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1 Introduction

This paper studies the implications of the well-documented psychological bias of overconfidence

on the price-setting behavior of firms in a monopolistically competitive market with incomplete

information. In our model, firms receive a private signal about an aggregate shock that influences

their marginal costs. They can acquire better information by paying a fixed cost. Our price-

setters are overconfident in their signals, i.e. they overestimate the precision of their private

information.

There are two important conclusions that we draw from this framework: first, overconfidence

implies that a large fraction of firms is going to optimally stay uninformed; second, overconfident

firms set prices that may be excessively volatile, since they are driven by under-estimated noise.

This volatility at the individual level is coupled with an aggregate inflation rate that is smooth

and persistent. So we provide a unified “noise” explanation of prices at both the idiosyncratic

and the aggregate level.

There is a vast psychological literature on overconfidence. The term has borne different inter-

pretations depending on the particular study but here we focus on the concept of overprecision.

The overconfidence bias is rather new in macro models but has been influential in the finance

literature. For example, Barber and Odean (2001) analyze the implications of overconfident

male investors for excessive stock trading whereas Daniel et al. (1998) and Daniel et al. (2001)

focus on the effects of investor’s overconfidence on market overreaction and asset pricing.

Overconfidence has not been found to be important only in experimental studies or in setups

where monetary loss is inconsequential: Oberlechner and Osler (2009) and Oberlechner and

Osler (2012) provide empirical evidence that overconfidence, in the sense of underestimation of

uncertainty, is ubiquitous in currency markets and that overconfident traders actually survive

in the long-run. In a similar vein, Burnside et al. (2011) associate investor’s overconfidence to

the forward premium puzzle. Moreover, there have been recently various studies that document

in detail biases like overconfidence in the forecasts of actual decision-makers like managers or

CFOs. A separate section later provides detailed evidence.

The prevalence of overconfidence has led to work that generates endogenously optimistic

biases in beliefs, by taking into account the utility benefits of good outcomes. A prominent

example is the theory of optimal expectations of Brunnermeier and Parker (2005). Another

example is the work of Ortoleva and Snowberg (2015), who generate overconfidence as a conse-

quence of correlational neglect and explore the implications for political ideology. For our own

purposes, we take overconfidence as given but explore how it interacts with fundamental and

strategic uncertainty in our monopolistic competition setup. In the baseline version of our econ-

omy, overconfidence can deter agents from obtaining information, since they rely more on their

subjective perception of the world, but can also increase the incentives to obtain information
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by increasing the implicit cost of staying uninformed through the mechanism of higher-order

beliefs.

In a dynamic extension of our economy, the presence of strategic complementarities and

the interaction with higher-order beliefs generates persistent responses of output to nominal

shocks, as in the imperfect common knowledge setup of Woodford (2002), where all agents

are uninformed. The persistence at the aggregate level, together with the excess volatility of

over-confident uninformed price-setters at the idiosyncratic level, leads to interesting empiri-

cal predictions. To flesh them out, we explore how much idiosyncratic price volatility can be

generated by overconfidence and contrast it to some well known features of micro price data.

More specifically, Klenow and Kryvtsov (2008) have documented that U.S. consumer prices

change frequently with an average absolute size of about 10% on a monthly basis and that these

frequent movements are equally likely to be positive or negative in sign. In contrast, aggregate

inflation averages just at 0.8% over an horizon of 3 months. Depending on how we calibrate

fundamental uncertainty, our economy generates an average absolute size of price changes of

up to 2% when it is populated with rational price-setters. Instead, for a reasonable degree of

overconfidence that is documented in experimental studies and managerial surveys, we find that

the average absolute size can increase up to 5%. We think that this result is indicative of the

potential quantitative importance of overconfidence for macroeconomic models.

1.1 Related literature

Our setup is based on the imperfect common knowledge framework of Woodford (2002). Loren-

zoni (2009) provides a theory of demand shocks in setups with incomplete information, whereas

Melosi (2014) devises methods for the structural estimation of these models. Adam (2007)

considers optimal monetary policy in such setups.

More generally, the imperfect common knowledge setup shares similarities with the ratio-

nal inattention theory of Sims (2003) in its emphasis on the costs of processing information.1

Moscarini (2004) analyzes in a continuous time model the optimal sampling frequency of noisy

information under information-processing constraints and shows that it can also generate inertia.

Morris and Shin (2006) have emphasized that in models with forward-looking expectations even

the existence of a small fraction of uninformed agents about the future path of fundamentals

can generate persistence in the price behavior.

The option to obtain information resembles Reis (2006), who builds a model where producers

decide when to acquire information but do not receive any private signals. The contribution of

Hellwig and Veldkamp (2009) focuses on the strategic complementarities in information acqui-

1See Maćkowiak and Wiederholt (2009) for the implications of rational inattention for sticky prices and Steiner
et al. (2017) for an elaborate dynamic model of information processing. Sims (2010) provides a thorough survey
of the rational inattention literature.
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sition and their implications for multiple equilibria in setups without overconfidence.

The literature in psychology is nicely summarized by Moore and Healy (2008). They provide

an extensive survey of the studies that document overconfidence and differentiate between over-

estimation (of one’s abilities), overplacement (relative to others), and overprecision, which is the

type of overconfidence we focus on. An example of overstimation is Clayson (2005), who shows

that students overestimate their performance in exams. A prominent example of overplacement

is the study of Svenson (1981): in a simultaneous study of US and Swedish drivers, 88% of

the US group and 77% of the Swedish group asked believed that they are safer drivers than the

median. Another example is Guthrie et al. (2001): 90% of 168 federal magistrate judges thought

that they are above average as far as their reversal rate on appeal is concerned. Regarding over-

precision, studies like Soll and Klayman (2004) have shown that subjective confidence intervals

are systematically too narrow given the accuracy of one’s information. Another classic reference

is Lichtenstein et al. (1982).

In finance, other influential studies beyond the ones mentioned in the introduction are Mal-

mendier and Tate (2005), who devise methods of measuring CEO overconfidence based on corpo-

rate investment and Scheinkman and Xiong (2003), who explore the potential of overconfidence

to generate speculative bubbles in a dynamic setup. Daniel et al. (2002) consider the policy

implications of overconfidence. The survey of Daniel and Hirshleifer (2015) provides additional

references.

Various studies in experimental economics have explored the interactions of overconfidence

and excess entry, see for example Camerer and Lovallo (1999). Furthermore, in micro theory

there are models on the effects of overconfidence on performance as in Compte and Postlewaite

(2004) and on the optimal menu of wage contracts as in Fan and Moscarini (2005). In macroeco-

nomics, Caliendo and Huang (2008) analyze the implications of overconfidence for consumption

and savings problems.

1.2 Organization

Section 2 provides motivating empirical evidence on the overprecision of decision-makers like

managers and CFOs that lend credibility to the bias of overconfidence outside the laboratory

environment. Section 3 provides the basic static economy of incomplete information, derives

the optimal prices, and characterizes the decision to obtain information. Section 4 explores the

pricing implications of overconfidence. Section 5 extends the basic analysis to an infinite horizon

model of imperfect common knowledge under overconfidence. Section 6 explores the empirical

predictions of the model for idiosyncratic price volatility. Section 7 concludes and an Appendix

follows.
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2 Motivating empirical evidence on overprecision

A recent literature has emerged that investigates the presence of overconfidence in the forecasts

of decision makers like managers and CFOs. Table 1 summarizes the main findings. Progress

has been made by designing confidential surveys that elicit subjective managerial beliefs.

Barrero (2018) uses data from a confidential monthly survey led by the Federal Reserve Bank

of Atlanta of a panel of about 1,200 U.S. managers. The survey elicits subjective probability

distributions regarding growth outcomes at their own firm, in particular sales growth over the

four quarters following the survey.2 Findings are: the average forecast error is not distinguish-

able from zero, so managers are neither optimistic nor pessimistic on average. Nevertheless,

managers are overconfident, that is, they underestimate the volatility of future sales growth and

overestimate their forecasts accuracy. While the manager subjective distributions would imply

an average absolute forecast error of about 4 percentage points, in reality the mean absolute

forecast error is close to 18 percentage points, more than four times as large.

While Barrero (2018) examines in detail biases in the managerial forecasts of the firm’s own

variables, Ben-David et al. (2013) examine the overprecision in the forecasts of senior finance

executives of the S&P 500 returns. They use quarterly survey data of 10 years and document

that CFOs of mid-size and large U.S. corporations are severely miscalibrated: realized market

returns are within the 80% confidence intervals that CFOs provide only 36% of the time. They

further examine the effect of over-precision on corporate investment and financial leverage.

Huang et al. (2016) have distinguished between over-optimism which is a “better than av-

erage” effect, while the overprecision bias is “an unwarranted belief in the correctness of one’s

answers”. The former bias can be interpreted as overconfidence regarding the mean, while the

latter as overconfidence regarding the precision, which is indeed the focus of our paper. They

study earnings forecasts which are presented in the form of a range, allowing the measurement

of the over-precision bias. They find that CEOs are overly precise in their earnings forecast.

67% of actual earnings fall outside the forecast range. Overly precise CEOs invest more in real

assets.

We will close this section by citing evidence on behavioral biases coming from surveys of

professional forecasters. Bordalo et al. (2018) examine the rationality of individual and consen-

sus professional forecasts of macroeconomic and financial variables. They find that forecasters

typically over-react to information at the individual level, while consensus forecasts exhibit un-

derreaction. To model over-reaction in processing noisy signals, they assume that agents have

diagnostic expectations, a concept closely related to overconfidence. They manage to reconcile

over-reaction at the individual level with under-reaction at the consensus level. Similarly, Broer

2The survey elicits also managerial beliefs about employment levels, average unit cost growth, and capital
investment expenditures. An overview for the public is provided here. Further details can be found in Altig et al.
(2018).
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Table 1: Summary of informative studies on overprecision.

Study Subjects Overprecision in forecasts of
Barrero (2018), Altig et al. (2018) CFOs and CEOs Sales growth

Ben-David et al. (2013) CFOs S&P 500 returns

Huang et al. (2016) CEOs Earnings

Bordalo et al. (2018) Professional forecasters Macroeconomic variables

Broer and Kohlhas (2018) Professional forecasters Inflation

and Kohlhas (2018) document how US professional forecasters overreact to information, in the

sense that their forecast revisions are too large. They show how a model of overconfidence may

explain overreaction to private information.

To sum up, our paper is about overreaction of individual perceptions about an aggregate

shock on the side of managers who make pricing decisions. The study of Barrero shows that man-

agers are overconfident in predicting sales growth, providing evidence of overconfidence within

the firms and not only among financial markets participants. Moreover, evidence from profes-

sional forecasts supports the notion that overconfidence is relevant when forecasting macroeco-

nomic variables. These variables are directly related to the filtering problem that our price-setters

face. Motivated by this evidence, our paper is the first to analyze the overprecision bias in a

macro context.

3 Static economy

In this section, we present a static partial-equilibrium model of price-setting behavior in which

firms have full information on the structure, parameters and variables of interest.3

Firms. We consider a continuum of firms indexed by j on the unit interval [0, 1]. Each firm

produces a good that is differentiated in the preferences of consumers. We do not explicitly

model neither consumer preferences nor their optimization problem. We just assume what is

needed to characterize the price-setting problem of firms. Firms use labor L(j) to produce goods

through the production function Y (j) = AL(j), where A is a productivity shock common to all

firms; W is the nominal wage paid for one unit of labor in the labor market. Firms are profit

maximizers and set their prices in a monopolistic-competitive market. The problem of a generic

3 The model is similar to the one used in Ball and Romer (1989), Ball and Romer (1991) and Blanchard and
Kiyotaki (1987).
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firm j is to choose the price of its product P (j) to maximize real profits given by

P (j)

P
Y (j)− W

P
L(j). (1)

Y (j) is the demand of good j given by

Y (j) =

(
P (j)

P

)−ε
Y, (2)

that depends on the price of good j relative to the general price index P , given by

P =

[∫ 1

0

P (i)1−εdi

] 1
1−ε

, (3)

and on aggregate production Y . The parameter ε > 1 denotes the elasticity of substitution

across differentiated goods in consumer preferences.

Labor supply. We do not explicitly model the supply of labor. Instead, we assume that the

labor-supply schedule implies the following relation between real wage and aggregate production

W

P
= Y η (4)

with η > 0.4

Government. We assume the existence of a monetary authority that has perfect control over

the level of nominal spending in the economy. It follows that

M = PY (5)

where M , which may be labeled as money supply, is indeed controlled by the monetary authority.

Profit function. We can substitute (2), (4) and (5) into (1) to define the profit function of

firm j as

π(P (j), P, θ) ≡
[
P (j)

P
− 1

A

(
M

P

)η](
P (j)

P

)−ε(
M

P

)
. (6)

4 This labor-supply schedule can be derived from the optimizing-behavior of households in a general-
equilibrium model. In particular, η would be a combination of the risk-aversion coefficient in consumer pref-
erences and of the Frisch elasticity of substitution of labor supply, or in case of local labor market of ε as well.
Assuming a more general labor-supply schedule does not change the subsequent analysis.
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The money supply enters the profit function by determining (together with the price level) real

output Y . Real output Y has a positive demand effect on good j and increases marginal cost

through equilibrium wages, as can been seen by (2) and (4) respectively. Profits of firm j become

a function of the action of firm j, P (j), the actions of all other firms synthesized by the index

P , and the vector of exogenous shocks θ, θ ≡ (A,M). Firm j is of measure zero with respect to

the aggregate, so its pricing decision does not affect the general price index P .

3.1 Full information

In the full information economy firm j chooses price P (j) to maximize profits (6). Let P †(j)

denote the profit-maximizing price, given by

P †(j) = P † =
ε

ε− 1

W

A
=

ε

ε− 1

P

A

(
M

P

)η
(7)

which is just the familiar markup rule over nominal marginal cost. Since nominal marginal costs

are the same across firms, all firms set the same price, P † = P . Money is neutral and the

full information output equals Y ∗ = ( A
ε/(ε−1)

)
1
η . The respective full information price level is a

function of the exogenous money supply and equilibrium output,

P ∗ =
M

Y ∗
=

(
ε

ε− 1

1

A

) 1
η

M. (8)

P ∗ is function solely of the exogenous aggregate shock θ and will be a useful statistic in the next

section. For later use, note that since P ∗η = ε
ε−1

Mη

A
, we can rewrite (7) as

P † = P 1−ηP ∗η. (9)

This rewriting reveals how the optimal price of firm j depends in equilibrium on the actions

of other firms (P ), and on a particular combination of exogenous shocks (P ∗). The parameter η

captures the elasticity of the individual optimal price with respect to the aggregate price level.

Therefore, η determines the equilibrium substitutability or complementarity of pricing decisions:

price-setting decisions are strategic complements, if 0 < η < 1, and strategic substitutes if η > 1.5

3.2 Incomplete information

We provide here an overview of the incomplete information setup and then we will proceed to

the details of the signal-extraction problem.

5See Woodford (2003, ch. 3) for a detailed discussion of equilibrium strategic complementarities in price-
setting.
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Our information structure is based on the “limited attention” setup of Woodford (2002) and

the subsequent imperfect common knowledge literature. This amounts effectively to making two

assumptions. First, firms do not know the realization of the aggregate shock θ. Second, we

assume that none of the actions of the other agents, as captured by the general price level P , is

in the information set of price-setters.

In particular, each firm receives a private signal sj that is correlated with the aggregate

hidden state θ. This signal is the only element in their information set and captures the firm’s

“subjective perception” about θ. We assume an additive structure for the signals with i.i.d.

idiosyncratic noise. The firm uses its private signal to make inferences on productivity and

money supply shocks that affect marginal costs and aggregate demand. Furthermore, the signal

is used to infer the beliefs, and therefore the pricing decisions, of other firms. An entire hierarchy

of beliefs about the price level is formed, so price-setters face both fundamental and strategic

uncertainty. Overconfidence enters the inference problem by making agents put too much weight

on their own subjective perception of the aggregate shock. Moreover, we allow the fraction of

uninformed firms to be endogenous : each firm j can pay a real fixed idiosyncratic cost c̃j and

obtain full information about the shock θ and the pricing decisions of the rest of the firms. These

fixed shocks are i.i.d. across firms and independent of the private signals.

Timing. Each firm j gets a realization of the fixed cost at the beginning of time and receives

a private signal. Given the signal, the firm decides to obtain or not information. If the firm

becomes “informed”, it pays cost c̃j and sets price P †(j). If the firm decides to stay “uninformed,”

it sets price P̃ (j). We can characterize this problem by working backwards.

Informed firm. The optimal price when the firm has complete information is just the typical

markup over nominal marginal cost, as in equation (7). Since nominal marginal costs are the

same across firms, informed firms set again the same price, P †(j) = P †. As before, we can use

the definition of the full information price in (8), to rewrite the price of an informed firm as a

function of the price of aggregate price level P and the full information price P ∗, P † = P 1−ηP ∗η.

Note the similarity with equation (9). However, the price level P is obviously not the same as

in an environment with full information, since it may include prices of firms that chose to stay

uninformed.

Uninformed firm. If the firm does not obtain information, it sets a price that maximizes

its subjective expectation of real profits, given its perception of the world. Let Ej denote the

subjective expectation operator of firm j, conditional on its private signal, so EjX ≡ E(X|sj) for

a generic random variable X.6 P̃ (j) maximizes Ejπ(P (j), P, θ) which implies that the optimal

6The operator E always refers to the subjective expectation operator. This coincides with the objective
expectation operator except for the case of overconfidence in the private signals. It will be always clear from the
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price of an uninformed firm takes the form

P̃ (j) =
ε

ε− 1

Ej{W
A
Z}

EjZ
, (10)

where Z ≡ MP ε−2. So the optimal price of the uninformed firm is an “average” of the

typical markup over nominal marginal cost.7 Note again that ε
ε−1

W
A

= P 1−ηP ∗η = P †. So we

can express the optimal price of the uninformed firm in (10) as an average of the price it would

set if it were informed,

P̃ (j) =
Ej{P †Z}
Ej{Z}

. (11)

Obtaining information. A generic firm j chooses to pay the fixed cost and acquire complete

information when the expected increase in profits in doing this is higher than the cost c̃j,

Ej{π(P †, P, θ)− π(P̃ (j), P, θ)} ≥ c̃j. (12)

Having observed the realization of its own signal, a firm j evaluates the left-hand side (LHS) of

(12). The firm acquires information and sets price P †, if (12) holds, otherwise it stays uninformed

and sets P̃ (j).

3.3 Approximation to the incomplete-information model

We will simplify the problem by proceeding with an approximation around the deterministic

steady state where θ = θ̄ = (Ā, M̄).8

Proposition 1. A second-order approximation to the LHS of (12) leads to a criterion of the

form

varj{p†} ≥ cj, (13)

where varj{·} denotes the variance operator conditional on the subjective information set of firm

j, while p† is the log of the price that firm j would set with complete information and cj is a

reparametrization of the idiosyncratic fixed cost c̃j.

Proof. See Appendix.

context if we refer to the objective or the subjective distribution.
7The average is according to the change of measure x ≡ Z/EjZ ≥ 0 with Ejx = 1.
8This simplification is particularly useful for the derivation of the higher-order hierarchy of beliefs. See

proposition 2.
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The decision of acquiring or not information depends on whether the subjective variance of

the price that a firm sets under complete information is higher than the cost cj. An important

implication of proposition 1 is that (13) can be evaluated using just a log-linear approximation

to the equilibrium conditions. In this log-linear approximation, equation (11) implies that the

log of the price under incomplete information is the expected value of the log of the price under

complete information

p̃(j) = Ejp†, (14)

where lower-case letters denote logarithms of the respective variables.9 Moreover, p† satisfies an

exact log-linear relationship given by

p† = (1− η)p+ ηp∗, (15)

where p∗ is the log of the full-information equilibrium price level and p is given by

p =

∫ 1

0

p(i)di (16)

as a result of a first-order approximation of (3).

Let µ denote the fraction of firms that in equilibrium decide to keep their subjective infor-

mation set. Assuming without loss of generality that agents j ∈ [0, µ] are the ones who remain

uninformed, we can write (16) as

p = µp̃+ (1− µ)p†, (17)

where p̃ stands for the average price of the subjectively-informed firms,

p̃ ≡ 1

µ

∫ µ

0

p̃(i)di. (18)

We can then plug (17) into (15) to obtain

p† = δp∗ + (1− δ)p̃, (19)

where

δ ≡ η

η + (1− η)µ
. (20)

Equation (19) expresses the price of informed firms as a linear combination of the exogenous

full information price, which captures the fundamentals, and the price of the uninformed firms.

The weight on the full information price is equal to unity, δ = 1, when all firms are informed

9Note that the change of measure Z/EjZ is not relevant anymore in the log-linear approximation. Further-
more, all firms set the same constant price at θ̄.
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(µ = 0), which would happen if the cost of acquiring information were zero. If costs are large

enough so that every firm stays uninformed (µ = 1), we are in the case of Woodford (2002),

where every firm is exogenously uninformed, and the weight δ becomes equal to the degree of

complementarity, δ = η. The weight δ is a decreasing function of µ and η ≤ δ ≤ 1 if η < 1.

Thus, the larger the mass of uninformed firms, the smaller the weight on fundamentals, and the

larger the weight on the prices of other firms, if we have strategic complements. In contrast, δ

is an increasing function of µ with 1 ≤ δ ≤ η in case of strategic substitutes (η > 1).

To sum up, the set of equations (14), one for each firm that remains uninformed, together

with (18) and (19) determine the equilibrium prices of informed and uninformed firms in a

first-order approximation to the equilibrium conditions.

3.4 Signal extraction, overconfidence and optimal pricing

Consider now the signal-extraction problem of the firm. We note that uncertainty about the

aggregate shock θ has collapsed to uncertainty about the full-information price p∗, which is

a linear combination of the logarithms of the technology and the money supply shock, p∗ =

const. + lnM − 1
η

lnA. Without loss of generality for our purpose of exploring the effects of

overconfidence on pricing, we are going to assume that firms receive signals about this particular

linear combination p∗, which captures the “fundamental” shocks in the economy.10 Let p∗ be a

random variable of the form

p∗ = p̄∗ + u, (21)

where p̄∗ is a constant and u is a Gaussian white-noise process with variance σ2
u, u ∼ N(0, σ2

u).

This distribution is common knowledge and corresponds to the objective probability distribution

of p∗.

Overconfidence. Each firm receives a private signal sj that is linearly related to p∗ as

sj = p∗ + ξj, (22)

where ξj is an idiosyncratic Gaussian noise with mean zero. Moreover, ξj is statistically inde-

pendent of u as well as of ξi for each i 6= j. Our departure from objective probabilities is in

the variance of the noise. Let σ̄2
ξ and σ2

ξ denote respectively the perceived (subjective) and true

variance of ξj. We introduce overconfidence as in the influential contributions of Daniel et al.

10We invite the reader to entertain more elaborate signal structures where each firms get multiple signals about
different components of P ∗. For example, we could think of each firm getting a private idiosyncratic productivity
shock Aj (leading to idiosyncratic marginal costs), that is correlated with the aggregate shock A. This shock
could be used as a signal in order to infer prices of other firms. We could also envision private (or even public)
signals about the money supply M . We think that these directions, albeit interesting, would hinder our main
goal of analyzing sharply the effects of overconfidence on macroeconomic pricing models.
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(1998) and Daniel et al. (2001) in the behavioral finance literature: we assume that σ̄2
ξ < σ2

ξ . So

price-setters overestimate their ability to infer the hidden state from their private signals. This

corresponds to the behavioral bias of overprecision, a term which we will use interchangeably

with the term overconfidence.11

Given this information structure, each firm can form its own expectation of the full-information

price p∗ as in a standard signal-extraction problem

Ejp∗ = (1− r̄j)p̄∗ + r̄jsj, (23)

where the weight r̄j is defined as

r̄j = r̄ ≡ 1

1 + λ̄
with λ̄ =

σ̄2
ξ

σ2
u

. (24)

Since λ̄ is common and common knowledge across the different firms, then r̄j is independent

of j and equal to a common r̄. In particular, λ̄ represents the noise-to-fundamental variance

ratio and can be interpreted as an index of confidence in how a firm’s private signal is a good

representation of the full-information price. Lower values of λ̄ implies a higher weight to the

signal when firms form expectations of the full-information price and, therefore, a high degree of

confidence on the subjective information set. We can define a “true” degree of confidence λ as

λ ≡ σ2
ξ

σ2
u

with a respective weight in the filtering problem, r = 1/(1 + λ). Overconfidence implies

that λ̄ < λ, resulting into an excessive weight on the private signal, r̄ > r.

Higher-order beliefs and optimal pricing. To solve for the equilibrium prices of informed

and uninformed agents, we first guess that µ is known to each firm j. We then verify that this

is indeed the case. Given this guess, we can substitute (19) into (14) to get

p̃(j) = δEjp∗ + (1− δ)Ej p̃ (25)

which can be averaged across all uninformed price setters to obtain

p̃ = δĒp∗ + (1− δ)Ēp̃, (26)

where we have defined the operator Ē(·) ≡ 1
µ

∫ µ
0
Ei(·)di, the average expectation across unin-

formed firms. So the price index of uninformed firms is a linear combination of the average

(across uninformed firms) forecast of the fundamentals and the average forecast of the price in-

dex. By iterating the above expression, it follows that p̃ is a linear combination of all higher-order

11 See the survey of Moore and Healy (2008) for a succinct taxonomy of overconfidence studies in terms of
overestimation, overplacement and overprecision.
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average expectations of the full-information price,

p̃ = δ
∞∑
k=0

(1− δ)kĒ(k+1)p∗, (27)

where the (k+1)−order average expectation operator is defined as Ē(k+1)(·) ≡ Ē(Ē(k)(·)), k ≥ 1,

with Ē(1)(·) ≡ Ē(·).12 As in the literature pioneered by Morris and Shin (2002), higher-order

beliefs are an integral part of optimal prices.13 Using the signal-extraction formula (23) we get

the following optimal prices.

Proposition 2. (“Optimal prices in the static economy”)

• The price of an informed firm is

p† =
(1− η)(1− r̄)µ

η + (1− η)(1− r̄)µ
p̄∗ +

η

η + (1− η)(1− r̄)µ
p∗. (28)

• The price index of uninformed firms is

p̃ =
η(1− r̄) + (1− η)(1− r̄)µ

η + (1− η)(1− r̄)µ
p̄∗ +

r̄η

η + (1− η)(1− r̄)µ
p∗. (29)

• The price of uninformed firm j ∈ [0, µ] is

p̃(j) =
η(1− r̄) + (1− η)(1− r̄)µ

η + (1− η)(1− r̄)µ
p̄∗ +

r̄η

η + (1− η)(1− r̄)µ
sj. (30)

Proof. By using (23), averaging across uninformed firms, assuming that a law of large numbers

holds on a positive measure, 1
µ

∫ µ
0
ξidi = 0, and iterating to derive the higher-order expectations,

we arrive at14

Ē(k)p∗ = (1− r̄k)p̄∗ + r̄kp∗, k ≥ 1. (31)

We can substitute (31) into (27) to get p̃, and therefore p† and p̃(j) from (19) and (14)

12Under the restriction that η(2µ− 1) < 2µ , δ is such that |1− δ| < 1.
13 See Allen et al. (2006), Amato and Shin (2003) and Amato and Shin (2006) for further examples of problems

with iterated expectations.
14 See Uhlig (1996) for the conditions under which a law of large numbers holds.
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respectively,

p̃ =
1− r̄

1− (1− δ)r̄
p̄∗ +

r̄δ

1− (1− δ)r̄
p∗

p† =
(1− δ)(1− r̄)
1− r̄(1− δ)

p̄∗ +
δ

1− (1− δ)r̄
p∗

p̃(j) =
1− r̄

1− (1− δ)r̄
p̄∗ +

r̄δ

1− (1− δ)r̄
sj

Use the definition of δ in (20) to get the respective expressions in terms of the degree of

complementarity η and the fraction µ.

3.5 Information acquisition

Corollary. Given (28) and Proposition 1, it follows that a generic firm j decides to acquire

information if the following inequality holds

varj{p†} =

[
η

η + (1− η)(1− r̄)µ

]2

varj{p∗} ≥ cj,

where varj{p∗} is the variance of the full-information price level conditional on the subjective

information set of firm j. This is given by varj{p∗} = σ2
u(1− r̄j), so we have[

η

η + (1− η)(1− r̄)µ

]2

σ2
u(1− r̄j) ≥ cj. (32)

Note that in (32) we have kept the distinction –since it matters for the discussion that follows-

between the own degree of confidence r̄j and the others’ degree of confidence r̄– although we

have assumed that they are the same.15

According to (32), several parameters of the model drive the incentives for firm j to acquire

information.16 The higher is the variance of the full-information price, σ2
u, the higher are the

incentives to acquire information. Obviously, the lower the cost cj, the higher those incentives.

15Indeed, we could have derived the same equilibrium price p† and, thus, criterion (32), even if we had hetero-
geneity in overconfidence. In that case, let r̄ ≡

(∫ µ
0
r̄idi

)
/µ and assume that a law of large numbers holds for∫ µ

0
ξir̄idi = 0. Then (28) follows.

16Note that the criterion to obtain information does not depend on the signal realization sj . This is an outcome
of the log-linear approximation and the Gaussian setup we are using, which leads to conditional variances that
are independent of the signals. This is the price to pay for being able to calculate high-order beliefs as iterations
of higher-order average expectations, a tractability feature which explains the ubiquity of the log-linear approach
in the imperfect common knowledge literature. The same feature emerges in the infinite horizon model of section
5, where we employ the Kalman filter: forecast error variances depend only on time and not on signal realizations.
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In the case of strategic complementarity in the pricing decision, 0 < η < 1, the higher is the

fraction of firms that are acquiring information (i.e. the lower the µ) the higher are the incentives

for the individual firm to acquire information. This result is of the same nature as the one found

by Ball and Romer (1989) in a similar model but with only imperfect information, in which

firms’s decisions are on whether to change or not prices.

Each firm’s decision is also influenced by the degree of confidence in the informativeness

of the signal. If r̄j is high (λ̄j is low), then the firm will not have incentives to acquire finer

information. A high degree of confidence implies that firms are going to be stuck with their

perceptions of the world when setting their prices.

Interestingly, if the confidence of others increases (λ̄ decreases and r̄ increases) then the

price under complete information has higher subjective variance since the average forecast of

uninformed firms is getting closer to the full information price, as shown in (31) for k = 1. Then,

each individual firm has higher incentives to acquire information and imitate other firms –when

pricing decisions are strategic complements.

We move to characterize the equilibrium value of µ, under the assumption r̄j = r̄ for each j.

We define

c∗ ≡

[
η(1− r̄) 1

2

η + (1− η)(1− r̄)µ

]2

σ2
u (33)

and note that (32) implies that all firms with costs cj less than the threshold value c∗ obtain

information. Let the cumulative distribution function of costs be F with respective density f

on support [c , c̄]. Therefore, µ has to satisfy

1− F (c∗) = µ. (34)

The value c∗ depends on µ, so (34) determines implicitly the equilibrium fraction of uninformed

firms. This solution confirms our initial guess that µ is a function of known parameters and then

known to each firm j. The properties of F (·) determine the existence and the characteristics of

the equilibrium. Indeed, when cj = c for each j, multiple equilibria are possible for the same

reasons as they occur in the imperfect-information model of Ball and Romer (1989). For other

F (·) multiple equilibria might disappear. Since this is not the focus of this work, we assume

that F (·) and f(·) are such that there exists an equilibrium and its unique. We get the following

proposition.

Proposition 3. (“Confidence on private signals and uninformed firms”)

Assume that we are at a stable equilibrium where 1 + f(c∗)∂c
∗

∂µ
> 0.

If (1− η)(1− r̄)µ < η then
dµ

dr̄
> 0. (35)
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Thus, the fraction of uninformed firms increases when the weight on the private signal in-

creases.

Proof. See the Appendix.

The proposition implies that an increased reliance on private signals, which would occur if

we had a low subjective variance due to overconfidence, can lead to a larger mass of uninformed

firms relative to a rational signal-extraction benchmark.

Discussion. Although intuitive, Proposition 3 is not obvious. It involves the effects of firm’s

own confidence and the opposing effects of the confidence of other firms through the mechanism

of higher-order expectations. An increase in one’s confidence decreases the incentives to acquire

information. But an increase in the confidence of others makes the price of informed firms more

volatile, since there is larger reliance on private signals in equilibrium, amplifying the effect of

higher-order beliefs. To see that, consider the extreme case where private signals are completely

uninformative (in the eyes of the price-setters), r̄ = 0. In that case, the entire mechanism of

higher-order beliefs is mute: uninformed firms set a price equal to their prior, p̃ = p̄∗, and the

price of informed firms becomes p† = (1− δ)p̄∗+ δp∗. So the weight on the full information price

p∗ reaches its minimum, leading to small volatility and reduced incentives to acquire information.

The inequality condition in (35) requires that the effect of the firm’s own confidence, which

leads to a larger equilibrium fraction µ, is stronger than the higher-order beliefs effect, which

reduces µ. As expected, the condition always holds in the case of strategic substitutes, η > 1. In

the case of strategic complements, the condition holds if we effectively limit the effect of higher-

order beliefs. This would happen in an equilibrium where µ is small (so the complementarities

are not strong enough), µ < η
(1−η)(1−r̄) . From another angle, the higher-order beliefs effect would

be contained if we bounded η away from a lower bound, by writing the condition as η > (1−r̄)µ
1+(1−r̄)µ .

The lower bound for η is always smaller than 1/2 and decreases to zero when r̄ increases to unity.

The conclusion is that if complementarities are not too “large,” a high degree of confidence in

private signals increases the equilibrium fraction of uninformed firms.

4 Price implications of incomplete information and over-

confidence

In this section we study the price implications of the model and in particular the relation between

excess volatility of prices and overconfidence.

A first important implication is that the model displays two levels of heterogeneity: at a

first stage, there are differences in prices between informed and uninformed firms. At a second
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stage, within uninformed firms, prices are related to the realization of subjective signals. By

using (21), we can rewrite the prices of proposition 2 as

p† = p̄∗ + (1 + λ̄)k̂u (36)

p̃(j) = p̄∗ + k̂u+ k̂ξj, j ∈ [0, µ] (37)

p̃ = p̄∗ + k̂u, (38)

where

k̂ ≡ r̄η

η + (1− η)(1− r̄)µ
. (39)

Thus, the prices of informed firms react only to the fundamental shock u, whereas the price of

uninformed firm j reacts also to the noise shock ξj. In particular, equation (36) shows that prices

of informed firms react less than proportionally to fundamental shocks when pricing decisions

are strategic complements (η < 1), since in that case (1+ λ̄)k̂ < 1, but more than proportionally

in the strategic-substitute case (η > 1), since in that case (1 + λ̄)k̂ > 1. As shown in (37),

the response of uninformed firms is always smaller than that of informed firms, since λ̄ > 0.

The dicrepancy is coming from the fact that the informed firms do not have to filter the hidden

shock. Moreover, prices of uninformed firms react also to non-fundamental shocks, ξj, in the

same proportion as they do to fundamental shocks.

Overconfidence can affect the volatility of prices. Using equation (37), we obtain that the

“true” variance of prices for a generic uninformed agent j is

var{p̃(j)} = (1 + λ)k̂2σ2
u. (40)

Equation (36) implies that the variance of the prices of informed firms is given by

var{p†} = (1 + λ̄)2k̂2σ2
u. (41)

It follows that the ratio of the volatilities of prices of uninformed and informed firms is given

by

var{p̃(j)}
var{p†}

=

[
(1 + λ)

1
2

(1 + λ̄)

]2

. (42)

When the signal-extraction problem is rational (i.e. λ = λ̄), prices of uninformed firms are

always less volatile than the prices of informed firms. With overconfident firms, it is instead

possible for the reverse to happen. It is sufficient that (1 + λ̄) < (1 + λ)
1
2 , which requires that

the true volatility of the idiosyncratic noise σ2
ξ is large enough relative to the perceived σ̄2

ξ , so

sufficient overprecision is needed.

A second important implication of overconfidence is that it is even possible to have excess
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volatility of the price of an individual uninformed firm with respect to the full-information

(fundamental) price. Indeed, we obtain that

var{p̃(j)}
var{p∗}

=

[
ζ(1 + λ)

1
2

(1 + λ̄)

]2

(43)

where ζ is a positive parameter given by ζ ≡ k̂
r̄

= η
η+(1−η)(1−r̄)µ , such that ζ < 1 (ζ > 1)

when pricing decisions are strategic complements (substitutes). To have excess volatility of the

prices of uninformed firms with respect to fundamentals, it is required that (1 + λ̄) < ζ(1 + λ)
1
2

which is then a more (less) stringent condition than before when pricing decisions are strategic

complements (substitutes).17

Overconfidence has two important roles in this model. First, a higher fraction of firms is

going to decide optimally not to acquire information and just pay attention to their own private

signals, relative to the rational benchmark. Second, the prices of uninformed firms can be more

volatile than fundamental disturbances and this volatility is driven by the noise in the perception

of fundamentals.

In a dynamic extension of the above model, the fact that overconfident price setters are

less prone to acquire information implies that there can be a high proportion of this kind of

subjectively-driven price setters. Woodford (2002) has shown that higher-order expectations

matter for determining persistent effects of output and prices following exactly those shocks

agents are subjectively informed about. In addition to this persistence result, the existence of

subjectively-informed firms with overconfident beliefs can produce excess volatility of prices, as

section 5 shows.

5 Infinite-horizon model

Consider a simple dynamic extension of our setup. Time is discrete and the horizon is infinite.

We assume that each firm does not know the realization of the sequence {θt}∞t=t0 . However, each

firm has a prior distribution on the sequence {θt}∞t=t0 that coincides with the correct distribution

and which is common knowledge. In each period and contingency, each firm can observe a private

signal sjt that is correlated with the hidden state θt. In particular, the sequence of signals {sjt}∞t=t0 ,
one for each j, is related to the sequence {θt}∞t=t0 through a likelihood function which is known

and common knowledge but, as before, does not necessarily coincide with the correct likelihood

function. As in the static economy, incomplete information is modelled by assuming that each

firm knows only its own private history of signals and not those of the others, as well as not the

17Note that with no overconfidence (λ = λ̄) the ratio is always smaller that unity even in the case of strategic

substitutes (ζ > 1). This is clear if we note that k̂ = δ/(δ + λ) and that the ratio is less than unity when
Q (δ) = λδ2 − 2λδ − λ2 < 0, which holds for the permissible δ, i.e. such that |1− δ| < 1.
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price index and the individual prices. Fixed costs c̃j are realized identically and independently

across firms at the beginning of time and stay constant thereafter. Each firm has the option

to acquire information by paying cost c̃j. We simplify the information acquisition problem by

assuming that once the cost is paid, the firm remains in the “informed” state forever.

We assume that firms choose prices to maximize the expected discounted value of profits

given by

Ej
t0

∞∑
t=t0

βt−t0π(Pt(j), Pt, θt), (44)

where β is such that 0 < β < 1.18 Ej
t0 is the subjective expectation operator conditional on

information at time t0. Prices are set freely in each period. As in the static model, an “informed”

firm sets its price as

P †t = P 1−η
t P ∗ηt (45)

for each period t after having paid the information cost. An “uninformed” firm instead sets its

price as

P̃t(j) =
Ej
t {P

†
t Zt}

Ej
t {Zt}

, (46)

where Zt has the same definition as in section 3.

To characterize the decision for a generic firm j to acquire or not information, we guess an

equilibrium and then verify that prices and information decisions are consistent with that equi-

librium. The analysis is simplified by noting that the fraction of firms that remain uninformed

each period cannot increase over time, i.e. {µt}+∞
t=t0 is a non-increasing sequence. Of the many

equilibria that can exist, we are interested in ones in which µt = µ for each t ≥ t0. In partic-

ular, in these stationary equilibria, whichever firm decides to be informed does it in the first

period. For this to be optimal, the strategy of getting information in the first period should give

higher expected discounted profits than the strategy of waiting until a generic time T , given the

equilibrium strategies of all other firms. In particular at time t0 the expected profits to acquire

immediately information and pay the cost should be higher than the strategy of remaining with

the subjective information until a generic period T and pay the cost in that period. For a generic

firm j to become informed at time t0, the following inequality should hold for each T > t0

Ej
t0

T−1∑
t=t0

βt−t0π(P̃t(j), Pt, θt)− βT c̃j ≤ Ej
t0

T−1∑
t=t0

βt−t0π(P †t , Pt, θt)− c̃j,

18We can generalize the analysis that follows by assuming a stochastic discount factor to evaluate real profits
across contingencies and time.
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which can be rewritten

Ej
t0

T−1∑
t=t0

βt−t0
{
Ej
t [π(P †t , Pt, θt)− π(P̃t(j), Pt, θt)]

}
≥ c̃j(1− βT ). (47)

We take a second-order approximation of the above problem around a stationary point with

unitary relative prices to obtain

Ej
t0

T−1∑
t=t0

βt−t0varjt{p
†
t} ≥ cj(1− βT ), (48)

where cj is a reparameterization of c̃j as in Proposition 1. We guess, and verify later, that in

the equilibrium varjt{p
†
t} is a constant that does not depend on j and is also independent of t

in a stationary filtering problem. Thus, (48) simplifies to

varjt{p
†
t} ≥ cj(1− β), (49)

which is also independent of T.

We verify now that varjt{p
†
t} is constant and independent of j, and that µ is also a constant

and known within the information set of each type of firm at time t0. As before, we just need to

characterize the equilibrium values of prices in a log-linear approximation to the equilibrium. It

is still true that the set of equations (14), one for each firm that remains uninformed, together

with (18) and (19) determine the equilibrium prices of informed and uninformed firms in a

first-order approximation to the equilibrium conditions. We continue to assume that each firm

receives a private signal sjt that is related linearly to p∗t as

sjt = p∗t + ξjt , (50)

where ξjt is an idiosyncratic Gaussian noise with mean zero, perceived variance σ̄2
ξ and true

variance σ2
ξ for each j, with σ̄2

ξ < σ2
ξ . We assume that ξjt , for each j, is statistically independent

of the sequence {p∗t} as well as of the sequence {ξit} for each i 6= j. We allow now {p∗t} to be a

first-order autoregressive stochastic process of the form

p∗t = p̄∗ + ρp∗t−1 + ut (51)

with |ρ| ≤ 1 where ut is Gaussian noise with mean zero and variance σ2
u.

The assumption of persistence of the unobservable shock can in principle be a source of

complication in the solution of the model, for an infinite dimensional state might be necessary

to keep track of the higher-order beliefs of other firms. Woodford (2002) has shown that the
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dimension of the hidden-state space is finite in a model of imperfect common knowledge where

all firms are exogenously uninformed. We modify his approach in order to account for the

endogenous fraction of uninformed firms and derive the following proposition.

Proposition 4. (“Optimal prices in the dynamic model”)

• The general price index evolves according to

pt = p̄∗ + ρ(1− k̂)pt−1 + ρk̂p∗t−1 + [δ (1− µ) (1− k̂) + k̂]ut, (52)

where19

k̂ ≡ 1

2ρ2

ρ2 − 1− δ

λ̄
+

√[
1− ρ2 +

δ

λ̄

]2

+ 4ρ2
δ

λ̄

 . (53)

We have ∂k̂
∂η
> 0 and ∂k̂

∂λ̄
< 0. If η < (>)1, then ∂k̂

∂µ
< (>)0.

• The price of informed firms follows

p†t = p̄∗ + ρ(1− k̂)p†t−1 + ρk̂p∗t−1 + [δ(1− k̂) + k̂]ut. (54)

• The price of uninformed firms follows

p̃t(j) = p̄∗ + ρ(1− k̂)p̃t−1(j) + ρk̂p∗t−1 + k̂(ut + ξjt ). (55)

• The contemporaneous variance of p†t is constant, does not depend on j, and is also inde-

pendent of t in a stationary solution,

varjt{p
†
t} =

1 + λ̄[1− ρ2(1− k̂)]2

1− ρ2(1− k̂)2
λ̄k̂2σ2

u. (56)

Therefore, (49) implies that the equilibrium fraction of uninformed firms is determined

implicitly by

µ = 1− F (c∗), with c∗ ≡ varjt{p
†
t}

1− β
. (57)

19 The parameter k̂ represents a linear combination of the vector of Kalman gains and is a different function
of other (exogenous) parameters than the k̂ of the static economy in (39). We use the same notation, since when
ρ = 0 the two expressions coincide.
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Proof. See the Appendix for the details of the derivations.

The analysis of the static economy is retrieved if we set ρ = 0. The main qualitative results

of sections 3 and 4 hold in the dynamic extension with some qualifications. Indeed, it is still the

case that overconfidence is needed for the volatility of prices of uninformed to be higher than

that of informed. The ratio of the unconditional variances between informed and uninformed

firms is higher than the unitary value when the following criterion holds:

Proposition 5. (“Excess price volatility”)

var{p̃t(i)}
var{p†t}

> 1

if and only if

λ > 2λ̄+ λ̄2[1− ρ2(1− k̂)2]. (58)

Proof. See the Appendix.

Note that the criterion nests the static case result for ρ = 0. In this dynamic model, it does

not only matter the difference between the ‘true’ and the subjective degree of confidence, but

also other parameters. Indeed, since k̂ < 1, the discrepancy between λ and λ̄ that is needed in

order to have excessive volatility of the uninformed prices is smaller than in the static case. The

reason is that the persistence of the shock process makes past estimates useful to forecast the

future evolution of the state. But this leads to a larger reliance on private signals and therefore,

comparatively to the static case, agents are driven more by their subjective perceptions. As a

consequence, the amount of overconfidence needed to have excess volatility is less. This is also

the case if the mass of uninformed agents (µ) increases since k̂ becomes smaller (when η < 1)

and if the degree of strategic complementarity increases, i.e. η becomes smaller.

6 An exploration

A recurring theme in our analysis is that the combination of a model of endogenous imperfect

common knowledge and overconfidence has implications for both aggregate dynamics and the

cross-section of individual price changes, and especially their idiosyncratic volatility. In partic-

ular, it will be made clear in this section that the behavioral bias of overprecision cannot be

identified with aggregate data only; additional information on micro data is needed.

Our theoretical model is simple enough to illustrate sharply the implications of overconfi-

dence on price-setting in macroeconomic setups and abstracts from other types of shocks like

idiosyncratic productivity and demand shocks. Nevertheless, it is useful to get an idea of the

potential quantitative predictions of overprecision in such a setup and to see if this particular

mechanism can in some ways complement other explanations of price volatility.
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Table 2: Baseline calibration.

Parameter Value Source/Justification

ρ 1 Data

σu 0.0097 Melosi (2014)

σu/σ̄ξ 0.1 Melosi (2014)

p̄∗ 0.0098 Klenow and Kryvtsov (2008)

η 0.30 Melosi (2014)

ε 6 Markup of 20%

Costs (% of s.s. profits ) U[0, 2] or U[0,10] Managerial cost studies

Melosi (2014) has estimated a rich, quantitative imperfect common knowledge model with

likelihood methods in post-war U.S. data and showed its relative success in generating persistence

and monetary non-neutralities versus sticky-prices alternatives. For our purposes, we are going

to inform our calibration with the estimated values of the parameters that he bears to the table.

Furthermore, since our model has implications for volatility in the cross-section, we also use

information from the study of Klenow and Kryvtsov (2008) (KK henceforth) on micro price

data.20

6.1 Calibration

A main finding of KK is that prices are sticky with a median duration that can range from

3.7 to 7.2 months (if sales are excluded).21 But in our model firms change their price in each

period, even if they have incomplete information. For that reason, we decide to measure the

time period of our model in quarters, during which we might reasonably assume that all the

firms had the time to adjust their prices. Thus, KK statistics on monthly price changes will be

taken as representing inflation statistics within a quarter.

For calibration purposes and for ease of comparison to Woodford (2002), we abstract first from

technology shocks and treat the shock in the full information price p∗t as a nominal spending

shock. Furthermore, we proceed under the assumption that there is a unit root in nominal

spending (51), ρ = 1, which is in general consistent with the data.22

We set the volatility of the fundamentals equal to the unconditional volatility that Melosi

20KK have analyzed monthly CPI data from the top 3 metropolitan areas (New York, Los Angeles and Chicago)
for the period from 1988 till 2004. See Klenow and Malin (2010) for a detailed survey of price data studies.

21See their Table I. Similarly, Bils and Klenow (2004) report a median duration of 4.3 months.
22In post-war U.S. data the autocorrelation in the growth rate of quarterly nominal spending per capita is low

and about 0.4. If we constrain ourselves to more recent data like the sample period of KK (1988:1-2004:4), the
autocorrelation is only 0.12.
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Figure 1: These panels depict the equilibrium fraction µ when we vary the information costs, the volatility of
the fundamentals σu, the perceived signal noise σ̄ξ (altering therefore the signal-to-noise ratio), and the degree
of strategic complementarity. The vertical dotted lines correspond to the baseline calibration. Concerning the
information costs, the dotted line refers to the low-cost specification.

(2014) estimates, σu = 0.0097.23 Furthermore, Melosi’s estimate of the signal-to-noise ratio

for nominal spending shocks is small and about 0.10. We use his estimate and set σ̄ξ so that

σu/σ̄ξ = 0.1. Thus, signals about nominal spending shocks are estimated to be noisy. This

should be expected, since this is the way how an imperfect common knowledge model matches

the monetary non-neutralities found in the data. We set p̄∗ = 0.0098, in order to match the

mean price change of 0.98% that KK report.24

We assume an elasticity of substitution between the differentiated products ε = 6, which

corresponds to a markup under full information of 20%. The parameter η is critical for deter-

mining whether pricing decisions are strategic complements or substitutes and plays a crucial

role in determining the persistence of the response of output to a monetary shock in sticky-price

models and the strength of higher-order expectations in imperfect common knowledge models.

Woodford (2002) set the degree of strategic complementarity equal to 0.15. We are more con-

servative and use η = 0.30 for our baseline calibration, which is the value that Melosi (2014) has

estimated, but we explore also other values of η.25

23Melosi (2014) estimates an AR(1) process for the growth rate in nominal spending with 0.4 persistence and
0.0089 conditional volatility. So we set σu = 0.0089√

1−0.42 = 0.0097.
24 See their Table VI. The mean price change that we set is also consistent with the mean quarter-to-quarter

growth in nominal spending per capita in the period 1988:1-2004:4, which equals about 1%.
25Chari et al. (2000) assume that pricing decisions are strategic substitutes by setting η = 2.25. Since the data

seem to favor strategic complementarities, we are going to abstain in the exercise from values of η higher than
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Studies on the costs of price adjustment like Zbaracki et al. (2004) have shown that man-

agerial and customer costs of price adjustment constitute a large fraction of firms profits even if

actual menu costs are quite small. In fact, managerial costs (which refer to information gather-

ing, decision-making and communicating-to-sales-team costs) are 4.61% of the profits, whereas

customer costs (communication and negotiation costs) can reach even 15.01% of profits. The

concept of managerial costs is the closest to the notion of information-processing costs in our

model, so an average measure of cost that corresponds to 4.61% of profits maybe the most rel-

evant for us. However, since the equilibrium fraction of uninformed firms crucially depends on

the calibration of costs, we want to be more agnostic about their value and consider a low and

high cost specification. More specifically, we assume a uniform distribution of costs per period

as a fraction of steady state profits with a minimum cost of zero and a maximum cost that is

either 2% or 10%, so the average cost is 1% and 5% respectively.26

6.2 Information acquisition, monetary non-neutrality and inflation

Information acquisition. The decision to obtain information depends on the level of fixed

costs, the volatility of fundamentals σu, the perceived signal-to-noise ratio σu/σ̄ξ (which is equal

to λ̄−1/2) and the degree of strategic complementarity η. Figure 1 depicts the equilibrium

fraction of uninformed firms, that is, the solution to the fixed point problem in (57), when each

of these respective parameters change. The top left panel shows that if information becomes

more costly, then more firms stay uninformed. The top right panel shows the effect of an

increase in fundamental uncertainty σu. An increase in σu leads to higher volatility of the price

of informed firms, as we can see in both the static and the dynamic setup, in equations (32)

and (56) respectively. Thus, the firm has more incentives to acquire information. However,

an increase in the standard deviation of the hidden state increases the signal-to-noise ratio, or

in other words, it increases the confidence of firms on their own signals. This diminishes the

incentives to acquire information, mitigating the effect of a rise in σu. Overall, the volatility

effect dominates, and the equilibrium fraction of firms falls when σu increases.

The bottom left panel in Figure 1 increases the degree of confidence on the own signals by

decreasing the perceived volatility σ̄ξ, but keeping the level of fundamental uncertainty constant.

This leads to a higher signal-to-noise ratio, and to stronger incentives to stay uninformed. Thus,

the equilibrium fraction of uninformed firms is increasing. This result in the dynamic economy

corresponds to the static result of proposition 3. Therefore, higher subjective precision leads to

more uninformed firms in equilibrium relative to the rational benchmark. Finally, the bottom

right panel shows that an increase in strategic complementarities, captured by a reduction in η,

unity.
26See for further details the Appendix. Note that the maximum cost even in the high cost parametrization is

still smaller than the measure of customer costs in Zbaracki et al. (2004).
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Figure 2: The top left panel depicts the persistence of output (1− k̂) to nominal spending shocks as a function
of µ. The top right panel depicts the impact and cumulative effect of a nominal spending shock of size σu.
The bottom left and right panels plot the autocorrelation and standard deviation of inflation respectively. The
formulas are provided in the Appendix. All graphs use the baseline calibration.

leads to more uninformed firms.

Persistence and monetary non-neutrality. Since we restrict out attention to nominal

spending shocks, equilibrium output in deviation from the steady state (i.e. yt ≡ lnYt/Ȳ )

satisfies yt + pt = p∗t .
27 Using the law of motion for the price index (52) for ρ = 1, allows us to

express yt as an autoregressive process of order 1,

yt = (1− k̂)yt−1 +
1− k̂

η + (1− η)µ
µut, (59)

where k̂ satisfies equation (53) for ρ = 1.

The degree of monetary non-neutrality is captured by the degree of output persistence to a

monetary shock, measured by 1− k̂, and the impact effect of a monetary shock, ∂yt
∂ut

= 1−k̂
η+(1−η)µ

µ.

When there is no endogenous margin of information acquisition as in Woodford (2002) (µ = 1),

k̂ depends only on the signal-to-noise ratio and the degree of strategic complementarity η. With

endogenous information acquisition though, k̂ changes also with the endogenous changes in µ.

Similarly, the impact effect of a monetary shock on output depends on the fraction of uninformed

firms, both directly and through k̂. For example, if all firms are informed (µ = 0), output does

27Recall that p∗t = const.+ lnMt − 1
η lnAt.
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not respond to a monetary shock, ∂yt+i/∂ut = 0, ∀i ≥ 0, and we retrieve monetary neutrality.

Figure 2 makes these points graphically. The top left panel shows that the persistence of

the output response increases as the fraction of uninformed firms increases. The top right panel

plots the respective impact and cumulative effect of a nominal spending shock of size σu on

output.28 Depending on how many firms are uninformed, which will be determined by the size

of information costs, the cumulative effect can be from zero to about 17%.

To sum up, the degree of monetary non-neutrality depends in a non-trivial way on the mass

of uninformed firms. In contrast to setups where there is no choice to obtain information, as

in Woodford (2002) and Melosi (2014), the signal-to-noise ratio and the degree of strategic

complementarity are not sufficient anymore to determine the effects of a nominal spending

shock on output. Instead, the level of uncertainty in fundamentals σu matters for information

acquisition and therefore, for monetary non-neutrality.

Aggregate inflation dynamics. Under the assumption of ρ = 1, the process of the inflation

rate is given by

πt = k̂p̄∗ + (1− k̂)πt−1 +
(

1− (1− k̂)µ

η + (1− η)µ

)
ut −

(1− k̂)η(1− µ)

η + (1− η)µ
ut−1. (60)

The average rate of inflation therefore corresponds to the average value of nominal spending,

Eπt = p̄∗. When everybody is informed (µ = 0), inflation collapses to the i.i.d. full information

process ∆p∗t in (51). In contrast, when some firms stay uninformed, (0 < µ < 1), inflation

acquires an autoregressive and a moving average component, both of order one. If everybody

is uninformed as in Woodford (2002), only the autoregressive part of order one survives. The

bottom panels of figure 2 display the first-order autocorrelation and standard deviation of infla-

tion as a function of µ. In these panels we see the tension between variance and persistence that

arises in models with imperfect information. A larger fraction of uninformed firms increases

persistence, but reduces the standard deviation of inflation since firms are solving a filtering

problem, so their responses on aggregate are smoother. It is important to note that the smooth

(but persistent) responses concern aggregate inflation. The response of idiosyncratic inflation

rates differs, since it is affected by the overconfidence of price-setters, a subject we now turn to.

6.3 Overprecision experiments and micro price volatility

Macro and micro data. The processes for output and inflation in (59) and (60) show that

aggregate (macro) data are not sufficient to identify the extent of overprecision. The reason

is that the idiosyncratic noise washes out in the aggregate due to a law of large numbers.

28The cumulative output effect is
∑∞
i=0

∂yt+i

∂ut
=
∑∞
i=0(1− k̂)i ∂yt∂ut

= ∂yt
∂ut

/k̂.
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Table 3: Overprecision and price changes.

Baseline σu = 1.5×Baseline

Endogenous µ Exogenous µ Endogenous µ Exogenous µ

cost 2% cost 10% cost 2% cost 10%

µ (%) 70.55 94.90 100 48.25 92.29 100

1− k̂ 0.94 0.946 0.947 0.902 0.919 0.921

Impact eff. on y (%) 0.81 0.90 0.92 0.99 1.31 1.34

Cum. eff. on y (%) 13.61 16.66 17.25 10.17 16.13 17.02

Std(dp) 0.19 0.13 0.12 0.49 0.26 0.24

γ = 1

|dp| 1.00 1.00 0.99 1.11 1.08 1.07

Std(dpi) 0.54 0.54 0.54 0.89 0.82 0.82

γ = 2

|dp| 1.17 1.18 1.18 1.40 1.49 1.50

Std(dpi) 0.95 1.04 1.06 1.35 1.55 1.59

γ = 3

|dp| 1.44 1.49 1.50 1.74 2.01 2.04

Std(dpi) 1.37 1.54 1.58 1.81 2.28 2.36

γ = 4

|dp| 1.73 1.84 1.86 2.10 2.56 2.63

Std(dpi) 1.78 2.05 2.11 2.28 3.02 3.14

γ = 6

|dp| 2.35 2.59 2.63 2.83 3.70 3.83

Std(dpi) 2.61 3.07 3.16 3.22 4.50 4.70

γ = 8

|dp| 3.00 3.37 3.44 3.57 4.87 5.05

Std(dpi) 3.44 4.08 4.21 4.16 5.99 6.27

All price changes are reported in %. Average inflation is given by p̄∗, so it is 0.98% for all parameterizations.

The impact and cumulative effects are multiplied by σu. The left panel of the table reports statistics for

the baseline calibration (for low and high c) and for the case of Woodford (2002), where µ = 1. The

right panel of the table increases σu by 50% (σu = 0.0146), so the signal-to-noise ratio increases to 0.15.

Std(dpi) corresponds to the average standard deviation of each firm’s prices. Std(dp) corresponds to the

standard deviation of inflation. We use 2,000 simulations for each parametrization and report averages across

simulations. For each simulation we used 20,000 firms for 68 quarters.

Therefore, any aggregate data on inflation and output will not reflect the true variance of the
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noise shocks σξ, but only the perceived variance of the noise shocks, σ̄ξ, through the filtering

and the information acquisition problem. As a result, unless we use information from micro

price studies (as the study of KK), we cannot tell from aggregate data only if the responses of

inflation and output reflect overconfident price-setters.29

The above point warrants further discussion. One would think that the overconfidence bias,

i.e. the fact that σ̄ξ < σξ, should show up in the aggregate through the filtering problem of

the firm, which is captured by the k̂, a linear combination of the vector of Kalman gains. It

does not, due to the linearity of Kalman filtering, a necessary feature of our setup that makes

manageable the calculation of higher-order beliefs.30 It all boils down to the fact that we have

followed a conservative route in introducing the behavioral bias of overconfidence: it only affects

the “subjective perceptions” of price-setters about the world. If we had instead assumed that

agents are overconfident in their estimates of the variance of the fundamentals, σ̄u < σu, then

both perceived and true variances, σ̄u and σu, would affect aggregate dynamics.

Fixing macro implications: increase true noise. We proceed now to the implications of

overprecision on idiosyncratic price volatility. Of particular interest is the finding of KK in their

monthly sample from years 1988 to 2004 that the absolute price change for goods that compose

the CPI index averages about 10%.31 So idiosyncratic prices change substantially in absolute

value, with changes that are both positive and negative in sign.32 How does overprecision affect

price volatility, even in a stripped down environment that lacks idiosyncratic shocks?

In the current exercise we will introduce overprecision by keeping the perceived standard

deviation constant and by increasing the true standard deviation, σξ. This choice allows us

to investigate the effects of overprecision on idiosyncratic price volatility without altering the

aggregate implications of imperfect information, since both the decision to obtain information

and the filtering problem depend on the perceived volatility σ̄ξ and not the true one. We choose

as an index of overconfidence the parameter γ ≡ σξ/σ̄ξ.

Table 3 reports both macro and micro moments from a simulation of 20,000 firms for 68

quarters (so that we have the same sample length as KK). We use both the small and the high

cost specification and consider also the case of Woodford (2002) by setting exogenously µ = 1.

Consider first the left panel of the table that refers to the baseline calibration of table 2. If costs

are small, the fraction of uninformed firms is about 70%. The persistence of the output response

to a nominal spending shock is 0.94 with an impact effect of 0.8% and a cumulative effect of

29This fact allows us to use the estimate of Melosi (2014), who uses aggregate data only, in our calibration of
the perceived variance of noise. Melosi treats it as the true noise variance, since there is no such distinction in
his setup. Through the lens of our model though, using only aggregate data provides information only about the
perceived noise variance.

30See footnote 16 for the same point in the static economy.
31This is how KK summarize the findings that they report in Table III.
32Recall that for the same sample the average price change is just 0.98%.
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13.6%. The respective half-life is about 11 quarters, which is consistent with the estimates that

Melosi reports.33 Furthermore, we see that the volatility of the inflation rate is small and about

0.19%, whereas in a full information setup it would be equal to σu, so it would amount to 0.97%.

Turning to the micro price statistics, consider first the case of γ = 1, which corresponds

to a rational signal-extraction problem. The mean absolute change |dp| is 1% and the average

(across firms) standard deviation of the idiosyncratic inflation rate is about 0.5%. By increasing

overprecision up to γ = 8 we see that the average absolute change becomes 3% and the standard

deviation of idiosyncratic inflation is raised to 3.44%. Similar figures are obtained when we con-

sider a higher cost specification that leads to 95% of firms staying uninformed. The persistence

increases slightly and the cumulative effect of nominal spending shocks is about 17%. Overpreci-

sion increases again the average absolute change of prices and the respective standard deviation.

Note that for γ larger or equal than 2, the standard deviation of idiosyncratic inflation rates

exceeds also the volatility of the fundamentals, σu.

What are we learning from this exercise? It all depends on what amounts of overconfidence

we consider as “reasonable”. Indeed, experimental studies, like Soll and Klayman (2004), have

shown that on a series of questions where individuals are asked to form an 80% confidence

interval the actual hit rate is around 40%, which can be translated in γ being approximately

equal to 2.5.34 In more complicated tasks, as forecasting the level of the exchange rate with a

confidence interval of 90% (see Oberlechner and Osler (2009) and Oberlechner and Osler (2012)),

the hit rate ranges from 5% to 70% with an average of 40%, rationalizing values of γ higher

than 3. Similarly, CFOs in the study of Ben-David et al. (2013) have a hit rate of only 36.3%

when they are asked to form 80% confidence intervals on market-wide stock returns. Barrero

(2018) uses managerial survey data to structurally estimate a model of firm dynamics and finds

a γ = 2. In general values from 2 to 4 can be considered as reasonable.

Thus, for γ up to 4 the average absolute price change doubles and the standard deviation

of idiosyncratic inflation rates quadruples. Similar results obtain if we increase conservatively

the baseline volatility of the nominal spending shock by 50%, as the right part of table 3 shows.

Note that, as expected from the analysis of figure 1, an increase in volatility reduces the mass

of uninformed firms to 50% and the persistence to 0.9, implying now a half-life of 6.7 quarters.

Increasing the costs increases obviously the fraction of uninformed firms. The cumulative effect

of a monetary shock can vary from 10% to 17% in the case of µ = 1. Regarding the micro

33The half-life of the output response to a nominal spending shock is given by τ = − ln 2/ ln(1− k̂). In Melosi
(2014) the half-life is about 12 quarters (see Figure 3, page 19). Christiano et al. (2005), who consider shocks
to interest rates, show that the effect of a monetary shock on output dies after 12 quarters, so the half-life is
smaller. Note that in VAR studies the output and inflation responses are hump-shaped; this is not true in our
simple setup, but it would be true in a larger imperfect common knowledge model with persistence in the growth
rate of nominal spending. Such a setup would require additional state variables. See Melosi (2014) for further
details.

34This value can be obtained by rough computation on confidence intervals for normal distributions.
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Table 4: Overprecision with σu reflecting both nominal spending and technology shocks.

σu = 0.0306

σu
σ̄ξ

= 0.4 σu
σ̄ξ

= 0.66

µ 1− k̂ µ 1− k̂
87.39 % 0.795 92.84 % 0.692

γ Std(dp) |dp| Std(dpi) Std(dp) |dp| Std(dpi)

1 1 1.71 1.87 1.27 1.79 1.98

2 2.69 3.20 2.72 3.24

3 3.78 4.61 3.77 4.62

4 4.90 6.04 4.88 6.03

6 7.16 8.91 7.13 8.88

8 9.45 11.80 9.40 11.76

The high information cost specification was used for this exercise. The perceived (or else subjective) standard

deviation of the noise is adjusted so that the signal-to-noise ratio is either 0.4 or 0.66. The standard deviation

of inflation, Std(dp), does not depend on the true variance of the shocks, so it is reported only once for each

calibration.

price moments, |dp| ranges from 1.11% to 3.57% and the standard deviation from 0.89% to

4.16% when we raise γ from unity to γ = 8 for the low-cost specification. If everybody were

uninformed, then |dp| can increase up to 5% and the standard deviation up to 6.3%. For a more

conservative specification of γ from 2 to 4, we get again that the absolute price change doubles

and the standard deviation quadruples.35

More variable fundamentals? By focusing on nominal spending shocks, we are constrained

in how we calibrate the volatility of fundamentals. This is reflected in the low variance of

aggregate inflation, which in Table 3 ranges from 0.12 to 0.5% for either the baseline or the higher

volatility scenario. This outcome is related to the tension between volatility and persistence in

filtering problems that we highlighted in figure 2. Note that the respective standard deviation

of price changes in the KK data is 1.19%. We could get more volatility of both the aggregate

inflation rate and the idiosyncratic inflation rates (raising therefore |dp|) if we also considered the

volatility of aggregate technology shocks. Remember that our full information price is a linear

35In the Appendix we perform two additional overprecision exercises. First, we increase the signal-to-noise ratio
to σu/σ̄ξ = 0.4 by decreasing the perceived variance (keeping σu to its baseline value). This is the value that
Woodford (2002) uses. Second, we consider the case where strategic complementarities are stronger, η = 0.15.
Table C.1 provides the results. Similar conclusions about |dp| and idiosyncratic inflation volatility can be drawn.
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combination of both nominal spending and technology shocks. Taking that into consideration,

we could set σu = 0.0306, that is, a volatility of about 3%.36

Table 4 reports the results of the same overprecision exercise as the one we performed in table

3, using now a σu that reflects both sources of fundamental uncertainty. Before we comment on

the table, we want to highlight two potential issues when we consider technology shocks in the

calibration of our one-signal setup. First, it is not clear what the volatility of the idiosyncratic

noise should be. Melosi (2014), who uses an environment with two signals, showed that the

signal-to-noise ratio for nominal spending shocks is low, of the order of 0.1, implying noisy

private signals about nominal spending, whereas the signal-to-noise ratio for technology shocks

is high, of the order of 0.66, implying informative signals about technology shocks. For our

case, we are going to set a signal-to-noise ratio that is 0.4. This is about the average of the

two extremes of Melosi (2014), and corresponds also to the baseline value of Woodford (2002).

Moreover, we are also going to derive results for informative signals with a signal-to-noise ratio

of 0.66.37

The second issue that emerges is that when ut is a linear combination of the two shocks, we

cannot derive anymore the output response as in (59). Thus, we have to be more careful about

the interpretation of results about persistence and the degree of monetary non-neutrality. The

inflation response in (60) is valid though, so inflation persistence comments are legitimate.

Turning now to table 4, we note that aggregate persistence ranges from 0.8 to 0.7 for the more

informative signal specification. More importantly, for both signal-to-noise ratios, the absolute

value of price changes increases a lot with overconfidence. For values of γ between 2 and 4, |dp|
ranges from 3% to 5%, with a respective idiosyncratic price volatility that ranges from about

3% to 6%. Aggregate inflation has also larger volatility, of the order of 1-1.27 % which is similar

to the value that KK find in the data.38

To sum up, when we calibrate the fundamental uncertainty more realistically, “reasonable”

amounts of overconfidence do not only double or triple the average absolute price change relative

to the rational benchmark, but are also able to explain up to 50% of the 10% absolute change

that KK found in the data. We think that these results suggest that our proposed mechanism

can have some value in explaining price volatility –although we acknowledge that there can be

other important mechanisms from which we have abstracted in this analysis.

36Recall that ∆p∗t = ∆ lnMt− 1
η∆ lnAt. Thus, assuming independence, we have V ar(∆p∗t ) = V ar(∆ lnMt) +

1
η2V ar(∆ lnAt). Use as before the value of 0.0097 for the standard deviation of the nominal spending shock,
and let η = 0.30. Melosi’s estimate of the volatility of the growth rate in technology is 0.0087. Thus, σu =√

0.00972 + 0.00872

0.302 = 0.0306.
37Note also that if we set a signal-to-noise ratio equal to 0.1, firm’s confidence on its unreliable signals would

be low, which, in combination with a high volatility of the fundamentals, would lead to everybody becoming
informed, µ = 0. The same outcome would emerge if we used the low-cost specification, which is why we use the
high-cost specification in table 4.

38KK do not report idiosyncratic inflation volatilities.
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Table 5: Overprecision: fixing the true variance of noise shocks.

σξ = 0.0971

σ̄ξ γ µ (%) 1− k̂ Impact (%) Cum. (%) Std(dp) |dp| Std(dpi)

0.0486 2 86.87 0.891 0.83 7.63 0.22 1.18 1.01

0.0324 3 91.58 0.844 0.80 5.13 0.26 1.47 1.50

0.0243 4 93.85 0.800 0.76 3.80 0.31 1.78 1.98

0.0194 5 95.18 0.758 0.72 2.99 0.34 2.12 2.44

0.0162 6 96.06 0.718 0.69 2.44 0.38 2.45 2.89

0.0139 7 96.68 0.680 0.65 2.04 0.41 2.78 3.33

0.0121 8 97.14 0.645 0.62 1.75 0.44 3.10 3.75

In this table we fix the true variance of the noise to the baseline perceived noise (σξ = 0.0971) and decrease

the perceived variance. The rest of the baseline calibration is the same. The exercise is performed for the

low maximum cost case of 2%. The signal-to-noise ratio increases from 0.1 (γ = 1) to 0.8 (γ = 8). The

γ = 1 case is reported in the left part of table 3. Both aggregate and idiosyncratic statistics vary in this

experiment.

Altering both macro and micro implications: decrease perceived noise. We will

finish our analysis by illustrating what would happen if we fixed the true noise variance and

decreased the perceived variance. Table 5 reports the results of this experiment for the baseline

calibration. On the one hand, for values of γ up to 4, we again obtain the result that |dp| doubles

and idiosyncratic inflation volatility quadruples. On the other hand, such a way of introducing

overconfidence is not consistent with having considerable monetary non-neutralities. To see

that, note that aggregate statistics will vary, since we reduce the perceived variance of noise.

More reliance on the private signal leads to a higher fraction of uninformed firms. However,

since the signal-to-noise ratio increases, signals become subjectively more informative, resulting

into a decrease in the persistence of the output response to a monetary shock. This can be seen

sharply in the cumulative output effect of a nominal spending shock that falls from 13%, when

γ = 1, to just 3.8%, when γ = 4, or even less if we decrease further σ̄ξ.

7 Concluding remarks

In this paper, we study the behavior of individual and aggregate prices in an economy with

monopolistic-competitive firms that is driven by aggregate shocks observed with noise. Each

firm receives a private signal about the hidden state. We assume that firms are overconfident in

their signals, that is, their overestimate the precision of their own perception of the aggregate
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state.

This model can rationalize a persistent response of output to the aggregate hidden state and

be consistent at the same time with excess volatility of individual prices, providing therefore

a unified “noise” interpretation of aggregate and idiosyncratic prices. We see our approach as

complementary to setups where idiosyncratic fundamental shocks are the main driver of price

volatility.

More generally, we believe that behavioral biases, especially in the processing and analysis

of information, are not easy to dismiss. There has been substantial progress in recent years

in collecting data about actual decision makers in real market conditions. For example, Bach-

mann and Elstner (2015) use confidential German manufacturing survey data and document

non-negligible instances of systematic positive and negative expectation errors. Studies like

Ben-David et al. (2013) and Barrero (2018) document substantial second-moment biases in the

forecasts of CFOs and managers. Such evidence opens the avenue for a thorough quantitative

evaluation of overconfidence in more elaborate models.

34



A Static model

A.1 Proof of proposition 1

Derivation of condition (13) from (12). We first note that by using condition (7) we can
rewrite marginal costs in terms of P † as W/A = ε−1

ε
P †. Use also condition (11) and rewrite the

expected profits as functions of P †, P̃ (j) and Z ≡MP ε−2,

Ej{π(P †, P, θ)} =
1

ε
Ej{

(
P †
)1−ε

Z}, (A.1)

Ej{π(P̃ (j), P, θ)} =
1

ε
P̃ 1−ε(j)EjZ. (A.2)

We take a second order approximation of expected profits around a deterministic steady state
where θ = θ̄ and as a result P = P † = P̃ ≡ P̄ . Let lowercase variables denote log-deviations
from the steady state and let ‖p‖ and ‖z‖ denote a bound on the size of fluctuations for the price
of each differentiated good and for the variable Z respectively. We can obtain by approximating
equation (A.1) that

Ej
{
π(P †, P, θ)

}
=

1

ε
P̄ 1−εZ̄

[
1 + (1− ε)Ejp† +

1

2
(1− ε)2Ej

(
p†
)2

+

+Ejz +
1

2
Ejz2 + (1− ε)Ejp†z

]
+O(‖p, z‖3). (A.3)

Similarly by approximating equation (A.2) we obtain that

Ej{π(P̃ (j), P, θ)} =
1

ε
P̄ 1−εZ̄

[
1 + (1− ε) p̃ (j) +

1

2
(1− ε)2 p̃ (j)2

+Ejz +
1

2
Ejz2 + (1− ε) p̃ (j)Ejz

]
+O(‖p, z‖3). (A.4)

Note that P̄ 1−εZ̄ = M̄
P̄

= Ȳ and let

W (j) ≡ π(P †, P, θ)− π(P̃ (j), P, θ)

denote the difference in profits. Then using (A.3) and (A.4) we have

Ej{W (j)} =
ε− 1

ε
Ȳ

{
p̃ (j)− Ejp† +

1

2
(ε− 1)

[
Ej
(
p†
)2 − (p̃ (j))2

]
−Ej[

(
p† − p̃ (j)

)
z]
}

+O(‖p, z‖3). (A.5)

Note that the price of the uninformed agents (1) at a first order approximation is

p̃ (j) = Ejp† +O(‖p, z‖2). (A.6)
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Furthermore, if we take a second-order approximation of it we obtain

p̃ (j)− Ejp† =
1

2
V arj

(
p†
)

+ Ej
[
p† − Ejp†

]
z +O(‖p, z‖3), (A.7)

where V arj(p†) ≡ Ej(p†)2−(Ejp†)2. Using (A.6) and (A.7) into (A.5) we observe that the terms
involving z cancel out and that Ej(p†2 − p̃(j))2 = V arj(p†), so ignoring third order terms we
obtain

Ej{W (j)} =
1

2

ε− 1

ε
Ȳ {V arj(p†) + (ε− 1)V arj(p†)}

=
Ȳ

2
(ε− 1)V arj(p†).

Thus firms acquire information if and only if

V arj
(
p†
)
≥ cj

where cj ≡ 2
Ȳ (ε−1)

c̃j which is expression (13) in the text.

The same calculations apply in the dynamic case, where each variable is indexed with t. In
this case the expected difference of profits at time t, in (47), is equal to

Ej
t {π(P †t , Pt, θt)− π(P̃t(j), Pt, θt)} =

Ȳ

2
(ε− 1)V arjt (p

†
t)

in a second-order approximation, where the expectation operator is conditional on the private
history of signals including time t. So V arjt (p

†
t) corresponds to the subjective contemporaneous

variance of p†t .

A.2 Proof of proposition 3

Equation (34) defines implicitly the equilibrium fraction µ as a function of r̄, µ(r̄). We have
c∗ = c∗ (r̄, µ (r̄)). Differentiate implicitly (34) to get

dµ

dr̄
= −

f(c∗)∂c
∗

∂r̄

1 + f(c∗)∂c
∗

∂µ

. (A.8)

Note that

∂c∗

∂µ
=
−2η2(1− r̄)2σ2

u(1− η)(
η + (1− η)(1− r̄)µ

)3 (A.9)

∂c∗

∂r̄
=

η2σ2
u(

η + (1− η)(1− r̄)µ
)3

[
(1− η)(1− r̄)µ− η

]
(A.10)

As we noted in the text, when η < 1, we have strategic complementarities in information
acquisition, ∂c∗

∂µ
< 0. The opposite happens when η > 1, ∂c∗

∂µ
> 0.

The denominator of (A.8) is always positive when we have strategic substitutes. In the case of
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strategic complements, we are going to assume that the complementarities are not large enough
to make the denominator negative, so we assume that −f(c∗)∂c

∗

∂µ
< 1. This makes the LHS of

(34) an increasing function of µ with slope less than unity. This is what we call a “stable”
equilibrium.

The above discussion implies that the sign of dc∗/dr̄ is determined by the sign of ∂c∗/∂r̄.
The result follows from (A.10).

B Infinite-horizon model

B.1 Proof of proposition 4

Derivations of (54) and (55). We proceed using the method developed in Woodford (2002).
We claim that the relevant hidden state is

Xt =

[
p∗t
pt

]
and guess that it evolves according to a linear law of motion

Xt = f +MXt−1 +mut, (B.1)

where

f ≡
[
p̄∗

p̄

]
, M ≡

[
ρ 0
a b

]
, m ≡

[
1
c

]
,

are vectors and matrices to be determined. Note that our variables of interest are the prices of
the informed firms which can be written as p† = η̄′Xt and that of the uninformed which can be
written as p̃t (i) = η̄′Ei

tXt, where η̄′ = (η, 1− η).
Let e1 = (1, 0)′. We can write the following system

Xt = f +MXt−1 +mut

sit = e′1Xt + ξjt

where the second line corresponds to the observational equation. We proceed assuming a
stationary filtering problem. The filtering equation of a generic uninformed firm j is given by

Ej
tXt = Ej

t−1Xt +K(sjt − E
j
t−1p

∗
t ), (B.2)

where K is the vector of Kalman gains pre-multiplied with M−1. Using (B.1) we obtain that
Ej
t−1Xt = f +MEj

t−1Xt−1 and Ej
t−1p

∗
t = p̄∗ + ρEj

t−1p
∗
t−1; we can then write (B.2) as

Ej
tXt = f +MEj

t−1Xt−1 +K(sjt − p̄∗ − ρE
j
t−1p

∗
t−1).

Aggregating among all agents j that are uninformed and guessing that in equilibrium µ will be
non-random (as in the static case) we obtain

ĒtXt = f +MĒt−1Xt−1 +K
(
p∗t − p̄∗ − ρĒt−1p

∗
t−1

)
,

= f +MĒt−1Xt−1 + ρK
(
p∗t−1 − Ēt−1p

∗
t−1

)
+Kut, (B.3)
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which is the law of motion of the average estimate, where we have used the law of large numbers.
Our target is to express the price level pt in terms of Xt−1. The general price index can be

expressed as a function of the full information price and average expectations as

pt = δ
[
(1− µ) p∗t + µĒtp

∗
t

]
+ (1− δ) Ētpt

= (δµ, 1− δ) ĒtXt + δ (1− µ) p∗t
= (δµ, 1− δ) ĒtXt + δ (1− µ)

(
p̄∗ + ρp∗t−1 + ut

)
.

Using the law of motion (B.3) to substitute for ĒtXt and collecting terms we have

pt = [(δµ, 1− δ) f + δ (1− µ) p̄∗] + ρ
[
δ (1− µ) + K̄

]
p∗t−1 + (δµ, 1− δ)MĒt−1Xt−1

−ρK̄Ēt−1p
∗
t−1 +

[
δ (1− µ) + K̄

]
ut,

where K̄ ≡ (δµ, 1− δ)K. Finally, using the definition of M and Ēt−1Xt−1 and noting that

(δµ, 1− δ) f + δ (1− µ) p̄∗ = δp̄∗ + (1− δ) p̄

we obtain that

pt = δp̄∗ + (1− δ) p̄+ ρ
[
δ (1− µ) + K̄

]
p∗t−1 +

[
δµρ+ (1− δ) a− ρK̄

]
Ēt−1p

∗
t−1

+ (1− δ) bĒt−1pt−1 +
[
δ (1− µ) + K̄

]
ut. (B.4)

Since
pt−1 = δµĒt−1p

∗
t−1 + (1− δ) Ēt−1pt−1 + δ (1− µ) p∗t−1,

we can use this expression to substitute for Ēt−1pt−1 in (B.4) and arrive at

pt = δp̄∗ + (1− δ) p̄+
[
δ (1− µ) (ρ− b) + ρK̄

]
p∗t−1

+
[
δµ (ρ− b) + (1− δ) a− ρK̄

]
Ēt−1p

∗
t−1

+bpt−1 +
[
δ (1− µ) + K̄

]
ut. (B.5)

We note that (B.1) implies
pt = p̄+ ap∗t−1 + bpt−1 + cut. (B.6)

We can then match the coefficients between (B.5) and (B.6) and obtain

δp̄∗ + (1− δ) p̄ = p̄

δ (1− µ) (ρ− b) + ρK̄ = a

δµ (ρ− b) + (1− δ) a− ρK̄ = 0

δ (1− µ) + K̄ = c.

Solving this system and using the definition of K̄ = (δµ, 1− δ)K, we get

p̄ = p̄∗

a =
ρ

δµ+ 1− δ
K̄ = ρη̄′K = ρk̂
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since η = δµ/(δµ+ 1− δ) and k̂ ≡ η̄′K. Moreover

b = ρ− a = ρ
(

1− k̂
)

and
c = (δµ+ 1− δ) k̂ + δ (1− µ) .

The vector of (pre-multiplied) Kalman gains satisfies the equation

K = Σe1

(
e′1Σe1 + σ̄2

ξ

)−1
, (B.7)

where Σ is the variance of the one step ahead forecast error which satisfies the following stationary
version of the Riccatti equation

Σ = MΣM ′ +mm′σ2
u −

(
e′1Σe1 + σ̄2

ξ

)−1
MΣe1e

′
1ΣM ′. (B.8)

Thus in our guess-and-verify approach we expressed M and m as a function of k̂ which depends
on the vector of Kalman gains K which in turn depends on Σ. But Σ depends on M and m by
(B.8). So it remains to solve for this fixed point. Let

Σ =

[
σ11 σ12

σ12 σ22

]
.

Solving the upper left block of the Riccatti equation (B.8) we find that σ11 satisfies the quadratic

σ2
11 +

[(
1− ρ2

)
σ̄2
ξ − σ2

u

]
σ11 − σ̄2

ξσ
2
u = 0.

The positive root (since σ11 is a variance) of this quadratic is

σ11 =
1

2
σ2
u

{
1−

(
1− ρ2

)
λ̄+

√(
1− (1− ρ2) λ̄

)2
+ 4λ̄

}
where λ̄ ≡ σ̄2

ξ

σ2
u
. From the lower left block of the Riccatti we derive

σ12 =
ρ2k̂σ11σ̄

2
ξ + (σ11 + σ̄2

ξ )
[
(δµ+ 1− δ) k̂σ2

u + δ (1− µ)σ2
u

]
[
1− ρ2(1− k̂)

]
σ̄2
ξ + σ11

and -using (B.7)- we obtain

k̂ = η̄′K = η
σ11

σ11 + σ̄2
ξ

+ (1− η)
σ12

σ11 + σ̄2
ξ

.

This is a system of two equations in the two unknowns (σ12, k̂). Solving the system and using
our solution for σ11 we finally arrive at the quadratic expression for k̂

Q(k̂) = ρ2λ̄k̂2 +
[
λ̄
(
1− ρ2

)
+ δ
]
k̂ − δ = 0. (B.9)
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At first, note that the k̂ that solves the quadratic for ρ = 0 agrees -as expected- with the static
case. Proceeding with the case of ρ 6= 0, we note that the discriminant of (B.9) is positive, so
there are two real roots. Furthermore, since Q (0) < 0 and Q (1) = λ̄ > 0, one is negative and
the other positive and less than unity. Note that subtracting pt from p∗t we get an expression for
the output deviation

yt = ρ(1− k̂)yt−1 + (1− c)ut,

since p∗t + ln Ȳ = lnMt = pt + lnYt. In order to have a stationary solution for output we need∣∣∣1− k̂∣∣∣ < |ρ|−1. It follows that k̂ should satisfy the restriction 1 − ρ−1 < k̂ < 1 + ρ−1. Since

Q (1− ρ−1) = −ρ−1
(
(ρ− 1)2 λ+ δ

)
< 0, only the positive root of the quadratic satisfies the

restriction. Thus

k̂ =
1

2ρ2

ρ2 − 1− δ

λ̄
+

√[
1− ρ2 +

δ

λ̄

]2

+ 4ρ2
δ

λ̄

 .

Having solved for the laws of motion of Xt and Ej
tXt, we can derive the laws of motion of

the prices of interest p† = η̄′Xt and p̃t (j) = η̄′Ej
tXt and obtain expressions (54) and (55) in the

main text, respectively.

Derivatives. Recall that k̂ depends on µ and η through the weight on the full information
price, δ(µ, η) ≡ η

η+(1−η)µ
. The derivatives of k̂ are as follows:

∂k̂

∂µ
=

1

2ρ2

1

λ̄

∂δ

∂µ
· Λ

∂k̂

∂η
=

1

2ρ2

1

λ̄

∂δ

∂η
· Λ

∂k̂

∂λ̄
= − 1

2ρ2

1

λ̄2
δ · Λ,

where

Λ ≡ −1 +
1 + ρ2 + δ

λ̄[
(1− ρ2 + δ

λ̄
)2 + 4ρ2 δ

λ̄

]1/2
.

It is easy to see that Λ > 0. Thus, ∂k̂/∂λ̄ < 0. Note also that ∂δ
∂µ

= − η(1−η)
(η+(1−η)µ)2

< (>)0 if

η < (>)1. Furthermore, ∂δ
∂η

= µ
(η+(1−η)µ)2

> 0. The result follows.

Derivation of (56). Defining qjt ≡ p†t − p̃t (j) = p†t − E
j
t p
†
t we obtain

qjt = ρ(1− k̂)qjt−1 + δ(1− k̂)ut − k̂ξjt . (B.10)
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At first notice that Ej
t q
j
t = Ej

t (p
†
t − p̃t(j)) = 0 and Ej

t−1q
j
t = Ej

t−1(p†t − p̃t(j)) = Ej
t−1p

†
t −

Ej
t−1E

j
t p
†
t = 0. Calculating variances conditional on the private history until last period we get

V arjt−1(qjt ) = ρ2(1− k̂)2V arjt−1(qjt−1) + δ2(1− k̂)2σ2
u + k̂2σ̄2

ξ .

Note that V arjt−1(qjt−1) = Ej
t−1(qjt−1)2 = V arjt−1(p†t−1). Moreover, V arjt−1(qjt ) = Ej

t−1(qjt )
2 =

Ej
t−1{E

j
t (q

j
t )

2} = Ej
t−1V ar

j
t (p
†
t) = V arjt (p

†
t), where the last step follows from the non-randomness

of the variances of the filter. The expression in the text for the contemporaneous variance follows
by using the stationarity of the filter and the fact that (B.9) implies δ(1− k̂) = λ̄k̂[1−ρ2(1− k̂)].

B.2 Proof of proposition 5

We will now proceed to derive the condition for excess volatility of the prices of the uninformed
firms. Taking unconditional variances in (B.10) we obtain that

var(qjt ) =
1

1− ρ2(1− k̂)2
[δ2(1− k̂)2σ2

u + k̂2σ2
ξ ].

Furthermore note that, since

var(qjt ) = var(p†t) + var(p̃t(j))− 2cov(p†t , p̃t(j))

and
cov(p†t , p̃t(j)) = cov(qjt , p̃t(j)) + var(p̃t (j)),

we have
var(p†t) = var(qjt ) + 2cov(qjt ,p̃t(j)) + var(p̃t(j)).

Dividing over var(p†t) we obtain

var(p̃t(j))

var(p†t)
= 1− var(qjt ) + 2cov(qjt , p̃t (j))

var(p†t)
.

So the ratio can exceed unity only if I ≡ var(qjt ) + 2cov(qjt , p̃t (j)) < 0. Note that

cov(qjt , p̃t (j)) =
1

1− ρ2(1− k̂)2
[ρ2(1− k̂)k̂ · cov(p∗t−1, q

j
t−1) + δ(1− k̂)k̂σ2

u − k̂2σ2
ξ ].

Using the law of motion for the full information price and qjt we derive that

cov(p∗t , q
j
t ) =

δ(1− k̂)σ2
u

1− ρ2(1− k̂)

and plugging it in the previous expression we finally obtain

cov(qjt , p̃t(j)) =
1

1− ρ2(1− k̂)2

[
δ(1− k̂)k̂

1− ρ2(1− k̂)
σ2
u − k̂2σ2

ξ

]
.
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Therefore

I =
k̂2

1− ρ2(1− k̂)2

[
δ(1− k̂)

k̂

(
δ(1− k̂)

k̂
+

2

1− ρ2(1− k̂)

)
− λ

]
σ2
u.

In order to have I < 0, we need

δ(1− k̂)

k̂

[
δ(1− k̂)

k̂
+

2

1− ρ2(1− k̂)

]
− λ < 0.

Using as before the fact that δ(1− k̂) = λ̄k̂[1− ρ2(1− k̂)] we derive condition (58).

C Pricing exercise

C.1 Information costs

We convert the lifetime costs to costs per period by multiplying it by the factor (1− β). The
steady state real profits are π̄ = Ȳ /ε. Recall that

cj =
2

(ε− 1)

c̃j

Ȳ
.

Then the equilibrium fraction of uninformed agents is given by

µ = 1− Pr(cj ≤ c∗).

where, Pr refers to the probability measure of costs. In particular

Pr(cj ≤ c∗) = Pr(cj (1− β) ≤ c∗ (1− β) = V arjt (p
†
t))

and

Pr

(
c̃j (1− β)

Ȳ
≤ (ε− 1)

2
V arjt (p

†
t)

)
= Pr

(
c̃j (1− β)

π̄
≤ ε (ε− 1)

2
V arjt (p

†
t)

)
.

Given our assumption of a uniform distribution for the costs as a fraction of steady state real
profits, it follows that

µ = 1− U
(
ε (ε− 1)

2
V arjt (p

†
t)

)
,

where U(·) is the corresponding c.d.f.

C.2 Variance and persistence of inflation

For completeness, we list the formulas for the variance and the first-order autocorrelation of
inflation in (60). Rewrite (60) as

πt = k̂p̄∗ + (1− k̂)πt−1 + cut − (c− k̂)ut−1
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where

c ≡ (1− k̂)δ(1− µ) + k̂ = 1− (1− k̂)
[
1− δ(1− µ)

]
= 1− (1− k̂)µ

η + (1− η)µ

c− k̂ = (1− k̂)δ(1− µ) =
(1− k̂)η(1− µ)

η + (1− η)µ
.

We have

V ar(πt) =
c2 + (c− k̂)2 − 2(1− k̂)(c− k̂)c

1− (1− k̂)2
σ2
u (C.1)

Corr(πt, πt−1) = (1− k̂)− (c− k̂)c

V ar(πt)
σ2
u. (C.2)

Note that when everybody is informed, µ = 0, we have c = 1 and therefore we get V ar(πt) =
σ2
u and Corr(πt, πt−1) = 0. This is expected since the process collapses to the full information

price ∆p∗t , which is i.i.d. At the other extreme of µ = 1, we get that c = k̂ with V ar(πt) =
k̂2

1−(1−k̂)2
σ2
u and Corr(πt, πt−1) = 1− k̂. Formulas (C.1) and (C.2) were used for the derivation of

the bottom panels of figure 2.

C.3 Another overprecision experiment

In table C.1 we provide two additional experiments: we either reduce the perceived volatility of
noise σ̄ξ, or increase the degree of strategic complementarity, and perform the same overprecision
exercise as in table 3.
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Table C.1: Signal-to-noise ratio, strategic complementarity and price changes.

σu/σ̄ξ = 0.4 η = 0.15

Endogenous µ Exogenous µ Endogenous µ Exogenous µ

cost 2% cost 10% cost 2% cost 10%

µ (%) 93.85 98.80 100 82.67 96.81 100

1− k̂ 0.80 0.803 0.804 0.959 0.961 0.962

Impact eff. on y (%) 0.76 0.78 0.78 0.90 0.93 0.93

Cum. eff. on y (%) 3.80 3.94 3.97 21.98 24.13 24.59

Std(dp) 0.31 0.30 0.30 0.11 0.10 0.09

γ = 1

|dp| 1.01 1.01 1.00 0.98 0.98 0.98

Std(dpi) 0.59 0.59 0.59 0.38 0.38 0.38

γ = 2

|dp| 1.18 1.18 1.18 1.06 1.05 1.05

Std(dpi) 1.03 1.05 1.05 0.71 0.74 0.75

γ = 3

|dp| 1.46 1.47 1.47 1.22 1.22 1.22

Std(dpi) 1.50 1.53 1.54 1.04 1.11 1.12

γ = 4

|dp| 1.79 1.80 1.81 1.43 1.44 1.44

Std(dpi) 1.98 2.03 2.04 1.37 1.47 1.49

γ = 6

|dp| 2.49 2.53 2.54 1.90 1.95 1.95

Std(dpi) 2.94 3.02 3.04 2.04 2.20 2.24

γ = 8

|dp| 3.23 3.29 3.31 2.40 2.49 2.51

Std(dpi) 3.90 4.01 4.04 2.71 2.93 2.98

In the left panel we decrease the perceived volatility to σ̄ξ = 0.0243 (so that the signal-to-noise ratio becomes

0.4) and perform the same simulations as in table 3. The rest of the baseline calibration is the same. The

right panel uses the baseline calibration of table 2 except for η; the degree of strategic complementarity is

increased by setting η = 0.15.
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