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Abstract

We estimate a DSGE model where rare large shocks can occur, by replacing

the commonly used Gaussian assumption with a Student-t distribution. We

show that the Student-t specification is strongly favored by the data using the

Smets and Wouters (2007) model estimated on the usual set of macroeconomic

time series over the 1964-2011 period, even when we allow for low frequency

variation in the volatility of the shocks, and that the estimated degrees of

freedom are quite low for several shocks that drive U.S. business cycles, implying

an important role for rare large shocks. This result holds even if we exclude

the Great Recession period from the sample. We also show that inference

about low frequency changes in volatility—and in particular, inference about

the magnitude of Great Moderation—is different once we allow for fat tails.
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1 Introduction

Great Recessions do not happen every decade — this is why they are dubbed “great”

in the first place. Therefore, to the extent that DSGE models rely on shocks in

order to generate macroeconomic fluctuations, they may need to account for the

occurrence of rare but extremely large shocks to generate an event like the Great

Recession. We therefore estimate a linearized DSGE model assuming that shocks

are generated from a Student-t distribution, which is designed to capture fat tails,

in place of a Gaussian distribution, which is the standard assumption in the DSGE

literature. The number of degrees of freedom in the Student-t distribution, which

determines the likelihood of observing rare large shocks and which we allow to vary

across shocks, is estimated from the data. We show that estimating DSGE models

with Student-t distributed shocks is a fairly straightforward extension of current

methods (described, for instance, in An and Schorfheide (2007)). In fact, the Gibbs

sampler is a simple extension of Geweke (1993)’s Gibbs sampler for a linear model to

the DSGE framework. The paper is closely related to Chib and Ramamurthy (2011)

who in independent and contemporaneous work also propose a similar approach to

the one developed here for estimating DSGE models with Student-t distributed

shocks. One difference between this work and Chib and Ramamurthy (2011)’s is

that we also allow for low frequency changes in the volatility of the shocks, in light

of the evidence provided by several papers in the DSGE literature (Justiniano and

Primiceri (2008), Fernández-Villaverde and Rubio-Ramı́rez (2007), Liu et al. (2011),

among others). We show that ignoring low frequency movements in volatility will

bias the results toward finding evidence in favor of fat tails.1

We apply our methodology to the Smets and Wouters (2007) model (henceforth,

SW), estimated on the same seven macroeconomic time series used in SW. Our
1Specifically, we follow the approach in Justiniano and Primiceri (2008), who postulate a random

walk as the law of motion of the volatilities. Another difference between this paper and Chib and

Ramamurthy (2011) is that Chib and Ramamurthy use a simple three equation New Keynesian

model, while we use the full Smets and Wouters (2007) model. As discussed below, this difference

may matter in the assessment of the importance of fat tails for the macroeconomy.
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baseline dataset starts in 1964Q4 and ends in 2011Q1, but we also consider a sub-

sample ending in 2004Q4 to analyze the extent to which our findings depend on the

inclusion of the Great Recession in our sample. We use the SW model both because

it is a prototypical medium-scale DSGE model, and because its empirical success

has been widely documented.2 Models that fit the data poorly will necessarily have

large shocks. We therefore chose a DSGE model that is at the frontier in terms of

empirical performance to assess the extent to which macro variables have fat tails.

The motivation for our work arises from evidence like that displayed in Figure 1.

The top panel of Figure 1 shows the time series of the smoothed “discount rate” and

“marginal efficiency of investment” shocks (in absolute value) from the SW model

estimated under Gaussianity. The shocks are normalized, so that they are expressed

in standard deviations units. The solid line is the median, and the dashed lines are

the posterior 90% bands. The Figure shows that the size of the shocks is between 3.5

and 4 standard deviations on several occasions, one of which is the recent recession.

The probability of observing such large shocks under Gaussianity is very low.3

While the visual evidence against Gaussianity is strong, there are several reasons

to perform a more careful quantitative analysis. First, these shocks are obtained un-

der the assumption of Gaussianity, and are not informative about the distribution of

estimated shocks once that assumption is removed. Second, a quantitative estimate

of the fatness of the tails is an obvious object of interest. Third, it is important to

disentangle the relative contribution of fat tails from that of (slow moving) time-

varying volatility. The bottom panel of Figure 1, which shows the evolution of the

smoothed monetary policy shocks estimated under Gaussianity (again, normalized,

and in absolute value), provides a case in point, as the clustering of large shocks
2 The forecasting performance of the SW model was found to be competitive in terms of accuracy

relative to private forecasters and reduced-form models not only during the Great Moderation period

(see Smets and Wouters (2007) and Edge and Gürkaynak (2010)), but also including data for the

Great Recession (Del Negro and Schorfheide (2012)).
3In addition to this DSGE model-based evidence, there is work showing that that the uncondi-

tional distribution of macro variables is not Gaussian (see Christiano (2007) for pre-Great Recession

evidence, and Ascari et al. (2012) for more recent work).
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in the late 70s and 80s is quite evident. In general, studying the importance of

fat tails by looking only at the kurtosis in the unconditional distribution of either

macro variables (as in Ascari et al. (2012)) or of estimated shocks can be misleading,

because the evidence against Gaussianity can be due to low frequency changes in

volatility.

Conversely, the presence of large shocks can potentially distort the assessment of

low frequency movements in volatility. To see this, imagine estimating a model that

allows only for slow moving time variation in volatility, but no fat tails, in presence

of shocks that fit the pattern shown in the top panel of Figure 1. As the stochastic

volatility will try to fit the squared residuals, such a model will produce a time series

of volatilities peaking around 1980, and then again during the Great Recession. Put

differently, very large shocks may be interpreted as persistent changes in volatility,

when they may in fact be rare realizations from a process with a time invariant dis-

tribution. For instance, the extent to which the Great Recession can be interpreted

as a permanent rise in macroeconomic volatility may depend on whether we allow

for rare large shocks.

Finally, we expect that the evidence provided in this paper will be further moti-

vation for the study of non-linear models. First, if shocks have fat tails, linearization

may simply produce a poor approximation of the full model. Second, non-linearities

may explain away the fat tails: what we capture as large rare shocks may in fact be

Gaussian shocks whose effect is amplified through a non-linear propagation mecha-

nism. Assessing whether this is the case will be an important line of research. In

fact, the extent to which non-linearities can alleviate the need for fat-tailed shocks

to explain business cycles could possibly become an additional metric for evaluating

their usefulness.

Our findings are the following. We provide strong evidence that the Gaussianity

assumption in DSGE models is counterfactual, even after allowing for low frequency

changes in the volatility of shocks. Such strong evidence is remarkable considering

that our sample consists of macro variables only. This finding is robust to excluding

the Great Recession from the sample. We follow two approaches in our analysis:
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comparing the fit of different specifications using Bayesian marginal likelihoods,

and inference on the posterior estimates of the degrees of freedom of the Student-t

distribution. We demonstrate that the model fit improves considerably if we allow

for Student-t shocks in addition to stochastic volatility. Further, we show that the

posterior estimates of the Student-t distribution’s degrees of freedom for some shocks

are quite low, indicating a substantial amount of fat tails. From our results, we can

cluster the shocks in the model into three broad categories. Shocks to productivity,

to the household’s discount rate, to the marginal efficiency of investment, and to the

wage markup all have fat tails, even in the case with stochastic volatility. Conversely,

shocks to government expenditures and to price markups have posterior means for

the degrees of freedom that are somewhat high, indicating that their distribution

is not far from Gaussian, regardless of whether we allow for stochastic volatility.

Finally, the degrees of freedom for monetary policy shocks are estimated to be

extremely low in the case with constant volatility, but shift dramatically toward

higher values when we allow for stochastic volatility.

In order to evaluate the importance of fat tails in the study of the business

cycle, we consider an experiment in which we shut down the fat tails, and recreate

a counterfactual path of the economy in their absence. We show that in this case

almost all recessions in the sample would then have roughly the same magnitudes,

and the Great Recession would have been essentially a “run-of-the-mill” recession.

Finally, we show that allowing for fat tails will change the inference about slow

moving stochastic volatility. Specifically, we reevaluate the evidence in favor of

the Great Moderation hypothesis discussed for example in Justiniano and Primiceri

(2008) and find that when we consider Student-t shocks, the magnitude of the

reduction in the volatility of output and other variables is smaller. Similarly, we show

that the evidence in favor of a permanent increase in volatility following the Great

Recession is weaker when we consider the possibility that shocks have a Student-t

distribution.

The rest of the paper proceeds as follows. Section!2 discusses Bayesian inference.

Section 3 describes the model, as well as our set of observables. Section 4 describes
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the results. We conclude in section 5.

2 Bayesian Inference

This section begins with a description of the estimation procedure for a DSGE model

with both Student-t distributed shocks and time-varying volatilities. The Gibbs

sampler combines the algorithm proposed by Geweke (1993)’s for a linear model

with Student-t distributed shocks (see also Geweke (1994), and Geweke (2005) for

a textbook exposition) with the approach for sampling the parameters of DSGE

models with time-varying volatilities discussed in Justiniano and Primiceri (2008).

Section A.2 discusses the computation of the marginal likelihood.

The model consists of the standard measurement and transition equations:

yt = Z(θ)st, (1)

st+1 = T (θ)st +R(θ)εt, (2)

for t = 1, .., T , where yt, st, and εt are n× 1, k× 1, and q̄× 1 vector of observables,

states, and shocks, respectively. Call p(θ) the prior on the vector of DSGE model

parameters θ. We assume that:

εq,t = σq,th̃
−1/2
q,t ηq,t, all q, t, (3)

where

ηq,t ∼ N (0, 1), i.i.d. across q, t, (4)

λqh̃q,t ∼ χ2(λq), i.i.d. across q, t. (5)

For the prior on the parameters λq we assume a gamma distributions with parame-

ters λ/ν and ν:

p(λq|λ, ν) =
(λ/ν)−ν

Γ(ν)
λ ν−1
q exp(−ν λq

λ
), i.i.d. across q. (6)

where λ is the mean and ν is the number of degrees of freedom (Geweke (2005)

assumes a Gamma with one degree of freedom).
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Define

σ̃q,t = log (σq,t/σq) , (7)

where the parameters σ1:q̄ (the non-time varying component of the shock variances)

are included in the vector of DSGE parameters θ. We assume that the σ̃q,t follows

an autoregressive process:

σ̃q,t = ρqσ̃q,t−1 + ζq,t, ζq,t ∼ N (0, ω2
q ), i.i.d. across q, t. (8)

The prior distribution for ω2
q is an inverse gamma IG(νω/2, νωω2/2), that is:

p(ω2
q |νω, ω2) =

(
νωω

2/2
) νω

2

Γ(νω/2)
(ω2
q )
− νω

2
−1exp

[
−νωω

2

2ω2
q

]
, i.i.d. across q. (9)

We consider two types of priors for ρq:

p(ρq|ω2
q ) =


1 SV-UR

N (ρ̄, ω2
q v̄ρ)I(ρq), i.i.d. across q, I(ρq) =

 1 if |ρq| < 1

0 otherwise,
SV-S

(10)

In the SV-UR case σ̃q,t follows a random walk as in Justiniano and Primiceri (2008),

while in the SV-S it follows a stationary process as in Fernández-Villaverde and

Rubio-Ramı́rez (2007). In both cases the σq,t process is very persistent: in the SV-

UR case the persistence is wired into the assumed law of motion for σ̃q,t, while in

the SV-AR case it is enforced by choosing the hyperparameters ρ̄ and σ̄ρ in such a

way that the prior for ρq puts most mass on high values of ρq. As a consequence,

σq,t and h̃q,t play very different roles in (3): σq,t allows for slow-moving trends in

volatility, while h̃q,t allows for large shocks. Finally, to close the model we make the

following distributional assumptions on the initial conditions σ̃q,0, q = 1, .., q̄:

p(σ̃q,0|ρq, ω2
q ) =

 0 SV-UR

N (0, ω2
q/(1− ρ2

q)), i.i.d. across q SV-S
(11)

where the restriction under the SV-UR case is needed to obtain identification. In the

stationary case we have assumed that σ̃q,0 is drawn from the ergodic distribution.
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2.1 The Gibbs-Sampler

The joint distribution of data and unobservables (parameters and latent variables)

is given by:

p(y1:T |s1:T , θ)p(s1:T |ε1:T , θ)p(ε1:T |h̃1:T , σ̃1:T , θ)p(h̃1:T |λ1:q̄)

p(σ̃1:T |ρ1:q̄, ω
2
1:q̄)p(λ1:q̄)p(ρ1:q̄|ω2

1:q̄)p(ω
2
1:q̄)p(θ), (12)

where p(y1:T |s1:T , θ) and p(s1:T |ε1:T , θ) come from the measurement and transition

equation, respectively, p(ε1:T |h̃1:T , σ̃1:T , θ) obtains from (3) and (4):

p(ε1:T |h̃1:T , σ̃1:T , θ) ∝
q̄∏
q=1

(
T∏
t=1

h̃
−1/2
q,t σq,t

)
exp

[
−

T∑
t=1

h̃q,tε
2
q,t/2σ

2
q,t

]
, (13)

p(h̃1:T |λ1:q̄) obtains from (5)

p(h̃1:T |λ1:q̄) =
q̄∏
q=1

T∏
t=1

(
2λq/2Γ(λq/2)

)−1
λ
λq/2
q h̃

(λq−2)/2
q,t exp(−λqh̃q,t/2), (14)

and p(σ̃1:T |ω2
1:q̄) obtains from expressions (8) and (11):

p(σ̃1:T |ρ1:q̄, ω
2
1:q̄) ∝

q̄∏
q=1

(ω2
q )
−(T−1)/2exp

[
−

T∑
t=2

(σ̃q,t − ρqσ̃q,t−1)2/2ω2
q

]
p(σ̃q,1|ρq, ω2

q ),

(15)

where

p(σ̃q,1|ρq, ω2
q ) ∝


(ω2
q )
−1/2exp

(
− σ̃2

q,1

2ω2
q

)
, SV-UR

(ω2
q (1− ρ2

q))
−1/2exp

(
− σ̃2

q,1

2ω2
q (1−ρ2

q)

)
. SV-S

(16)

Finally, p(λ1:q̄) =
∏q̄
q=1 p(λq|λ), p(ω2

1:q̄) =
∏q̄
q=1 p(ω

2
q |ν, ω2).

The sampler consists of six blocks.

(1) Draw from p(θ, s1:T , ε1:T |h̃1:T , σ̃1:T , λ1:q̄, ρ1:q̄, ω
2
1:q̄, y1:T ). This is accomplished

in two steps:
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(1.1) Draw from the marginal p(θ|h̃1:T , σ̃1:T , λ1:q̄, ρ1:q̄, ω
2
1:q̄, y1:T ), where

p(θ|h̃1:T , σ̃1:T , λ1:q̄, ρ1:q̄, ω
2
1:q̄, y1:T )

∝
[∫

p(y1:T |s1:T , θ)p(s1:T |ε1:T , θ)p(ε1:T |h̃1:T , σ̃1:T , θ) · d(s1:T , ε1:T )
]
p(θ)

= p(y1:T |h̃1:T , σ̃1:T , θ)p(θ)
(17)

where

p(y1:T |h̃1:T , σ̃1:T , θ) =
∫
p(y1:T |s1:T , θ)p(s1:T |ε1:T , θ)p(ε1:T |h̃1:T , σ̃1:T , θ)·d(s1:T , ε1:T )

is computed using the Kalman filter with (1) as the measurement equation

and (2) as transition equation, with

εt|h̃1:T , σ̃1:T ∼ N (0,∆t), (18)

where ∆t are q̄× q̄ diagonal matrices with σ2
q,t · h̃−1

q,t on the diagonal. The

draw is obtained from a Metropolis-Hastings step.

(1.2) Draw from the conditional p(s1:T , ε1:T |θ, h̃1:T , σ̃1:T , λ1:q̄, ρ1:q̄, ω
2
1:q̄, y1:T ).

This is accomplished using the simulation smoother of Durbin and Koop-

man (2002).

(2) Draw from p(h̃1:T |θ, s1:T , ε1:T , σ̃1:T , λ1:q̄, ρ1:q̄, ω
2
1:q̄, y1:T ). This is accomplished

by drawing from

p(ε1:T |h̃1:T , σ̃1:T , θ)p(h̃1:T |λ1:q̄)

∝
q̄∏
q=1

T∏
t=1

h̃
(λq−1)/2
q,t exp(−

[
λq + ε2

q,t/σ
2
q,t

]
h̃q,t/2), (19)

which implies [
λq + ε2

q,t/σ
2
q,t

]
h̃q,t|θ, ε1:T , σ̃1:T , λq ∼ χ2(λq + 1). (20)

(3) Draw from p(λ1:q̄|h̃1:T , θ, s1:T , ε1:T , ρ1:q̄, ω
2
1:q̄, y1:T ). This is accomplished by

drawing from

p(h̃1:T |λ1:q̄)p(λ1:q̄) ∝
q̄∏
q=1

((λ/ν)ν Γ(ν))−1 [2λq/2Γ(λq/2)]−TλTλq/2+ν−1
q(

T∏
t=1

h̃
(λq−2)/2
q,t

)
exp

[
−

(
ν

λ
+

1
2

T∑
t=1

h̃q,t

)
λq

]
. (21)
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This is a non-standard distribution, hence the draw is obtained from a Metropolis-

Hastings step.

(4) Draw from p(σ̃1:T |θ, s1:T , ε1:T , h̃1:T , λ1:q̄, ρ1:q̄, ω
2
1:q̄, y1:T ). This is accomplished

by drawing from

p(ε1:T |h̃1:T , σ̃1:T , θ)p(σ̃1:T |ρ1:q̄, ω
2
1:q̄) (22)

using the algorithm developed by Kim et al. (1998), which we briefly describe

in Appendix A.3.

(5) Draw from p(ω2
1:q̄, ρ1:q̄|σ̃1:T , θ, s1:T , ε1:T , h̃1:T , λ1:q̄, y1:T ) using

p(σ̃1:T |ρ1:q̄, ω
2
1:q̄)p(ω

2
1:q̄)p(ρ1:q̄|ω2

1:q̄) ∝
q̄∏
q=1

(ω2
q )
− ν+T−1

2
−1

exp

[
−
νω2 +

∑T
t=2(σ̃q,t − ρqσ̃q,t−1)2

2ω2
q

]
p(σ̃q,1|ρq, ω2

q )p(ρq|ω2
q ), (23)

where p(σ̃q,1|ρq, ω2
q ) is given by equation (16). In the SV-UR case ρq is fixed

to 1, and we can draw ω2
q (i.i.d. across q) from:

ω2
q |σ̃1:T , · · · ∼ IG

(
ν + T

2
,
1
2

(
νω2 +

T∑
t=2

(σ̃q,t − σ̃q,t−1)2 + σ̃2
q,1

))
. (24)

In the SV-S case the joint posterior of ρq, ω2
q is non-standard because of the like-

lihood of the first observation p(σ̃1|ρq, ω2
q ). We therefore use the Metropolis-

Hastings step proposed by Chib and Greenberg (1994). Specifically, we use as

proposal density the standard Normal-Inverted Gamma distribution, that is,

ω2
q |σ̃1:T , · · · ∼ IG

(
ν+T−1

2 , 1
2

(
νω2 +

∑T
t=2 σ̃

2
q,t + v̄−1

ρ ρ̄2 − V̂ −1
q ρ̂2

q

))
,

ρq|ω2
q , σ̃1:T , · · · ∼ N

(
ρ̂q, ω

2
q V̂q

)
, i.i.d. across q,

(25)

where ρ̂q = V̂q

(
v̄−1
ρ ρ̄+

∑T
t=2 σ̃q,tσ̃q,t−1

)
, V̂q = (v̄−1

ρ +
∑T

t=2 σ̃
2
q,t−1)−1. We

then accept/reject this draw using the proposal density and the acceptance

ratio p(σ̃1,ρ
(∗)
q ,ω

2 (∗)
q )I(ρ

(∗)
q )

p(σ̃1,ρ
(j−1)
q ,ω

2 (j−1)
q )I(ρ

(j−1)
q )

, with (ρ(j−1), ω
2 (j−1)
q ) and (ρ(∗), ω

2 (∗)
q ) being

the draw at the (j − 1)th iteration and the proposed draw, respectively.
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3 The DSGE Model

The model considered is the one used in Smets and Wouters (2007), which is based

on earlier work by Christiano et al. (2005) and Smets and Wouters (2003). It is

a medium-scale DSGE model, which augments the standard neoclassical stochastic

growth model with nominal price and wage rigidities as well as habit formation in

consumption and investment adjustment costs.

3.1 The Smets-Wouters Model

We begin by briefly describing the log-linearized equilibrium conditions of the Smets

and Wouters (2007) model. We follow Del Negro and Schorfheide (2012) and detrend

the non-stationary model variables by a stochastic rather than a deterministic trend.

This approach makes it possible to express almost all equilibrium conditions in a

way that encompasses both the trend-stationary total factor productivity process

in Smets and Wouters (2007), as well as the case where technology follows a unit

root process. We refer to the model presented in this section as SW model. Let z̃t

be the linearly detrended log productivity process which follows the autoregressive

law of motion

z̃t = ρz z̃t−1 + σzεz,t. (26)

We detrend all non stationary variables by Zt = eγt+
1

1−α z̃t , where γ is the steady

state growth rate of the economy. The growth rate of Zt in deviations from γ,

denoted by zt, follows the process:

zt = ln(Zt/Zt−1)− γ =
1

1− α
(ρz − 1)z̃t−1 +

1
1− α

σzεz,t. (27)

All variables in the subsequent equations are expressed in log deviations from

their non-stochastic steady state. Steady state values are denoted by ∗-subscripts

and steady state formulas are provided in a Technical Appendix (available upon
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request). The consumption Euler equation takes the form:

ct = − (1− he−γ)
σc(1 + he−γ)

(Rt − IEt[πt+1] + bt) +
he−γ

(1 + he−γ)
(ct−1 − zt)

+
1

(1 + he−γ)
IEt [ct+1 + zt+1] +

(σc − 1)
σc(1 + he−γ)

w∗L∗
c∗

(Lt − IEt[Lt+1]) , (28)

where ct is consumption, Lt is labor supply, Rt is the nominal interest rate, and πt is

inflation. The exogenous process bt drives a wedge between the intertemporal ratio

of the marginal utility of consumption and the riskless real return Rt − IEt[πt+1],

and follows an AR(1) process with parameters ρb and σb. The parameters σc and

h capture the relative degree of risk aversion and the degree of habit persistence

in the utility function, respectively. From the optimality condition for the capital

producers, we next obtain the following condition, which expresses the relationship

between the value of capital in terms of consumption qkt and the level of investment

it measured in terms of consumption goods:

qkt = S′′e2γ(1 + βe(1−σc)γ)
(
it −

1
1 + βe(1−σc)γ

(it−1 − zt)

− βe(1−σc)γ

1 + βe(1−σc)γ
IEt [it+1 + zt+1]− µt

)
, (29)

which is affected by both investment adjustment cost (S′′ is the second derivative of

the adjustment cost function) and by µt, an exogenous process called the “marginal

efficiency of investment” that affects the rate of transformation between consump-

tion and installed capital (see Greenwood et al. (1998)). The capital stock, k̄t,

evolves as

k̄t =
(

1− i∗
k̄∗

)(
k̄t−1 − zt

)
+
i∗
k̄∗
it +

i∗
k̄∗
S
′′
e2γ(1 + βe(1−σc)γ)µt, (30)

where i∗/k̄∗ is the steady state ratio of investment to capital. µt follows an AR(1)

process with parameters ρµ and σµ. The parameter β captures the intertemporal

discount rate in the utility function of the households. The arbitrage condition

between the return to capital and the riskless rate is:

rk∗
rk∗ + (1− δ)

IEt[rkt+1] +
1− δ

rk∗ + (1− δ)
IEt[qkt+1]− qkt = Rt + bt − IEt[πt+1], (31)
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where rkt is the rental rate of capital, rk∗ its steady state value, and δ the depreciation

rate. Capital is subject to variable capacity utilization ut. The relationship between

k̄t and the amount of capital effectively rented out to firms kt is

kt = ut − zt + k̄t−1. (32)

The optimality condition determining the rate of utilization is given by

1− ψ
ψ

rkt = ut, (33)

where ψ captures the utilization costs in terms of foregone consumption. From the

optimality conditions of goods producers it follows that all firms have the same

capital-labor ratio:

kt = wt − rkt + Lt. (34)

Real marginal costs for firms are given by

mct = wt + αLt − αkt, (35)

where α is the income share of capital (after paying markups and fixed costs) in the

production function.

All of the equations so far maintain the same form whether technology has a unit

root or is trend stationary. However, a few small differences arise for the following

two equilibrium conditions. The production function is:

yt = Φp (αkt + (1− α)Lt) + I{ρz < 1}(Φp − 1)
1

1− α
z̃t, (36)

under trend stationarity. The last term (Φp − 1) 1
1−α z̃t drops out if technology has

a stochastic trend, because in this case one has to assume that the fixed costs are

proportional to the trend. Similarly, the resource constraint is:

yt = gt +
c∗
y∗
ct +

i∗
y∗
it +

rk∗k∗
y∗

ut − I{ρz < 1} 1
1− α

z̃t, (37)

where again the term − 1
1−α z̃t disappears if technology follows a unit root process.

Government spending gt is assumed to follow the exogenous process:

gt = ρggt−1 + σgεg,t + ηgzσzεz,t.
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Finally, the price and wage Phillips curves are, respectively:

πt =
(1− ζpβe(1−σc)γ)(1− ζp)

(1 + ιpβe(1−σc)γ)ζp((Φp − 1)εp + 1)
mct

+
ιp

1 + ιpβe(1−σc)γ
πt−1 +

βe(1−σc)γ

1 + ιpβe(1−σc)γ
IEt[πt+1] + λf,t, (38)

and

wt =
(1− ζwβe(1−σc)γ)(1− ζw)

(1 + βe(1−σc)γ)ζw((λw − 1)εw + 1)

(
wht − wt

)
− 1 + ιwβe

(1−σc)γ

1 + βe(1−σc)γ
πt +

1
1 + βe(1−σc)γ

(wt−1 − zt − ιwπt−1)

+
βe(1−σc)γ

1 + βe(1−σc)γ
IEt [wt+1 + zt+1 + πt+1] + λw,t, (39)

where ζp, ιp, and εp are the Calvo parameter, the degree of indexation, and the

curvature parameters in the Kimball aggregator for prices, and ζw, ιw, and εw are the

corresponding parameters for wages. The variable wht corresponds to the household’s

marginal rate of substitution between consumption and labor, and is given by:

wht =
1

1− he−γ
(
ct − he−γct−1 + he−γzt

)
+ νlLt, (40)

where νl characterizes the curvature of the disutility of labor (and would equal the

inverse of the Frisch elasticity in absence of wage rigidities). The mark-ups λf,t and

λw,t follow exogenous ARMA(1,1) processes

λf,t = ρλfλf,t−1 + σλf ελf ,t + ηλfσλf ελf ,t−1, and

λw,t = ρλwλw,t−1 + σλwελw,t + ηλwσλwελw,t−1,

respectively. Last, the monetary authority follows a generalized feedback rule:

Rt = ρRRt−1 + (1− ρR)
(
ψ1πt + ψ2(yt − yft )

)
(41)

+ψ3

(
(yt − yft )− (yt−1 − yft−1)

)
+ rmt ,

where the flexible price/wage output yft is obtained from solving the version of the

model without nominal rigidities (that is, Equations (28) through (37) and (40)),

and the residual rmt follows an AR(1) process with parameters ρrm and σrm .
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3.2 Observation Equation, Data, and Priors

We use the method in Sims (2002) to solve the log-linear approximation of the

DSGE model. We collect all the DSGE model parameters in the vector θ, stack the

structural shocks in the vector εt, and derive a state-space representation for our

vector of observables yt, which is composed of the transition equation:

st = T (θ)st−1 +R(θ)εt, (42)

which summarizes the evolution of the states st, and the measurement equation:

yt = Z(θ)st +D(θ), (43)

which maps the states onto the vector of observables yt, where D(θ) represents the

vector of steady state values for these observables. Specifically, the SW model is

estimated based on seven quarterly macroeconomic time series. The measurement

equations for real output, consumption, investment, and real wage growth, hours,

inflation, interest rates and long-run inflation expectations are given by:

Output growth = γ + 100 (yt − yt−1 + zt)

Consumption growth = γ + 100 (ct − ct−1 + zt)

Investment growth = γ + 100 (it − it−1 + zt)

Real Wage growth = γ + 100 (wt − wt−1 + zt)

Hours = l̄ + 100lt

Inflation = π∗ + 100πt

FFR = R∗ + 100Rt

, (44)

where all variables are measured in percent, where π∗ and R∗ measure the steady

state level of net inflation and short term nominal interest rates, respectively and

where l̄ captures the mean of hours (this variable is measured as an index).

Appendix A.1 provides further details on the data. In our benchmark specifica-

tion we use data from 1964Q4 to 2011Q1, but we also consider a shorter sample in

which end the sample in 2004Q4, so that we exclude the Great Recession. Table 1

shows the priors for the DSGE model parameters, which coincide with those used

in Smets and Wouters (2007).
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4 Results

4.1 Evidence of Fat Tails

In the introduction we showed that shocks extracted from standard Gaussian esti-

mation are sometimes quite large, up to four standard deviations in size. In this

section we consider more formal evidence against Gaussianity. Specifically, this sec-

tion addresses two questions. First, do we still need fat tailed shocks once we allow

for low frequency movements in volatility? Second, if so, which shocks are fat tailed,

and how fat are the tails? We address these questions by: i) assessing the improve-

ment in fit obtained by allowing for Student-t distributed shocks relative to both the

standard model as well as models with low frequency movements in the volatility;

ii) presenting the posterior distribution of the degrees of freedom for each shock.

Before we delve into the results, we provide an intuitive description of the re-

lationship between the degrees of freedom of the Student-t distribution and the

likelihood of observing large shocks. Recall from equation (3) that a Student-t

distributed shock εt can be decomposed as

εt = σth̃
−1/2
t ηt,

where ηt is drawn from a standard Gaussian distribution, and h̃t is . Therefore,

given σt, the chances of observing a very large εt depend on the chances of h̃t being

small. The prior for h̃t is given by (5):

λh̃t ∼ χ2(λ).

If λ is high, this prior concentrates around one, and the likelihood of observing

large shocks is slim (the λ → ∞ limit represents Gaussianity). As λ drops, the

distribution of h̃t spreads out and the chances of observing a low h̃t increase. The

following table provides a quantitative feel for what different λs imply in terms

of the model’s ability to generate fat tailed shocks. Specifically, the table shows

the number of shocks larger (in absolute value) than x standard deviations per 200

periods, which is the size of our sample. The table shows that even with 9 degrees of



This Version: October 9, 2012 16

freedom the chances of seeing even a single shock as large as those shown in Figure 1

are not high (.28 for shocks larger than 4 standard deviations), and become negligible

for 15 or more degrees of freedom.

λ, x: 3 4 5

∞ .54 .012 1e−4

15 1.14 .13 .02
9 1.57 .28 .06
6 2.08 .54 .17

In what follows, we consider three different Gamma priors of the form (6) for the

degrees of freedom parameter λ, which capture different a priori views on the im-

portance of fat tails. The first prior, λ = 15, captures the view that the world is not

quite Gaussian, but not too far from Gaussianity either. The second prior, λ = 9,

embodies the idea that the world is quite far from Gaussian, yet not too extreme.

The last prior, λ = 6, implies prior belief in a model with somewhat heavy tails.

The tightness of these priors depends on the degrees of freedom parameter ν in

equation (6), which we set equal to 4. 4 Figure 2 shows the three priors for λ = 6,

9, and 15. Since the variance of the prior is λ2/ν, lower values of λ correspond

to tighter prior. Note however that the prior with higher variance (λ = 15) puts

most of the mass on high values of the degrees of freedom. For instance, the prior

probability put on the regions {λ < 6} and {λ < 4} by the λ = 15 prior is less than

8 and 2.5%, respectively.

With the description of the prior in hand, we are now ready to discuss our evi-

dence on the importance of fat tails.5 Table 2 shows the log marginal likelihood—

the standard measure of fit in a Bayesian framework—for models with different

assumptions on the shocks distribution. 6 We consider four different combina-

tions: i) Gaussian shocks with constant volatility (baseline), ii) Gaussian shocks with

time-varying volatility, iii) Student-t distributed shocks with constant volatility, and
4In an appendix not for publication we also report the results for ν = 1, which are very similar.
5Our results are based on 4 chains, each beginning froma different starting point, of 220K draws

each, of which we discard the first 20K draws. We checked for convergence across chains.
6For details on the computation of these marginal likelihoods, see the appendix.
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iv) both Student-t shocks and time-variation in volatility.7 The Gaussian-constant

volatility model is clearly rejected by the data. This is not surprising in light of the

evidence contained in Justiniano and Primiceri (2008), Fernández-Villaverde and

Rubio-Ramı́rez (2007), and Liu et al. (2011). What is perhaps more surprising is

that the marginal likelihood indicates that if one had to choose between the two

features, a random walk in volatility (SV ) or Student-t shocks, the data unequivo-

cally point to the latter feature as the more important: the difference in marginal

likelihood between the SV and the best fitting model with student-t shocks is very

large, about 71 log points. Of course one does not have to choose between the two

features, and the marginal likelihoods indicate that even after accounting for fat-

tailed shocks, allowing for time-variation in the volatility improves fit: for any row

in Table 2, the marginal likelihood increases moving from the left (no SV ) to the

right (SV ) column. From the perspective of this paper, however, the main finding

is provided by the fact that the numbers increase moving down the rows of Table 2,

regardless of the column. In summary, the data strongly favor Student-t distributed

shocks with a non-negligible degree of fat tails, whether or not we allow for low

frequency movements in volatility.

Our second piece of evidence comes from the posterior distribution of the degrees

of freedom λ. Table 4 shows the posterior mean and 90% bands for the degrees of

freedom for each shock, in the specifications with and without stochastic volatility.

Two results emerge from Table 4. First, for quite a few shocks the estimated degrees

of freedom are small, even when we allow for low frequency movements in volatility.

Second, allowing for low frequency movements in volatility changes substantially the

inference about the degrees of freedom, implying that this feature is necessary for a

proper assessment of how fat-tailed macroeconomic shocks are.
7For the stochastic volatility model we use an IG prior on ω2

q (see equation (9)) with parameters

ω2 = (.01)2 (following Justiniano and Primiceri (2008)) and νω = .1. It is well known that when

ω2 is very low, as is the case here, designing a prior that is not too informative is challenging. In

Montecarlo experiments we found that using very low degrees of freedom (νω = .1) led to a good

performance whenever the true value of ω2 was 10−4, 10−3, or 10−2, and therefore settled on this

value.
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As for the first result, Table 4 shows that four shocks have a mean below 6 for

the best fitting prior on the degrees of freedom according to the marginal likelihood

criterion (λ = 6). For priors with higher λ the posterior mean degrees of freedom

for these four shocks increases, but this is mostly because the posterior distribution

becomes more skewed to the right (that is, it places some mass on higher values

for λ). Still, for many shocks the posterior distribution puts sizable mass on the

{λ < 6} region even for λ = 15. It is also worth noting that in four cases the 5th

quintile of the posterior distribution barely changes as a function of λ. The shocks

with the fattest tails (lowest posterior degrees of freedom) are those affecting the

discount rate (b), TFP productivity (z), the marginal efficiency of investment (µ),

and the wage markup (λw). Not surprisingly, these shocks are the usual suspects

as key drivers of business cycles (see Smets and Wouters (2007), Justiniano et al.

(2009)).

As for the result that allowing for low frequency movements in volatility sub-

stantially changes the inference about the degrees of freedom, the monetary policy

shock rm is a case in point. Its estimated degrees of freedom are very low when one

ignores time variations in volatility that seem to be apparent in figure 1. Ignoring

time-variation in volatility, the model interprets the large shocks of the late seven-

ties/early eighties as evidence of fat tails. Once these secular changes in volatility

are taken into account, the posterior estimates of the degrees of freedom increases

substantially. 8 What is the intuition for this finding? The posterior distribution of

h̃t, which determines how fat the tails are, is given by (20):

[
λ+ ε2

t /σ
2
t

]
h̃t|θ, ε1:T , σ̃1:T , λ ∼ χ2(λ+ 1).

8In an appendix available upon request we show the smoothed shocks and the “tamed” version

of these shocks (that is, the counterfactual shocks after shutting down the Student-t component

– see below) for both the discount rate and policy shocks for the estimation without stochastic

volatility. Consistent with the above analysis, the “tamed” plots look much more consistent with a

Gaussian distribution than the original estimates, confirming the role of fat tails. However, for the

policy shock, we find that there is still a cluster of higher variance innovations in the late 70s and

early 80s, suggesting that stochastic volatility still has an important role in the evolution of this

shock.
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For a given value of σt, the a larger estimated shock εt implies a smaller posterior

value of h̃t. Not surprisingly, large shocks are interpreted by the model as evidence

for fat tails. However, the shock is standardized by σt: if a large shock occurs during

a period where all shocks tend to be large, it is discounted, and the posterior value

of h̃t may not be particularly small.

A question of obvious interest is whether this evidence in favor of fat-tailed

shocks depends on the Great Recession being part of the estimation sample. To

address this, we estimate the model for the sub-sample ending in the fourth quarter

of 2004—the same sample used in Justiniano and Primiceri (2008). Table 3 shows

the marginal likelihood for all the specifications considered above but estimated on

the shorter sub-sample. The results for this specification, displayed in Table 3, are

in line the results for the full sample: having Student-t distributed shocks improves

fit, regardless of whether we also consider stochastic volatility, and the lower the

prior mean for the degrees of freedom the higher the marginal likelihood we obtain.

The posterior means of the degrees of freedom of the Student-t distribution (not

shown) are also in line with those presented in Table 4.

4.2 Large Shocks and Macroeconomic Fluctuations

We have shown that quite a few important shocks in the SW model have fat tails

(i.e., their estimated degrees of freedom are low). But what does this mean in terms

of business cycle fluctuations? This section tries to provide a quantitative answer to

this question by performing a counterfactual experiment. Recall again from equation

(3) that

εq,t = σq,th̃
−1/2
q,t ηq,t.

Therefore, once we compute the posterior distribution of εq,t (the smoothed shocks)

and h̃q,t, we can purge the Student-t component from εq,t using

ε̃q,t = σq,tηq,t.

We can then compute counterfactual histories that would have occurred had the

shocks been ε̃q,t instead of εq,t. All these counterfactuals are computed for the best
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fitting model – that with stochastic volatility and Student-t shocks, with the prior

for λ centered at 6.

The left panel of Figure 3 shows these counterfactual histories for output, con-

sumption growth, and hours. For all plots the pink solid lines are the median

counterfactual paths, the pink dashed lines represent the 90% bands, and the solid

black lines represent the actual data. The right panel uses actual and counterfac-

tual histories to compute a rolling window standard deviation, where each window

contains the prior 20 quarters as well as the following 20 quarters, for a total of

41 quarters. These rolling window standard deviations are commonly used mea-

sures of time-variation in the volatility of the series. The difference between actual

and counterfactual standard deviations measures the extent to which the change in

volatility is accounted for by fat-tailed shocks.9

The left panels show that fat-tailed shocks seem to account for a non negligible

part of fluctuations in two of the variables of interest, output and consumption

growth. For output growth, the Student-t component accounted for a sizable fraction

of the contraction in output growth during the Great Recession. In particular, if

the fat tail component were absent the Great Recession would be of about the same

size as more mild recessions, such as the 1990-91 recession. In general, without the

fat-tailed component of the shocks all recessions (with the exception of the 2001

recession) would be of roughly the same magnitude. Further, the rolling window

standard deviation shown in the right panel shows that the Student-t component

explains a non-negligible part of changes in the realized volatility in the data. One

can interpret this evidence as saying that the 70s and early 80s were more volatile

than the Great Moderation period at least in part because rare shocks took place.

For example at the peak of the volatility in 1978, the data standard deviation of

output is about 1.25, but once we shut down the Student-t component it drops

to 1.05, which is a reduction of about 16% in volatility. Similar conclusions apply

to the decomposition of consumption and investment growth (middle and bottom

9The distribution of h̃q,t is non-time varying. However, since large shocks rarely occur, they

may account for changes in the rolling window volatility.
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panels, respectively). It is notable that in the case of investment, and to a lesser

extent of consumption, the rolling-window volatility computed from the data has

spiked up recently to levels near those prior to the Great Moderation. When we

take the Student-t component into account, however, the recent increase in the

rolling-window volatility appears much milder.

4.3 Student-t Shocks and Inference about Time-Variation in Volatil-

ity

This section discusses the extent to which accounting for fat tails makes us reevaluate

the magnitude of low frequency changes in volatility. Why might this be the case?

Inference about the stochastic volatility is conducted using state-space methods,

where equation (48) in the appendix, which we repeat here for convenience,

log(σ−2h̃tε
2
t + c) = 2σ̃t + η∗t ,

is the measurement equation (with c a small constant), and equation (8) is the

transition equation. Intuitively, the estimated time-varying volatilities will try to

fit the time series log(σ−2h̃tε
2
t + c). Since this quantity depends on ε2

t , the model

will interpret changes over time in the size of the squared shocks ε2
t as evidence

of time variation in the volatilities σ̃t. In a world with fat tails, ε2
t will vary over

time simply because h̃t changes. In order to take this into account, in the expression

above ε2
t is pre-multiplied by h̃t. If one ignores variations in h̃t by assuming Gaussian

shocks, one may obtain the wrong inference about the time variation in the σts. For

instance, one may conclude that the Great Recession signals a permanent change in

the level of macroeconomic volatility, when in fact it may (at least in part) be the

result of a particularly large realization of the shocks.

Does all of this matter in practice? An implication of stochastic volatility is

that the model-implied variance of the endogenous variables changes over time (see

Figure 5 of Justiniano and Primiceri (2008)). Therefore, rather than looking at

the posterior estimates of the stochastic volatility component for individual shocks
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(which we show in an appendix available upon request) we focus here on the time-

variation of the standard deviation of output and consumption—two objects that are

directly relevant to macroeconomists. Specifically, Figure 4 shows the model-implied

volatility of output and consumption growth, as measured by the unconditional

standard deviation of the series computed at each point in time t assuming that

the standard deviations of the shocks is going to remain equal to the estimated

value of σqσq,t forever after (that is, abstracting from the fact that future σq,ts

will evolve according to equation (8); this is the same objects computed in Figure

5 of Justiniano and Primiceri (2008)). In the top panel, the red line shows this

measure for the estimation with stochastic volatility but Gaussian shocks, while

the black lines show this volatility for the estimation with both stochastic volatility

and Student-t components (with λ = 6). As in the other plots, the solid line is

the posterior median and the dashed lines correspond to the 90% bands around the

median. For both variables the model-implied volatility is generally higher when we

account for fat tails. This may be intuitive: in a model that allows for fat-tailed

shocks the implied volatility of output and consumption can be higher. However,

the difference between the models is not constant over time. At the peak of the high-

volatility period (late 70s and early 80s), the two models agree. However, during

the Great Moderation the model that does not allow for fat tailed shocks seems to

overestimate the decline in macroeconomic volatility.

The middle panel of Figure 4 hones in on this finding. This panel shows the

posterior distribution of the ratio of the volatility in 1981 (roughly, the peak of

the volatility series) relative to the volatility in 1994 (roughly, the bottom) for

output and consumption growth, respectively. The red bars are for the model with

stochastic volatility only, while the black bars stand for the model with stochastic

volatility and Student-t shocks. Numbers greater than one indicate that volatility

was higher in 1981 relative to 1994. There is no doubt that this is the case, as both

histograms are well to the right of one. However, the magnitude of the decrease in

volatility depends on whether or not we allow for fat-tailed shocks. The posterior

distribution for the ratio of the output growth volatility in 1981 relative to the
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volatility in 1994 in the estimation with Student-t shocks is smaller relative to the

case with Gaussian shocks. The median is 1.8 in the former, compared to 2.6 in

the latter. For the red bars, most of the mass is to the right of two, implying that

volatility dropped by more than half between 1981 and 1994. The converse holds

for the black bars, which show a much smaller decline in volatility according to the

model with Student-t shocks. This same pattern is also evident for the consumption

growth.

As a result of the Great Recession there has been an increase in volatility in many

macroeconomic variables since 2008, as measured by the rolling window standard

deviations shown in Figure 3. To what extent does this increase reflect a permanent

increase in the volatility of the underlying shocks, and, potentially, the end of the

Great Moderation? The bottom panels of Figure 4 show the ratio of the volatility in

2011 (end of the sample) relative to the volatility in 2005 (pre-Great Recession) for

output and consumption growth, respectively, with numbers greater than one indi-

cating a permanent rise in volatility. Under the model with time-varying volatility

and Gaussian shocks, the probability that volatility in both output and consumption

has increased after the Great Recession is quite high. The probability of the ratio

being below one is 4.6% and 8.2% for output and consumption growth, respectively.

The model that has, Student-t shocks in addition to time-varying volatility is less

sure: the probability of the ratio being below one increases to 12% in the case of

output, and 21% in the case of consumption growth. Moreover, this model implies

that if such an increase took place, it was fairly modest, with most of the mass

below 1.25.

5 Conclusions

We provide strong evidence that the Gaussianity assumption in DSGE models is

counterfactual, even after allowing for low frequency changes in the volatility of

shocks. However, it is important to point out a number of caveats regarding our

analysis. First, in the current draft we allow for excess kurtosis but not for skewness.
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The shocks plots in in Figure 1 make it plain that most large shocks occur during

recessions, implying that skewness may also be an salient feature of the shocks dis-

tribution. A recent paper by Müller (2011) describes some of the dangers associated

with departures from Gaussianity when the alternative shock distribution is also

misspecified. Importantly for our analysis, not allowing for skewness may lead to

an underestimation of the importance of fat tails during recessions, as we only es-

timate the “average” amount of kurtosis. Second, we allow for permanent (random

walk) and i.i.d (Student-t distribution) changes in the variance of the shocks. These

assumptions are convenient, but also extreme. Our main point is that together with

low frequency changes in the standard deviation of shocks, there are also short run

spikes in volatility. So far, the literature for the U.S. has mainly focused on the

former phenomenon; in this paper we emphasize the latter. Still, in future research

it may be important to relax the assumption that these short run spikes are iden-

tically distributed over time. Finally, in order to study the full implications of fat

tailed shocks on the macroeconomy we need to use non linear models, as we discuss

in the introduction. We leave these important extensions for future research.
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A Appendix

A.1 Data

The data set is obtained from Haver Analytics (Haver mnemonics are in italics).

We compile observations for the variables that appear in the measurement equa-

tion (44). Real GDP (GDPC), the GDP price deflator (GDPDEF), nominal personal

consumption expenditures (PCEC), and nominal fixed private investment (FPI) are

constructed at a quarterly frequency by the Bureau of Economic Analysis (BEA),

and are included in the National Income and Product Accounts (NIPA).

Average weekly hours of production and nonsupervisory employees for total pri-

vate industries (PRS85006023), civilian employment (CE16OV), and civilian nonin-

stitutional population (LNSINDEX) are produced by the Bureau of Labor Statistics

(BLS) at the monthly frequency. The first of these series is obtained from the Estab-

lishment Survey, and the remaining from the Household Survey. Both surveys are

released in the BLS Employment Situation Summary (ESS). Since our models are

estimated on quarterly data, we take averages of the monthly data. Compensation

per hour for the nonfarm business sector (PRS85006103) is obtained from the Labor

Productivity and Costs (LPC) release, and produced by the BLS at the quarterly

frequency. Last, the federal funds rate is obtained from the Federal Reserve Board’s

H.15 release at the business day frequency, and is not revised. We take quarterly

averages of the annualized daily data.

All data are transformed following Smets and Wouters (2007). Specifically:

Output growth = LN((GDPC)/LNSINDEX) ∗ 100

Consumption growth = LN((PCEC/GDPDEF )/LNSINDEX) ∗ 100

Investment growth = LN((FPI/GDPDEF )/LNSINDEX) ∗ 100

Real Wage growth = LN(PRS85006103/GDPDEF ) ∗ 100

Hours = LN((PRS85006023 ∗ CE16OV/100)/LNSINDEX) ∗ 100

Inflation = LN(GDPDEF/GDPDEF (−1)) ∗ 100

FFR = FEDERAL FUNDS RATE/4
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A.2 Marginal likelihood

The marginal likelihood is the marginal probability of the observed data, and is

computed as the integral of (12) with respect to the unobserved parameters and

latent variables:

p(y1:T ) =
∫
p(y1:T |s1:T , θ)p(s1:T |ε1:T , θ)p(ε1:T |h̃1:T , σ̃1:T , θ)

p(h̃1:T |λ1:q̄)p(σ̃1:T |ω2
1:q̄)p(λ1:q̄)p(ω2

1:q̄)p(θ)

d(s1:T , ε1:T , h̃1:T , σ̃1:T , λ1:q̄, ρ1:q̄, ω
2
1:q̄, θ),

=
∫
p(y1:T |h̃1:T , σ̃1:T , θ)p(h̃1:T |λ1:q̄)p(σ̃1:T |ω2

1:q̄)

p(λ1:q̄)p(ω2
1:q̄)p(θ)d(h̃1:T , σ̃1:T , λ1:q̄, ρ1:q̄, ω

2
1:q̄, θ)

(45)

where the quantity

p(y1:T |h̃1:T , σ̃1:T , θ) =
∫
p(y1:T |s1:T , θ)p(s1:T |ε1:T , θ)

p(ε1:T |h̃1:T , σ̃1:T , θ) · d(s1:T , ε1:T )

is computed at step 1a of the Gibb-sampler described above.

We obtain the marginal likelihood using Geweke (1999)’s modified harmonic

mean method. If f(θ, h̃1:T , σ̃1:T , λ1:q̄, ρ1:q̄, ω
2
1:q̄) is any distribution with support con-

tained in the support of the posterior density such that∫
f(θ, h̃1:T , σ̃1:T , λ1:q̄, ρ1:q̄, ω

2
1:q̄) · d(θ, h̃1:T , σ̃1:T , λ1:q̄, ρ1:q̄, ω

2
1:q̄) = 1,

it follows from the definition of the posterior density that:

1
p(y1:T ) =

∫ f(θ,h̃1:T ,σ̃1:T ,λ1:q̄ ,ρ1:q̄ ,ω2
1:q̄)

p(y1:T |h̃1:T ,σ̃1:T ,θ)p(h̃1:T |λ1:q̄)p(σ̃1:T |ω2
1:q̄)p(λ1:q̄)p(ω2

1:q̄)p(θ)

p(θ, h̃1:T , σ̃1:T , λ1:q̄, ρ1:q̄, ω
2
1:q̄|y1:T ) · d(θ, h̃1:T , σ̃1:T , λ1:q̄, ρ1:q̄, ω

2
1:q̄)

We follow Justiniano and Primiceri (2008) in choosing

f(θ, h̃1:T ) = f(θ) · p(h̃1:T |λ1:q̄)p(σ̃1:T |ω2
1:q̄)p(λ1:q̄)p(ω2

1:q̄), (46)

where f(θ) is a truncate multivariate distribution as proposed by Geweke (1999).

Hence we approximate the marginal likelihood as:

p̂(y1:T ) =

 1
nsim

nsim∑
j=1

f(θj)

p(y1:T |h̃j1:T , σ̃
j
1:T , θ

j)p(θj)

−1

(47)
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where θj , h̃j1:T , and σ̃j1:T are draws from the posterior distribution, and nsim is the

total number of draws. We are aware of the problems with (46), namely that it does

not ensure that the random variable

f(θ, h̃1:T , σ̃1:T , λ1:q̄, ρ1:q̄, ω
2
1:q̄)

p(y1:T |h̃1:T , σ̃1:T , θ)p(h̃1:T |λ1:q̄)p(σ̃1:T |ω2
1:q̄)p(λ1:q̄)p(ω2

1:q̄)p(θ)

has finite variance. Nonetheless, like Justiniano and Primiceri (2008) we found that

this method delivers very similar results across different chains.

A.3 Drawing the stochastic volatilities

We draw the stochastic volatilities using the procedure in Kim et al. (1998), which

we briefly describe. Taking squares and then logs of (3) one obtains:

ε∗q,t = 2σ̃q,t + η∗q,t (48)

where

ε∗q,t = log(σ−2
q h̃q,tε

2
q,t + c), (49)

c = .001 being an offset constant, and η∗q,t = log(η2
q,t). If η∗q,t were normally dis-

tributed, σq,1:T could be drawn using standard methods for state-space systems.

In fact, η∗q,t is distributed as a log(χ2
1). Kim et al. (1998) address this problem

by approximating the log(χ2
1) with a mixture of normals, that is, expressing the

distribution of η∗q,t as:

p(η∗q,t) =
K∑
k=1

π∗kN (m∗k − 1.2704, ν∗ 2
k ) (50)

The parameters that optimize this approximation, namely {π∗k,m∗k, ν∗k}Kk=1 and K,

are given in Kim et al. (1998). Note that these parameters are independent of the

specific application. The mixture of normals can be equivalently expressed as:

η∗q,t|ςq,t = k ∼ N (m∗k − 1.2704, ν∗ 2
k ), P r(si,t = k) = π∗k. (51)

Hence step (4) of the Gibbs sampler actually consists in two steps:
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(4.1) Draw from p(ς1:T |σ̃1:T , ε1:T , h̃1:T , s1:Tλ1:q̄, ρ1:q̄, ω
2
1:q̄, y1:T ) using (50) for each q.

Specifically:

Pr{ςq,t = k|σ̃1:T , ε1:T , h̃1:T . . . } ∝ π∗kν−1
k exp

[
− 1

2ν∗ 2
k

(η∗q,t −m∗k + 1.2704)2

]
.

(52)

where from (48) η∗q,t = ε∗q,t − 2σ̃q,t.

(4.2) Draw from p(σ̃1:T |ς1:T , ε1:T , h̃1:T , s1:Tλ1:q̄, ρ1:q̄, ω
2
1:q̄, y1:T ) using Durbin and Koop-

man (2002), where (48) is the measurement equation and (8) is the transition

equation.

Note that in principle we should make it explicit that we condition on ς1:T in the

other steps of the Gibbs sampler as well. In practice, all other conditional distribu-

tions do not depend on ς1:T , hence we omit the term for simplicity.
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Table 1: Priors for the Medium-Scale Model

Density Mean St. Dev. Density Mean St. Dev.

Policy Parameters

ψ1 Normal 1.50 0.25 ρR Beta 0.75 0.10
ψ2 Normal 0.12 0.05 ρrm Beta 0.50 0.20
ψ3 Normal 0.12 0.05 σrm InvG 0.10 2.00

Nominal Rigidities Parameters

ζp Beta 0.50 0.10 ζw Beta 0.50 0.10

Other “Endogenous Propagation and Steady State” Parameters

α Normal 0.30 0.05 π∗ Gamma 0.75 0.40
Φ Normal 1.25 0.12 γ Normal 0.40 0.10
h Beta 0.70 0.10 S′′ Normal 4.00 1.50
νl Normal 2.00 0.75 σc Normal 1.50 0.37
ιp Beta 0.50 0.15 ιw Beta 0.50 0.15
r∗ Gamma 0.25 0.10 ψ Beta 0.50 0.15

ρs, σs, and ηs

ρz Beta 0.50 0.20 σz InvG 0.10 2.00
ρb Beta 0.50 0.20 σb InvG 0.10 2.00
ρλf Beta 0.50 0.20 σλf InvG 0.10 2.00
ρλw Beta 0.50 0.20 σλw InvG 0.10 2.00
ρµ Beta 0.50 0.20 σµ InvG 0.10 2.00
ρg Beta 0.50 0.20 σg InvG 0.10 2.00
ηλf Beta 0.50 0.20 ηλw Beta 0.50 0.20
ηgz Beta 0.50 0.20

Notes: Note that β = (1/(1 + r∗/100)). The following parameters are fixed in Smets and Wouters (2007):

δ = 0.025, g∗ = 0.18, λw = 1.50, εw = 10.0, and εp = 10. The columns “Mean” and “St. Dev.” list the

means and the standard deviations for Beta, Gamma, and Normal distributions, and the values s and ν

for the Inverse Gamma (InvG) distribution, where pIG(σ|ν, s) ∝ σ−ν−1e−νs
2/2σ2

. The effective prior is

truncated at the boundary of the determinacy region. The prior for l̄ is N (−45, 52).



This Version: October 9, 2012 33

Table 2: Marginal Likelihoods

Without Stochastic Volatility With Stochastic Volatility

Gaussian shocks

-1117.9 -1050.9

Student-t distributed shocks

λ = 15 -999.0 -989.9

λ = 9 -988.1 -986.0

λ = 6 -980.0 -966.3

Notes: The parameter λ represents the prior mean for the degrees of freedom in the Student-t distribution

λ.

Table 3: Marginal Likelihoods, Sample Ending in 2004Q4

Constant Volatility Stochastic Volatility

Gaussian shocks

-962.8 -926.7

Student-t distributed shocks

λ = 15 -878.4 -847.9

λ = 9 -866.8 -842.2

λ = 6 -853.9 -835.0

Notes: The parameter λ represents the prior mean for the degrees of freedom in the Student-t distribution.
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Table 4: Posterior of the Student’s t Degrees of Freedom

Without Stochastic Volatility With Stochastic Volatility

λ = 15 λ = 9 λ = 6 λ = 15 λ = 9 λ = 6

g 9.8 7.2 5.8 14.8 10.5 8.2
(3.3,16.6) (3.1,11.4) (2.8,8.8) (5.5,24.0) (4.7,16.1) (4.1,12.2)

b 4.4 4.4 4.1 9.1 6.9 5.8
(2.3,6.4) (2.4,6.4) (2.3,5.8) (3.0,15.4) (3.0,10.9) (2.8,8.6)

µ 9.9 7.1 5.8 10.2 7.4 5.9
(3.5,16.5) (3.0,11.2) (2.9,8.8) (3.3,17.2) (3.0,11.8) (2.8,9.0)

z 5.9 4.9 4.2 7.5 5.7 4.8
(2.1,9.9) (2.2,7.6) (2.1,6.2) (2.4,13.1) (2.3,9.2) (2.2,7.3)

λf 11.1 8.4 6.6 16.4 11.5 9.0
(3.6,18.7) (3.5,13.2) (3.2,10.1) (6.3,26.1) (5.2,17.6) (4.6,13.4)

λw 9.5 7.2 6.0 7.5 6.2 5.3
(3.5,15.5) (3.3,11.1) (3.0,8.9) (3.1,12.1) (3.0,9.3) (2.9,7.8)

rm 3.4 3.2 3.0 15.1 10.7 8.4
(1.9,5.0) (1.8,4.5) (1.8,4.2) (5.6,24.5) (4.7,16.6) (4.1,12.4)

Notes: Numbers shown for the posterior mean and the 90% intervals of the degrees of freedom parameter.
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Figure 1: Smoothed Shocks under Gaussianity (Absolute Value, Standardized)
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Figure 2: Priors on degrees of freedom of Student-t distribution
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Notes: Prior density for λ = 6 (solid), 9 (dashed), and 15 (dash-and-dotted). All priors have ν = 4 degrees

of freedom.
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Figure 3: Counterfactual evolution of output, consumption and hours worked when

the Student-t distributed component is turned off, estimation with Student-t dis-

tributed shocks and stochastic volatility.
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rolling window standard deviation uses 20 quarters before and 20 quarters after a given quarter.
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Figure 4: Time-Variation in the unconditional variance of output and consumption;

models estimated with and without the Student-t distributed component.
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histogram of the ratio of volatility in 1981 over the variance in 1994 for the estimation with both stochastic

volatility and Student-t components, while the red bars are for the estimation with with stochastic volatility

component only. The lower panel replicates the same analysis as in the middle panel but for the ratio of

volatility in 2011 over the variance in 2005.
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B Appendix – Not intended for publication

Table 5: Marginal Likelihoods, prior with 1 degree of freedom

Without Stochastic Volatility With Stochastic Volatility

Student-t distributed shocks

λ = 15 -994.2 -987.5

λ = 9 -982.4 -974.0

λ = 6 -975.6 -976.0

Notes: The parameter λ represents the prior mean for the degrees of freedom in the Student-t distribution.
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Figure 5: Shocks and “Tamed” Shocks (Absolute Value, Standardized)
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Notes: Estimation with Student-t distribution with λ = 6. The solid line is the median, and the dashed

lines are the posterior 90% bands. Shocks are expressed in units of the standard deviation σq . The vertical

shaded regions identify NBER recession dates.
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Figure 6 shows the stochastic volatility component for the discount rate and

policy shocks. On the left panel we show these for the estimation with stochastic

volatility and otherwise Gaussian shocks, while on the right panels we consider both

stochastic volatility and Student-t shocks. The black lines correspond to the absolute

value of the shocks, as in Figure 1, and the red lines correspond to the evolution of

the stochastic volatility component, σqσq,t. Solid lines correspond to the median and

dot/dashed lines to the 90% bands around the median. The Figure shows that when

we ignore fat tails fluctuations in volatility for the discount rate shock are sizable:

volatility drops by half between the early 1980s and the mid 1990s, and the decline

is significant. Once we account for the fat tails movements in the volatility are more

subdued, and less significant. Recall that the degrees of freedom for the discount

rate shock are still quite low even after allowing for stochastic volatility. For the

policy shock, in the lower panels, there is hardly any difference in the stochastic

volatility component whether or not we allow for Student-t shocks – consistent with

the fact that the estimated degrees of freedom of the Student-t component for this

shock is high once we allow for stochastic volatility (shown in Table 4).
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Figure 6: Shocks (absolute values) and smoothed stochastic volatility component,

σqσq,t
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Notes: Estimation with Student-t distribution with λ = 15. The solid line is the median, and the dashed

lines are the posterior 90% bands. Black line is the absolute value of the shock, and the red line is the

stochastic volatility component.
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Table 6: Posterior Means of the DSGE Model Parameters

Baseline SV St-t St-t+SV

α 0.150 0.127 0.148 0.143
ζp 0.734 0.786 0.771 0.717
ιp 0.315 0.295 0.391 0.387
Φ 1.580 1.539 1.587 1.575
S′′ 4.686 5.491 5.631 5.541
h 0.611 0.567 0.606 0.592
ψ 0.714 0.868 0.696 0.703
νl 2.088 2.327 2.438 2.535
ζw 0.803 0.820 0.821 0.767
ιw 0.541 0.561 0.487 0.472
β 0.206 0.181 0.210 0.176
ψ1 1.953 1.966 1.911 2.041
ψ2 0.083 0.083 0.100 0.064
ψ3 0.245 0.207 0.203 0.179
π∗ 0.683 0.729 0.711 0.859
σc 1.236 1.097 1.251 1.288
ρ 0.835 0.856 0.869 0.856
γ 0.306 0.350 0.324 0.298
l̄ -44.17 -43.29 -43.17 -49.01
ρg 0.977 0.993 0.982 0.978
ρb 0.758 0.829 0.820 0.800
ρµ 0.748 0.782 0.775 0.794
ρz 0.994 0.966 0.993 0.995
ρλf 0.791 0.830 0.758 0.811
ρλw 0.981 0.924 0.967 0.951
ρrm 0.154 0.210 0.216 0.250
σg 2.892 0.128 2.377 2.318
σb 0.125 0.075 0.077 0.058
σµ 0.430 0.181 0.324 0.098
σz 0.493 0.506 0.355 0.342
σλf 0.164 0.071 0.141 0.049
σλw 0.281 0.095 0.213 0.046
σrm 0.228 0.061 0.127 0.040
ηgz 0.787 0.786 0.780 0.757
ηλf 0.670 0.711 0.661 0.694
ηλw 0.948 0.867 0.924 0.868

Notes: We use a prior mean of 6 degrees of freedom for the Student-t distributed component. The stochastic

volatility component assumes a prior mean for the size of the shocks to volatility of (0.01)2.
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