We use cookies on our website to give you the best online experience. Please know that if you continue to browse on our site, you agree to this use. You can always block or disable cookies using your browser settings. To find out more, please review our privacy policy.

COVID-19 RESOURCES AND INFORMATION: See the Atlanta Fed's list of publications, information, and resources; listen to our Pandemic Response webinar series.


Policy Hub: Macroblog provides concise commentary and analysis on economic topics including monetary policy, macroeconomic developments, inflation, labor economics, and financial issues for a broad audience.

Authors for Policy Hub: Macroblog are Dave Altig, John Robertson, and other Atlanta Fed economists and researchers.

Comment Standards:
Comments are moderated and will not appear until the moderator has approved them.

Please submit appropriate comments. Inappropriate comments include content that is abusive, harassing, or threatening; obscene, vulgar, or profane; an attack of a personal nature; or overtly political.

In addition, no off-topic remarks or spam is permitted.

March 2, 2017

Gauging Firm Optimism in a Time of Transition

Recent consumer sentiment index measures have hit postrecession highs, but there is evidence of significant differences in respondents' views on the new administration's economic policies. As Richard Curtin, chief economist for the Michigan Survey of Consumers, states:

When asked to describe any recent news that they had heard about the economy, 30% spontaneously mentioned some favorable aspect of Trump's policies, and 29% unfavorably referred to Trump's economic policies. Thus a total of nearly six-in-ten consumers made a positive or negative mention of government policies...never before have these spontaneous references to economic policies had such a large impact on the Sentiment Index: a difference of 37 Index points between those that referred to favorable and unfavorable policies.

It seems clear that government policies are holding sway over consumers' economic outlook. But what about firms? Are they being affected similarly? Are there any firm characteristics that might predict their view? And how might this view change over time?

To begin exploring these questions, we've adopted a series of "optimism" questions to be asked periodically as part of the Atlanta Fed's Business Inflation Expectations Survey's special question series. The optimism questions are based on those that have appeared in the Duke CFO Global Business Outlook survey since 2002, available quarterly. (The next set of results from the CFO survey will appear in March.)

We first put these questions to our business inflation expectations (BIE) panel in November 2016 . The survey period coincided with the week of the U.S. presidential election, allowing us to observe any pre- and post-election changes. We found that firms were more optimistic about their own firm's financial prospects than about the economy as a whole. This finding held for all sectors and firm size categories (chart 1).

In addition, we found no statistical difference in the pre- and post-election measures, as chart 2 shows. (For the stat aficionados among you, we mean that we found no statistical difference at the 95 percent level of confidence.)

We were curious how our firms' optimism might have evolved since the election, so we repeated the questions last month  (February 6–10).

Among firms responding in both November and February (approximately 82 percent of respondents), the overall level of optimism increased, on average (chart 3). This increase in optimism is statistically significant and was seen across firms of all sizes and sector types (goods producers and service providers).

The question remains: what is the upshot of this increased optimism? Are firms adjusting their capital investment and employment plans to accommodate this more optimistic outlook? The data should answer these questions in the coming months, but in the meantime, we will continue to monitor the evolution of business optimism.

February 7, 2017

Net Exports Continue to Bedevil GDPNow

Real gross domestic product (GDP) grew at an annualized rate of 1.9 percent in the fourth quarter, according to the advance estimate from the U.S. Bureau of Economic Analysis (BEA), 1.0 percentage point below the Atlanta Fed's final GDPNow model projection. This was a sizable miss relative to other forecasts. Both the consensus estimate from the January Wall Street Journal Economic Forecasting Survey and the January 20 staff nowcast from the New York Fed were expecting 2.1 percent growth last quarter.

The miss was also large relative to the historical accuracy of the GDPNow model. As the table below shows, almost all of GDPNow's error for fourth quarter growth was concentrated in real net exports. For the other broad subcomponents, GDPNow was more accurate than usual, as the last two columns of the table show. But net exports subtracted 1.70 percentage points from real GDP growth last quarter, whereas GDPNow forecasted they would only reduce growth by 0.64 percentage points. All but 0.02 percentage points of this error was in the "goods" category as opposed to services.

Three months ago, I wrote a macroblog post showing that nearly all of GDPNow's 0.8 percentage point error for third-quarter growth was concentrated in goods net exports. That analysis explained how GDPNow's goods net exports forecast is a weighted average of two forecasts. One of these forecasts is a "bean counting" model that uses monthly source data on nominal values and price deflators for goods imports and exports. The other is a quarterly econometric model that uses subcomponents of real GDP for prior quarters. In the GDPNow model, the "bean counting" model gets nearly 60 percent of the weight just before the advance GDP release.

To see how this approach matters for the GDP forecast, the following chart shows the "real-time" forecasts of the contribution of goods net exports to growth just before BEA's advance GDP estimate from the two models alongside the advance estimate of the contribution and the final GDPNow forecast.

We see that the "bean counting" forecast has been much more accurate than the quarterly econometric forecast, particularly for the last two quarters of 2016. Not surprisingly given its name, the "bean counting" model was able to largely capture the 0.75 percentage points that soybean exports contributed to third-quarter real GDP growth and the just over 0.5 percentage points they likely subtracted from fourth-quarter growth. The econometric model was not.

The final forecasts of goods net exports from the "bean counting" model have also been more accurate than GDPNow since forecasts were first posted online in mid-2014. Does this imply that an alternative "bean counting" version of GDPNow would be preferable? The answer is less obvious than you might think. Not putting any weight on the quarterly econometric model for any GDP subcomponents yields an average error for GDP growth (without regard to sign) of 0.635 percentage points, and the same statistic for GDPNow is 0.589 percentage points. This is despite the fact that the "bean counting" approach has been more accurate than GDPNow in its forecasts of net exports and about as accurate, on balance, for the other GDP subcomponents.

The final forecast of real GDP growth last quarter of this alternative "bean counting" model was 2.8 percent—only slightly more accurate than GDPNow. (For each GDP subcomponent, I include the "bean counting" and quarterly econometric model forecasts in this excel spreadsheet.)

However, if variants like the aforementioned "bean counting" approach continue to outperform the GDPNow model in one or more dimensions, we may consider regularly reporting their forecasts along with the GDPNow forecast.

December 5, 2016

Using Judgment in Forecasting: Does It Matter?


Many professional forecasters use statistical models when making their near-term projections for real gross domestic product (GDP) growth. A 2013 special survey on the forecasting methods of the Survey of Professional Forecasters  found that 18 out of 21 respondents featured a statistical model prominently in their current-quarter economic projections. Nevertheless, there is fairly compelling evidence that many professional forecasters incorporate judgment in their forecasts of the first estimate of real GDP growth for a quarter—even when much of the source data used to construct the GDP estimate are available.

In the October 2016 Wall Street Journal Economic Forecasting Survey (WSJ), the most common panelist projection for annualized third-quarter real GDP growth was 2.5 percent, and the second most common one was 3.0 percent. The first digit after the decimal point, or tenths digit, of these two numbers are "5" and "0." Of the 58 individual forecasts of third-quarter growth in the survey, 21 had a tenths digit of "0" or "5," a total that is almost twice as large as we would expect if all tenths digits were equally likely to be submitted.

This pattern isn't unique to the most recent quarter's GDP forecast. The following chart shows the historical frequency of the tenths digit in past WSJ surveys for first estimates of real GDP growth over the period from the first quarter of 2003 to the third quarter of 2016, made about three weeks before the release.

Almost 40 percent of these 2,390 forecasts have a tenths digit of "0" or "5." In contrast, the historical distribution of published first estimates of real GDP growth from the fourth quarter of 1991 to the third quarter of 2016 and real gross national product (the most common measure of U.S. production in an earlier era) growth from the third quarter of 1965 to the third quarter of 1991 has a tenths digit of either "0" or "5" only 18 percent of the time. The historical Atlanta Fed's GDPNow forecasts have a "0" or a "5" tenths digit only 15 percent of the time.

More formally, one easily can reject the hypothesis at the 1 percent significance level that the tenths digit of the WSJ panelist forecasts are either uniformly distributed or follow the Benford distribution for tenths digits after rounding to the nearest tenth (see this paper by economists Stefan Gunnel and Karl-Heinz Todter, who found similar relative frequencies of "0s" and "5s" in professional forecasts of German GDP growth and consumer price index inflation).

If we assume that near-term GDP growth forecasts with a tenths digit of "0" or "5" typically involve more judgment than forecasts with another tenths digit, a natural question is whether these more judgmental forecasts are less accurate than others. Of the 2,390 WSJ growth forecasts mentioned above, the ones with a tenths digit of "0" or "5" (after rounding to the nearest tenth) had an average error of 0.786 percentage points without regard to sign, and the others had an average error of 0.743 percentage points. These accuracy metrics are not statistically different at even the 10 percent significance level. Moreover, because of the panel nature of WSJ forecasts, we can measure how often a forecaster has a tenths digit of "0" or "5" (after rounding). Of the 44 panelists who submitted at least 30 three-week-ahead GDP forecasts during the period of the first quarter of 2003 through the third quarter of 2016, the correlation of the panelists "0" or "5" tenth digit frequency and their average error without regard to sign is only 0.13 and not significantly different from 0.

Although at least some professional forecasters appear to make judgmental adjustments to their near-term GDP projections, the evidence presented here does not suggest it comes, on average, at the cost of accuracy.

November 7, 2016

The Price Isn't Right: On GDPNow's Third Quarter Miss

The U.S. Bureau of Economic Analysis's (BEA) first estimate of third quarter annualized real gross domestic product (GDP) growth released on October 28 was 2.9 percent. A number of nowcasts were quite close to this number, including the median forecast of 3.0 percent from the CNBC Rapid Update surveyOff-site link of roughly 10 economists. The Atlanta Fed's GDPNow model forecast of 2.1 percent? Not so close.

What accounted for GDPNow's miss? The table below shows the GDPNow forecasts and BEA estimates of the percentage point contributions to third quarter growth of six subcomponents that together make up real GDP. The largest forecast error, both in absolute terms and relative to the historical accuracy of the projections, was for the contribution of real net exports to growth. The published contribution of 0.83 percentage points was much higher than the model's estimate of 0.07 percentage points.

Why did GDPNow miss so badly on net exports? For both goods and services real net exports, the GDPNow forecast is a weighted average of two forecasts. The "bean counting" forecast uses the monthly source data on the nominal values and price deflators of exports and imports. The econometric model forecast uses published values of 13 subcomponents of real GDP for the last five quarters to predict real net exports for both goods and services. The statistically determined weights on the bean counting forecast increase as we get closer to the first GDP release and accumulate more monthly source data. (More details are provided here.)

For real net exports of services, 89 percent of the weight was given to the bean counting forecast. This weighting worked out well last quarter as the forecasts of the contribution of real services net exports to third quarter growth from both the bean counting and combined models were within 0.01 percentage points of the published value of −0.14 percentage points. But for real net exports of goods, the bean counting forecast received only 59 percent of the weight in the final GDPNow forecast. It projected that real net exports of goods would add 0.76 percentage points to growth—reasonably close to the BEA estimate. In contrast, the econometric model projected a subtraction of 0.58 percentage points from growth.

Since GDPNow had monthly price and nominal spending data through September on goods imports and exports, why didn't it place more weight on the source data? One of the important reasons is that it's difficult to match the quarterly inflation rate of the BEA's import price deflator for goods. The BEA constructs its price deflator  with detailed price indices from the Bureau of Labor Statistics (BLS) producer price index and import/export price index programs as well as a few other sources. GDPNow uses the BLS's import price data at higher levels of aggregation than the BEA uses and also differs in the manner that it handles seasonality. The chart below plots the difference between the BEA's quarterly goods import price inflation rate and the GDPNow proxy. These inflation measures have differed by 5 percentage points or more on a number of occasions. Since goods imports are 12 percent of GDP, a miss of this magnitude on the price deflator would lead to a miss on the real net exports of goods contribution to growth of 0.5 percentage points or more, even if the other ingredients in the calculation were all correct.

Are there any lessons here for improving GDPNow? Ideally, GDPNow would be able to closely map the monthly source data to real goods net exports so that most of the weight would go to the bean counting forecast once all of the data are in—much as it does with nonresidential structures and residential investment. The BEA's estimates of real petroleum imports are based on similar data in the monthly international trade data publication. Because petroleum imports account for so much of the volatility of inflation for goods imports, it may be better to use the monthly real petroleum imports data directly and only worry about replicating the price index for nonpetroleum goods.

That said, a previous macroblog post illustrated that the method GDPNow currently uses has a reasonable forecasting track record for net exports when compared with several consensus estimates from professional forecasters. Net exports may remain difficult to nowcast even with refinements to GDPNow's methodology.

GDPNow has established a commendable track record. But sometimes when it misses the mark, an analysis of the error can provide insight into how GDPNow works and the limitations of the model.