Evaluation period: 1994:1�2013:12.

CAPM CCAPM UC EZ D-CCAPM FF3 HJD agg. HEL agg.
25 Fama-French + 17 industry portfolios

�̂ 0.5237 0.5663 0.5874 0.5409 0.5405 0.5268 0.5212 0.5294
ŵ�1 0.6831 0.0000 0.0928 0.2240 0.0000
ŵ�1=2 0.2479 0.0000 0.0000 0.7182 0.0338

25 Fama-French portfolios
�̂ 0.4481 0.4913 0.4717 0.4620 0.4657 0.4527 0.4478 0.4554
ŵ�1 0.8647 0.0000 0.0000 0.1352 0.0001
ŵ�1=2 0.1950 0.0000 0.0000 0.8048 0.0001

17 industry portfolios
�̂ 0.2035 0.2460 0.2374 0.2456 0.2283 0.2424 0.2035 0.2110
ŵ�1 0.9944 0.0006 0.0001 0.0007 0.0042
ŵ�1=2 0.4628 0.0036 0.0000 0.4714 0.0623

Notes: This table reports the estimates for the Hansen-Jagannathan distance �̂, the aggregation

weights ŵ�1 obtained by minimizing the Hansen-Jagannathan distance (HJD agg.), and the ag-

gregation weights ŵ�1=2 for the method based on minimizing the Hellinger distance (HEL agg.)

between the densities of the aggregator and the FF3 model.
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Table 2: Empirical results for individual models and SDF aggregators.

Evaluation period: 1959:2�1979:1.

CAPM CCAPM UC EZ D-CCAPM FF3 HJD agg. HEL agg.
25 Fama-French + 17 industry portfolios

�̂ 0.6908 0.6621 0.6656 0.6963 0.6933 0.6556 0.6622 0.6651
ŵ�1 0.0000 0.9996 0.0003 0.0000 0.0000
ŵ�1=2 0.0000 0.8012 0.0000 0.0051 0.1936

25 Fama-French portfolios
�̂ 0.5125 0.4613 0.4710 0.5073 0.4889 0.4499 0.4607 0.5113
ŵ�1 0.0000 0.8806 0.0001 0.0001 0.1192
ŵ�1=2 0.9866 0.0133 0.0000 0.0000 0.0000

17 industry portfolios
�̂ 0.2004 0.1971 0.2188 0.1965 0.1992 0.2373 0.1965 0.1981
ŵ�1 0.0020 0.0007 0.0000 0.9973 0.0000
ŵ�1=2 0.0419 0.0009 0.0003 0.3345 0.6224

Notes: This table reports the estimates for the Hansen-Jagannathan distance �̂, the aggregation

weights ŵ�1 obtained by minimizing the Hansen-Jagannathan distance (HJD agg.), and the ag-

gregation weights ŵ�1=2 for the method based on minimizing the Hellinger distance (HEL agg.)

between the densities of the aggregator and the FF3 model.
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Table 3: Simulation results for individual models and SDF aggregators.

Case (i): all models are misspeci�ed.

CAPM CCAPM EZ D-CCAPM FF3 HJD agg. HEL agg.
25 Fama-French portfolios

mean �̂ 0.4713 0.4831 0.4780 0.4834 0.4533 0.4577 0.4708
median �̂ 0.4683 0.4786 0.4737 0.4794 0.4501 0.4545 0.4680
10% quant. �̂ 0.3944 0.4038 0.3975 0.4035 0.3722 0.3787 0.3920
90% quant. �̂ 0.5535 0.5670 0.5626 0.5717 0.5338 0.5396 0.5540
mean ŵ�1 0.3512 0.1775 0.1422 0.3291
mean ŵ�1=2 0.1766 0.1420 0.2586 0.4228

17 industry portfolios
mean �̂ 0.3000 0.3036 0.3101 0.3213 0.3081 0.2908 0.3010
median �̂ 0.2985 0.3008 0.3070 0.3162 0.3077 0.2889 0.3013
10% quant. �̂ 0.2285 0.2280 0.2341 0.2407 0.2360 0.2166 0.2276
90% quant. �̂ 0.3717 0.3781 0.3888 0.4020 0.3839 0.3615 0.3730
mean ŵ�1 0.4047 0.3347 0.1030 0.1575
mean ŵ�1=2 0.3230 0.2174 0.1718 0.2878

Notes: This table reports the Monte Carlo estimates for the Hansen-Jagannathan distance �̂ (mean,

median, 10% quantile, and 90% quantile), the mean aggregation weights ŵ�1 obtained by mini-

mizing the Hansen-Jagannathan distance (HJD agg.), and the mean aggregation weights ŵ�1=2 for

the method based on minimizing the Hellinger distance (HEL agg.) between the densities of the

aggregator and the FF3 model. The sample size is 600 and the number of Monte Carlo simulations

is 1,000.
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Table 4: Simulation results for individual models and SDF aggregators.

Case (ii): CAPM is correctly speci�ed and all other models are misspeci�ed.

CAPM CCAPM EZ D-CCAPM FF3 HJD agg. HEL agg.
25 Fama-French portfolios

mean �̂ 0.3370 0.3490 0.3433 0.3507 0.3459 0.3286 0.3387
median �̂ 0.3339 0.3477 0.3426 0.3498 0.3414 0.3262 0.3369
10% quant. �̂ 0.2728 0.2820 0.2763 0.2771 0.2789 0.2648 0.2737
90% quant. �̂ 0.4066 0.4212 0.4127 0.4239 0.4149 0.3977 0.4082
mean ŵ�1 0.4344 0.2353 0.1523 0.1781
mean ŵ�1=2 0.3360 0.1402 0.2218 0.3020

17 industry portfolios
mean �̂ 0.2657 0.2680 0.2744 0.2833 0.2770 0.2563 0.2666
median �̂ 0.2633 0.2654 0.2696 0.2784 0.2746 0.2548 0.2644
10% quant. �̂ 0.2042 0.2065 0.2119 0.2142 0.2108 0.1947 0.2040
90% quant. �̂ 0.3300 0.3318 0.3442 0.3591 0.3439 0.3198 0.3309
mean ŵ�1 0.4003 0.3490 0.0908 0.1599
mean ŵ�1=2 0.3241 0.2010 0.1983 0.2766

Notes: This table reports the Monte Carlo estimates for the Hansen-Jagannathan distance �̂ (mean,

median, 10% quantile, and 90% quantile), the mean aggregation weights ŵ�1 obtained by mini-

mizing the Hansen-Jagannathan distance (HJD agg.), and the mean aggregation weights ŵ�1=2 for

the method based on minimizing the Hellinger distance (HEL agg.) between the densities of the

aggregator and the FF3 model. The sample size is 600 and the number of Monte Carlo simulations

is 1,000.
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Figure 1: SDFs for individual models and aggregator based on the Hellinger distance for the January
1994 �December 2013 evaluation sample.
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