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1 Introduction

The method of identification of structural vector autoregressions (SVARs) with external instruments, commonly

known as proxy-SVARs, has grown to become influential in empirical macroeconomics. Currently, most of the

papers using proxy-SVARs work under the frequentist paradigm.1 But, while substantial progress has been

made on such front, less is known about conducting Bayesian inference in this class of structural time series

models; exceptions are Bahaj (2014), Drautzburg (2016), and Caldara and Herbst (2016).

In this paper we contribute to this line of research by developing efficient algorithms to independently

draw from the family of restricted normal-generalized-normal posterior distributions over the structural

parameterization of a proxy-SVAR conditional on exogeneity restrictions. These restrictions require that the

correlation between the proxies and some of the structural shocks be equal to zero. The fact that we can draw

independently opens the door to use the Bayesian paradigm in larger models.

Our main algorithm combines the sampler developed by Waggoner and Zha (2003) with a variant of the

importance sampler developed by Arias, Rubio-Ramı́rez, and Waggoner (2018). The fundamental insight in

the latter was to produce independent draws from a normal-inverse-Wishart distribution over the reduced-form

parameters and generalize the QR decomposition to produce independent draws from a distribution over

the orthogonal-reduced-form parameterization of the SVAR conditional on sign and zero restrictions. These

draws were then mapped into the structural parameterization of the SVAR. By taking appropriate care

of the volume elements, the draws were weighted so that they came from the normal-generalized-normal

posterior distribution over the structural parameterization of the SVAR conditional on the identification

restrictions. Since a proxy-SVAR identified with exogeneity restrictions can be represented by a SVAR

identified with zero restrictions one may be tempted to use Arias, Rubio-Ramı́rez and Waggoner’s (2018)

algorithm. However, the techniques of that paper cannot be directly applied in this environment because the

zero restrictions embedded in a proxy-SVAR restrict its reduced-form representation, which invalidates the

use of the orthogonal-reduced-form parameterization for our purpose. To handle this issue, we introduce a

new parameterization called the orthogonal-triangular-block parameterization—composed of triangular-block

parameters and orthogonal matrices—that makes it possible to sample independently from the structural

parameterization of the proxy-SVAR even in the presence of the zero restrictions ingrained in this framework.

Using Waggoner and Zha (2003), we will produce independent draws from a normal-generalized-normal

distribution over the triangular-block parameters and further generalize the QR decomposition to produce

1For example, see Stock (2008), Stock and Watson (2012), Mertens and Ravn (2013), Gertler and Karadi (2015), and
Montiel-Olea, Stock, and Watson (2016).
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independent draws from a distribution over the orthogonal-triangular-block parameterization conditional on the

exogeneity restrictions. We will then map these draws into the proxy-SVAR structural parameterization. These

draws are weighted, by adapting the volume elements used in Arias, Rubio-Ramı́rez and Waggoner (2018), so

that they come from the normal-generalized-normal posterior distribution over the structural parameterization

of the proxy-SVAR conditional on the exogeneity restrictions of interest.

We also show that those restrictions may not be enough to identify the proxy-SVAR equations associated

with structural shocks that are correlated with the proxies. In particular, additional sign and zero restrictions

are needed for identification when more than one proxy is used to identify the same number of proxy-SVAR

equations. For this reason, we adapt our main algorithm to consider these additional restrictions, which could

be used not only to identify the proxy-SVAR equations associated with the structural shocks correlated with

the proxies but also to identify the proxy-SVAR equations associated with those structural shocks that are

uncorrelated with the proxies.

We present two applications to illustrate our algorithms. The first application is aimed at providing applied

readers with a succinct and comprehensive description of how to use our techniques. To this end, we begin

by studying the dynamic effects of consumption and investment total factor productivity (TFP) shocks in a

proxy-SVAR where the equations associated with the shocks of interest are identified using Fernald’s (2014)

TFP series as external instruments as in Lunsford (2016). An important difference between our approach and

Lunsford’s (2016) approach is that, while he identifies one structural equation at a time by using a single

instrument, we jointly identify two structural equations using two instruments.2 Hence, the application allows

us to emphasize how to use additional sign and zero restrictions to simultaneously identify more than one

equation. In particular, we identify the structural equations by assuming that they are the only equations

whose shocks are correlated with the two external instruments and by adding some additional sign restrictions

to parse out consumption TFP shocks from investment TFP shocks. Like Lunsford (2016), we find that a

positive consumption TFP shock causes an increase in real GDP and consumption in non-durables and services

as well as in durables and equipment while the price level gradually decreases. Accordingly, such a shock

resembles a standard TFP shock. In contrast, a positive investment TFP shock leads to a decrease of real

GDP, employment, consumption, and the price level. These results are inconsistent with the conventional

wisdom of standard TFP shocks but in line with the findings in Liu, Fernald, and Basu (2012).

The second application is aimed at highlighting that the distinctive feature of our approach illustrated

in the previous application—i.e., using more than one instrument to simultaneously set identify more than

2Lunsford’s (2016) approach is a common approach in the literature (see Stock and Watson, 2012).
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one structural equation—can provide critical insights for a few but highly influential studies identifying two

structural equations using two instruments such as Mertens and Ravn (2013) and Mertens and Montiel-Olea

(2018). As we will discuss later, the fundamental issue with their approach is that in order to separately

identify the two structural equations of interest they are limited to consider a narrow class of additional zero

restrictions that are hard to justify. We will make this clear by revisiting Mertens and Montiel-Olea (2018).

This paper relies on proxy-SVARs to study the effects of exogenous changes in marginal and average personal

income tax rates. One of their main conclusions is that, even though the response of reported income to

exogenous changes in marginal tax rates is strong and significant, the response to exogenous changes in average

tax rates is not statistically significant at any horizon. We will show that the identification scheme underlying

this result exactly identifies the equations associated with both tax shocks by imposing an additional zero

restriction on the systematic component of tax policies. We argue that their identification scheme is hard to

justify; as a result, we substitute it for a set of less questionable sign restrictions. Once this is done, we find

that both substitution and wealth effects play a relevant role for the transmission of tax rate shocks.

1.1 Relationship with the Bayesian Literature on Proxy-SVARs

As mentioned above, to the best of our knowledge, only three papers consider proxy-SVARs under the Bayesian

paradigm: Bahaj (2014), Drautzburg (2016), and Caldara and Herbst (2016). Bahaj (2014) and Drautzburg

(2016) draw from the posterior distribution of the orthogonal reduced-form parameterization and then transform

the draws to the structural proxy-SVAR parameterization. Since the reduced-form parameters are restricted

they both used Gibbs samplers to draw from the posterior of the reduced-form parameters; thereby the

draws are not independent. But this is not the only difference with our approach. More importantly, they

ignore the volume element when transforming the draws into the structural proxy-SVAR parameterization.

As explained in Arias, Rubio-Ramı́rez, and Waggoner (2018), this implies that they are not drawing from

a normal-generalized-normal posterior distribution over the structural parameterization of the proxy-SVAR

conditional on the exogeneity restrictions and that the posterior distribution from which they are drawing

depends on the zero restrictions—making comparisons across identification schemes impossible.

Finally, let’s relate our paper to Caldara and Herbst (2016). As in our approach, this paper draws from the

structural parameterization of the proxy-SVAR. Nevertheless, while our approach imposes a conjugate prior

on the structural parameterization, they work with non-conjugate prior densities, which complicates inference.

In particular, the posterior draws are not independent and their Metropolis-Hastings sampler could become

computationally inefficient compared with ours in large models. One advantage of Caldara and Herbst’s (2016)
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approach relative to ours is that they can impose any desired prior on the strength of the proxy. Even so,

researchers using our approach can also explore the sensitivity of the results to the quality of the instruments

by imposing thresholds on their reliability using additional sign restrictions.

The remainder of the paper is organized as follows. Section 2 introduces the methodology. Section 3

describes the algorithm. Section 4 shows that when identifying more than one shock using more than one

external instrument additional sign or zero restrictions are necessary, and presents an algorithm to consider

them. Sections 5 and 6 present two applications. Section 7 concludes. Technical details are deferred to the

Appendix.

2 The Framework

This section discusses our general framework. In Section 2.1, we describe the structural parameterization of a

proxy-SVAR. In Section 2.2, we present the identification problem and the exogeneity restrictions. In Section

2.3, we explicitly specify the family of prior and posterior distributions over the structural parameterization of

a proxy-SVAR that we would like to independently draw from. In Section 2.4, we introduce the orthogonal-

triangular-block parameterization. As will become clear later, this is a useful parameterization of a proxy-SVAR

and our algorithms will rely on it. In this section we will also introduce the mapping that we will be using to

move between parameterizations.

2.1 A Proxy-SVAR

Let yt be a n× 1 vector of endogenous variables, mt be a k × 1 vector of instruments (also called proxies),

ỹ′t = [y′t m
′
t], and ñ = n+ k. If these are governed by a SVAR, then

ỹ′tÃ0 =

p∑
`=1

ỹ′t−`Ã` + c̃+ ε̃′t for 1 ≤ t ≤ T, (1)

where Ãi is an ñ× ñ matrix for 0 ≤ i ≤ p with Ã0 invertible, c̃ is a 1× ñ row vector, and ε̃t is conditionally

standard normal with mean zero and identity variance-covariance matrix.3 If x̃′t = [ỹ′t−1 · · · ỹ′t−p 1] and

3We can always include a vector of exogenous variables, z̃t of dimension ẽ× 1. In that case the model will be written as

ỹ′tÃ0 =

p∑
`=1

ỹ′t−`Ã` + c̃ + z̃′td̃ + ε̃′t for 1 ≤ t ≤ T,

where d̃ is a ẽ× ñ row vector.
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Ã′+ = [Ã′1 · · · Ã′p c̃′], Equation (1) can be more compactly written as

ỹ′tÃ0 = x̃′tÃ+ + ε̃′t for 1 ≤ t ≤ T. (2)

Let ε̃′t = [ε′t ν
′
t], where εt is n× 1 and νt is k × 1. Because ε̃t is conditionally standard normal with mean

zero and identity variance-covariance matrix, we are assuming that νt is uncorrelated with εt. A proxy-SVAR

imposes that yt evolves according to

y′tA0 = x′tA+ + ε′t for 1 ≤ t ≤ T, (3)

where x′t = [y′t−1 · · · y′t−p 1] and A′+ = [A′1 · · ·A′p c′], with Ai an n× n matrix for 0 ≤ i ≤ p, A0 invertible,

and c a 1× n row vector.

Hence, εt are the structural shocks and νt are other shocks that affect the proxies. Equation (3) implies

that

Ãi =

 Ai Γi,1

0k×n Γi,2

 ,
where Γi,1 is n × k and Γi,2 is k × k for 0 ≤ i ≤ p and 0k×n is a k × n matrix of zeros. We call the zero

restrictions on Ã0 and Ã+ the block restrictions. We call Equation (2) plus the block restrictions the structural

parameterization of the proxy-SVAR and (Ã0, Ã+) such that the block restrictions hold the proxy-SVAR

structural parameters. Hence, for the set of proxy-SVAR structural parameters the block restrictions always

hold. Mertens and Ravn (2013) and Stock and Watson (2018) also model yt and mt as a joint system, but the

structure is not exactly the same.

2.2 The Identification Problem in a Proxy-SVAR

Following Rothenberg (1971) the proxy-SVAR structural parameters (Ā0, Ā+) and (Â0, Â+) are observationally

equivalent if and only if they imply the same joint distribution of ỹ1, · · · , ỹT . Proposition 1 extends an insight

of Rubio-Ramı́rez, Waggoner, and Zha (2010) to the case of proxy-SVARs. Let diag(X1, · · · , Xj) denote a

block diagonal matrix with the matrices X1, · · · , Xj along the diagonal.

Proposition 1. The proxy-SVAR structural parameters (Ā0, Ā+) and (Â0, Â+) are observationally equivalent

if and only if Ā0 = Â0Q and Ā+ = Â+Q, for some matrix Q ∈ Q ⊂ O(ñ), where O(ñ) is the set of ñ× ñ
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orthogonal matrices and Q is defined by

Q = {Q ∈ O(ñ)|Q = diag(Q1,Q2),Q1 ∈ O(n), and Q2 ∈ O(k)} .

Proof. See Appendix A.1.

Rubio-Ramı́rez, Waggoner, and Zha (2010) prove that SVARs are not identified. Corollary 1 shows that

proxy-SVARs are not identified.

Corollary 1. A proxy-SVAR is not identified.

Proof. Because elements of Q are block diagonal, if (Ã0, Ã+) are proxy-SVAR parameters, then so are

(Ã0Q, Ã+Q) for all Q ∈ Q. By Proposition 1, (Ã0, Ã+) and (Ã0Q, Ã+Q) are observationally equivalent. So

proxy-SVARs are not identified.

The identification problem in proxy-SVARs is commonly a partial identification problem because researchers

focus on identifying a subset of the proxy-SVAR structural equations.4 For easy of exposition, henceforward

we adopt Leeper, Sims, and Zha’s (1996) view and often talk about identifying structural shocks as equivalent

to identifying structural equations because, under the proxy-SVAR framework, each equation contains only

one shock so that it is possible to directly relate equations and shocks.5

More specifically, the identification problem in proxy-SVARs is typically solved by assuming that the k

proxies are correlated with k structural shocks in εt and uncorrelated with the remaining structural shocks.

Without loss of generality let the structural shocks correlated with the proxies be the last k elements of εt and

the structural shocks uncorrelated with the proxies be the first n− k elements of εt. We now show that the

latter restrictions—which are known in the literature as exogeneity restrictions—are zero restrictions on a

non-linear function of the proxy-SVAR structural parameters. To see this, first note that for the proxy-SVAR

structural parameters (Ã0, Ã+) it is the case that

Ã−10 =

A−10 −A−10 Γ0,1Γ
−1
0,2

0k×n Γ−10,2

 .

4A proxy-SVAR equation is identified if for any two sets of observationally equivalent proxy-SVAR parameters, the parameters
in that equation are identical.

5As in Arias, Rubio-Ramı́rez and Waggoner (2018), the theory and the algorithms of this paper can be replicated for a proxy-
SVAR in which the structural parameters are written in terms of impulse response functions (IRFs)—i.e., the IRF parameterization
(see Appendix B in Arias, Rubio-Ramı́rez and Waggoner (2018)). In such a case, identifying structural shocks is equivalent to
identifying structural IRFs.
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Then, note that by multiplying Equation (2) by Ã−10 and focusing on the last k equations we obtain

m′t = x̃′tÃ+

−A−10 Γ0,1Γ
−1
0,2

Γ−10,2

− ε′tA−10 Γ0,1Γ
−1
0,2 + ν ′tΓ

−1
0,2 for 1 ≤ t ≤ T.

It follows that

E[εtm
′
t] = −A−10 Γ0,1Γ

−1
0,2.

Thus, the identifying restrictions imply that the first n− k rows of matrix A−10 Γ0,1Γ
−1
0,2 must be zero. Taking

transposes, this implies that the lower left-hand k × (n− k) block of (Ã−10 )′ must be zero. This makes clear

that proxy-SVARs are typically identified by zero restrictions on a function of the proxy-SVAR structural

parameters. That is, the exogeneity restrictions are zero restrictions on (Ã−10 )′. In addition to exogeneity

restrictions, we also need the covariance matrix of the last k shocks and the k proxies, which is given by the

last k rows of −A−10 Γ0,1Γ
−1
0,2, to be non-singular. Following the literature, we refer to this as the relevance

condition.

2.3 Priors, Posteriors, and a Useful Parameterization and Mapping

We will use a restricted normal-generalized-normal distribution over the structural parameterization of the

proxy-SVAR as our prior distribution.6 Hence, the proxy-SVAR structural parameters (Ã0, Ã+) have a prior

density proportional to NGN(ν,Φ,Ψ,Ω)(Ã0, Ã+), where

NGN(ν,Φ,Ψ,Ω)(Ã0, Ã+) ∝ |det(Ã0)|ν−ne−
1
2
vec(Ã0)′Φ vec(Ã0)e−

1
2
(vec(Ã+)−Ψ vec(Ã0))′Ω−1(vec(Ã+)−Ψ vec(Ã0)). (4)

The density is characterized by four parameters: a scalar ν ≥ ñ, an ñ2 × ñ2 symmetric and positive definite

matrix Φ, an m̃ñ× ñ2 matrix Ψ, and an m̃ñ× m̃ñ symmetric and positive definite matrix Ω.7 The normal-

generalized-normal distribution over the structural parameterization is a conjugate family of distributions

commonly used in the literature. For instance, the Sims-Zha prior (see Sims and Zha, 1998) belongs to this

family.

Our objective is to independently draw from the restricted normal-generalized-normal posterior distribution

over the structural parametrization of a proxy-SVAR conditional on the exogeneity restrictions implied

6By a restricted normal-generalized-normal distribution over the structural parameterization of the proxy-SVAR we mean

a normal-generalized-normal distribution over Rñ2+m̃ñ conditional on the block restrictions, where m̃ = pñ + 1. If there are
exogenous variables, m̃ = pñ+ 1 + ẽ.

7Arias, Rubio-Ramı́rez, and Waggoner (2018) assumed a Kronecker structure for Φ, Ψ, and Ω.
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by Equation (4). More specifically, such posterior distribution is proportional to NGN(ν̃, Φ̃, Ψ̃, Ω̃), where

ν̃ = T+ν, Ω̃ = (Iñ⊗X̃ ′X̃+Ω−1)−1, Ψ̃ = Ω̃(Iñ⊗X̃ ′Ỹ +Ω−1Ψ), and Φ̃ = Iñ⊗Ỹ ′Ỹ +Φ+Ψ′Ω−1Ψ−Ψ̃′Ω̃−1Ψ̃,

Ỹ = [ỹ1 · · · ỹT ]′, and X̃ = [x̃1 · · · x̃T ]′.

Arias, Rubio-Ramı́rez, and Waggoner (2018) showed how to independently draw from a normal-generalized-

normal posterior distribution over the structural parameterization of a SVAR conditional on sign and zero

restrictions. Since a proxy-SVAR identified with exogeneity restrictions can be represented by the SVAR

in Equation (2) identified with the zero restrictions on Ã0, Ã+, and (Ã−10 )′ associated with the block and

the exogeneity restrictions, one would like to use Arias, Rubio-Ramı́rez and Waggoner’s (2018) algorithm.

However, the techniques of that paper cannot be directly applied in this context because the number of zero

restrictions implied by the block restrictions alone is too large. There are (p+ 1)k block restrictions on each of

the first n columns of (Ã0, Ã+), while the maximum number of restrictions that the aforementioned algorithm

can handle on the jth column of the structural parameters is ñ− j. So unless p = 0, an uninteresting case, the

maximum will be exceeded for the nth column, if not before. In this paper we show that the techniques in

Arias, Rubio-Ramı́rez, and Waggoner (2018) can be adapted to accomplish our objective.

The idea in Arias, Rubio-Ramı́rez, and Waggoner (2018) was to map independent draws from the orthogonal-

reduced-form parameterization conditional on the zero restrictions into the structural parameterization of the

SVAR to create a proposal for the desired normal-generalized-normal posterior distribution over the structural

parameterization conditional on the zero restrictions. The key to their approach is to properly account for the

volume element associated with that mapping in order to characterize the proposal. This proposal was then

embedded in an importance sampling algorithm.

The fact that the number of zeros is too large in a proxy-SVAR identified with exogeneity restrictions implies

that the reduced-form is restricted. This prevents us from obtaining independent draws from the orthogonal-

reduced-form parameterization. Hence, instead of using the orthogonal-reduced-form parameterization, we will

map independent draws from what we will call the orthogonal-triangular-block parameterization conditional

on the exogeneity restrictions into the structural parameterization of the proxy-SVAR to create a proposal for

the desired restricted normal-generalized-normal posterior distribution over the structural parameterization

of the proxy-SVAR conditional on the exogeneity restrictions. As in Arias, Rubio-Ramı́rez, and Waggoner

(2018), the key will be to properly account for the volume element in order to characterize the proposal. This

proposal will be again used in an importance sampling algorithm.
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2.4 The Orthogonal-Triangular-Block Parameterization and the Mapping

Let Λ̃0 be an ñ× ñ matrix, Λ̃+ be an m̃× ñ matrix, Q1 be an n× n orthogonal matrix, and Q2 be a k × k

orthogonal matrix. The matrix Λ̃0 is restricted to be upper-triangular with positive diagonal. The matrix

Λ̃′+ = [Λ̃′1 · · · Λ̃′p d′], where Λ̃i is ñ×ñ for 1 ≤ i ≤ p and d is 1×ñ, is restricted so that the lower left-hand k×n

block of Λ̃i is zero for 1 ≤ i ≤ p. We label the zero restrictions on Λ̃0 and Λ̃+ the triangular-block restrictions,

and we call (Λ̃0, Λ̃+) such that the triangular-block restrictions hold the triangular-block parameters.

Given any values of the triangular-block parameters (Λ̃0, Λ̃+) and the orthogonal matrices (Q1,Q2), we

can map (Λ̃0, Λ̃+,Q1,Q2) into proxy-SVAR structural parameters (Ã0, Ã+) by8

(Λ̃0, Λ̃+,Q1,Q2)
f−→ (Λ̃0 diag(Q1,Q2)︸ ︷︷ ︸

Ã0

, Λ̃+ diag(Q1,Q2)︸ ︷︷ ︸
Ã+

).

It is easy to verify that (Ã0, Ã+) will satisfy the block restrictions (i.e., they are proxy-SVAR structural

parameters).

The mapping f has an inverse. Let Ã−10 = PR be the QR-decomposition of Ã−10 normalized so that the

diagonal of R is positive. Because the lower left-hand k × n block of Ã−10 is zero, P = diag(P1,P2), where P1

is n× n and P2 is k × k. The inverse of f is

(Ã0, Ã+)
f−1

−→ (Ã0P︸ ︷︷ ︸
Λ̃0

, Ã+P︸ ︷︷ ︸
Λ̃+

, P ′1︸︷︷︸
Q1

, P ′2︸︷︷︸
Q2

).

The matrix Λ̃0 will be upper triangular with positive diagonal because Ã0P = R−1. Furthermore, since P is

block diagonal and the lower left-hand k × n block of Ãi is zero, the lower left-hand k × n block of each Λ̃i

will be zero.

Just as a standard SVAR can alternatively be written in the orthogonal reduced-form parameterization,

the triangular-block parameters (Λ̃0, Λ̃+) together with the orthogonal matrices (Q1,Q2) define an equivalent

parameterization of the proxy-SVAR characterized by Equation (2) and the block restrictions. We call this

alternative parameterization the orthogonal triangular-block parameterization of a proxy-SVAR and we write

the latter as follows

ỹ′tΛ̃0 = x̃′tΛ̃+ + ũ′t for 1 ≤ t ≤ T, (5)

where ũ′t = ε̃′tQ
′ with Q = diag(Q1,Q2). Like ε̃t, the innovations ũt are conditionally standard normal.

8The function f can be defined for all (Λ̃0, Λ̃+,Q1,Q2) but will not be one-to-one over this larger set.
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3 The Algorithm

In this section, we present an algorithm to make independent draws from the desired restricted normal-

generalized-normal posterior distribution over the structural parameterization of a proxy-SVAR conditional on

the exogeneity restrictions. We achieve this goal by first independently drawing triangular-block parameters,

(Λ̃0, Λ̃+), using Waggoner and Zha’s (2003) Gibbs sampler. Then, we show that the exogeneity restrictions

are linear restrictions on the columns of the orthogonal matrix Q1. This will allow us to use the ideas in Arias,

Rubio-Ramı́rez and Waggoner (2018) to draw the orthogonal matrices (Q1,Q2), conditional on each draw of

the triangular-block parameters, such that the exogeneity restrictions hold. Then, we use f to map triangular-

block parameters plus the orthogonal matrices, (Λ̃0, Λ̃+,Q1,Q2), into proxy-SVAR structural parameters,

(Ã0, Ã+). While these independent draws are not from the desired restricted normal-generalized-normal

posterior distribution over the structural parameterization of a proxy-SVAR conditional on the exogeneity

restrictions, we will be able to numerically compute the density associated with the implied distribution. Hence,

we can use those draws as an intermediate step in an importance sampler to draw from the desired posterior

distribution.

3.1 Independent Draws of the Triangular-Block Parameters

We use the Gibbs sampler of Waggoner and Zha (2003) to independently draw from a restricted normal-

generalized-normal posterior distribution over the triangular-block parameters characterized byNGN(ν̂, Φ̂, Ψ̂, Ω̂).9

This Gibbs sampler can be used to draw from a normal-generalized-normal distribution subject to linear

restrictions, as long as the restrictions do not involve cross-equation restrictions and the matrices Φ̂, Ψ̂, and Ω̂

are block diagonal.10 Since the triangular and block restrictions on (Λ̃0, Λ̃+) are exclusion restrictions that do

not involve cross-equation restrictions, and Φ̂, Ψ̂, and Ω̂ can be chosen to be block diagonal, the conditions

for using the Gibbs sampler are satisfied. Furthermore, because Λ̃0 is restricted to be upper-triangular, it

follows from Theorem 2 of Waggoner and Zha (2003) that the Gibbs sampler draws will be independent. In

Appendix A.4, we describe how to adapt their paper to our purposes.

Often, it suffices to choose (ν̂, Φ̂, Ψ̂, Ω̂) to be equal to (ν̃, Φ̃, Ψ̃, Ω̃), the parameters associated with the

9Here, by a restricted normal-generalized-normal distribution over the triangular-block parameters we mean a normal-

generalized-normal distribution over Rñ2+m̃ñ conditional on the triangular-block restrictions.
10The Gibbs sampler of Waggoner and Zha (2003) was developed to draw from the posterior distribution of a structural VAR

with linear non-cross-equation restrictions using a certain class of normal priors. The class of posterior distributions that can
be obtained with this class of priors is the set of all normal-generalized-normal distributions NGN(ν̂, Φ̂, Ψ̂, Ω̂) with ν̂ ≥ ñ, Φ̂
block diagonal with ñ symmetric and positive definite ñ × ñ blocks, Ψ̂ block diagonal with ñ arbitrary m̃ × ñ blocks, and Ω̂
block diagonal with ñ symmetric and positive definite m̃× m̃ blocks, conditional on the linear non-cross-equation restrictions. In
Appendix A.4 we outline this Gibbs sampler in our context.
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desired restricted normal-generalized-normal posterior distribution over the structural parameterization of the

proxy-SVAR conditional on the exogeneity restrictions. However, sometimes this can lead to small effective

sample sizes in our importance sampler. In Appendix A.5, we describe a more tailored choice of (ν̂, Φ̂, Ψ̂, Ω̂)

that can avoid this loss of efficiency.

3.2 Exogeneity Restrictions in the Orthogonal-Triangular-Block Parameterization

Let J = [0k×n Ik] and L = [In 0n×k]. Because of the arguments made in Section 2.2, if (Ã0, Ã+) are

proxy-SVAR structural parameters, the exogeneity restrictions are of the form

J(Ã−10 )′eñ,j = 0k×1 for 1 ≤ j ≤ n− k. (6)

The index j stops at n − k because there are no exogeneity restrictions for n − k < j ≤ ñ. In terms of the

orthogonal-triangular-block parameterization, this is equivalent to

J(Λ̃−10 )′ diag(Q1,Q2)eñ,j = J(Λ̃−10 )′L′︸ ︷︷ ︸
G(Λ̃0)

Q1en,j = 0k×1 for 1 ≤ j ≤ n− k, (7)

where we have used the fact that Ã0 = Λ̃0 diag(Q1,Q2). Thus, conditional on a draw of triangular-block

parameters (Λ̃0, Λ̃+), the exogeneity restrictions are linear restrictions on the columns of Q1. We will denote

the number of exogeneity restrictions on the jth column of Q1 by z̃j , which is k if 1 ≤ j ≤ n− k and is zero if

n− k < j ≤ n. As in Arias, Rubio-Ramı́rez, and Waggoner (2018), we will use this fact to draw the orthogonal

matrices Q1. As will become clear below, drawing the orthogonal matrix Q2 is simpler because its columns

are unrelated to the exogeneity restrictions.

3.3 An Algorithm

Sections 3.1 and 3.2 suggest that we can devise an algorithm to make independent draws from a distribution

over the structural parameterization of a proxy-SVAR conditional on the exogeneity restrictions.

Algorithm 1. The following algorithm makes independent draws from a distribution over the structural

parameterization of a proxy-SVAR conditional on the exogeneity restrictions.

1. Draw triangular-block parameters (Λ̃0, Λ̃+) independently from the restricted NGN(ν̂, Φ̂, Ψ̂, Ω̂) distribution

using Waggoner and Zha’s (2003) Gibbs sampler.
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2. For 1 ≤ j ≤ n, draw x1,j ∈ Rn+1−j−z̃j independently from a standard normal distribution and set

w1,j = x1,j/ ‖ x1,j ‖.

3. For 1 ≤ j ≤ k, draw x2,j ∈ Rk+1−j independently from a standard normal distribution and set w2,j =

x2,j/ ‖ x2,j ‖.

4. Define Q1 = [q1,1 · · · q1,n] recursively by q1,j = K1,jw1,j for any matrix K1,j whose columns form an

orthonormal basis for the null space of the (j − 1 + z̃j)× n matrix:

M1,j =


[
q1,1 · · · q1,j−1 G(Λ̃0)

′

]′
for 1 ≤ j ≤ n− k[

q1,1 · · · q1,j−1

]′
for n− k + 1 ≤ j ≤ n.

5. Define Q2 = [q2,1 · · · q2,k] recursively by q2,j = K2,jw2,j for any matrix K2,j whose columns form an

orthonormal basis for the null space of the (j − 1)× k matrix:

M2,j =

[
q2,1 · · · q2,j−1

]′
for 1 ≤ j ≤ k.

6. Set (Ã0, Ã+) = f(Λ̃0, Λ̃+,Q1,Q2).

7. Return to Step 1 until the required number of draws has been obtained.

In order for this algorithm to work, it must be the case that Mi,j is of full row rank; otherwise the number

of columns in Ki,j will not equal the dimension of wi,j and so the product Ki,jwi,j will not be defined. When

i = 1 and j > n− k or when i = 2 and 1 ≤ j ≤ k, the matrix Mi,j will clearly be of full row rank. However,

when i = 1 and j ≤ n− k, the matrix M1,j will be of full row rank if and only if G(Λ̃0) is of full row rank.

This is because, by construction, the q1,1, · · · , q1,j−1 are perpendicular to G(Λ̃0). Since the probability of

drawing a Λ0 such that the G(Λ̃0) is not of full row rank is zero, we can assume without loss of generality

that G(Λ̃0) is of full row rank.

When the exogeneity restrictions hold, the relevance condition is equivalent to G(Λ̃0) being of full row

rank. To see this, note that G(Λ̃0)Q1 = J(Ã−10 )′L′, so that by properties of the rank G(Λ̃0) is of full row

rank if and only if J(Ã−10 )′L′ is of full row rank. If the exogeneity restrictions hold, then

E[mtε
′
t] = −

(
A−10 Γ0,1Γ

−1
0,2

)′
= J(Ã−10 )′L′ = [0k×(n−k) V ],

where the k × k matrix V is the covariance matrix of the k proxy variables and the last k structural shocks.

So, the relevance condition, which requires V to be non-singular, holds if and only if G(Λ̃0) is of full row rank.
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Of course, in practice, we not only want the covariance matrix to be non-singular, but we also would like it to

be well conditioned so that it is far from being singular.

It is also the case that the matrix Ki,j is not unique. If the columns of Ki,j form an orthonormal basis

for the null space of Mi,j , then so will the columns of Ki,jX for any orthogonal matrix X. The particular

choice of Ki,j does not make a material difference in the output of Algorithm 1, but in the next section, when

we compute the density over the structural parameterization of a proxy-SVAR conditional on the exogeneity

restrictions implied by Algorithm 1, we will need to be able to define the function Ki,j so that it is continuously

differentiable over a suitable large set. In Appendix A.2, we describe a particular choice that will work.

The independent draws of the proxy-SVAR structural parameters conditional on the exogeneity restrictions

produced by Algorithm 1 will not be from the desired restricted normal-generalized-normal posterior distribution

over the structural parameterization of a proxy-SVAR conditional on the exogeneity restrictions. The density

implied by Algorithm 1 will be analyzed in Section 3.4 to follow. It is important to clarify that our algorithm

can handle cases in which a researcher wants to consider k instruments that are correlated with k̃ shocks, with

k̃ > k. In such cases, Equations (6) and (7) will only hold for 1 < j < k̃. This could be of interest for example

when a researcher assumes that a proxy is not correlated with a particular structural shock while leaving the

correlation with the remaining shocks unrestricted.

3.4 The Density Implied by Algorithm 1

Step 1 of Algorithm 1 independently draws triangular-block parameters (Λ̃0, Λ̃+) from a restricted normal-

generalized-normal. Step 2 draws w1,j from the uniform distribution on the unit sphere in Rn+1−j−z̃j .

Step 3 draws w2,j from the uniform distribution on the unit sphere in Rk+1−j . Hence, the density over

(Λ̃0, Λ̃+,w1,1, · · · ,w1,n,w2,1, · · · ,w2,k) is proportional to a restricted normal-generalized-normal. Steps 4

and 5 map (Λ̃0, Λ̃+,w1,1, · · · ,w1,n,w2,1, · · · ,w2,k) to (Λ̃0, Λ̃+,Q1,Q2), we denote this mapping by g. Finally,

Step 6 maps (Λ̃0, Λ̃+,Q1,Q2) into proxy-SVAR structural parameters (Ã0, Ã+) using the function f . The

composite mapping f ◦ g implied by Steps 1 through Step 6 together with Theorem 3 in Arias, Rubio-Ramı́rez,

and Waggoner (2018) will be used to compute the density implied by Algorithm 1.

Since as noted before the matrix Ki,j is not unique, the function g is not uniquely defined. In Appendix A.2

we will show that g can be defined so that it is one-to-one and continuously differentiable except on a closed set

of measure zero. This is what is needed to apply Theorem 3 in Arias, Rubio-Ramı́rez, and Waggoner (2018).

If Z denotes the set of all proxy-SVAR structural parameters that satisfy the exogeneity restrictions and

the relevance condition, then by Theorem 3 in Arias, Rubio-Ramı́rez, and Waggoner (2018), the density
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over the structural parameterization of the proxy-SVAR conditional on the exogeneity restrictions implied by

Algorithm 1 is proportional to

NGN(ν̂,Φ̂,Ψ̂,Ω̂)(Λ̃0, Λ̃+)v(f◦g)−1|Z (Ã0, Ã+),

where (Λ̃0, Λ̃+,Q1,Q2) = f−1(Ã0, Ã+).

3.5 An Importance Sampler

The results above show that Algorithm 1 generates independent draws from a distribution over the proxy-SVAR

structural parameterization conditional on the exogeneity restrictions that is not equal to the desired restricted

normal-generalized-normal posterior distribution over the proxy-SVAR structural parameterization conditional

on the exogeneity restrictions. However, because Section 3.4 shows how to numerically evaluate the former

distribution, we can use such a distribution as a proposal in the following importance sampler algorithm to

accomplish our objective.

Algorithm 2. The following algorithm independently draws from the restricted NGN(ν̃, Φ̃, Ψ̃, Ω̃) posterior

distribution over the proxy-SVAR structural parameterization conditional on the exogeneity restrictions and the

relevance condition.

1. Use Algorithm 1 to independently draw proxy-SVAR structural parameters (Ã0, Ã+) that satisfy the

exogeneity restrictions and the relevance condition.

2. Set its importance weight to

NGN(ν̃,Φ̃,Ψ̃,Ω̃)(Ã0, Ã+)

NGN(ν̂,Φ̂,Ψ̂,Ω̂)(Λ̃0, Λ̃+)v(f◦g)−1|Z (Ã0, Ã+)
,

where (Λ̃0, Λ̃+,Q1,Q2) = f−1(Ã0, Ã+) and Z denotes the set of all proxy-SVAR structural parameters

that satisfy the exogeneity restrictions and the relevance condition.

3. Return to Step 1 until the required number of draws has been obtained.

4. Re-sample with replacement using the importance weights.

Step 2 is the crucial one. The re-sampling Step 4 allows us to have unweighted and independent draws.

Given the desired number of independent draws, the researcher should require enough draws from Steps 1-3 so

that the effective sample size is at least as large as the number of desired independent draws. We define the

14



effective sample size as

N

(
N∑
i=1

wi

)2

/

(
N∑
i=1

w2
i

)
,

where wi is the weight associated with the ith draw and N is the total number of draws obtained in Steps 1-3.

Algorithm 2 is stated in terms of the proxy-SVAR structural parameterization, but it will work for any

parameterization as long as one can explicitly compute the transformation between such parameterization and

the orthogonal triangular-block parameterization. It is also important to note that computing the volume

element v(f◦g)−1|Z (Ã0, Ã+) in Step 2 is the most expensive part in implementing Algorithm 2. The rest of

Algorithm 2 is quite fast.11

4 The Need for Additional Restrictions

We have described an algorithm that allows us to independently draw from the desired restricted normal-

generalized-normal posterior distribution over the proxy-SVAR structural parameterization conditional on

the exogeneity restrictions. Next, we show that the exogeneity restrictions only allow us to categorize the

proxy-SVAR shocks into two groups: the ones that are correlated with the proxies and the ones that are not

correlated with the proxies. If we only use the exogeneity restrictions, we have an identification problem of the

proxy-SVAR shocks that are correlated with the proxies; unless k = 1. The same problem occurs within the

proxy-SVAR shocks that are not correlated with the proxies.

Proposition 2. Let (Ā0, Ā+) and (Â0, Â+) be proxy-SVAR structural parameters that also satisfy the

exogeneity restrictions and the relevance condition, then (Ā0, Ā+) and (Â0, Â+) are observationally equivalent

if and only if there exists a matrix Q ∈ X ⊂ Q ⊂ O(ñ) such that Ā0 = Â0Q and Ā+ = Â+Q, where X is

defined by

X = {Q ∈ Q|Q = diag(Q3,Q4,Q5),Q3 ∈ O(n− k),Q4 ∈ O(k), and Q5 ∈ O(k)} .

Proof. See Appendix A.3.

Proposition 2 tells us that we need additional identification restrictions to identify the structural shocks

within the set of structural shocks that are correlated with the proxies. In addition, the proposition makes

11The reader should note that Algorithm 2 must be used with a normalization. Typically, SVARs are normalized by restricting
the sign of the response of a given variable to a shock of interest. Proxy-SVARs can be normalized analogously. Since this is well
understood and one simply has to set the importance weight to zero when the normalization is not satisfied, we do not explicitly
state this in the algorithm.
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clear that if we want to identify structural shocks within the set of the structural shocks that are not correlated

with the proxies, then we also need additional identification restrictions. This is easy to see because Q3 will

rotate the columns of the proxy-SVAR structural parameters associated with the structural shocks that are

not correlated with the proxies while Q4 will rotate the proxy-SVAR equations associated with the structural

shocks that are correlated with the proxies.12 The additional restrictions can be sign and/or zero restrictions.

Since imposing additional sign restrictions is straightforward, we will first focus on additional zero restrictions

by showing how to modify Algorithm 1 to incorporate them. Then, we will show how to modify Algorithm 2

to consider both additional sign and zero restrictions.

Often, one is interested only in partial identification of the k structural shocks that are correlated with

the k proxies. If that is the case and k = 1, the exogeneity restrictions exactly identify the structural shock

correlated with the proxy. The following corollary of Proposition 2 formalizes this result.

Corollary 2. Let k = 1 and let (Ã0, Ã+) be proxy-SVAR structural parameters that also satisfy the exogeneity

restrictions and the relevance condition. Then, the last column of (Ã0, Ã+) is identified up to a sign.

Proof. If k = 1, then we have Q4 = 1 and the nth column of Q is equal to (0 . . . 0 ±1)′.

Notwithstanding, the theory and techniques that we develop apply to additional sign and zero restrictions

on any function F (Ã0, Ã+) from the set of proxy-SVAR structural parameters to the set of r̃ × ñ matrices

that satisfies the condition F (Ã0Q̃, Ã+Q̃) = F (Ã0, Ã+)Q̃, for every Q̃ ∈ O(ñ).13

4.1 Additional Zero Restrictions

To set the notation, let Zj be a zj × r̃ matrix of full row rank, where 0 ≤ zj ≤ n− k− j for 1 ≤ j ≤ n− k and

0 ≤ zj ≤ n − j for n − k + 1 ≤ j ≤ n. In particular, we assume that the additional zero restrictions in the

proxy-SVAR structural parameterization are of the form ZjF (Ã0, Ã+)eñ,j = 0zj ,1 for 1 ≤ j ≤ n. The fact

that 0 ≤ zj ≤ n− k − j for 1 ≤ j ≤ n− k reflects that we have already imposed the exogeneity restrictions on

the first n− k structural shocks. Note that we are identifying only εt. In principle, one could also use the

additional zero restrictions to identify νt, but we do not believe that is of interest.

From the definition of f and the fact that

F (Ã0 diag(Q1,Q2), Ã+ diag(Q1,Q2)) = F (Ã0, Ã+) diag(Q1,Q2),

12Note that Q3 and Q4 are related to Q1 introduced in Proposition 1 while Q5 is related to Q2 of the same proposition.
13In addition, a regularity condition on F is needed. For instance, it suffices to assume that F is differentiable and that its

derivative is of full row rank.
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the zero restrictions in the orthogonal-triangular-block parameterization are

ZjF (f(Λ̃0, Λ̃+,Q1,Q2))eñ,j = ZjF (f(Λ̃0, Λ̃+, In, Ik)) diag(Q1,Q2)eñ,j = 0zj×1 for 1 ≤ j ≤ n.

This last equation can be written as

ZjF (f(Λ̃0, Λ̃+, In, Ik))L
′︸ ︷︷ ︸

G1,j(Λ̃0,Λ̃+)

Q1en,j = 0zj×1 for 1 ≤ j ≤ n.

This allows us to modify Algorithm 1 to consider the additional zero restrictions as follows.

Algorithm 3. The following algorithm makes independent draws from a distribution over the structural

parameterization of a proxy-SVAR conditional on the exogeneity restrictions and the additional zero restrictions.

1. Draw triangular-block parameters (Λ̃0, Λ̃+) independently from the restricted NGN(ν̂, Φ̂, Ψ̂, Ω̂) distribution

using Waggoner and Zha’s (2003) Gibbs sampler.

2. For 1 ≤ j ≤ n, draw x1,j ∈ Rn+1−j−z̃j−zj independently from a standard normal distribution and set

w1,j = x1,j/ ‖ x1,j ‖.

3. For 1 ≤ j ≤ k, draw x2,j ∈ Rk+1−j independently from a standard normal distribution and set w2,j =

x2,j/ ‖ x2,j ‖.

4. Define Q1 = [q1,1 · · · q1,n] recursively by q1,j = K1,jw1,j for any matrix K1,j whose columns form an

orthonormal basis for the null space of the (j − 1 + z̃j + zj)× n matrix:

M1,j =


[
q1,1 · · · q1,j−1 G(Λ̃0)

′ G1,j(Λ̃0, Λ̃+)′

]′
for 1 ≤ j ≤ n− k[

q1,1 · · · q1,j−1 G1,j(Λ̃0, Λ̃+)′

]′
for n− k + 1 ≤ j ≤ n.

5. Define Q2 = [q2,1 · · · q2,k] recursively by q2,j = K2,jw2,j for any matrix K2,j whose columns form an

orthonormal basis for the null space of the (j − 1)× k matrix:

M2,j =

[
q2,1 · · · q2,j−1

]′
for 1 ≤ j ≤ k.

6. Set (Ã0, Ã+) = f(Λ̃0, Λ̃+,Q1,Q2).

7. Return to Step 1 until the required number of draws has been obtained.

As was the case with Algorithm 1, the independent draws of the proxy-SVAR structural parameters produced

by Algorithm 3 will not be from the desired restricted normal-generalized-normal posterior distribution over
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the structural parameterization of a proxy-SVAR conditional on the exogeneity restrictions and the additional

zero restrictions. If X denotes the set of all proxy-SVAR structural parameters that satisfy the exogeneity

restrictions, the relevance condition, and the additional zero restrictions, because of the results in Section 3.4,

the density over the structural parameterization implied by Algorithm 3 is proportional to

NGN(ν̂,Φ̂,Ψ̂,Ω̂)(Λ̃0, Λ̃+)v(f◦g)−1|X (Ã0, Ã+),

where (Λ̃0, Λ̃+,Q1,Q2) = f−1(Ã0, Ã+) and g has been adapted to consider the new matrices M1,j and M2,j .

Thus, we can use this density as our new proposal density. Thus, we next show how to adapt the importance

sampler described in Algorithm 2 to accomplish our objective of making independent draws from the desired

restricted normal-generalized-normal posterior distribution conditional on the exogeneity restrictions, the

relevance condition, and the additional sign and zero restrictions.

To conclude this section, let’s clarify that our methodology cannot be used to impose the restriction that

every proxy is only correlated with a particular structural shock. This requires imposing a diagonal structure

in the k× k matrix V using additional zero restrictions, which is outside the scope of our algorithms given the

constraints embedded in zj for n− k + 1 ≤ j ≤ n.

4.2 Additional Sign and Zero Restrictions

We assume that the additional sign restrictions in the proxy-SVAR structural parameterization are of the

form F̃ (Ã0, Ã+) > 0s,1, where F̃ is continuous and 0 ≤ s is the number of sign restrictions. As explained in

Arias, Rubio-Ramı́rez, and Waggoner (2018), because F̃ is continuous, the set of all proxy-SVAR structural

parameters satisfying the exogeneity restrictions and the additional sign and zero restrictions will be open in

the set of all proxy-SVAR structural parameters satisfying the exogeneity restrictions and the additional zero

restrictions. Thus, if the additional sign restrictions are non-degenerate, so that there is at least one value

of the proxy-SVAR structural parameters satisfying the exogeneity restrictions and the additional sign and

zero restrictions, then the set of all proxy-SVAR structural parameters satisfying the exogeneity restrictions

and the additional sign and zero restrictions will be of positive volume measure in the set of all proxy-SVAR

structural parameters satisfying the exogeneity restrictions and the additional zero restrictions.14 This justifies

algorithms of the type described below to accomplish our objective of making independent draws from the

desired restricted normal-generalized-normal posterior distribution conditional on the exogeneity restrictions,

the relevance condition, and the additional sign and zero restrictions. The next algorithm is a modification of

14The volume measure is defined in Arias, Rubio-Ramı́rez, and Waggoner (2018).
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Algorithm 2 to consider additional sign and zero restrictions when using Algorithm 3 instead of Algorithm 1 in

Step 1.

Algorithm 4. The following algorithm independently draws from the desired restricted NGN(ν̃, Φ̃, Ψ̃, Ω̃)

posterior distribution over the proxy-SVAR structural parameterization conditional on the exogeneity restrictions,

the relevance condition, and the additional sign and zero restrictions.

1. Use Algorithm 3 to independently draw proxy-SVAR structural parameters (Ã0, Ã+) that satisfy the exclusion

restrictions, the relevance condition, and the additional zero restrictions.

2. If (Ã0, Ã+) satisfies the sign restrictions, set its importance weight to

NGN(ν̃,Φ̃,Ψ̃,Ω̃)(Ã0, Ã+)

NGN(ν̂,Φ̂,Ψ̂,Ω̂)(Λ̃0, Λ̃+)v(f◦g)−1|X (Ã0, Ã+)
,

where (Λ̃0, Λ̃+,Q1,Q2) = f−1(Ã0, Ã+) and where X denotes the set of all proxy-SVAR structural parameters

that satisfy the exclusion restrictions, the relevance condition, and the additional zero restrictions.

3. Return to Step 1 until the required number of draws has been obtained.

4. Re-sample with replacement using the importance weights.

As was the case with Algorithm 2, computing the volume element v(f◦g)−1|X (Ã0, Ã+) in Step 2 is the most

expensive part in implementing Algorithm 4. The rest of Algorithm 4 is quite fast. But the reader should

note that we do not need to compute the volume element for all the draws, only for those that satisfy the sign

restrictions. Finally, as before we also need the relevance condition to hold.

5 Application I: The Dynamic Effects of TFP Shocks

In this section we illustrate our methodology by studying the dynamic effects of two types of TFP shocks, a

consumption TFP shock and an investment TFP shock, in a quarterly frequency proxy-SVAR featuring five

endogenous variables and two proxies for the shocks of interest. More specifically, we adopt the specification

of the SVAR and the proxies from Lunsford (2016). Accordingly, the endogenous variables are real GDP

growth, employment growth, inflation, real consumption growth, and real investment in equipment growth.

The remaining details on the data are provided in Appendix A.6. The proxies are a consumption TFP proxy

and an investment TFP proxy based on Fernald’s (2014) consumption and investment TFP series, respectively.

In particular, we use Lunsford’s (2016) proxies, which are obtained by regressing each of the TFP series just

mentioned on four lags of the endogenous variables and by labeling the residuals associated with each of these
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regressions as consumption and investment TFP proxies, respectively.15

The proxy-SVAR features four lags and a constant, and the sample runs from 1947Q2 until 2015Q4.

Consequently, in this application T = 275, n = 5, k = 2, p = 4, and m̃ = pñ + 1. We set ν = ñ = 7,

Φ−1 = 0ñ,ñ, and Ψ = 0m̃ñ,ñ2 to characterize our prior over the proxy-SVAR structural parameters, and we

set ν̂ = ν̃, Φ̂ = Φ̃, Φ̂ = Φ̃ and Ω̂−1 = Ω̃−1 to characterize our proposal over the orthogonal-triangular-block

parameterization.

Figure 1: IRFs to a positive one standard deviation consumption and investment TFP shocks. The blue
solid-dotted curves represent the point-wise posterior medians and the gray shaded areas represent the 68
percent equal-tailed point-wise probability bands to a consumption TFP shock. The red solid curves represent
the point-wise posterior medians and the red shaded areas represent the 68 percent equal-tailed point-wise
probability bands to an investment TFP shock. The figure is based on 10,000 independent effective draws
obtained using Algorithm 4.

Let εTFPt be a vector containing the consumption and investment TFP shocks, i.e. εTFPt = [εC,t εI,t]
′,

and let εOt be a vector containing all other structural shocks. The first set of identification assumptions are

E
[
mtε

TFP ′
t

]
= V 6= 02×2 and E

[
mtε

O′
t

]
= 02×3,

where m′t = [mC,t mI,t] are the proxies for the consumption and investment TFP shocks. As mentioned in

15We downloaded the proxies from Kurt Lunsford’s website at https://sites.google.com/site/kurtglunsford/research.
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Section 4, without additional restrictions these conditions are not enough to distinguish a consumption TFP

shock from an investment TFP shock. As a consequence we also impose the sign restrictions E [mC,tεC,t] > 0,

E [mI,tεI,t] > 0, E [mC,tεC,t] > E [mC,tεI,t] and E [mI,tεI,t] > E [mI,tεC,t] on the entries of V . If we order the

two structural shocks of interest last, this implies setting s = 4,

S4 =

0 0 0 0 0 1 0

0 0 0 0 0 0 1

 , S5 =

0 0 0 0 0 0 1

0 0 0 0 0 1 0

 ,
and

F̃ (Ã0, Ã+) =



e′2,1S4(Ã
−1
0 )′eñ,4

e′2,1S4(Ã
−1
0 )′eñ,4 − e′2,2S5(Ã

−1
0 )′eñ,5

e′2,1S5(Ã
−1
0 )′eñ,5

e′2,1S5(Ã
−1
0 )′eñ,5 − e′2,2S4(Ã

−1
0 )′eñ,4


.

Since in this application there are sign and exogeneity restrictions involved, we use Algorithm 4. More

specifically, we obtain an effective sample size of 10,000 draws of the proxy-SVAR structural parameters

satisfying the sign and exogeneity restrictions. Figure 1 shows the IRFs to a positive one standard deviation

consumption and investment TFP shocks, respectively.16 The blue solid-dotted curves represent the point-wise

posterior medians and the gray shaded areas represent the 68 percent equal-tailed point-wise probability bands

to a consumption TFP shock. The red solid curves represent the point-wise posterior medians and the red

shaded areas represent the 68 percent equal-tailed point-wise probability bands to an investment TFP shock.

These IRFs are qualitatively consistent with the results reported by Lunsford (2016).

In particular, a consumption TFP shock causes an increase in real GDP, consumption in non-durables and

services, consumption in durables and equipment, and employment while the price level gradually decreases.

Although the probability bands associated with the latter variable contain zero, the findings are in line with

those reported by Lunsford (2016). Accordingly, a consumption TFP shock implies opposite movements

in quantities and prices supporting the conventional wisdom about the effects of standard TFP shocks. In

contrast, a positive investment TFP shock leads with high probability to a decrease in real GDP, employment,

consumption, and the price level. As highlighted by Lunsford (2016), these results are inconsistent with the

conventional wisdom of standard TFP shocks but in line with the findings in Liu, Fernald, and Basu (2012).

Finally, the reliable use of the importance sampler requires the importance weights to possess finite variance.

We use the tests proposed by Koopman, Shephard, and Creal (2009) as described in Appendix A.7. In

16While Lunsford (2016) reports the IRFs of the endogenous variables in the SVAR, we report the cumulative IRFs for easy of
exposition.
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Appendix A.8 we show that these tests imply that the finite variance requirement holds for the application

analyzed in this section.

6 Application II: The Dynamic Effects of Personal Income Tax Shocks

In this section we use our methodology to revisit a recent study by Mertens and Montiel-Olea (2018) presenting

new time series evidence—based on proxy-SVARs—on the effects of personal income tax rate cuts on reported

income and other indicators of real activity such as GDP and the unemployment rate. The study under

analysis works in the frequentist paradigm and its three main reported findings can be summarized as follows.

First, negative average marginal tax rate (AMTR) shocks lead not only to increases in real GDP and declines

in the unemployment rate but also to increases in reported income. Second, while income responds to AMTR

shocks, it does not react to average tax rate (ATR) shocks, indicating that substitution effects instead of wealth

effects are crucial for the transmission of tax rate shocks. Third, negative AMTR shocks for taxpayers at the

top 1 percent of the income distribution have positive short-run effects on income and economic activity but

zero long-run effects (i.e., 4 to 5 years after the shock). In contrast, negative AMTR shocks for tax payers at

the bottom 99 percent of the income distribution have zero short-run effects on income and economic activity

but positive long-run effects.

Our Bayesian approach will basically replicate Mertens and Montiel-Olea’s (2018) first finding. When

analyzing their second finding, we will show that the identification scheme in Mertens and Montiel-Olea (2018)

imposes a zero restriction on A0. More specifically, they exactly identify both the AMTR and ATR shocks by

imposing a zero restriction on the systematic component of tax policies. It is important to note that their zero

restriction is linked to a particular Cholesky factorization and, hence, the order of the variables affects the

identification. Each ordering implies a different zero restriction on the systematic component of tax policy and,

therefore, a different identification of the AMTR and ATR shocks. So, Mertens and Montiel-Olea (2018) are

in fact using two different identification schemes. Strangely, when analyzing the IRFs for the AMTR shocks

Mertens and Montiel-Olea (2018) use a different identification than when analyzing the IRFs for the ATR

shocks. In any case, we think that both of their identification schemes are hard to justify because of the zero

restriction on the systematic component of tax policies. Our methods will allow us to substitute this zero

restriction for a set of less restrictive sign restrictions to be described below. Accordingly, we set identify the

AMTR and ATR shocks. Once this is done, and contrary to what Mertens and Montiel-Olea (2018) report,

we find that both substitution and wealth effects seem to play a relevant role for the transmission of tax

rate shocks. Because the IRFs for AMTR shocks implied by both orderings (identification schemes) are in
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agreement, one could be tempted to conclude that Mertens and Montiel-Olea’s (2018) results are robust; in

fact, Mertens and Montiel-Olea (2018) seem to fall into this trap by comparing Panels (A) and (B) in Figure

10 of their paper and highlighting that the results are similar. An additional insight of our exercise is that just

checking two possible identification schemes is a dangerous practice that can give the researcher a false sense

of robustness on her results.

When analyzing Mertens and Montiel-Olea’s (2018) third finding, we first show that they place a zero

restriction on A0 that is analogous to the one used when disentangling the effects of AMTR relative to ATR

shocks. This implies that they exactly identify both the AMTR shocks to the top 1 percent and the AMTR

shocks to the bottom 99 percent by imposing a zero restriction on the systematic component of tax policies.

Second, we show that in this case—even when one decides to ignore the robustness issues raised above and

focuses on two orderings—the IRFs are more sensitive to the ordering of the variables. As in Mertens and

Montiel-Olea’s (2018) second finding, when reporting results for the shocks to the AMTR of the top 1 percent,

they choose a different ordering than when reporting results for the AMTR shocks to the bottom 99 percent.

We find this confusing since in fact their results are not comparable because they come from two different

identification schemes. In any case, we again substitute the zero restriction for a set of less restrictive sign

restrictions to be described below, and we show that our results are very much in line with the results that

Mertens and Montiel-Olea (2018) seem to favor when analyzing their results.

In this application we use the dataset built by Mertens and Montiel-Olea (2018), which we downloaded

from Karel Mertens’s website.17 A detailed description of the dataset can be found in Appendix A of Mertens

and Montiel-Olea (2018).

6.1 Macroeconomic Responses to Marginal Tax Rates

Let’s begin by revisiting the first finding. In their benchmark specification, Mertens and Montiel-Olea (2018)

use yearly data from 1946 through 2012 to estimate a proxy-SVAR including nine endogenous variables, two

exogenous variables, and one proxy for AMTR shocks. The endogenous variables are the negative of log

net-of-tax rate, log reported income, log real GDP per tax unit, the unemployment rate, the log real stock

market index, inflation, the federal funds rate, log real government spending per tax unit, and the change in

log real federal government debt per tax unit.18 The exogenous variables are dummy variables for the years

1949 and 2008. The proxy (which we call the AMTR proxy) is a collection of instances of variation in marginal

17Link to the dataset: https://karelmertenscom.files.wordpress.com/2018/01/data_mmo.xlsx.
18Net-of-tax rate is defined as 1 minus the AMTR.
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tax rates that the authors reasonably consider to be contemporaneously exogenous changes in the AMTR.19

Accordingly, the identification of the AMTR shock is achieved by assuming that the proxy is only correlated

with the AMTR.20 Following Mertens and Montiel-Olea (2018), the SVAR features two lags and a constant

term. Altogether, in this application T = 65, n = 9, k = 1, p = 2, ẽ = 2, and m̃ = pñ+ 1 + ẽ.

Figure 2: IRFs to a positive AMTR shock (rate cut). The solid curves represent the point-wise posterior
medians, and the shaded areas represent the 68 percent equal-tailed point-wise probability bands. The figure
is based on 10,000 independent effective draws obtained using Algorithm 2.

We set ν = ñ, Φ = 0ñ,ñ, Ψ = 0m̃ñ,ñ2 and Ω−1 = 0m̃ñ,m̃ñ to characterize our prior over the proxy-SVAR

structural parameters, and we set ν̂ = ν̃, Φ̂ = Φ̃, Ψ̂ = Ψ̃ and Ω̂−1 = Ω̃−1 to characterize our proposal over

the orthogonal-triangular-block parameterization.21 We use Algorithm 2 to obtain an effective sample size of

19The net-of-tax rate is based on Barro and Redlick (2011); for additional details on the construction of the endogenous variables
and the proxy, we refer the reader to Mertens and Montiel-Olea’s (2018) paper.

20The sign of the AMTR shock is pinned-down by assuming that the IRF of AMTR is negative in response to a negative AMTR
shock.

21In addition, we impose a lower bound on the reliability of the instruments tailored to maximize the efficiency of the importance
sampler. In particular, we assume that the minimum eigenvalue of the reliability matrix

(
Γ−1′

0,2 Γ
−1
0,2 + V V ′

)−1
V V ′ implied by the

posterior distribution of the structural parameters must be greater or equal than 0.2. This implies that at least 20 percent of the
variance of any linear combination of the instruments must be related to the underlying structural shocks of interest. See Mertens
and Ravn (2013) and Gleser (1992) for details on the reliability matrix. Without this threshold our algorithm becomes inefficient
in the subsequent variant of this application, i.e. Section 6.2. For consistency, we use the same lower bound throughout Section 6
although it only becomes crucial for the efficiency of the algorithm in Section 6.2. We think that this issue is due to the fact that
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10,000 draws of proxy-SVAR structural parameters satisfying the exogeneity restrictions.

Figure 2 shows the point-wise median and the 68 percent equal-tailed point-wise probability bands for the

IRFs of the key variables of interest to a positive one standard deviation AMTR shock. The shock lowers the

tax rate for at least 4 years. Clearly, the positive and sizable IRFs of real GDP and the negative and sizable

IRFs of the unemployment rate coincide with a positive and sizable response of income. Therefore, our results

clearly align with those reported in Figure 5 of Mertens and Montiel-Olea (2018).

In Appendix A.9 we show that Koopman, Shephard and Creal’s (2009) tests validate the finite variance

requirement for the reliable use of Algorithm 2.

6.2 Average versus Marginal Tax Rates

The results shown in the previous section imply that AMTR shocks have sizable effects on economic activity.

For example, a negative one standard deviation AMTR shock boosts real GDP by about 0.7 percent after one

year. Next, Mertens and Montiel-Olea (2018) compare the effects of these shocks with those of ATR shocks in

order to understand whether tax policy operates through substitution effects associated with AMTR shocks or

through income effects associated with ATR shocks, which ultimately can provide new insights for assessing

the economic consequences of tax reforms.

To address this issue, Mertens and Montiel-Olea (2018) expand the SVAR used in Section 6.1 by adding the

log ATR as an endogenous variable.22 They identify AMTR and ATR shocks using two proxies. Analogously

to the case of the AMTR proxy, the new proxy (which we call the ATR proxy) is a collection of instances

of variation in ATRs that the authors reasonably consider to be contemporaneously exogenous changes in

the ATR. The identification of the AMTR and ATR shocks is achieved in two steps. First, Mertens and

Montiel-Olea (2018) assume that the proxies are only correlated with the tax rate shocks. As shown in

Proposition 2, this would only separate the tax rates shocks from the rest of the structural shocks but would

not allow the researcher to identify the two tax rates shocks individually. Thus, they also use a particular

Cholesky decomposition of a sub-matrix of (A−10 )′ to isolate one shock from the other. In Appendix A.10 we

show how such a Cholesky decomposition imposes a zero restriction on A0 (and thereby on Ã0) which implies

that the AMTR cannot react contemporaneously to the ATR if the AMTR is ordered first, while the ATR

cannot react contemporaneously to the AMTR if ATR ordered first. Evidently, this additional zero restriction

is a restriction on the systematic component of tax policy and it will exactly identify both the AMTR and

the two tax instruments to be used in this application have many zeros.
22ATR is defined as total revenue and contributions as a ratio of the Piketty and Saez (2003) measure of aggregate market

income.
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ATR shocks. When analyzing Mertens and Montiel-Olea’s (2018) results contrasting the effects of AMTR

and ATR we will order AMTR first because that is the identification scheme under which they conduct such

comparison.

Thus, in this application we have T = 65, n = 10, k = 2, p = 2, ẽ = 2, and m̃ = pñ + 1 + ẽ. We set

ν = ñ, Φ = 0ñ,ñ, Ψ = 0m̃ñ,ñ2 and Ω−1 = 0m̃ñ,m̃ñ to characterize our prior over the proxy-SVAR structural

parameters, and we set ν̂ = ν̃, Φ̂ = Φ̂0 6= Φ̃, Ψ̂ = Ψ̃ and Ω̂−1 = Ω̃−1 to characterize our proposal over the

orthogonal-triangular-block parameterization. We choose Φ̂0 to maximize the efficiency of the importance

sampler.23 We use Algorithm 4 to obtain an effective sample size of 10,000 draws.

Figure 3a shows the point-wise median and the 68 percent equal-tailed point-wise probability bands for the

IRFs of the key variables of interest to a negative one standard deviation AMTR (gray) and ATR (red) shock

when the zero restriction is used. Essentially, this panel replicates Mertens and Montiel-Olea’s (2018) exercise

from a Bayesian perspective. As the reader can see, the panel closely resembles the IRFs reported in Panels

(A) and (C) of Figure 10 of Mertens and Montiel-Olea (2018) and it is very easy to conclude that income, GDP,

and the unemployment rate only react to AMTR shocks. This figure justifies the following claims: “There is,

on the other hand, no evidence for any effect on incomes when average tax rates decline but marginal rates do

not” (Mertens and Montiel-Olea, 2018, page 3), and “The main finding is that, in sharp contrast to the results

for marginal tax rate changes after controlling for average tax rates, there is no evidence that income responds

strongly to average tax rate changes once marginal rate changes are controlled for. The point estimates are in

fact slightly negative, although they are not statistically significant at any horizon.” (Mertens and Montiel-Olea,

2018, page 35).

But one may think that the zero restriction imposed by Mertens and Montiel-Olea (2018) is too restrictive.

We now check how robust the results are to this zero restriction by substituting it with a set of less restrictive

sign restrictions. As we will see below, the results obtained using these sign restrictions suggest caution while

reading Mertens and Montiel-Olea’s (2018) findings. But, before discussing them in more detail, let us describe

our sign restrictions.

Sign Restrictions for Identifying AMTR vs ATR Shocks. (i) The proxy for the AMTR shock is

positively correlated with the AMTR shocks; (ii) The proxy for the ATR shock is positively correlated with the

ATR shocks; (iii) The covariance between the AMTR shock and the AMTR proxy is bigger than the covariance

between the ATR shock and the AMTR proxy; and (iv) The covariance between the ATR shock and the ATR

proxy is bigger than the covariance between the AMTR shock and the ATR proxy.

23If we set Φ̂ = Φ̃ the algorithm becomes very inefficient. The basic description of the approach used for the selection of Φ̂0 is
described in Appendix A.5.
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(a) Mertens and Montiel-Olea (2018)

(b) Sign Restrictions

Figure 3: IRFs to a one standard deviation to the AMTR and ATR shocks. The solid curves (blue for
the AMTR shock and red for the ATR shock) represent the point-wise posterior medians, and the shaded
areas (gray for the AMTR shock and red for the ATR shock) represent the 68 percent equal-tailed point-wise
probability bands. The figure is based on 10,000 independent effective draws obtained using Algorithm 4.
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The implementation of our sign restrictions needs a function F̃ and matrices Sj very similar to the ones

described in Section 5. In the interest of space, we do not describe them. It is important to emphasize that,

while Mertens and Montiel-Olea (2018) exactly identify the two shocks, our sign restrictions set identify them.

Figure 3b uses the set of signs restrictions described above instead of the zero restriction implied by

the Cholesky decomposition. The dynamic responses of income, real GDP, and the unemployment rate

change substantially relative to those shown in Figure 3a. In Figure 3b the 68 percent equal-tailed point-wise

probability bands for the IRF of income are significantly above zero for both AMTR and ATR shocks. When

looking at real GDP and the unemployment rate we also observe differences in the results. The 68 percent

equal-tailed point-wise probability bands for the IRF of real GDP to both shocks are similar when sign

restrictions are used. Turning to the unemployment rate, the IRF of the unemployment rate to an ATR shock

is now mostly negative. The differences in the results are confirmed when analyzing Table 1.

Table 1: Short-run elasticities of income (Inc) and real GDP to tax shocks

Mertens and Montiel-Olea (2018)

Ratio of IRFs Inct+1/AMTRt Inct+1/ATRt GDPt+1/AMTRt GDPt+1/ATRt

Median 1.52 0.12 0.85 0.20

68% Prob. Interval [0.97; 2.15] [ -0.46; 1.06] [ 0.48; 1.28] [ -0.20; 0.83]

Sign Restrictions

Ratio of IRFs Inct+1/AMTRt Inct+1/ATRt GDPt+1/AMTRt GDPt+1/ATRt

Median 1.54 0.52 0.79 0.38

68% Prob. Interval [0.92; 2.32] [0.16; 1.15] [0.37; 1.30] [ 0.13; 0.83]

Note: The entries in the table denote the posterior moments of the ratio between the IRF of income (Inc) and real
GDP one period after the shock and the IRF of the AMTR and ATR on impact following an AMTR and ATR
shock, respectively. See the main text for details. The table is based on the same 10,000 independent effective draws
obtained using Algorithm 4 used in Figure 3.

This table shows the short-run elasticities of income and real GDP to AMTR and ATR shocks when

the zero restrictions are used and when they are substituted by the set of sign restrictions. The short-run

elasticities are measured by the ratio between the IRF of income (real GDP) one period after the shock

and the impact IRF of the AMTR (ATR) to an AMTR (ATR) shock. Accordingly, these elasticities can be

interpreted as the percent change in income and real GDP following an AMTR or ATR shock that decreases

the corresponding tax rate by about 1 percentage point. The reader can see that, when using the Cholesky

decomposition, the 68 percent posterior probability intervals for the short-run elasticities of income and real
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GDP to ATR shocks include negative numbers and that the posterior median is quite low when compared to

the AMTR case. That is not the case when we use the set of sign restrictions instead. Although lower than

the ones corresponding to the AMTR shocks, the short-run elasticities of income and real GDP to ATR shocks

are clearly positive.

Comparing Figures 3a and 3b and reading the results in Table 1, it becomes clear that when using our

less restrictive identification scheme it is very difficult to claim that “There is, on the other hand, no evidence

for any effect on incomes when ATRs decline but marginal rates do not” (Mertens and Montiel-Olea, 2018,

page 2) or “there is no evidence that income responds strongly to ATR changes once marginal rate changes are

controlled for.” (Mertens and Montiel-Olea, 2018, page 35). It is true that there may be other restrictions

consistent with the results in Mertens and Montiel-Olea (2018). Nevertheless, we think that our results make

apparent that further analysis is needed before ruling out the income effects of exogenous changes in average

tax cut rates.

In Appendix A.11 we show that Koopman, Shephard and Creal’s (2009) tests validate the finite variance

requirement for the reliable use of Algorithm 4.

6.3 Marginal Rates Cuts for the Top and Bottom of the Income Distribution

We now turn to the third result highlighted by Mertens and Montiel-Olea (2018). According to their findings,

negative AMTR shocks for taxpayers at the top 1 percent of the income distribution have positive short-run

effects on income and economic activity but zero long-run effects (i.e. 4 to 5 years after the shock); in contrast,

negative AMTR shocks for tax payers at the bottom 99 percent of the income distribution have zero short-run

effects on income and economic activity but positive long-run effects.

As was the case when addressing the effects of AMTR relative to ATR rate cuts, Mertens and Montiel-Olea

(2018) modify the SVAR used in Section 6.1 by introducing additional variables germane to the question under

study. Specifically, they replace the negative of the aggregate log net-of-tax rate with the negative of the log

net-of-tax rate for the top 1 percent and bottom 99 percent of the income distribution, and the aggregate log

income level with the log income levels for the top 1 percent and bottom 99 percent of the income distribution.

In addition, they modify the reduced-form specification by including a linear and a quadratic trend to capture

longer trends in income inequality following Saez (2004) and Saez, Slemrod, and Giertz (2012).

Mertens and Montiel-Olea (2018) parse out the effects of average marginal personal tax rates shocks at the

top 1 percent of the income distribution relative to shocks at the bottom 99 percent by using two newly built

disaggregated measures of exogenous variation in tax rates across the income distribution as proxies for top
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and bottom marginal tax rate shocks. As was the case in Section 6.2, Mertens and Montiel-Olea (2018) exactly

identify both tax rate shocks by combining the exogeneity restrictions with an additional zero restriction on

A0 (and hence on Ã0) imposed by means of a Cholesky decomposition of a sub-matrix of (A−10 )′. This implies

that the AMTR of the top 1 percent cannot react contemporaneously to the AMTR of the bottom 99 percent

(or vice-versa) depending on the ordering. Consequently, this additional zero restriction is again a restriction

on the systematic component of tax policy. When assessing the effects of an AMTR shock for the top 1 percent

they choose the order in which the AMTR for the bottom 99 percent cannot react contemporaneously to

the AMTR for the top 1 percent. We will refer to this identification scheme as Case I. When assessing the

effects of an AMTR for the bottom 99 percent, Mertens and Montiel-Olea (2018) choose the order in which

the AMTR for the top 1 percent cannot react contemporaneously to the AMTR for the bottom 99 percent.

We will refer to this identification scheme as Case II.

In this application T = 65, n = 11, k = 2, p = 2, ẽ = 4, and m̃ = pñ + 1 + ẽ. We set ν = ñ, Φ = 0ñ,ñ,

Ψ = 0m̃ñ,ñ2 and Ω−1 = 0m̃ñ,m̃ñ to characterize our prior over the proxy-SVAR structural parameters, and we set

ν̂ = ν̃, Φ̂ = Φ̂0 6= Φ̃, Ψ̂ = Ψ̃ and Ω̂−1 = Ω̃−1 to characterize our proposal over the orthogonal-triangular-block

parameterization. We choose Φ̂0 to maximize the efficiency of the importance sampler.24 We use Algorithm 4

to obtain an effective sample size of 10,000.

Figure 4 shows the IRFs to a one standard deviation shock to the top 1 percent and bottom 99 percent

personal income marginal tax rate, respectively, for Case I. The solid-dotted blue line and the gray area

show the point-wise posterior medians and the 68 percent equal-tailed point-wise posterior probability bands

to an AMTR shock to the top 1 percent. These IRFs replicate the results in Figure 11 of Mertens and

Montiel-Olea (2018). The solid red line and the red area show the point-wise posterior medians and the 68

percent equal-tailed posterior probability bands to an AMTR shock to the bottom 99 percent; these IRFs are

not reported by Mertens and Montiel-Olea (2018).

Figure 5 shows the IRFs to a one standard deviation shock to the top 1 percent and bottom 99 percent

personal income marginal rate, respectively, for Case II. The red solid line and the red area show the point-wise

posterior medians and the 68 percent equal-tailed posterior probability bands to an AMTR shock to the

bottom 99 percent. These IRFs correspond to the results in Figure 12 of Mertens and Montiel-Olea (2018).

By comparing the latter figure with our results, it becomes evident that we find less support for Mertens and

Montiel-Olea’s (2018) conclusions under this identification scheme. The solid-dotted blue line and the gray

area show the point-wise posterior medians and the 68 percent equal-tailed point-wise posterior probability

24If we set Φ̂ = Φ̃ the algorithm becomes very inefficient. The basic description of the approach used for the selection of Φ̂0 is
described in Appendix A.5.
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Figure 4: IRFs to a one standard deviation shock to the top 1 percent and bottom 99 percent personal
income marginal rate, respectively, identified with the Case I scheme. The solid-dotted blue line and the gray
area show the point-wise posterior medians and the 68 percent equal-tailed posterior probability bands to an
AMTR shock to the top 1 percent. The solid red line and the red area show the point-wise posterior medians
and the 68 percent equal-tailed posterior probability bands to an AMTR shock to the bottom 99 percent. The
figure is based on 10,000 independent draws obtained using Algorithm 4.

bands to an AMTR shock to the top 1 percent; these IRFs are not reported by Mertens and Montiel-Olea

(2018).

31



Figure 5: IRFs to a one standard deviation shock to the top 1 percent and bottom 99 percent personal
income marginal rate, respectively, identified with the Case II scheme. The solid-dotted blue line and the gray
area show the point-wise posterior medians and the 68 percent equal-tailed posterior probability bands to an
AMTR shock to the top 1 percent. The solid red line and the red area show the point-wise posterior medians
and the 68 percent equal-tailed posterior probability bands to an AMTR shock to the bottom 99 percent. The
figure is based on 10,000 independent draws obtained using Algorithm 4.

As can be seen, the IRFs to a one standard deviation shock to the top 1 percent and bottom 99 percent

marginal tax rates shown in Figure 4 endorse the view put forward by Mertens and Montiel-Olea (2018).
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Figure 6: IRFs to a one standard deviation to the top 1 percent (gray) and bottom 99 percent (red) personal
income marginal rate. Instruments plus sign restrictions for identifying AMTR shocks to the top 1 percent
and bottom 99 percent of the income distribution. The solid curves represent the point-wise posterior medians,
and the shaded areas represent the 68 percent equal-tailed point-wise probability bands. The figure is based
on 10,000 independent draws obtained using Algorithm 4.

Nevertheless, Figure 5 makes clear that the results on the effects of tax rate cuts shocks to the bottom 99

percent are not robust to using Case II. In particular, even though under Case I the 68 percent posterior

probability IRFs for real GDP and the unemployment rate are above and below zero respectively, the 68
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percent probability bands for these IRFs do contain zero under Case II. This implies that, while we are able to

replicate Mertens and Montiel-Olea’s (2018) findings under one ordering, we are not able to replicate them

under the alternative order. The fact that a potentially influential result hinges on the ordering of an additional

zero restriction makes it less appealing. Furthermore, note that under Case II the IRFs of income for the top 1

percent as well as the IRFs for the AMTR for the top 1 percent to a one standard deviation shock to the

bottom 99 percent marginal tax rate are not well identified.

Interestingly, next we will show that the lack of robustness and identification vanishes once we replace

Mertens and Montiel-Olea’s (2018) zero restriction on tax policy with less restrictive sign restrictions analogous

to those used to parse out AMTR from ATR shocks. More specifically, when using the less restrictive sign

restrictions described below we are able to confirm Mertens and Montiel-Olea’s (2018) conclusions.

Sign Restrictions for Identifying AMTR Shocks to the Top 1 and Bottom 99 percent. (i) The

proxy for the AMTR shock to the top 1 percent is positively correlated with the AMTR shock to the top 1

percent; (ii) The proxy for the AMTR shock to the bottom 99 percent is positively correlated with the AMTR

shock to the bottom 99 percent; (iii) The covariance between the AMTR shock to the top 1 percent and the

proxy for the AMTR shock to the top 1 percent is bigger than the covariance between the AMTR shock to the

bottom 99 percent and the proxy for the AMTR shock to the top 1 percent; and (iv) The covariance between the

AMTR shock to the bottom 99 percent and the proxy for the AMTR shock to the bottom 99 percent is bigger

than the covariance between the AMTR shock to the top 1 percent and the proxy for the AMTR shock to the

bottom 99 percent.

Analogously to the case in Section 6.2, the implementation of our sign restrictions needs a function F̃ and

matrices Sj very similar to the ones described in Section 5. In the interest of space, we do not describe them.

Figure 6 shows the IRFs to a one standard deviation AMTR shock to the top 1 percent and bottom

99 percent, respectively, identified with our sign restrictions. The red solid line and the red area show the

point-wise posterior medians and the 68 percent equal-tailed posterior probability bands to an AMTR shock

to the bottom 99 percent. The solid-dotted blue line and the gray area show the point-wise posterior medians

and the 68 percent equal-tailed posterior probability bands to an AMTR shock to the top 1 percent. It is clear

from the figure that Mertens and Montiel-Olea’s (2018) conclusions regarding the effects of tax cut rates shocks

at the top and bottom of the distribution can be supported on the grounds of the exogeneity restrictions and

our sign restrictions.

In Appendix A.12 we show that Koopman, Shephard and Creal’s (2009) tests validate the finite variance

requirement for the reliable use of Algorithm 4.
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7 Conclusion

This paper develops efficient algorithms to independently draw from the normal-generalized-normal family of

conjugate posterior distributions over the structural parameterization of a Bayesian proxy-SVAR. In addition,

our approach expands the type of identification schemes that can be considered under the frequentist paradigm,

e.g., Montiel-Olea, Stock and Watson (2016). More specifically, influential papers using the frequentist

paradigm rely on additional and often questionable zero restrictions when more than one instrument is used to

identify more than one structural shock. In contrast, our Bayesian approach allows researchers to consider less

restrictive identification schemes.
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A Appendix

A.1 Proof of Proposition 1

Proof. It is well known that in the class of Gaussian linear models considered in this paper (Ā0, Ā+) and

(Â0, Â+) are observationally equivalent if and only if they have the same reduced-form parameterization. They

will have the same reduced-form parameterization if and only if

(
Ā0Ā

′
0

)−1
=
(
Â0Â

′
0

)−1
(8)

Ā+Ā
−1
0 = Â+Â

−1
0 . (9)

First, assume that (Ā0, Ā+) and (Â0, Â+) are observationally equivalent so that Equations (8) and (9)

hold. We show that there is Q ∈ Q such that Ā0 = Â0Q and Ā+ = Â+Q. Let Q = Â−10 Ā0. It follows

directly from the definition of Q that Ā0 = Â0Q, and Equation (9) implies Ā+ = Â+Q. We now show that

Q ∈ Q. It follows from Equation (8) that Q′ = Q−1. Hence, Q is orthogonal. Because the lower left-hand

k × n block of both Ā0 and Â0 are zero, the same will be true for both Â−10 and Q. Let

Q =

 Q1 W

0k×n Q2

 ,
where Q1 is n× n, Q2 is k × k, and W is n× k. Because Q′Q = Iñ, it must be the case that W ′Q1 = 0k×n,

Q′1Q1 = In and W ′W +Q′2Q2 = Ik. But W ′Q1 = 0k×n, if and only if W = 0n×k. So Q ∈ Q.

Now, assume that Ā0 = Â0Q and Ā+ = Â+Q for some matrix Q ∈ Q. It is easy to see by direct

substitution that Equations (8) and (9) hold, which implies that (Ā0, Ā+) and (Â0, Â+) are observationally

equivalent.

A.2 The Function Ki,j

In Steps 1, 2, and 3 of Algorithm 1 draws of (Λ̃0, Λ̃+,wi,j) were obtained.25 For each draw, Steps 4 and 5 of

Algorithm 1 recursively defined matrices Mi,j and Ki,j , though the Ki,j were not uniquely defined. Using the

Ki,j , we can define a mapping g of (Λ̃0, Λ̃+,wi,j) to (Λ̃0, Λ̃+, qi,j), where qi,j = Ki,jwi,j . In this appendix we

show that there is an open set U ⊂ Rñ
2+ñm̃+

∑n
j=1(n+1−j−z̃j)+

∑k
j=1(k+1−j) such that g can be uniquely defined

over U so that it is continuously differentiable. Furthermore, U will contain almost all draws of (Λ̃0, Λ̃+,wi,j).

25In this appendix it will always be the case that i = 1, 2 and 1 ≤ j ≤ n when i = 1 and 1 ≤ j ≤ k when i = 2.
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To define the Ki,j we need mi × ni,j reference matrices Wi,j that are of full column rank, where

mi =

n if i = 1

k if i = 2
and ni,j =


n+ 1− j − k if i = 1 and j ≤ n− k

n+ 1− j if i = 1 and j > n− k

k + 1− j if i = 2

.

We recursively define Ui,j , M̃i,j , and Ki,j . Let Ui,0 = Rñ
2+ñm̃+

∑n
j=1(n+1−j−z̃j)+

∑k
j=1(k+1−j). For (Λ̃0, Λ̃+,wi,j)

in Ui,j−1, define

M̃i,j(Λ̃0, Λ̃+,wi,j) =


[
Ki,1wi,1 · · · Ki,j−1wi,j−1 G(Λ̃0)

′ Wi,j

]
i = 1 and j ≤ n− k[

Ki,1wi,1 · · · Ki,j−1wi,j−1 Wi,j

]
otherwise

.

Next, let

Ui,j =
{

(Λ̃0, Λ̃+,wi,j) ∈ Ui,j−1| det(M̃i,j(Λ̃0, Λ̃+,wi,j)) 6= 0
}
.

Because the determinant function is continuous, Ui,j will be open. Let

M̃i,j(Λ̃0, Λ̃+,wi,j) = Qi,j(Λ̃0, Λ̃+,wi,j)Ri,j(Λ̃0, Λ̃+,wi,j)

be the QR-decomposition of M̃i,j(Λ̃0, Λ̃+,wi,j) normalized so that the diagonal of Ri,j(Λ̃0, Λ̃+,wi,j) is positive

and define Ki,j(Λ̃0, Λ̃+,wi,j) to be the last ni,j columns of Qi,j(Λ̃0, Λ̃+,wi,j). The QR-decomposition of a

square non-singular matrix, normalized so that the diagonal of the triangular component is positive, is a

continuously differentiable function. Thus, Ki,j(Λ̃0, Λ̃+,wi,j) is defined and continuously differentiable over

Ui,j . Let U be the intersection of all the Ui,j . Note that U is open and g can be defined over U so that it is

continuously differentiable.

All that remains to be shown is that U contains almost all draws of (Λ̃0, Λ̃+,wi,j). It suffices to show that

U ci,j , the complement of Ui,j in Ui,j−1, is of measure zero. We will show that U ci,j is a union of manifolds of

strictly lower dimension and thus is of measure zero. For each ` with 0 < ` < mi and each set of ` columns

of M̃i,j(Λ̃0, Λ̃+,wi,j), consider the set of all (Λ̃0, Λ̃+,wi,j) ∈ Ui,j−1 such that the given set of ` columns are

linearly independent and the remaining columns are in the span of the ` linearly independent columns. Any

element of U ci,j will be in at least one such set. Furthermore, sets of these forms will be manifolds of strictly

lower dimension.26 This completes the proof.

26For any set of ` columns of M̃i,j(Λ̃0, Λ̃+,wi,j), we can project each of the remaining columns onto perpendicular component
of the span of the ` selected columns. As long as the selected columns are linearly independent, this mapping will be continuously
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A.3 Proof of Proposition 2

Proof. By Proposition 1, the proxy-SVAR structural parameters (Ā0, Ā+) and (Â0, Â+) are observationally

equivalent if and only if there exists Q ∈ Q such that Ā0 = Â0Q and Ā+ = Â+Q. So to prove Proposition 2, it

suffices to prove that ifQ ∈ Q and (Â0, Â+) satisfy the exogeneity restrictions and the relevance condition, then

(Â0Q, Â+Q) will satisfy the exogeneity restrictions and relevance condition if and only if Q ∈ X ⊂ Q. Recall

from Sections 3.2 and 3.3, the proxy-SVAR parameters (Ã0, Ã+) will satisfy the relevance condition if and only

if J(Ã−10 )′L′ is of full row rank and will satisfy the exogeneity restrictions if and only if J(Ã−10 )′L′K ′ = 0k×n−k,

where K = [In−k 0n−k×k].

We will maintain the assumption that Q ∈ Q and (Â0, Â+) satisfy the exogeneity restrictions and the

relevance condition. First assume that Q ∈ X ⊂ Q, so that Q = diag(Q3,Q4,Q5), where Q3 ∈ (n− k), Q4 ∈

(k), and Q5 ∈ (k). Since J((Â0Q)−1)′L′ = J(Â−10 )′L′ diag(Q3,Q4), J((Â0Q)−1)′L′K ′ = J(Â−10 )′L′K ′Q3,

and (Â0, Â+) satisfy the relevance condition and the exogeneity restriction, so will (Â0Q, Â+Q).

Now assuming that the parameters (Â0Q, Â+Q) satisfy the relevance condition and the exogeneity

restriction, we show that Q ∈ X . Because Q ∈ Q, it is of the form Q = diag(Q1,Q2), where Q1 ∈ O(n) and

Q2 ∈ O(k). Let

Q1 =

Q11 Q12

Q21 Q22

 ,
where Q11 is (n− k)× (n− k), Q12 is (n− k)× k, Q21 is k× (n− k), and Q22 is k× k. If Q21 is zero, then it

will follow that Q ∈ X . Because (Â0, Â+) satisfies both the relevance condition and the exogeneity restrictions,

the columns of K ′ form a basis for the null space of J(Â−10 )′L′. Because both (Â0, Â+) and (Â0Q, Â+Q)

satisfy the exogeneity restrictions, then

0k×n−k = J((Â0Q)−1)′L′K ′ = J(Â−10 )′L′

K ′Q11 +

0n−k,n−k

Q21


 = J(Â−10 )′L′

0n−k,n−k

Q21

 .
Thus Q21 must be zero as desired.

A.4 Gibbs Sampler

In Waggoner and Zha (2003), a Gibbs sampler is described for sampling from a posterior distribution of a

structural VAR over a certain class of normal priors and subject to a certain class of linear non-cross equation

differentiable and the remaining columns will be in the span of the selected columns if and only if this mapping is zero. This
mapping along with standard results from multivariate calculus is enough to imply that the sets defined above are manifolds of
strictly lower dimension.
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restrictions. In that paper, the restrictions are described in terms of free parameters: In particular, if λ̃0,j and

λ̃+,j denote the jth columns of Λ̃0 and Λ̃+, respectively, then it is assumed that the λ̃0,j and λ̃+,j that satisfy

the restrictions are of the form

λ̃0,j = Ujγ0,j and λ̃+,j = Vjγ+,j ,

where both Uj and Vj have orthonormal columns for 1 ≤ j ≤ ñ. Because Λ̃0 must be upper triangular, Uj

can be taken to be the first j columns of Iñ. Because Λ̃+ satisfy the block restrictions, Vj can be taken to be

Im̃ for n+ 1 ≤ j ≤ ñ. When 1 ≤ j ≤ n, Vj will be block diagonal with the first p blocks equal to the first n

columns of Iñ and the last block the scalar one.

The Gibbs sampler is described in terms of a non-negative scalar T and matrices Hj , Pj and Sj , for

1 ≤ j ≤ ñ. In that paper, the goal was to sample from a posterior and so T , Hj , Pj and Sj were given in

terms of restrictions, prior, and data. Our goal is to sample from a normal-generalized-normal distribution

conditional on the above restrictions, so we will describe T , Hj , Pj and Sj in terms ν̂, Φ̂, Ψ̂, and Ω̂ and the

above restrictions. The Φ̂, Ψ̂, and Ω̂ must be block diagonal, so assume that Φ̂ = diag(Φ̂j), Ψ̂ = diag(Ψ̂j),

and Ω̂ = diag(Ω̂j).

T = ν − ñ

Hj = (V ′j Ω̂
−1
j Vj)

−1

Pj = HjV
′
j Ω̂
−1
j Ψ̂Uj

Sj =

(
1

T
(U ′jΦ̂Uj +U ′jΨ̂

′Ω̂−1Ψ̂Uj − P ′jH−1j Pj)

)−1

A.5 Proposal Normal-Generalized-Normal Parameters

As mentioned in Section 3, while oftentimes it suffices to choose (ν̂, Φ̂, Ψ̂, Ω̂) to be equal to (ν̃, Φ̃, Ψ̃, Ω̃), there

are instances in which this can lead to small effective sample sizes in our importance sampler. In such cases we

find it useful to tailor the choice of (ν̂, Φ̂, Ψ̂, Ω̂) by choosing the value of Φ̂ that minimizes the squared of the

difference between the target and the proposal density evaluated at a given number of draws of the posterior

distribution over the structural parameterization obtained when (ν̂, Φ̂, Ψ̂, Ω̂) is set equal to (ν̃, Φ̃, Ψ̃, Ω̃).27

27In the applications of our paper that rely on this procedure (i.e. Sections 6.2 and 6.3), performing this optimization based on
1,000 draws of the structural parameters suffices to find an efficient choice of Φ̂.
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A.6 Data Appendix for Section 5

Here we describe the data used in Section 5 in more details. The time series used to construct the endogenous

variables used in the proxy-SVAR are:

1. Real Gross Domestic Product, BEA, NIPA table 1.1.6, line 1, billions of chained (2009) dollars, seasonally

adjusted at annual rates. Downloaded from https://www.bea.gov.

2. Total Private Employment, BLS, Current Employment Statistics survey (National), series Id CES0500000001,

thousands, seasonally adjusted. Downloaded from https://www.bls.gov.

3. Price Index for Gross Domestic Product, BEA, NIPA table 1.1.4, line 1, index 2009=100, seasonally adjusted.

Downloaded from https://www.bea.gov.

4. Personal Consumption Expenditures on Non-durable Goods, BEA NIPA table 1.1.5, line 5, billions of

dollars, seasonally adjusted at annual rate. Downloaded from https://www.bea.gov.

5. Personal Consumption Expenditures on Services, BEA NIPA table 1.1.5, line 6, billions of dollars, seasonally

adjusted at annual rate. Downloaded from https://www.bea.gov.

6. Personal Consumption Expenditures on Durable Goods, BEA NIPA table 1.1.5, line 4, billions of dollars,

seasonally adjusted at annual rate. Downloaded from https://www.bea.gov.

7. Fixed Investment in Equipment, BEA NIPA table 1.1.5, line 8, billions of dollars, seasonally adjusted at

annual rate. Downloaded from https://www.bea.gov.

8. Real Consumption = (4)+(5) / (3)

9. Real Investment in Equipment = (6)+(7) / (3)

The endogenous variables in the SVAR are series (1), (2), (3), (8), and (9) transformed to percent log

differences.

A.7 Finite Variance Tests of Importance Sampling Weights

We numerically test for the variance of the importance sampler weights to be finite in each of the applications

of the paper. In particular we use the Wald, score, and likelihood ratio (LR) tests as described in Koopman,

Shephard, and Creal (2009). These tests assume that the importance sampler weights are independent draws

from a Pareto distribution characterized by the shape parameter ξ. The null of each one of these tests is

H0 : ξ =
1

2
and H1 : ξ >

1

2

because for ξ > 1
2 the Pareto distribution variance does not exist.
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We conduct the tests for several thresholds of the importance sampler weights ranging from the largest 50

percent to the largest 1 percent of the importance sampler weights. These thresholds determine the number of

importance sampler weights used to implement the tests. The 95 percent critical values for the Wald, score,

and LR tests are 1.64, 1.64, and 2.69 respectively.

A.8 Tests for the Analysis in Section 5

Table A.1 shows the value of the tests described above for several thresholds—as shown in the first row of

the table—applied to the analysis performed in Section 5. The second row of the table shows the Wald test

statistics, the third row shows the score test statistics, and the fourth row shows the LR test statistics. None

of the values displayed in Table A.1 exceed the critical values reported above. Hence, these tests indicate that

the importance sampler weights have finite variance.

Threshold Largest 50% Largest 40% Largest 30% Largest 10% Largest 1%

Wald -2.36 -2.06 -1.70 -0.86 -0.22
Score -9.34 -8.07 -6.31 -3.77 -1.25
LR 0 0 0 0 0

Table A.1: Wald, Score and Likelihood Ratio Tests for the Analysis in Section 5.

A.9 Tests for the Analysis in Section 6.1

Table A.2 shows that Koopman, Shephard and Creal’s (2009) tests indicate that the importance weights used

in Section 6.1 have finite variance.

Threshold Largest 50% Largest 40% Largest 30% Largest 10% Largest 1%

Wald -4979.60 -4237.73 -3478.55 -1716.32 -355.17
Score -6.07 -5.58 -5.10 -3.99 -1.63
LR 0 0 0 0 0

Table A.2: Wald, Score and Likelihood Ratio Tests for the Analysis in Section 6.1.

A.10 Understanding the Additional Zero Restrictions

The reduced-form parameterization implied by Equation (3) is

y′t = x′tB + u′t,
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where B = A+A
−1
0 , u′t = ε′tA

−1
0 , and E [utu

′
t] = Σ = (A0A

′
0)
−1. Thus, we have that

ut = (A−10 )′εt, (10)

where ut are the reduced-form innovations. We can rewrite Equation (10) as

u1t

u2t

 =

B11 B12

B21 B22


ε1t
ε2t

 where (A−10 )′ =

B11 B12

B21 B22


and ε1t are the k structural shocks correlated with the proxies and ε2t are the n− k structural shocks that are

not correlated with the proxies.28 B11 is a k× k matrix, B12 is a k× (n− k) matrix, B21 is a (n− k)× (n− k)

matrix, and B22 is a (n− k)× (n− k) matrix. Hence, we have

u1t = B11ε1t +B12ε2t (11)

and

u2t = B21ε1t +B22ε2t. (12)

From Equation (12), we have that

ε2t = −B−122 B21ε1t +B−122 u2t. (13)

Then, Equations (11) and (13) imply

u1t = B11ε1t +B12

(
−B−122 B21ε1t +B−122 u2t

)
(14)

or

u1t = ηu2t + S1ε1t, (15)

where η = B12B
−1
22 and S1 =

(
B11 −B12B

−1
22 B21

)
. Similarly,

u2t = ζu1t + S2ε2t, (16)

28In Section 2.2 we correlated the last k structural shocks with the proxies. That was without loss of generality. We change the
order here to better match the explanations in Mertens and Ravn (2013).
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where ζ = B21B
−1
11 and S2 =

(
B22 −B21B

−1
11 B12

)
. Equations (15) and (16) replicate Equations (15) and (16)

in Mertens and Ravn (2013). Using Equation (15) and (16), we get

ut =

 Ik −η

−ζ In−k


−1 S1 0

0 S2

 εt =

Ik + η (In−k − ζη)−1 ζ (Ik − ηζ)−1η

(In−k − ζη)−1ζ In−k + ζ (Ik − ηζ)−1 η


S1 0

0 S2

 εt. (17)

Hence, we have that

(A−10 )′ =

Ik + η (In−k − ζη)−1 ζ (Ik − ηζ)−1η

(In−k − ζη)−1ζ In−k + ζ (Ik − ηζ)−1 η


S1 0

0 S2

 . (18)

By letting the first column of (A−10 )′ be denoted by β1 we see from Equation (18) that

β1 =

Ik + η (In−k − ζη)−1 ζ

(In−k − ζη)−1ζ

S1. (19)

Mertens and Ravn (2013) show that for any value of the reduced-form parameters one can solve for β1S
−1
1 and

S1S
′
1, but not for S1. In particular, on page 1224 the authors write, “Ideally one would like to identify S1 but

this requires arbitrary assumptions on how personal income taxes respond contemporaneously to unanticipated

changes in corporate taxes (beyond the indirect contemporaneous endogenous effects through u2,t), and vice

versa. Fortunately, knowledge of β1S
−1
1 still permits economically meaningful structural responses to any linear

combination of tax shocks. We report responses that result from a Cholesky decomposition of S1S
′
1, imposing

that S1 is lower triangular.” Hence, Mertens and Ravn (2013) seem to claim that imposing that S1 is lower

triangular does not imply any additional identification restrictions.

Let’s now see what the implications are of imposing that S1 is lower triangular for the matrix describing

the contemporaneous relations among the variables, i.e., A0. First, letting L1 = S−11 , note that

A0 =

 L′1 −ζ ′L′1

−η′S′2
(
S−12

)′
 , (20)

where L1 = S−11 . Since S1 is lower triangular, L1 is also lower triangular. Hence, Equation (20) implies that

imposing that S1 is lower triangular is indeed imposing additional zero restrictions in A0. Thus, imposing

that S1 is lower triangular does indeed imply some additional zero identification restrictions.

When identifying marginal and average tax shocks, Mertens and Montiel-Olea (2018) use two proxies to
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identify two structural shocks. Thus, L′1 = U1 is an upper triangular matrix of dimension 2× 2. Therefore, we

have

A0 =


 u11 u12

0 u22

−ζ ′ (S−12

)′
−η′L′1

(
S−12

)′

 ,

which implies that the systematic part of AMTR cannot react contemporaneously to ATR if AMTR is ordered

first. If ATR is ordered first, ATR cannot react contemporaneously to AMTR.

A.11 Tests for the Analysis in Section 6.2

Table A.3 presents Koopman, Shephard and Creal’s (2009) tests for the case in which the average and marginal

tax rates are identified using the restrictions in Mertens and Montiel-Olea (2018) described in Section 6.2.

Threshold Largest 50% Largest 40% Largest 30% Largest 10% Largest 1%

Wald -17.50 -14.25 -11.04 -4.10 -0.48
Score -10.63 -9.13 -7.71 -3.95 -0.92
LR 0 0 0 0 0

Table A.3: Wald, Score and Likelihood Ratio Tests for the Analysis in Section 6.2 for the proxy-SVAR
identified with proxy and zero restrictions.

Table A.4 shows that Koopman, Shephard and Creal’s (2009) tests indicate that the importance weights

used in Section 6.2 for the proxy-SVAR identified with proxy and sign restrictions have finite variance.

Threshold Largest 50% Largest 40% Largest 30% Largest 10% Largest 1%

Wald -10.23 -9.05 -7.43 -3.62 -0.90
Score -6.18 -6.03 -5.47 -3.81 -1.72
LR 0 0 0 0 0

Table A.4: Wald, Score and Likelihood Ratio Tests for the Analysis in Section 6.2 for the proxy-SVAR
identified with proxy and sign restrictions.

A.12 Tests for the Analysis in Section 6.3

Table A.5 presents Koopman, Shephard and Creal’s (2009) tests for the case in which the bottom and top tax

rates cut shocks are identified using the Case I scheme described in Section 6.3.
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Threshold Largest 50% Largest 40% Largest 30% Largest 10% Largest 1%

Wald -34.51 -29.20 -23.77 -10.35 -1.64
Score -11.94 -9.97 -8.23 -4.15 -0.92
LR 0 0 0 0 0

Table A.5: Wald, Score and Likelihood Ratio Tests for the Analysis in Section 6.3 for the proxy-SVAR
identified using the Case I scheme.

Table A.6 presents Koopman, Shephard and Creal’s (2009) tests for the case in which the bottom and top

tax rates cut shocks are identified using the Case II scheme described in Section 6.3.

Threshold Largest 50% Largest 40% Largest 30% Largest 10% Largest 1%

Wald -32.99 -27.91 -22.22 -8.41 -0.72
Score -11.58 -9.67 -7.89 -3.55 -0.54
LR 0 0 0 0 0

Table A.6: Wald, Score and Likelihood Ratio Tests for the Analysis in Section 6.3 for the proxy-SVAR
identified using the the Case II scheme.

Table A.7 presents Koopman, Shephard and Creal’s (2009) tests for the case in which the bottom and top

tax rates cut shocks are identified using the less restrictive scheme described in Section 6.3.

Threshold Largest 50% Largest 40% Largest 30% Largest 10% Largest 1%

Wald -28.67 -24.77 -20.30 -9.17 -2.03
Score -10.85 -9.28 -7.52 -3.60 -1.09
LR 0 0 0 0 0

Table A.7: Wald, Score and Likelihood Ratio Tests for the Analysis in Section 6.3 for the proxy-SVAR
identified using the less restrictive identification scheme.
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