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1 Introduction

The method of identification of structural vector autoregressions (SVARs) with external instruments, commonly
known as proxy-SVARs, has grown to become influential in empirical macroeconomics. Currently, most of the
papers using proxy-SVARs work under the frequentist paradigm.! But, while substantial progress has been
made on such front, less is known about conducting Bayesian inference in this class of structural time series
models; exceptions are Bahaj (2014), Drautzburg (2016), and Caldara and Herbst (2016).

In this paper we contribute to this line of research by developing efficient algorithms to independently
draw from the family of restricted normal-generalized-normal posterior distributions over the structural
parameterization of a proxy-SVAR conditional on exogeneity restrictions. These restrictions require that the
correlation between the proxies and some of the structural shocks be equal to zero. The fact that we can draw
independently opens the door to use the Bayesian paradigm in larger models.

Our main algorithm combines the sampler developed by Waggoner and Zha (2003) with a variant of the
importance sampler developed by Arias, Rubio-Ramirez, and Waggoner (2018). The fundamental insight in
the latter was to produce independent draws from a normal-inverse-Wishart distribution over the reduced-form
parameters and generalize the QR decomposition to produce independent draws from a distribution over
the orthogonal-reduced-form parameterization of the SVAR conditional on sign and zero restrictions. These
draws were then mapped into the structural parameterization of the SVAR. By taking appropriate care
of the volume elements, the draws were weighted so that they came from the normal-generalized-normal
posterior distribution over the structural parameterization of the SVAR conditional on the identification
restrictions. Since a proxy-SVAR identified with exogeneity restrictions can be represented by a SVAR
identified with zero restrictions one may be tempted to use Arias, Rubio-Ramirez and Waggoner’s (2018)
algorithm. However, the techniques of that paper cannot be directly applied in this environment because the
zero restrictions embedded in a proxy-SVAR restrict its reduced-form representation, which invalidates the
use of the orthogonal-reduced-form parameterization for our purpose. To handle this issue, we introduce a
new parameterization called the orthogonal-triangular-block parameterization—composed of triangular-block
parameters and orthogonal matrices—that makes it possible to sample independently from the structural
parameterization of the proxy-SVAR even in the presence of the zero restrictions ingrained in this framework.

Using Waggoner and Zha (2003), we will produce independent draws from a normal-generalized-normal

distribution over the triangular-block parameters and further generalize the QR decomposition to produce

'For example, see Stock (2008), Stock and Watson (2012), Mertens and Ravn (2013), Gertler and Karadi (2015), and
Montiel-Olea, Stock, and Watson (2016).



independent draws from a distribution over the orthogonal-triangular-block parameterization conditional on the
exogeneity restrictions. We will then map these draws into the proxy-SVAR structural parameterization. These
draws are weighted, by adapting the volume elements used in Arias, Rubio-Ramirez and Waggoner (2018), so
that they come from the normal-generalized-normal posterior distribution over the structural parameterization
of the proxy-SVAR conditional on the exogeneity restrictions of interest.

We also show that those restrictions may not be enough to identify the proxy-SVAR equations associated
with structural shocks that are correlated with the proxies. In particular, additional sign and zero restrictions
are needed for identification when more than one proxy is used to identify the same number of proxy-SVAR
equations. For this reason, we adapt our main algorithm to consider these additional restrictions, which could
be used not only to identify the proxy-SVAR equations associated with the structural shocks correlated with
the proxies but also to identify the proxy-SVAR equations associated with those structural shocks that are
uncorrelated with the proxies.

We present two applications to illustrate our algorithms. The first application is aimed at providing applied
readers with a succinct and comprehensive description of how to use our techniques. To this end, we begin
by studying the dynamic effects of consumption and investment total factor productivity (TFP) shocks in a
proxy-SVAR where the equations associated with the shocks of interest are identified using Fernald’s (2014)
TFP series as external instruments as in Lunsford (2016). An important difference between our approach and
Lunsford’s (2016) approach is that, while he identifies one structural equation at a time by using a single
instrument, we jointly identify two structural equations using two instruments.? Hence, the application allows
us to emphasize how to use additional sign and zero restrictions to simultaneously identify more than one
equation. In particular, we identify the structural equations by assuming that they are the only equations
whose shocks are correlated with the two external instruments and by adding some additional sign restrictions
to parse out consumption TFP shocks from investment TFP shocks. Like Lunsford (2016), we find that a
positive consumption TFP shock causes an increase in real GDP and consumption in non-durables and services
as well as in durables and equipment while the price level gradually decreases. Accordingly, such a shock
resembles a standard TFP shock. In contrast, a positive investment TFP shock leads to a decrease of real
GDP, employment, consumption, and the price level. These results are inconsistent with the conventional
wisdom of standard TFP shocks but in line with the findings in Liu, Fernald, and Basu (2012).

The second application is aimed at highlighting that the distinctive feature of our approach illustrated

in the previous application—i.e., using more than one instrument to simultaneously set identify more than

2Lunsford’s (2016) approach is a common approach in the literature (see Stock and Watson, 2012).



one structural equation—can provide critical insights for a few but highly influential studies identifying two
structural equations using two instruments such as Mertens and Ravn (2013) and Mertens and Montiel-Olea
(2018). As we will discuss later, the fundamental issue with their approach is that in order to separately
identify the two structural equations of interest they are limited to consider a narrow class of additional zero
restrictions that are hard to justify. We will make this clear by revisiting Mertens and Montiel-Olea (2018).
This paper relies on proxy-SVARSs to study the effects of exogenous changes in marginal and average personal
income tax rates. One of their main conclusions is that, even though the response of reported income to
exogenous changes in marginal tax rates is strong and significant, the response to exogenous changes in average
tax rates is not statistically significant at any horizon. We will show that the identification scheme underlying
this result exactly identifies the equations associated with both tax shocks by imposing an additional zero
restriction on the systematic component of tax policies. We argue that their identification scheme is hard to
justify; as a result, we substitute it for a set of less questionable sign restrictions. Once this is done, we find

that both substitution and wealth effects play a relevant role for the transmission of tax rate shocks.

1.1 Relationship with the Bayesian Literature on Proxy-SVARs

As mentioned above, to the best of our knowledge, only three papers consider proxy-SVARs under the Bayesian
paradigm: Bahaj (2014), Drautzburg (2016), and Caldara and Herbst (2016). Bahaj (2014) and Drautzburg
(2016) draw from the posterior distribution of the orthogonal reduced-form parameterization and then transform
the draws to the structural proxy-SVAR parameterization. Since the reduced-form parameters are restricted
they both used Gibbs samplers to draw from the posterior of the reduced-form parameters; thereby the
draws are not independent. But this is not the only difference with our approach. More importantly, they
ignore the volume element when transforming the draws into the structural proxy-SVAR parameterization.
As explained in Arias, Rubio-Ramirez, and Waggoner (2018), this implies that they are not drawing from
a normal-generalized-normal posterior distribution over the structural parameterization of the proxy-SVAR
conditional on the exogeneity restrictions and that the posterior distribution from which they are drawing
depends on the zero restrictions—making comparisons across identification schemes impossible.

Finally, let’s relate our paper to Caldara and Herbst (2016). As in our approach, this paper draws from the
structural parameterization of the proxy-SVAR. Nevertheless, while our approach imposes a conjugate prior
on the structural parameterization, they work with non-conjugate prior densities, which complicates inference.
In particular, the posterior draws are not independent and their Metropolis-Hastings sampler could become

computationally inefficient compared with ours in large models. One advantage of Caldara and Herbst’s (2016)



approach relative to ours is that they can impose any desired prior on the strength of the proxy. Even so,
researchers using our approach can also explore the sensitivity of the results to the quality of the instruments
by imposing thresholds on their reliability using additional sign restrictions.

The remainder of the paper is organized as follows. Section 2 introduces the methodology. Section 3
describes the algorithm. Section 4 shows that when identifying more than one shock using more than one
external instrument additional sign or zero restrictions are necessary, and presents an algorithm to consider
them. Sections 5 and 6 present two applications. Section 7 concludes. Technical details are deferred to the

Appendix.

2 The Framework

This section discusses our general framework. In Section 2.1, we describe the structural parameterization of a
proxy-SVAR. In Section 2.2, we present the identification problem and the exogeneity restrictions. In Section
2.3, we explicitly specify the family of prior and posterior distributions over the structural parameterization of
a proxy-SVAR that we would like to independently draw from. In Section 2.4, we introduce the orthogonal-
triangular-block parameterization. As will become clear later, this is a useful parameterization of a proxy-SVAR
and our algorithms will rely on it. In this section we will also introduce the mapping that we will be using to

move between parameterizations.

2.1 A Proxy-SVAR

Let y; be a n x 1 vector of endogenous variables, m; be a k x 1 vector of instruments (also called proxies),

v, = [y; mj], and n = n + k. If these are governed by a SVAR, then

p
G Ay => G (Ar+é+& for 1 <t<T, (1)
/=1

where A; is an 71 x 72 matrix for 0 < i < p with Ay invertible, ¢ is a 1 x 72 row vector, and & is conditionally

standard normal with mean zero and identity variance-covariance matrix.® If &} = [g,_; --- Ui, 1] and

3We can always include a vector of exogenous variables, 2; of dimension & x 1. In that case the model will be written as

P
§1 Ao :Z’.']éfzx&e-i-é—!—i;(i-&-é; for 1 <t <T,

=1

where d is a € X . row vector.



A’Jr =[A} ... A; ¢'], Equation (1) can be more compactly written as
G, Ag = A + €, for 1<t <T. (2)

Let €, = [e} vj], where g; is n x 1 and v, is k x 1. Because €, is conditionally standard normal with mean
zero and identity variance-covariance matrix, we are assuming that v; is uncorrelated with ;. A proxy-SVAR

imposes that y; evolves according to

YAy =z, A, +¢; for 1 <t <T, (3)

where x} = [y;_ -+ y;_, 1] and A, =[A]--- A}, ], with A; an n x n matrix for 0 <7 < p, Ay invertible,

and ¢ a 1 x n row vector.
Hence, &; are the structural shocks and vy are other shocks that affect the proxies. Equation (3) implies

that
- A; Ty,
A

T — 3

Orxn T2

where I'; 1 is n X k and I'; 2 is k x k for 0 < i < p and Oy, is a k x n matrix of zeros. We call the zero
restrictions on Ag and A the block restrictions. We call Equation (2) plus the block restrictions the structural
parameterization of the proxy-SVAR and (Ao, fLr) such that the block restrictions hold the proxy-SVAR
structural parameters. Hence, for the set of proxy-SVAR structural parameters the block restrictions always
hold. Mertens and Ravn (2013) and Stock and Watson (2018) also model y; and m; as a joint system, but the

structure is not exactly the same.

2.2 The Identification Problem in a Proxy-SVAR

Following Rothenberg (1971) the proxy-SVAR structural parameters (Ao, A ) and (Ag, A, ) are observationally
equivalent if and only if they imply the same joint distribution of 1, --- ,y7r. Proposition 1 extends an insight
of Rubio-Ramirez, Waggoner, and Zha (2010) to the case of proxy-SVARs. Let diag(Xi,---,X;) denote a

block diagonal matrix with the matrices Xy, ---, X, along the diagonal.

Proposition 1. The prozy-SVAR structural parameters (Ag, Ay) and (Ag, AL) are observationally equivalent
if and only if Ag = AyQ and A, = A Q, for some matriz Q € Q C O(n), where O(n) is the set of i X 11



orthogonal matrices and Q is defined by

Q=1{Q € 0(7n)|Q = diag(Q1,Q2), Q1 € O(n), and Q2 € O(k)}.

Proof. See Appendix A.1. O

Rubio-Ramirez, Waggoner, and Zha (2010) prove that SVARs are not identified. Corollary 1 shows that

proxy-SVARs are not identified.
Corollary 1. A proxy-SVAR is not identified.

Proof. Because elements of Q are block diagonal, if (AO,A+) are proxy-SVAR parameters, then so are
(AOQ, A+Q) for all Q € Q. By Proposition 1, (Ao, A+) and (AOQ, A+Q) are observationally equivalent. So
proxy-SVARs are not identified. O

The identification problem in proxy-SVARs is commonly a partial identification problem because researchers
focus on identifying a subset of the proxy-SVAR structural equations.* For easy of exposition, henceforward
we adopt Leeper, Sims, and Zha’s (1996) view and often talk about identifying structural shocks as equivalent
to identifying structural equations because, under the proxy-SVAR framework, each equation contains only
one shock so that it is possible to directly relate equations and shocks.’

More specifically, the identification problem in proxy-SVARs is typically solved by assuming that the k
proxies are correlated with k structural shocks in €; and uncorrelated with the remaining structural shocks.
Without loss of generality let the structural shocks correlated with the proxies be the last k elements of €; and
the structural shocks uncorrelated with the proxies be the first n — k elements of ;. We now show that the
latter restrictions—which are known in the literature as exogeneity restrictions—are zero restrictions on a
non-linear function of the proxy-SVAR structural parameters. To see this, first note that for the proxy-SVAR

structural parameters (Ao, A+) it is the case that

Al —A51F071I‘&5

-1
0k:><n Fo 2

)

1A proxy-SVAR equation is identified if for any two sets of observationally equivalent proxy-SVAR parameters, the parameters
in that equation are identical.

5As in Arias, Rubio-Ramirez and Waggoner (2018), the theory and the algorithms of this paper can be replicated for a proxy-
SVAR in which the structural parameters are written in terms of impulse response functions (IRFs)—i.e., the IRF parameterization
(see Appendix B in Arias, Rubio-Ramirez and Waggoner (2018)). In such a case, identifying structural shocks is equivalent to
identifying structural IRFs.



Then, note that by multiplying Equation (2) by Aa 1 and focusing on the last k equations we obtain

-1 -1
_Ao I‘OJFO,Q

m, = A, —ejAy'To Ty + vTg for 1<t <T.

-1
FOQ

)

It follows that

E[stm;] = —AEII‘OJI‘&%.

Thus, the identifying restrictions imply that the first n — k rows of matrix Ay 11"071I‘(1 5 must be zero. Taking
transposes, this implies that the lower left-hand &k x (n — k) block of (Ag 1) must be zero. This makes clear
that proxy-SVARs are typically identified by zero restrictions on a function of the proxy-SVAR structural
parameters. That is, the exogeneity restrictions are zero restrictions on (Aa 1), In addition to exogeneity
restrictions, we also need the covariance matrix of the last k£ shocks and the k proxies, which is given by the
last k rows of —Ay 1I‘0711‘0*7 ;, to be non-singular. Following the literature, we refer to this as the relevance

condition.

2.3 Priors, Posteriors, and a Useful Parameterization and Mapping

We will use a restricted normal-generalized-normal distribution over the structural parameterization of the
proxy-SVAR as our prior distribution.® Hence, the proxy-SVAR structural parameters (Ao, /Lr) have a prior

density proportional to NGN(, s v 0) (Ag, AL), where
NGN(Vq> v.0) (A07 A-I—) o ‘det(AO)‘anef%vec(Ao)’@ vec(Ao)ef%(vec(A+)f\I'vec(Ao))’ﬂ’l(vec(A+)f‘IlVec(Ao)). (4)

2

The density is characterized by four parameters: a scalar v > 71, an 72 x 72 symmetric and positive definite

2 matrix ¥, and an mf x ma symmetric and positive definite matrix €. The normal-

matrix ®, an mn x n
generalized-normal distribution over the structural parameterization is a conjugate family of distributions
commonly used in the literature. For instance, the Sims-Zha prior (see Sims and Zha, 1998) belongs to this
family.

Our objective is to independently draw from the restricted normal-generalized-normal posterior distribution

over the structural parametrization of a proxy-SVAR conditional on the exogeneity restrictions implied

5By a restricted normal-generalized-normal distribution over the structural parameterization of the proxy-SVAR we mean
a normal-generalized-normal distribution over R™"*+™% conditional on the block restrictions, where m = pn + 1. If there are
exogenous variables, m = pn + 1 + €.

7 Arias, Rubio-Ramirez, and Waggoner (2018) assumed a Kronecker structure for ®, ¥, and €2.



by Equation (4). More specifically, such posterior distribution is proportional to NGN (7, > 0, Q), where
p=T+v, Q= ;X' X+Q ) L &= QL X'Y+Q'¥), and ® = [;Y'Y + &+ ¥'Q~ ¥ - 9'Q 1P,
Y =[5 - gr/,and X =[%, -+ @7’

Arias, Rubio-Ramirez, and Waggoner (2018) showed how to independently draw from a normal-generalized-
normal posterior distribution over the structural parameterization of a SVAR conditional on sign and zero
restrictions. Since a proxy-SVAR identified with exogeneity restrictions can be represented by the SVAR
in Equation (2) identified with the zero restrictions on Ao, A, and (Aa 1) associated with the block and
the exogeneity restrictions, one would like to use Arias, Rubio-Ramirez and Waggoner’s (2018) algorithm.
However, the techniques of that paper cannot be directly applied in this context because the number of zero
restrictions implied by the block restrictions alone is too large. There are (p + 1)k block restrictions on each of
the first n columns of (Ag, A, ), while the maximum number of restrictions that the aforementioned algorithm
can handle on the j* column of the structural parameters is 7 — j. So unless p = 0, an uninteresting case, the
maximum will be exceeded for the n'"" column, if not before. In this paper we show that the techniques in
Arias, Rubio-Ramirez, and Waggoner (2018) can be adapted to accomplish our objective.

The idea in Arias, Rubio-Ramirez, and Waggoner (2018) was to map independent draws from the orthogonal-
reduced-form parameterization conditional on the zero restrictions into the structural parameterization of the
SVAR to create a proposal for the desired normal-generalized-normal posterior distribution over the structural
parameterization conditional on the zero restrictions. The key to their approach is to properly account for the
volume element associated with that mapping in order to characterize the proposal. This proposal was then
embedded in an importance sampling algorithm.

The fact that the number of zeros is too large in a proxy-SVAR identified with exogeneity restrictions implies
that the reduced-form is restricted. This prevents us from obtaining independent draws from the orthogonal-
reduced-form parameterization. Hence, instead of using the orthogonal-reduced-form parameterization, we will
map independent draws from what we will call the orthogonal-triangular-block parameterization conditional
on the exogeneity restrictions into the structural parameterization of the proxy-SVAR to create a proposal for
the desired restricted normal-generalized-normal posterior distribution over the structural parameterization
of the proxy-SVAR conditional on the exogeneity restrictions. As in Arias, Rubio-Ramirez, and Waggoner
(2018), the key will be to properly account for the volume element in order to characterize the proposal. This

proposal will be again used in an importance sampling algorithm.



2.4 The Orthogonal-Triangular-Block Parameterization and the Mapping

Let Ag be an 7 x 72 matrix, 1~X+ be an m x n matrix, Q1 be an n X n orthogonal matrix, and Q2 be a k x k
orthogonal matrix. The matrix Ay is restricted to be upper-triangular with positive diagonal. The matrix
A=A} ]\; d'], where A; is i x 7 for 1 < i < p and d is 1 X 72, is restricted so that the lower left-hand k x n
block of 11@ is zero for 1 < ¢ < p. We label the zero restrictions on 1~X0 and 1~X+ the triangular-block restrictions,
and we call (Ag, A;) such that the triangular-block restrictions hold the triangular-block parameters.

Given any values of the triangular-block parameters (Ag, A ) and the orthogonal matrices (Q1, Q2), we

can map (Ao, Ay, Q1, Qz) into proxy-SVAR structural parameters (Ag, A, ) by®

(Ao, Ay, Q1, Qo) 7, (Ao diag(Q1, Q2), A+ diag(Q1, Q2)).

v~

Ag A,

It is easy to verify that (Ag, A}) will satisfy the block restrictions (i.e., they are proxy-SVAR structural
parameters).

The mapping f has an inverse. Let Aa ! — PR be the QR-decomposition of Aa ! normalized so that the
diagonal of R is positive. Because the lower left-hand k x n block of AJ Vs zero, P = diag( Py, P»), where P,
isn xn and Py is k X k. The inverse of f is

(Ag, AL) I (AgP,A P, P, Py).
e~ N~
Ao AL Q@ Q@
The matrix Ao will be upper triangular with positive diagonal because AgP = R™!. Furthermore, since P is
block diagonal and the lower left-hand k x n block of A; is zero, the lower left-hand k x n block of each A;
will be zero.

Just as a standard SVAR can alternatively be written in the orthogonal reduced-form parameterization,
the triangular-block parameters ([Xo, A+) together with the orthogonal matrices (Q1, Q2) define an equivalent
parameterization of the proxy-SVAR characterized by Equation (2) and the block restrictions. We call this
alternative parameterization the orthogonal triangular-block parameterization of a proxy-SVAR and we write
the latter as follows

JiAho =&AL +a) for 1 <t <T, (5)

where u; = €,Q" with Q = diag(Q1, Q2). Like &, the innovations @, are conditionally standard normal.

8The function f can be defined for all (Ao, AL, Qq, Q2) but will not be one-to-one over this larger set.



3 The Algorithm

In this section, we present an algorithm to make independent draws from the desired restricted normal-
generalized-normal posterior distribution over the structural parameterization of a proxy-SVAR conditional on
the exogeneity restrictions. We achieve this goal by first independently drawing triangular-block parameters,
(Ao, AL), using Waggoner and Zha’s (2003) Gibbs sampler. Then, we show that the exogeneity restrictions
are linear restrictions on the columns of the orthogonal matrix Q1. This will allow us to use the ideas in Arias,
Rubio-Ramirez and Waggoner (2018) to draw the orthogonal matrices (Q1, Q2), conditional on each draw of
the triangular-block parameters, such that the exogeneity restrictions hold. Then, we use f to map triangular-
block parameters plus the orthogonal matrices, (Ao, 1~X+, Q1,Q>2), into proxy-SVAR structural parameters,
(Ag, A+). While these independent draws are not from the desired restricted normal-generalized-normal
posterior distribution over the structural parameterization of a proxy-SVAR conditional on the exogeneity
restrictions, we will be able to numerically compute the density associated with the implied distribution. Hence,
we can use those draws as an intermediate step in an importance sampler to draw from the desired posterior

distribution.

3.1 Independent Draws of the Triangular-Block Parameters

We use the Gibbs sampler of Waggoner and Zha (2003) to independently draw from a restricted normal-
generalized-normal posterior distribution over the triangular-block parameters characterized by NGN (7, S 0, Q) 9
This Gibbs sampler can be used to draw from a normal-generalized-normal distribution subject to linear
restrictions, as long as the restrictions do not involve cross-equation restrictions and the matrices ‘i>, \il, and
are block diagonal.' Since the triangular and block restrictions on (Ao, A+) are exclusion restrictions that do
not involve cross-equation restrictions, and <i>, \il, and € can be chosen to be block diagonal, the conditions
for using the Gibbs sampler are satisfied. Furthermore, because Ay is restricted to be upper-triangular, it
follows from Theorem 2 of Waggoner and Zha (2003) that the Gibbs sampler draws will be independent. In
Appendix A.4, we describe how to adapt their paper to our purposes.

Often, it suffices to choose (7, &, 0, Q) to be equal to (7, ®, ¥, Q), the parameters associated with the

9Here, by a restricted normal-generalized-normal distribution over the triangular-block parameters we mean a normal-
generalized-normal distribution over R+ conditional on the triangular-block restrictions.

The Gibbs sampler of Waggoner and Zha (2003) was developed to draw from the posterior distribution of a structural VAR
with linear non-cross-equation restrictions using a certain class of normal priors. The class of posterior distributions that can
be obtained with this class of priors is the set of all normal-generalized-normal distributions NGN (7, b, ﬂ) with o > 7, &
block diagonal with 7 symmetric and positive definite 7 x 72 blocks, ¥ block diagonal with 7 arbitrary m x 7. blocks, and Q
block diagonal with 7 symmetric and positive definite m x m blocks, conditional on the linear non-cross-equation restrictions. In
Appendix A.4 we outline this Gibbs sampler in our context.

10



desired restricted normal-generalized-normal posterior distribution over the structural parameterization of the
proxy-SVAR conditional on the exogeneity restrictions. However, sometimes this can lead to small effective

sample sizes in our importance sampler. In Appendix A.5, we describe a more tailored choice of (7, b 0, Q)

that can avoid this loss of efficiency.

3.2 Exogeneity Restrictions in the Orthogonal-Triangular-Block Parameterization

Let J = [Opxn Ii] and L = [I, 0,x%]. Because of the arguments made in Section 2.2, if (Ag, A, ) are

proxy-SVAR structural parameters, the exogeneity restrictions are of the form

J(Aal)’e@j =0y for 1 <j<n-—k. (6)

The index j stops at n — k because there are no exogeneity restrictions for n — k < j < 7. In terms of the

orthogonal-triangular-block parameterization, this is equivalent to

J(Ag") diag(Q1, Q2)en; = J(AG") L' Qienj = 04y for 1 < j <n—k, (7)
—_——

G(Ao)

where we have used the fact that Ay = Ag diag(@Q1,Q2). Thus, conditional on a draw of triangular-block
parameters (.7\0, AJ,.), the exogeneity restrictions are linear restrictions on the columns of Q. We will denote
the number of exogeneity restrictions on the j* column of Q; by Zj, which is k if 1 < j <n — k and is zero if
n—k < j <n. Asin Arias, Rubio-Ramirez, and Waggoner (2018), we will use this fact to draw the orthogonal
matrices Q1. As will become clear below, drawing the orthogonal matrix @2 is simpler because its columns

are unrelated to the exogeneity restrictions.

3.3 An Algorithm

Sections 3.1 and 3.2 suggest that we can devise an algorithm to make independent draws from a distribution

over the structural parameterization of a proxy-SVAR, conditional on the exogeneity restrictions.

Algorithm 1. The following algorithm makes independent draws from a distribution over the structural
parameterization of a proxy-SVAR conditional on the exogeneity restrictions.
1. Draw triangular-block parameters (Ao, Ay) independently from the restricted NGN (i, b 0, Q) distribution

using Waggoner and Zha’s (2003) Gibbs sampler.

11



2. For 1 < j < n, draw T1; € R™"H1=0=% independently from a standard normal distribution and set
wi =215/ || @1

3. For 1 <j <k, draw x2; € RF1=7 independently from a standard normal distribution and set wyj =
w2/ || @2 |-

4. Define Q1 = [q171 q17n] recursiwely by q1; = Kijwy; for any matriz Ky ; whose columns form an

orthonormal basis for the null space of the (j — 1+ Z;) x n matriz:

/
[qu 11 G(Ao)’} for1<j<n-—k
Mlyj = ,
[‘hl QIj—1:| forn—k+1<j<n.
5. Define Q2 = [g21 -+ qa) recursively by q2; = Ko jws; for any matriz Ko ; whose columns form an

orthonormal basis for the null space of the (j — 1) x k matriz:
/

0. Set (A()aA-i-) - f([\0>A+7Q17 QQ)

7. Return to Step 1 until the required number of draws has been obtained.

In order for this algorithm to work, it must be the case that M; ; is of full row rank; otherwise the number
of columns in Kj; ; will not equal the dimension of w; ; and so the product Kj; jw; ; will not be defined. When
i=1and j >n —kor when ¢ =2 and 1 < j <k, the matrix M; ; will clearly be of full row rank. However,
when i = 1 and j < n — k, the matrix M ; will be of full row rank if and only if G(Ay) is of full row rank.
This is because, by construction, the qy1,---,q1 -1 are perpendicular to G([Xo). Since the probability of
drawing a Ay such that the G (Ao) is not of full row rank is zero, we can assume without loss of generality
that G(Ag) is of full row rank.

When the exogeneity restrictions hold, the relevance condition is equivalent to G (AO) being of full row
rank. To see this, note that G(Ag)Q1 = J(Ay ') L', so that by properties of the rank G(Ag) is of full row

rank if and only if J (Aa 1YL is of full row rank. If the exogeneity restrictions hold, then
/ _
Elmiel] = — (45" To.Tg3) = (A5 = Opciury VI,

where the k x k£ matrix V is the covariance matrix of the k proxy variables and the last k structural shocks.

So, the relevance condition, which requires V' to be non-singular, holds if and only if G(AO) is of full row rank.
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Of course, in practice, we not only want the covariance matrix to be non-singular, but we also would like it to
be well conditioned so that it is far from being singular.

It is also the case that the matrix Kj ; is not unique. If the columns of K ; form an orthonormal basis
for the null space of M; ;, then so will the columns of K; ;X for any orthogonal matrix X. The particular
choice of K; ; does not make a material difference in the output of Algorithm 1, but in the next section, when
we compute the density over the structural parameterization of a proxy-SVAR conditional on the exogeneity
restrictions implied by Algorithm 1, we will need to be able to define the function K; ; so that it is continuously
differentiable over a suitable large set. In Appendix A.2, we describe a particular choice that will work.

The independent draws of the proxy-SVAR structural parameters conditional on the exogeneity restrictions
produced by Algorithm 1 will not be from the desired restricted normal-generalized-normal posterior distribution
over the structural parameterization of a proxy-SVAR conditional on the exogeneity restrictions. The density
implied by Algorithm 1 will be analyzed in Section 3.4 to follow. It is important to clarify that our algorithm
can handle cases in which a researcher wants to consider k instruments that are correlated with & shocks, with
k > k. In such cases, Equations (6) and (7) will only hold for 1 < j < k. This could be of interest for example
when a researcher assumes that a proxy is not correlated with a particular structural shock while leaving the

correlation with the remaining shocks unrestricted.

3.4 The Density Implied by Algorithm 1

Step 1 of Algorithm 1 independently draws triangular-block parameters ([\0, 1~X+) from a restricted normal-
generalized-normal. Step 2 draws w;; from the uniform distribution on the unit sphere in RrH1—I=2,
Step 3 draws wy; from the uniform distribution on the unit sphere in R*+1=7 Hence, the density over
(110,]\4”10171, e+, Wiy, W21, -, W) is proportional to a restricted normal-generalized-normal. Steps 4
and 5 map (./NXO,[Lr,'le, S W, W, , W) tO (Ao, Ay, Q1,Q3), we denote this mapping by g. Finally,
Step 6 maps (Ao, j~\+, Q1,Q2) into proxy-SVAR structural parameters (Ao, A+) using the function f. The
composite mapping f o g implied by Steps 1 through Step 6 together with Theorem 3 in Arias, Rubio-Ramirez,
and Waggoner (2018) will be used to compute the density implied by Algorithm 1.

Since as noted before the matrix K; ; is not unique, the function g is not uniquely defined. In Appendix A.2
we will show that g can be defined so that it is one-to-one and continuously differentiable except on a closed set
of measure zero. This is what is needed to apply Theorem 3 in Arias, Rubio-Ramirez, and Waggoner (2018).

If Z denotes the set of all proxy-SVAR structural parameters that satisfy the exogeneity restrictions and

the relevance condition, then by Theorem 3 in Arias, Rubio-Ramirez, and Waggoner (2018), the density
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over the structural parameterization of the proxy-SVAR conditional on the exogeneity restrictions implied by

Algorithm 1 is proportional to

where (A(Ja A+a Qla QQ) = f_l(A()) AJr)

3.5 An Importance Sampler

The results above show that Algorithm 1 generates independent draws from a distribution over the proxy-SVAR
structural parameterization conditional on the exogeneity restrictions that is not equal to the desired restricted
normal-generalized-normal posterior distribution over the proxy-SVAR structural parameterization conditional
on the exogeneity restrictions. However, because Section 3.4 shows how to numerically evaluate the former
distribution, we can use such a distribution as a proposal in the following importance sampler algorithm to

accomplish our objective.

Algorithm 2. The following algorithm independently draws from the restricted NGN (v, >0, Q) posterior
distribution over the proxy-SVAR structural parameterization conditional on the exogeneity restrictions and the
relevance condition.

1. Use Algorithm 1 to independently draw proxy-SVAR structural parameters (AO,AJr) that satisfy the

exogeneity restrictions and the relevance condition.
2. Set its importance weight to
NGN(&,@,@,Q)(AOv A+>
NGN, 4 6)(Ros A)0(fog) 11 (Ao, Ay)

where (Ao, Ay, Q1,Q2) = (A, A}) and Z denotes the set of all prozy-SVAR structural parameters
that satisfy the exogeneity restrictions and the relevance condition.
3. Return to Step 1 until the required number of draws has been obtained.

4. Re-sample with replacement using the importance weights.

Step 2 is the crucial one. The re-sampling Step 4 allows us to have unweighted and independent draws.
Given the desired number of independent draws, the researcher should require enough draws from Steps 1-3 so

that the effective sample size is at least as large as the number of desired independent draws. We define the
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effective sample size as

(&) /(8

where w; is the weight associated with the i draw and N is the total number of draws obtained in Steps 1-3.

Algorithm 2 is stated in terms of the proxy-SVAR structural parameterization, but it will work for any
parameterization as long as one can explicitly compute the transformation between such parameterization and
the orthogonal triangular-block parameterization. It is also important to note that computing the volume
element v(oq)-1| Z(Ao, A+) in Step 2 is the most expensive part in implementing Algorithm 2. The rest of

Algorithm 2 is quite fast.!!

4 The Need for Additional Restrictions

We have described an algorithm that allows us to independently draw from the desired restricted normal-
generalized-normal posterior distribution over the proxy-SVAR structural parameterization conditional on
the exogeneity restrictions. Next, we show that the exogeneity restrictions only allow us to categorize the
proxy-SVAR shocks into two groups: the ones that are correlated with the proxies and the ones that are not
correlated with the proxies. If we only use the exogeneity restrictions, we have an identification problem of the
proxy-SVAR shocks that are correlated with the proxies; unless k = 1. The same problem occurs within the

proxy-SVAR shocks that are not correlated with the proxies.

Proposition 2. Let (Ag, A,) and (Ao, Ay) be prozy-SVAR structural parameters that also satisfy the
exogeneity restrictions and the relevance condition, then (Ag, Ay) and (Ag, A+) are observationally equivalent
if and only if there exists a matric Q € X C Q C O(n) such that Ay = AoQ and AL = A, Q, where X is
defined by

X ={Q € Q|Q = diag(Q3,Q4,Q5),Q3 € O(n — k),Q4 € O(k), and Qs € O(k)} .

Proof. See Appendix A.3. O

Proposition 2 tells us that we need additional identification restrictions to identify the str