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FURTHER RESULTS ON THE LIMITING DISTRIBUTION OF GMM

SAMPLE MOMENT CONDITIONS

1. INTRODUCTION

Over the past thirty years, the generalized method of moments (GMM) has established itself

as arguably the most popular method for estimating economic models defined by a set of moment

conditions. In his seminal paper, Hansen (1982) developed the asymptotic distributions of the

GMM estimator, sample moment conditions, and test of over-identifying restrictions for possibly

nonlinear models with sufficiently general dependence structure. This large sample theory proved

to cover a large class of models and estimators that are of interest to researchers in economics and

finance.

There are cases, however, in which the root-T convergence and asymptotic normality of the

GMM sample moment conditions and estimators based on these moment conditions do not ac-

curately characterize their limiting behavior. For example, Gospodinov, Kan, and Robotti (2010)

demonstrate that some GMM estimators, which are functions of the sample moment conditions, are

proportional to the GMM objective function and, hence, cannot be root-T consistent and asymp-

totically normally distributed for correctly specified models. This situation is directly related to

the results in Lemma 4.1 and its subsequent discussion in Hansen (1982) which correctly point out

that the covariance matrix of the sample moment conditions is singular.

In this paper, we study the case that gives rise to degeneracy in the asymptotic approximation

in Lemma 4.1 of Hansen (1982) and establish the appropriate limiting theory. Interestingly, we

show that in this case, the scaled sample moment conditions evaluated at the GMM estimator

are characterized by a non-standard asymptotic behavior. In particular, we demonstrate that the

estimated GMM moment conditions converge to zero (the value implied by the population moment

conditions) at rate T and are asymptotically distributed as a product of jointly normally distributed

random vectors.

The rest of this paper is organized as follows. Section 2 introduces the general framework and

notation and discusses some motivating examples that illustrate the discontinuity in the asymptotic

approximation of the sample moment conditions. This section also provides the main theoretical

results on the limiting behavior of linear combinations of sample moment conditions and presents
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an easy-to-implement rank test that determines which asymptotic approximation should be used.

Section 3 reports simulation results based on a problem in empirical asset pricing and Section 4

concludes.

2. ASYMPTOTICS FOR GMM SAMPLE MOMENT CONDITIONS

2.1. NOTATION AND ANALYTICAL FRAMEWORK

Let θ ∈ Θ denote a p× 1 parameter vector of interest with true value θ0 that lies in the interior

of the parameter space Θ and gt(θ) be a known function {g : Rp → Rm, m > p} of the data and θ

that satisfies the set of population orthogonality conditions

E[gt(θ0)] = 0m. (1)

The GMM estimator of θ0 is defined as

θ̂ = argminθ∈ΘḡT (θ)′WT ḡT (θ), (2)

where WT is an m × m positive-definite weight matrix and

ḡT (θ) =
1
T

T∑

t=1

gt(θ). (3)

The matrix WT is allowed to be a fixed matrix that does not depend on the data and θ (iden-

tity matrix, for example), a matrix that depends on the data but not on θ, or a matrix that

depends on the data and a preliminary consistent estimator of θ0 as in the two-step and iter-

ated GMM estimation. Given the first-order asymptotic equivalence of the two-step, iterated, and

continuously-updated GMM estimators, our results below can be easily modified to accommodate

the continuously-updated (one-step) GMM estimator.

Let DT (θ) = 1
T

∑T
t=1

∂gt(θ)
∂θ′

, D (θ) = E
[

∂gt(θ)
∂θ′

]
and make the following assumptions.

Assumption A: Assume that
1√
T

T∑

t=1

gt(θ0)
d→ N(0m, V ), (4)

where V =
∑∞

j=−∞ E
[
gt (θ0) gt+j (θ0)

′] is a finite positive-definite matrix.

Assumption B: Assume that
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(i) gt (θ) is continuous in θ almost surely, E [supθ∈Θ |gt (θ) |] < ∞, and the parameter space Θ is

a compact subset of Rp,

(ii) there exists a unique θ0 ∈ Θ such that E [gt (θ0)] = 0m and E [gt (θ)] 6= 0m for all θ 6= θ0,

(iii) WT
p→ W, where W is a non-stochastic symmetric positive definite matrix,

(iv) DT (θ)
p→ D (θ) uniformly in θ on some neighborhood of θ0 and D0 ≡ D (θ0) is of rank p.

Assumption A is a high-level assumption that implicitly imposes restrictions on the data and the

vector gt(θ). The validity of this assumption can either be verified in the particular context or it can

be replaced by a set of explicit primitive conditions. Assumption A can be further strengthened in

order to allow for more general dependence structure (see, for instance, Stock and Wright, 2000).

Assumption B imposes sufficient conditions that ensure θ̂
p→ θ0 in the interior of the compact

parameter space Θ. The uniform convergence and the full rank condition in Assumption B (iv) are

required for establishing the asymptotic distributions of θ̂ and ḡT (θ̂).

Under Assumptions A and B (Hansen, 1982),

√
T ḡT (θ̂) = [Im − D0(D′

0WD0)−1D′
0W ]

1√
T

T∑

t=1

gt(θ0) + op(1). (5)

Hansen (1982, Lemma 4.1) states the asymptotic normality of
√

T ḡT (θ̂) with an asymptotic

covariance matrix

Ω0 = [Im − D0(D′
0WD0)−1D′

0W ]V [Im − D0(D′
0WD0)−1D′

0W ]′. (6)

However, Hansen (1982) notes that Ω0 is singular and that the asymptotic covariance matrix of
√

TD′
0WḡT (θ̂) reduces to a p×p matrix of zeros. Provided that WT is a consistent estimator of W ,

a similar degeneracy occurs for the object
√

TD′
0WT ḡT (θ̂) =

√
TD′

0hT (θ̂), where hT (θ̂) ≡ WT ḡT (θ̂).

For our analysis, it is more convenient to rewrite the asymptotic normality result in terms of the

nonzero parts of the covariance matrices of
√

T ḡT (θ̂) and
√

ThT (θ̂). Let Q denote an m× (m− p)

orthonormal matrix whose columns are orthogonal to W
1
2 D0. Then,

QQ′ = Im − W
1
2 D0(D′

0WD0)−1D′
0W

1
2 . (7)

3



Lemma 1: Under Assumptions A and B,

√
TQ′W

1
2 ḡT (θ̂) d→ N(0m−p, Q

′W
1
2 V W

1
2 Q) (8)

and
√

TQ′W− 1
2 hT (θ̂) d→ N(0m−p, Q

′W
1
2 V W

1
2 Q). (9)

Lemma 1 shows that
√

TQ′W
1
2 ḡT (θ̂) and

√
TQ′W− 1

2 hT (θ̂) have a non-degenerate asymptotic

normal distribution. This is a well-known result which allows us to easily establish the limiting

distribution of the over-identifying restrictions test. However, little is known about the limiting

behavior of those linear combinations of ḡT (θ̂) or hT (θ̂) that do not have an asymptotic normal

distribution. The purpose of this paper is to establish the rate of convergence and asymptotic

distributions of D′
0WḡT (θ̂) and D′

0hT (θ̂). While it is desirable to obtain the limiting behavior

of these scaled sample moment conditions for completeness, our interest in this issue does not

arise only from theoretical considerations. For instance, in asset pricing, some GMM estimators

based on the Hansen-Jagannathan (HJ, 1997) distance have a similar structure and deriving the

rate of convergence and asymptotic distribution of D′
0hT (θ̂) has important practical implications

for conducting statistical inference and evaluating asset pricing models. Before we present our

main result, we first provide two examples to illustrate the discontinuous nature of the asymptotic

analysis for linear combinations of ḡT (θ̂) or hT (θ̂).

2.2. MOTIVATING EXAMPLES

Example 1

Suppose that we observe for t = 1, . . . , T two samples y1t ∼ N(µ1, σ
2
1) and y2t ∼ N(µ2, σ

2
2) that

are independent of each other and over time with µ1 = µ2 = θ0 and σ2
1 = σ2

2 = 1. We assume

that the econometrician does not know the variance of y1 and y2 and is interested in estimating

the common mean parameter θ0. Let µ̂1 = 1
T

∑T
t=1 y1t, µ̂2 = 1

T

∑T
t=1 y2t, and σ̂2

1 and σ̂2
2 denote the

corresponding sample variances. The econometrician estimates θ0 by minimizing ḡT (θ)′WT ḡT (θ),

where

ḡT (θ) =

[
µ̂1 − θ

µ̂2 − θ

]
, WT =

[ 1
σ̂2

1
0

0 1
σ̂2

2

]
. (10)

The resulting GMM estimator of θ0 has the form

θ̂ =
σ̂2

2µ̂1 + σ̂2
1µ̂2

σ̂2
1 + σ̂2

2

(11)
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with sample moments given by

ḡ1T (θ̂) = µ̂1 − θ̂ =
σ̂2

1

σ̂2
1 + σ̂2

2

(µ̂1 − µ̂2), (12)

ḡ2T (θ̂) = µ̂2 − θ̂ =
σ̂2

2

σ̂2
1 + σ̂2

2

(µ̂2 − µ̂1). (13)

Given that D0 = [−1, −1]′ and W = I2, it can be easily shown that the distribution of D′
0WḡT (θ̂)

is given by

TD′
0WḡT (θ̂) d→ −

√
2u1u2, (14)

where u1 and u2 are two independent standard normal random variables. Hence, the distribution

is non-normal and D′
0WḡT (θ̂) converges to its true value of zero at rate T . This should also be

the case for any linear combination of WḡT (θ̂) (or ḡT (θ̂) since W = I2) with a vector of weights

α = (α1, α2)′ with α1 = α2, i.e., for a vector α that is in the span of the column space of D0. In

contrast, when α is not in the span of D0 (α1 6= α2), then

√
Tα′ḡT (θ̂) d→ N

(
0,

(α1 − α2)2

2

)
. (15)

The degeneracy of this standard asymptotic distribution occurs when α1 = α2.

Example 2

Let yt(θ) be a candidate stochastic discount factor (SDF) at time t, where θ is a p vector of the

parameters of the SDF. Suppose we use m test assets to estimate the true SDF parameter vector

θ0 as well as to test if the proposed SDF is correctly specified. Denote by Rt the payoffs of the m

test assets at time t and by q the vector of the costs of the m test assets. Let

gt(θ) = Rtyt(θ) − q. (16)

If the model is correctly specified, we have E[gt(θ0)] = 0m. A popular method of estimating θ0 is

to choose θ to minimize the sample squared HJ-distance, defined as

δ2
T = min

θ
ḡT (θ)′WT ḡT (θ), (17)

where WT =
(

1
T

∑T
t=1 RtR

′
t

)−1
.

To determine whether the proposed SDF is correctly specified, we can examine the sample

pricing errors of the m test assets, i.e., ḡT (θ̂), where θ̂ is the vector of estimated parameters chosen
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to minimize the sample HJ-distance. Alternatively, we can examine the m vector of estimated

Lagrange multipliers

λ̂ = WT ḡT (θ̂), (18)

which is a transformation of the sample pricing errors. Hansen and Jagannathan (1997) show

that if the proposed SDF does not price the test assets correctly, then it is possible to correct the

mispricing of the SDF by subtracting λ′Rt from yt(θ). As a result, researchers are often interested

in testing H0 : λi = 0, i.e., in determining whether asset i is responsible for the proposed SDF to

deviate from the true SDF.

Gospodinov, Kan, and Robotti (2010) show that for a linear SDF, q′λ̂ = −δ̂
2

T where δ̂
2

T =

ḡT (θ̂)′WT ḡT (θ̂) is the squared sample HJ-distance. For the special case of q = [1, 0′m−1]
′ (i.e., the

payoff of the first test asset is a gross return and the rest are excess returns), the estimate of the

Lagrange multiplier associated with the first test asset, λ̂1, is T -consistent and shares the weighted

chi-squared distribution of δ̂
2

T under the assumption of a correctly specified model. This result is

of practical importance since applied researchers often resort to testing the statistical significance

of individual Lagrange multipliers in evaluating specification errors in asset pricing models (see

Hodrick and Zhang, 2001, for example). More generally, as we show below,

TD′
0λ̂

d→ −(Ip ⊗ v′2)v1, (19)

where v1 and v2 are jointly normally distributed vectors of random variables. As a result, any

linear combinations of λ̂ with a vector of weights that is in the span of the column space of D0 is

also T -consistent with a non-standard (product of normals) asymptotic distribution.1

It is interesting to note that a similar type of discontinuity in the asymptotic approximation

and accelerated rate of convergence have been established by Sims, Stock, and Watson (1990) in an

AR(p) model, p > 1, with a unit root in the AR polynomial. In particular, Sims, Stock, and Watson

(1990) show that a linear combination of WT ḡT (θ0) with a vector of weights (α1, ..., αp)′ 6= (ᾱ, ..., ᾱ)′

is root-T and asymptotically normally distributed while a linear combination of WT ḡT (θ0) with a

vector of weights (α1, ..., αp)′ = (ᾱ, ..., ᾱ)′ yields a T -consistent and asymptotically non-normally

distributed estimator.

1Detailed derivations of the results in Examples 1 and 2 are available from the authors upon request.
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2.3. MAIN RESULTS

We now turn to deriving the asymptotic distributions of D′
0WḡT (θ̂) and D′

0hT (θ̂). Due to the

similarities in their structure, we first present the results for D′
0hT (θ̂) and discuss the D′

0WḡT (θ̂)

case in the next subsection. First, we make an additional assumption on the joint limiting behavior

of D̂T = DT (θ̂) and hT (θ̂) that is needed to establish the asymptotic distribution of D′
0hT (θ̂).

Assumption C: Assume that

√
T

[
vec(Q′W

1
2 D̂T )

Q′W− 1
2 hT (θ̂)

]
d→ N(0(m−p)(p+1), Σ) (20)

for some finite positive semidefinite matrix Σ.

The asymptotic normality of the m − p vector Q′W− 1
2 hT (θ̂) follows directly from Lemma 1.

The main requirement is on the limiting behavior of the matrix D̂T which is, however, rather weak

and rules out only some trivial cases. It is important to note that we do not need to impose any

restriction on the rate of convergence of WT apart from being a consistent estimator of W (As-

sumption B (iii)). In contrast, as we argue later, deriving the asymptotic distribution of D′
0WḡT (θ̂)

requires explicit assumptions on the rate of convergence of WT that can differ for parametric and

nonparametric heteroskedasticity and autocorrelation consistent (HAC) estimators.

We now state our main result in the following theorem.

Theorem 1: Under Assumptions A, B, and C,

TD′
0hT (θ̂) d→ −(Ip ⊗ v′2)v1, (21)

where v1 and v2 are (m− p)p and (m− p) vectors, respectively, and (v′1, v′2)
′ ∼ N(0(m−p)(p+1), Σ).

Proof. See Appendix A.

In order to make the asymptotic approximation derived in Theorem 1 operational for conducting

inference, we need an estimate of the covariance matrix Σ. In the following, we provide explicit

expressions that can be used for consistent estimation of the covariance matrix Σ in Theorem 1.

Let GT (θ) = 1
T

∑T
t=1 ∂vec(∂gt(θ)/∂θ′)/∂θ′, G(θ) = ∂vec(D(θ))/∂θ′, and G0 = G(θ0).

Assumption D: Assume that GT (θ)
p→ G (θ) uniformly in θ on some neighborhood of θ0, where

G (θ) exists, is finite, and is continuous in θ ∈ Θ almost surely.
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In the following lemma, we provide the explicit form of the matrix Σ.

Lemma 2. Let G̃ = (Ip ⊗ Q′W
1
2 )G0. Under Assumptions A, B, and D, we have

Σ =
∞∑

j=−∞
E[dtd

′
t+j ], (22)

where dt = [d′1,t, d′2,t]
′ and

d1,t = G̃(D′
0WD0)−1D′

0Wgt(θ0) + vec
(

Q′W
1
2
∂gt(θ0)

∂θ′

)
, (23)

d2,t = Q′W
1
2 gt(θ0). (24)

Proof. See Appendix A.

Consistent estimators of d1,t and d2,t can be obtained by replacing the population quantities

(parameters) in Lemma 2 with their sample analogs (estimators). The consistent estimation of the

long-run covariance matrix Σ can then proceed by using a HAC estimator (see Andrews, 1991, for

example).

2.4. DISCUSSION

The result in Theorem 1 has important implications for the asymptotic distribution of a linear

combination of hT (θ̂) with a weighting vector α that is in the span of the column space of D0. In

particular, if α = D0c̃ for a constant nonzero p vector c̃, then we have

Tα′hT (θ̂) d→ −ṽ′1v2, (25)

where (ṽ′1, v′2)
′ ∼ N(02(m−p), Σ̃) and ṽ1 is the limit of

√
TQ′W

1
2 D̂T c̃.2 Instead of expressing the

asymptotic distribution as the inner product of two normal random vectors, the following lemma

shows that we can alternatively express it as a linear combination of independent χ2
1 random

variables.
2It is easy to show that

Σ̃ =

∞∑

j=−∞

E[d̃td̃
′
t+j],

where d̃t = (d̃′
1,t, d′

2,t)
′ with d̃1,t = (c̃′ ⊗ Q′W

1
2 )G0(D

′
0WD0)

−1D′
0Wgt(θ0) + Q′W

1
2

∂gt(θ0)
∂θ′ c̃ and d2,t = Q′W

1
2 gt(θ0).

When c̃ is unknown, one could plug in a consistent estimator of c̃. For example, a consistent estimator of c̃ can be
obtained as

̂̃c = (D̂′
T WT D̂T )−1(D̂′

T WT α).
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Lemma 3. Suppose that z = [z′1, z′2]
′, where z1 and z2 are both n × 1 vectors, is multivariate

normally distributed

z ∼ N(02n, Ψ), (26)

where Ψ is a positive semidefinite matrix with rank l ≤ 2n. Let Ψ = SΥS ′, where Υ is an l × l

diagonal matrix of the nonzero eigenvalues of Ψ and S is a 2n × l matrix of the corresponding

eigenvectors. In addition, let

Γ = Υ
1
2 S ′

[
0n×n

1
2In

1
2In 0n×n

]
SΥ

1
2 . (27)

Then,

z′1z2 ∼
k∑

i=1

γiξi, (28)

where the γi’s are the k ≤ l nonzero eigenvalues of Γ and the ξi’s are independent χ2
1 random

variables.

Proof. See Appendix A.

This lemma shows that the inner product of two vectors of normal random variables (with mean

zero) can always be written as a linear combination of independent chi-squared random variables.

This result proves very useful since it allows us to adopt numerical procedures for obtaining the

p-value of a weighted chi-squared test that are already available in the literature.3 Furthermore,

this result helps us to reconcile the form of the asymptotic approximation proposed in Theorem 1

with the weighted chi-squared distribution that arises in some special cases as in Example 2 above.

Extending the result in Theorem 1 to cover the limiting behavior of A′
0ḡT (θ̂), where A0 = WD0,

requires stronger conditions. Defining ÂT = WT D̂T , we need to replace Assumption C by assuming

that
√

T

[
vec(Q′W− 1

2 ÂT )

Q′W
1
2 ḡT (θ̂)

]
d→ N(0(m−p)(p+1), Ξ) (29)

for some finite positive definite matrix Ξ. The conditions that (29) imposes on the mp vector

3See, for example, Imhof (1961), Davies (1980), and Lu and King (2002). A Matlab program for computing the
p-value of a weighted chi-squared test is available from the authors upon request.

9



vec(ÂT − A0) can be best seen using the decomposition

√
T (ÂT − A0) =

√
T (WT D̂T − WD0)

=
√

TW (D̂T − D0) +
√

T (WT − W )D0 +
√

T (WT − W )(D̂T − D0)

=
√

TW (D̂T − D0) +
√

T (WT − W )D0 + op(1). (30)

While the conditions for the matrix D̂T are easily satisfied (Assumption C), the requirement

of root-T convergence for WT rules out nonparametric HAC estimators (see Andrews, 1991, for

example) but allows for some parametric HAC estimators (West, 1997). In general, this assumption

requires that WT is computed using a martingale difference sequence process or a dependent process

for which the form of serial correlation is known. Then, under the assumption in (29), it can be

shown, using similar arguments as in the proof of Theorem 1, that

TA′
0ḡT (θ̂) d→ −(Ip ⊗ u′

2)u1, (31)

where (u′
1, u′

2)
′ ∼ N(0(m−p)(p+1), Ξ).4

2.5. RANK RESTRICTION TEST

The result in equation (25) crucially depends on prior knowledge that a given m vector α is in

the column span of D0. This is the case, for instance, in our Examples 1 and 2. If this information

is not available, then one needs to resort to pre-testing in order to determine which asymptotic

framework should be used for the particular problem at hand. Below we propose a computationally

attractive pre-test that determines if α is in the span of the column space of D0.

Let Pα be an m × (m− 1) orthonormal matrix whose columns are orthogonal to α such that

PαP ′
α = Im − α(α′α)−1α′. (32)

Also, let Π = P ′
αD0. It turns out that determining if α is in the span of the column space of D0 is

equivalent to determining if Π is of reduced rank.

Under the null that Π is of (reduced) rank p− 1, H0 : rank(Π) = p− 1, there exists a nonzero p

vector c̃ such that D0c̃ = α, or equivalently (by premultiplying by P ′
α and using the properties of

4Note that the factor
√

2 in (14) is due to the fact that u1 and u2 in this expression are standardized to have
variance equal to one.
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Pα) Πc̃ = 0m−1 with the normalization c̃′c̃ = 1. As discussed in Cragg and Donald (1997), if Π has

a reduced column rank of p− 1, we can use an alternative normalization and express one column of

this matrix, say πj , as a linear combination of the others columns, assuming that c̃j 6= 0. Without

any loss of generality, we can order this column first and define the rearranged partitioned matrix

Π = [π1, Π2] such that

[π1, Π2]




−1
c2
...
cp


 = 0m−1 (33)

or

Π2c0 = π1, (34)

where c0 = (c2, ..., cp)′. This is equivalent to imposing a normalization on c̃ such that its first

element is −1. With such a normalization, c0 is uniquely defined provided that rank(Π) = p − 1.

Let Π̂T = P ′
αD̂T . Using Assumption C and the proof of Lemma 2, it can be shown that

√
Tvec(Π̂T − Π) d→ N(0(m−1)p, M), (35)

where M =
∑∞

j=−∞ E[mtm
′
t+j ] and

mt = (Ip ⊗ P ′
α)G0(D′

0WD0)−1D′
0Wgt(θ0) + vec

(
P ′

α

∂gt(θ0)
∂θ′

)
. (36)

Let lT (c) = Π̂2,T c − π̂1,T . Define the test statistic

LM = min
c

T [lT (c)′Λ̂T (c)−1lT (c)], (37)

where Λ(c) = ((−1, c′)⊗Im−1)M((−1, c′)′⊗Im−1) and Λ̂T (c) denotes its consistent estimator. The

following lemma shows that the rank test statistic LM is chi-squared distributed with m−p degrees

of freedom under the null hypothesis that Π is of rank p − 1.

Lemma 4. Under Assumptions A to D, and H0 : rank(Π) = p − 1,

LM
d→ χ2

m−p. (38)

Proof. See Appendix A.
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It is important to note that the rank test statistic in equation (37) has the form of the

continuously-updated GMM objective function and is invariant to scaling of c. Furthermore, we

would like to emphasize that the minimization in (37) is with respect to only a p − 1 vector c,

and the complexity of the minimization problem does not increase with m. Although the LM test

statistic in (37) can be shown to be equivalent to the test statistic proposed by Cragg and Donald

(1997),5 it offers substantial computational advantages over the highly dimensional optimization

problem in Cragg and Donald’s (1997) test. Finally, our simulation experiments show that the test

in (38) enjoys excellent size and power properties (see footnote 7 below).

3. MONTE CARLO EXPERIMENT

In this section, we report the results from a small Monte Carlo experiment that assesses the

accuracy of the proposed asymptotic approximation in finite samples. In particular, we adopt the

setup of Example 2 and evaluate the size of the weighted chi-squared test on the Lagrange multiplier

associated with the first asset when q = [1, 0′m−1]
′ (i.e., the payoff of the first asset is a gross return

and the payoffs of the other assets are excess returns). We consider two model specifications that are

calibrated to monthly data for the period January 1932 – December 2006. The first one is calibrated

to the capital asset pricing model (CAPM) with the value-weighted market excess return as risk

factor. For the CAPM, the returns on the test assets are the gross return on the risk-free asset

and the excess returns on 10 size ranked portfolios. The second specification is calibrated to the

three-factor model (FF3) of Fama and French (1993) with risk factors given by the value-weighted

market excess return, the return difference between portfolios of small and large stocks, and the

return difference between portfolios of high and low book-to-market ratios. For FF3, the returns

on the test assets are the gross return on the risk-free asset and the excess returns on 25 size and

book-to-market ranked portfolios. All data are obtained from Kenneth French’s website. The SDFs

of the CAPM and FF3 include an intercept term.

For each model, the factors and the returns on the test assets are drawn from a multivariate

normal distribution. The covariance matrix of the factors and returns is chosen based on the

covariance matrix estimated from the data. The mean return vector is chosen such that the asset

pricing model holds exactly for the test assets. For each simulated set of returns and factors, the

unknown parameters θ0 of the linear SDF y(θ0) = f̃ ′θ0, where f̃ = (1, f ′)′, are estimated by
5The proof of this result is available from the authors upon request.
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minimizing the sample HJ-distance, which yields

θ̂ = (D̂′
TWT D̂T )−1(D̂′

TWT q), (39)

where D̂T = 1
T

∑T
t=1 Rtf̃

′
t , WT =

(
1
T

∑T
t=1 RtR

′
t

)−1
, and q = [1, 0′m−1]

′. The estimated Lagrange

multipliers are given by

λ̂ = WT

[
1
T

T∑

t=1

Rtyt(θ̂) − q

]
, (40)

and we consider the first element λ̂1. From our discussion in Section 2.4, if we set c̃ = θ0, then

α′λ̂ = q′λ̂ = λ̂1 and

Tλ̂1 = Tq′λ̂
d→ −v′2v2. (41)

This result shows that
√

Tλ̂1 is not asymptotically normally distributed but instead Tλ̂1 has a

weighted chi-squared distribution. Appendix B provides detailed derivations.

In the analysis of the empirical size of our asymptotic approximation, the computed p-values

from this weighted chi-squared distribution are compared to the 10%, 5%, and 1% theoretical sizes

of the test. For a comparison, we also provide the empirical size of a standard normal test of

H0 : λ1 = 0 used, for example, in Hodrick and Zhang (2001). The empirical rejection probabilities

are computed based on 100,000 Monte Carlo replications.

Table I about here

For different sample sizes T , we report the simulation results for the two model specifications

in Panels A and B of Table I. In Panel A, the weighted chi-squared distribution provides a very

accurate approximation to the finite-sample behavior of λ̂1. In contrast, the standard normal test

leads to severe size distortions and rejects the true null hypothesis about 92% of the time at the 5%

significance level.6 In the case of 25 risky assets (Panel B), our approximation tends to over-reject

for small sample sizes. This over-rejection is a well documented fact in empirical finance and occurs

when the number of test assets m is large relative to the number of time series observations T (see,

6The substantially different behavior of the two tests documented in the simulations is also observed in real data.
For example, using data from the sample period January 1932 – December 2006, the standard normal test suggests
that the CAPM fails to price the risk-free asset correctly at the 5% nominal level (p-value of 0.035). In contrast, the
weighted chi-squared test delivers the opposite conclusion at any conventional significance level (p-value of 0.887).
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for instance, Ahn and Gadarowki, 2004). As T increases, the empirical size of the weighted chi-

squared approximation approaches its nominal level. In contrast, the standard normal test always

rejects the true null hypothesis 100% of the time and does not improve as T increases.7

While the incorrect size of the normal test is expected from our theoretical analysis, the severity

of these size distortions is somewhat surprising and deserves a few remarks. It can be shown that

in our simulation setup, the normal test statistic of H0 : λ1 = 0 is asymptotically distributed

as −
√

χ2
m−p.

8 One important implication of this result is that although λ1 = 0, the correct

asymptotic distribution of the normal test statistic of λ̂1 is miscentered compared to the standard

normal approximation and the shift to the left increases with the degree of over-identification. For

example, the medians of this limiting distribution for the CAPM (with m − p = 9) and FF3 (with

m − p = 22) are −2.89 and −4.62, respectively. The 5th and 95th percentiles for the CAPM are

−4.11 and −1.82 whereas for FF3, the respective percentiles are −5.82 and −3.51. In summary,

this experiment clearly illustrates that the standard asymptotic inference can be grossly misleading.

4. CONCLUSION

This paper derives some new results on the asymptotic distribution of linear combinations of

GMM sample moment conditions. These results complement Lemma 4.1 of Hansen (1982) with

the cases that give rise to singularity of the asymptotic covariance matrix and degeneracy of the

asymptotic distribution. Interestingly, we establish that in these cases, the GMM sample moment

conditions converge at rate T to their population analogs and obey a non-standard (product of

normals) limiting distribution. We also explain how to consistently estimate the nuisance parame-

ters of the proposed limiting distributions. Finally, we propose an easy-to-implement rank test to

determine which asymptotic framework should be adopted for the particular problem at hand.

7We also examined the statistical properties of the rank test proposed in Section 2.5 and the sequential test (that
includes a pre-test of reduced rank) of H0 : λ1 = 0. Our rank test possesses excellent size and power properties. For
example, for FF3 with T = 900, the empirical size of the rank test at the 10%, 5%, and 1% nominal levels is 10%, 5%,
and 0.9%, respectively; the empirical power of the rank test obtained by setting α = 1m is always 100% at the 10%,
5%, and 1% nominal levels. The results from the sequential test are very similar to those for the weighted chi-squared
approximation. Detailed simulation results can be found in a separate appendix on the authors’ websites.

8The proof of this result (and a generalization of it) is not presented to preserve space but can be found in a
separate appendix on the authors’ websites.
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APPENDIX A

Proof of Theorem 1: Using the first order condition D̂′
ThT (θ̂) = 0p, we can express D′

0hT (θ̂) as

D′
0hT (θ̂) = −(D̂T − D0)′hT (θ̂)

= −(D̂T − D0)′W
1
2 (QQ′ + W

1
2 D0(D′

0WD0)−1D′
0W

1
2 )W− 1

2 hT (θ̂). (A1)

Then,

TD′
0hT (θ̂) = −

√
T (D̂T − D0)′W

1
2 (QQ′ + W

1
2 D0(D′

0WD0)−1D′
0W

1
2 )
√

TW− 1
2 hT (θ̂). (A2)

Since
√

TD′
0hT (θ̂) = op(1) and Q′W

1
2 D0 = 0(m−p)×p, it follows that

TD′
0hT (θ̂) = −

[√
TD̂′

TW
1
2 Q

] [√
TQ′W− 1

2 hT (θ̂)
]

+ op(1). (A3)

Using Assumption C, let
√

Tvec(Q′W
1
2 D̂T ) converge to a vector of normal random variables v1.

Similarly, using (9) in Lemma 1, let
√

TQ′W− 1
2 hT (θ̂) converge to a vector of normal random

variables v2 and write the joint distribution of (v′1, v′2)
′ as

[
v1

v2

]
∼ N

(
0(m−p)(p+1), Σ

)
. (A4)

Thus,

TD′
0hT (θ̂) = vec(ThT (θ̂)′D0)

d→ −(Ip ⊗ v′2)v1. (A5)

This completes the proof of Theorem 1.

Proof of Lemma 2: To obtain the asymptotic distribution of vec(D̂T − D0), define D̃T =
1
T

∑T
t=1 ∂gt(θ0)/∂θ′ and write

√
Tvec(D̂T − D0) =

√
Tvec(D̂T − D̃T ) +

√
Tvec(D̃T − D0). (A6)

For the first term, we use the mean-value theorem to obtain

√
Tvec(D̂T − D̃T ) = G0

√
T (θ̂ − θ0) + op(1)

= G0(D′
0WD0)−1D′

0W
1√
T

T∑

t=1

gt(θ0) + op(1), (A7)

where the first equality follows from Assumption D and the second equality is ensured by the

conditions imposed in Assumption B. For the second term, we have

√
Tvec(D̃T − D0) =

1√
T

T∑

t=1

[
vec

(
∂gt(θ0)

∂θ′

)
− vec(D0)

]
. (A8)
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Using expressions (A6), (A7), and (A8), we have

√
Tvec(Q′W

1
2 D̂T )

=
√

Tvec(Q′W
1
2 (D̂T − D0))

= (Ip ⊗ Q′W
1
2 )
√

Tvec(D̂T − D0)

= G̃(D′
0WD0)−1D′

0W
1√
T

T∑

t=1

gt(θ0) +
1√
T

T∑

t=1

vec
(

Q′W
1
2
∂gt(θ0)

∂θ′

)
+ op(1) (A9)

using that G̃ = (Ip ⊗ Q′W
1
2 )G0. Stacking the expression for

√
Tvec(D̂′

TW
1
2 Q) with Q′W

1
2 gt(θ0),

we have

Σ =
∞∑

j=−∞
E[dtd

′
t+j ], (A10)

where dt = [d′1,t, d′2,t]
′ and

d1,t = G̃(D′
0WD0)−1D′

0Wgt(θ0) + vec
(

Q′W
1
2
∂gt(θ0)

∂θ′

)
, (A11)

d2,t = Q′W
1
2 gt(θ0). (A12)

This completes the proof of Lemma 2.

Proof of Lemma 3: Defining z̃ = S ′z ∼ N(0l, Υ), we can write

z′1z2 = z′

[
0n×n

1
2In

1
2In 0n×n

]
z = z̃′S ′

[
0n×n

1
2In

1
2In 0n×n

]
Sz̃. (A13)

Let e = Υ− 1
2 z̃ ∼ N(0l, Il). Then, we can write

z′1z2 = e′Υ
1
2 S ′

[
0n×n

1
2In

1
2In 0n×n

]
SΥ

1
2 e = e′Γe. (A14)

Since e is standard normal, it follows that

z′1z2 ∼
k∑

i=1

γiξi, (A15)

where the γi’s are the k ≤ l nonzero eigenvalues of Γ and the ξi’s are independent χ2
1 random

variables. This completes the proof of Lemma 3.

Proof of Lemma 4: Combining lT (c) = Π̂2,T c − π̂1,T = vec(Π̂2,Tc − π̂1,T ) = ((−1, c′) ⊗

Im−1)vec(Π̂T ) and equation (35), we have

√
TlT (c0)

d→ N(0m−1, Λ(c0)), (A16)
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where Λ(c0) = ((−1, c′0) ⊗ Im−1)M((−1, c′0)
′ ⊗ Im−1). Let

ĉ = arg min
c

lT (c)′Λ−1
T (c)lT(c) (A17)

be the estimator of c0. Noting that ĉ is a continuously-updated GMM estimator and using the

equivalence between the continuously-updated GMM estimator and the generalized empirical like-

lihood estimator with a quadratic discrepancy function (Newey and Smith, 2004, for example), the

first-order conditions for the minimization problem in (A17) are given by

[
T∑

t=1

1 + ρ̂′lt(ĉ)
T

(
∂lt(ĉ)
∂c′

)]′

Λ−1
T (ĉ)lT (ĉ) = 0p−1,

where ρ̂ = −Λ−1
T (ĉ)lT (ĉ). Furthermore, using that ρ̂

p→ 0, ρ̂ = Op(T−1/2) and
√

T ρ̂ is asymptotically

independent of
√

T (ĉ − c0), we have (Newey and Smith, 2004, p. 240)

√
T (ĉ− c0) = −[Π′

2Λ
−1Π2]−1Π′

2Λ
−1

√
TlT (c0) + op(1), (A18)

where Λ ≡ Λ(c0).

Then,

√
TlT (ĉ) =

√
TlT (c0) + Π′

2

√
T(ĉ − c0) + op(1)

=
[
Im−1 − Π2(Π′

2Λ
−1Π2)−1Π′

2Λ
−1

]√
TlT (c0) + op(1)

= Λ
1
2

[
Im−1 − Λ− 1

2 Π2(Π′
2Λ

−1Π2)−1Π′
2Λ

− 1
2

]
Λ− 1

2

√
TlT (c0) + op(1)

= Λ
1
2 (Im−1 − B) Λ− 1

2

√
TlT (c0) + op(1), (A19)

where B = Λ− 1
2 Π2[Π′

2Λ
−1Π2]−1Π′

2Λ
− 1

2 is an (m− 1)× (m− 1) idempotent matrix with rank (B) =

p − 1. The test statistic LM(ĉ) can then be expressed as

LM(ĉ) =
√

TlT (ĉ)′Λ̂T (ĉ)−1/2Λ̂T (ĉ)−1/2
√

TlT (ĉ)

=
[√

TlT (c0)′Λ− 1
2 (Im−1 − B) Λ

1
2

]
Λ−1

[
Λ

1
2 (Im−1 − B) Λ− 1

2

√
TlT (c0)

]
+ op(1)

=
√

TlT (c0)′Λ− 1
2 (Im−1 − B) Λ− 1

2

√
TlT (c0) + op(1)

d→ ξ′ (Im−1 − B) ξ, (A20)

which is χ2
m−p since

√
TΛ− 1

2 lT (c0)
d→ ξ ∼ N (0m−1, Im−1) and rank(Im−1−B) = (m−1)−(p−1) =

m − p. This completes the proof of Lemma 4.
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APPENDIX B

In the case of asset pricing models with a pricing constraint ḡT (θ) = 1
T

∑T
t=1 Rtyt(θ) − q as

in Example 2, the expressions for d1,t and d2,t in the covariance matrix Σ =
∑∞

j=−∞ E[dtd
′
t+j ] in

Lemma 2 specialize to

d1,t = G̃(D′
0WD0)−1D′

0W (Rtyt(θ0)− q) + (Q′W
1
2 Rt ⊗ Ip)

∂yt(θ0)
∂θ′

, (B1)

d2,t = Q′W
1
2 (Rtyt(θ0) − q), (B2)

where

D0 = E

[
Rt

∂yt(θ0)
∂θ′

]
(B3)

and

G0 = E

[
(Rt ⊗ Ip)

∂2yt(θ0)
∂θ∂θ′

]
. (B4)

For the special case of a linear SDF that prices the test assets correctly, these expressions can

be further simplified and have the form

d1,t = Q′W
1
2 Rt ⊗ f̃t, (B5)

d2,t = Q′W
1
2 Rtf̃

′
tθ0 (B6)

since G0 is a null matrix and Q′W
1
2 q = Q′W

1
2 D0θ0 = 0m−p from the definition of Q.

For the linear combination Tα′hT (θ̂), where α = D0c̃ and hT (θ̂) = λ̂, we have from the proof

of Theorem 1 that

T c̃′D′
0λ̂ = −

[√
TQ′W

1
2 D̂T c̃

]′ [√
TQ′W− 1

2 hT (θ̂)
]

+ op(1). (B7)

It is straightforward to show using the results above that

√
TQ′W

1
2 D̂T c̃

d→ N


0m−p,

∞∑

j=−∞
E[d̃1,td̃

′
1,t+j]


 , (B8)

where d̃1,t = Q′W
1
2 Rtf̃

′
t c̃. When c̃ = θ0, i.e., c̃′D′

0λ̂ = q′λ̂ as in the simulation experiment in

Section 3, we have d̃1t = d2,t and it follows that

Tq′λ̂
d→ −v′2v2, (B9)

which is a linear combination of m − p independent chi-squared random variables with one degree

of freedom.
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Table I
Empirical Sizes of H0 : λ1 = 0

Panel A: Capital Asset Pricing Model

Standard Normal Mixture of χ2

Level of Significance Level of Significance

T 10% 5% 1% 10% 5% 1%
150 0.978 0.929 0.689 0.144 0.082 0.022
300 0.977 0.925 0.682 0.121 0.065 0.015
450 0.976 0.923 0.679 0.115 0.060 0.014
600 0.976 0.924 0.679 0.111 0.057 0.013
750 0.975 0.923 0.679 0.109 0.057 0.012
900 0.976 0.923 0.680 0.107 0.055 0.011

Panel B: Fama-French Three-Factor Model

Standard Normal Mixture of χ2

Level of Significance Level of Significance

T 10% 5% 1% 10% 5% 1%
150 1.000 1.000 1.000 0.284 0.189 0.072
300 1.000 1.000 1.000 0.178 0.105 0.031
450 1.000 1.000 0.999 0.151 0.084 0.022
600 1.000 1.000 0.999 0.138 0.074 0.018
750 1.000 1.000 0.999 0.130 0.070 0.016
900 1.000 1.000 0.999 0.125 0.067 0.015

The table presents the actual probabilities of rejection for the asymptotic tests of H0 : λ1 = 0 with
different levels of significance under the null hypothesis of correctly specified models, assuming that
the factors and returns are generated from a multivariate normal distribution. We consider two model
specifications that are calibrated to monthly data for the period January 1932 – December 2006. The
model specification in Panel A is calibrated to the capital asset pricing model. The model specification
in Panel B is calibrated to the three-factor model of Fama and French (1993). The results for different
values of the number of time series observations (T ) are based on 100,000 simulations.
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SIMULATION SETUP

This appendix contains some additional simulation and analytical results regarding the proper-

ties of the standard normal test, the mixture of χ2 test, the LM rank test, and the sequential test

considered in the paper. In the simulation experiment, the factors (f) and the returns (R) on the

test assets for the CAPM (1 factor and 11 test asset returns) and FF3 (3 factors and 26 test asset

returns) are drawn from a multivariate normal distribution with a covariance matrix estimated

from the data. The mean return vector is chosen such that the asset pricing model holds exactly

for the test assets. For each simulated set of returns and factors, the unknown parameters θ0 of the

linear SDF y(θ0) = f̃ ′θ0, where f̃ = (1, f ′)′, are estimated by minimizing the sample HJ-distance,

which yields

θ̂ = (D̂′
TWT D̂T )−1(D̂′

TWT q), (1)

where D̂T = 1
T

∑T
t=1 Rtf̃

′
t , WT =

(
1
T

∑T
t=1 RtR

′
t

)−1
, and q = [1, 0′m−1]

′. The estimated Lagrange

multipliers are given by

λ̂ = WT

[
1
T

T∑

t=1

Rtyt(θ̂) − q

]
, (2)

where yt(θ̂) = f̃ ′
t θ̂.

We consider linear combinations of sample Lagrange multipliers with different choices of an m × 1

nonzero weighting vector α, i.e., α′λ̂. Let matrix Qc denote the null space of the p vector E[f̃tf̃
′
t ]θ0

and Q1
c be the first column of Qc. Also, let Π = P ′

αD0, where Pα is an m × (m − 1) orthonormal

matrix whose columns are orthogonal to α. In Tables I through IV, we analyze the empirical sizes

of four tests – (i) standard normal test of H0 : α′λ = 0, (ii) mixture of χ2 test of H0 : α′λ = 0, (iii)

LM rank test of H0 : rank(Π) = p − 1, and (iv) sequential test of H0 : α′λ = 0 with a pre-test of

H0 : rank(Π) = p − 1, using three choices of α:

1. α = q = [1 , 0′m−1]
′,

2. α = D01p,

3. α = D0Q
1
c .

We also analyze the statistical properties of the rank and sequential tests when α in not in the

span of the column space of D0. Specifically, in Table V, we analyze the empirical power of the

1



rank test for α = 1m and α =
√

mq+1m. In Table VI, we report results for the empirical size of the

sequential test for α = 1m and α =
√

mq + 1m. The empirical rejection probabilities are computed

based on 100,000 Monte Carlo replications.

STANDARD NORMAL TEST

Panels A and B of Table I show that the use of the standard normal test leads to severe

over-rejections when α is in the span of the column space of D0. To understand why, we provide a

theoretical analysis of the normal test for particular linear combinations of the Lagrange multipliers

λ when the underlying asset pricing model is linear (see Appendix B in the paper).

When α = q (Panel A), the normal test statistic is given by

z =
√

Tq′λ̂
[

1
T

∑T
t=1 ĥ2

t

] 1
2

, (3)

where

ĥt = q′[WT D̂T (D̂′
TWT D̂T )−1D̂′

T − Im]WT (Rtf̃
′
t θ̂ − q)

= (θ̂
′
D̂′

T − q′)WT (Rtf̃
′
t θ̂ − q)

= ê′WT (Rtf̃
′
t θ̂ − q). (4)

The numerator can be rewritten as

√
Tq′λ̂ = −

√
Tê′WT ê. (5)

The denominator can be rewritten as

1
T

T∑

t=1

ĥ2
t = ê′WT ŜWT ê, (6)

where

Ŝ =
1
T

T∑

t=1

(Rtf̃
′
t θ̂ − q)(Rtf̃

′
tθ̂ − q)′. (7)

We can then write the normal test statistic as

z = −
√

T ê′WT ê

(ê′WT ŜWT ê)
1
2

. (8)

Let Q be an m × (m − p) orthonormal matrix with its columns orthogonal to W
1
2 D0. We have

QQ′ = Im − W
1
2 D0(D′

0WD0)−1D′
0W

1
2 . (9)
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When the model is correctly specified, we have

u ≡
√

TQ′W
1
2
T ê

d→ N(0m−p, Q
′W

1
2 SW

1
2 Q), (10)

where d→ denotes “convergence in distribution.” It follows that

T ê′WT ê = u′u + op(1), (11)

T ê′WT ŜWT ê = u′Q′W
1
2 SW

1
2 Qu + op(1). (12)

Let PΛP ′ be the spectral decomposition of Q′W
1
2 SW

1
2 Q and ũ = Λ− 1

2 P ′u
d→ N(0m−p, Im−p). We

can then write

z
d→ − ũ′Λũ

(ũ′Λ2ũ)
1
2

. (13)

When (R′
t, f ′

t)′ are jointly normally distributed, we have Λ = q3Im−p, where q3 = θ′0E[f̃tf̃
′
t ]θ0

(see Proposition 3 of Kan and Zhou, 2004). It follows that

z
d→ − ũ′ũ

(ũ′ũ)
1
2

= −(ũ′ũ)
1
2 . (14)

In particular z2 d→ ũ′ũ = χ2
m−p, and it is not χ2

1. This expression shows that we have an over-

rejection problem when we use the normal test and the over-rejection rate increases with m− p. In

addition, the mean of z is negative and is given by

E[z] = −E[(ũũ)
1
2 ] = −

√
2Γ
(

m−p+1
2

)

Γ
(m−p

2

) . (15)

These theoretical findings explain why the standard normal test strongly over-rejects in Panel A of

Table I.

When α = D01p and α = D0Q
1
c (Panels B and C of Table I, respectively), we need to consider

a (more general) normal test of H0 : α′λ = 0, where α = D0c̃ and c̃ is a nonzero p vector. Then,

the normal test statistic is given by

z =
√

Tα′λ̂
[

1
T

∑T
t=1 ĥ2

t

] 1
2

=
Tα′λ̂

[∑T
t=1 ĥ2

t

] 1
2

, (16)

where

ĥt = α′[WT D̂T (D̂′
TWT D̂T )−1D̂′

T − Im]WT (Rtf̃
′
t θ̂ − q)

= −c̃′D′
0W

1
2

T Q̂Q̂′W
1
2

T (Rtf̃
′
t θ̂ − q). (17)
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The numerator can be written as

T c̃′D′
0λ̂ = T (c̃′D′

0 − c̃′D̂′
T )λ̂

= T (c̃′D′
0 − c̃′D̂′

T )W
1
2 QQ′W− 1

2 λ̂ + op(1)

= −[
√

T c̃′D̂′
TW

1
2 Q][

√
TQ′W− 1

2 λ̂] + op(1)
d→ −z′1z2, (18)

where z1 is the limiting distribution of
√

TQ′W
1
2 D̂T c̃ and z2 is the limiting distribution of

√
TQ′W− 1

2 λ̂.

The term inside the squared root of the denominator can be rewritten as

T∑

t=1

ĥ2
t = T c̃′D′

0W
1
2
T Q̂Q̂′W

1
2
T ŜW

1
2
T Q̂Q̂′W

1
2
T D0c̃. (19)

Since

√
TQ̂′W

1
2
T D0c̃ =

√
TQ̂′W

1
2
T (D0 − D̂T )c̃

=
√

TQ′W
1
2 (D0 − D̂T )c̃ + op(1)

= −
√

TQ′W
1
2 D̂T c̃ + op(1)

d→ −z1, (20)

it follows that
T∑

t=1

ĥ2
t

d→ z′1Q
′W

1
2 SW

1
2 Qz1. (21)

Therefore, we have

z
d→ − z′1z2

[z′1Q′W
1
2 SW

1
2 Qz1]

1
2

. (22)

The joint distribution of z1 and z2 is given by
[

z1

z2

]
∼ N(02(m−p), Σ), (23)

where

Σ =

[
Σ11 Σ12

Σ21 Σ22

]
=

∞∑

j=−∞
E[dtd

′
t+j ], (24)

and dt = [d′1,t, d′2,t]
′ is given by

d1,t = Q′W
1
2 Rtf̃

′
t c̃, (25)

d2,t = Q′W
1
2 Rtf̃

′
tθ0. (26)
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For the special case when Rt and ft are jointly multivariate normally distributed, it can be easily

verified that

Σ11 = q1Im−p, Σ12 = q2Im−p, Σ22 = q3Im−p, (27)

with

q1 = c̃′E[f̃tf̃
′
t ]c̃, q2 = c̃′E[f̃tf̃

′
t ]θ0, q3 = θ′0E[f̃tf̃

′
t ]θ0, (28)

and we have q1q3 ≥ q2
2 .

Conditional on z1, we have

z2 ∼ N(Σ21Σ−1
11 z1, Σ22 − Σ21Σ−1

11 Σ12). (29)

Noting that Q′W
1
2 SW

1
2 Q = Σ22, we have conditional on z1,

z ∼ N

(
−z′1Σ21Σ−1

11 z1

(z′1Σ22z1)
1
2

,
z′1(Σ22 − Σ21Σ−1

11 Σ12)z1

z′1Σ22z1

)
. (30)

Letting u = Σ
− 1

2
11 z1 ∼ N(0m−p, Im−p) and w ∼ N(0, 1) be independent of each other, we can then

write

z = − u′Σ
1
2
11Σ21Σ

− 1
2

11 u

(u′Σ
1
2
11Σ22Σ

1
2
11u)

1
2

+


u′(Σ

1
2
11Σ22Σ

1
2
11 − Σ

1
2
11Σ21Σ−1

11 Σ12Σ
1
2
11)u

u′Σ
1
2
11Σ22Σ

1
2
11u




1
2

w. (31)

The unconditional mean of z is therefore given by

E[z] = −E


 u′Σ

1
2
11Σ21Σ

− 1
2

11 u

(u′Σ
1
2
11Σ22Σ

1
2
11u)

1
2


 , (32)

which is generally nonzero unless Σ21 = 0(m−p)×(m−p).

When [R′
t, f ′

t ]
′ are jointly normally distributed (as in our simulation setup), the distribution of

z can be simplified to

z = − q2√
q1q3

√
u′u +

(
1 − q2

2

q1q3

) 1
2

w = r
√

u′u +
√

1 − r2w, (33)

where r = −q2/
√

q1q3. It follows that

E[z] = −
q2

√
2Γ
(

m−p+1
2

)

√
q1q3Γ

(m−p
2

) , (34)
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and its sign is determined by q2. In addition, E[z2] is given by

E[z2] = r2(m− p) + (1− r2) = 1 + r2(m − p − 1), (35)

which is greater than or equal to 1 when m ≥ p+1. The only case in which the normal test is correct

is when r = 0, or equivalently q2 = c̃′E[f̃tf̃
′
t ]θ0 = 0. The over-rejection rate of the normal test

depends on r2 and m− p. E[z2] is maximized when r2 = 1 and this occurs when z1 is proportional

to z2 or, equivalently, when c̃ is proportional to θ0, i.e., α is proportional to q.

These theoretical findings explain why the standard normal test strongly over-rejects in Panel B

of Table I. They also explain why the normal test behaves well in Panel C. Since α in Panel C is

set such that q2 = 0, the normal test works well in this scenario.1

MIXTURE OF χ2 TEST

In Table II, we report the empirical size of the mixture of χ2 test. For the CAPM, our asymptotic

approximation works very well even for relatively small sample sizes. For FF3, we need a larger T

for the asymptotic approximation to work well. This is a well-known problem in empirical asset

pricing that arises when the number of test assets m is large relative to T (see, e.g., Ahn and

Gadarowski, 2004).

RANK TEST

Tables III and V report the empirical size and power of the rank test. Overall, the test has

excellent size and power properties. Some modest under-rejections only occur for FF3 when T =

150.

SEQUENTIAL TEST

In Tables IV and VI, we analyze the empirical size of the sequential test (that includes a reduced

rank pre-test) of H0 : λ1 = 0 when α is in the span of the column space of D0 and when α is not.

The sequential test we consider has the following structure. If we reject the null of reduced rank,

then we use the normal test in the second stage; otherwise, we use the weighted chi-squared test.

Acceptance and rejection of H0 : α′λ = 0 is based on the outcome of the second test. Let η1 be the

1Note that our conclusions are not affected by the particular choice of the column of Qc (the matrix described in
the simulation setup).
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asymptotic size of the rank restriction test and η2 be the asymptotic size of either the normal test

or the weighted chi-squared test used in the second stage.

When α is in the span of the column space of D0 (Table IV), the rank restriction test will accept

the null of reduced rank with probability 1 − η1 (asymptotically). Therefore, the probability of

using the normal test in the second stage is η1. Unconditionally, the normal test will reject with

probability p1 ≥ η2 (in our simulation setup) and the mixture of chi-squared test will reject with

probability η2. Therefore, if the two tests are independent, the size of the sequential test is given

by

η1p1 + (1− η1)η2 ≥ η2.

In general, the two tests are dependent because both the rank restriction test and the test of

H0 : α′λ = 0 are specification tests. In this case, we can only establish an upper bound on the

probability of rejection of the sequential test, which is given by

η1 + η2.

When α is not in the span of the column space of D0 (Table VI), the rank restriction test will

reject the null of reduced rank with probability one (asymptotically), so the normal test will be

chosen in the second stage. As a result, the asymptotic size of the sequential test is simply η2.

The results in Tables IV and VI (which are obtained by setting the asymptotic sizes of the first

and second tests equal to each other, i.e., η1 = η2) show that the proposed sequential test tends to

behave well in our simulation setup.
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Table I
Empirical Size of the Standard Normal Test

Panel A: α = q = [1 , 0′m−1]
′

CAPM FF3

Level of Significance Level of Significance

T 10% 5% 1% 10% 5% 1%
150 0.978 0.929 0.689 1.000 1.000 1.000
300 0.977 0.925 0.682 1.000 1.000 1.000
450 0.976 0.923 0.679 1.000 1.000 0.999
600 0.976 0.924 0.679 1.000 1.000 0.999
750 0.975 0.923 0.679 1.000 1.000 0.999
900 0.976 0.923 0.680 1.000 1.000 0.999

Panel B: α = D01p

CAPM FF3

Level of Significance Level of Significance

T 10% 5% 1% 10% 5% 1%
150 0.968 0.910 0.661 1.000 1.000 0.998
300 0.965 0.907 0.650 1.000 1.000 0.998
450 0.964 0.904 0.650 1.000 1.000 0.998
600 0.965 0.905 0.647 1.000 1.000 0.998
750 0.966 0.904 0.648 1.000 1.000 0.998
900 0.965 0.904 0.648 1.000 1.000 0.997

Panel C: α = D0Q
1
c

CAPM FF3

Level of Significance Level of Significance

T 10% 5% 1% 10% 5% 1%
150 0.129 0.071 0.017 0.187 0.115 0.037
300 0.114 0.059 0.013 0.141 0.079 0.020
450 0.109 0.056 0.012 0.127 0.068 0.017
600 0.107 0.055 0.012 0.120 0.063 0.015
750 0.106 0.053 0.011 0.117 0.062 0.014
900 0.105 0.053 0.011 0.115 0.060 0.013
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Table II
Empirical Size of the Mixture of χ2 Test

Panel A: α = q = [1 , 0′m−1]
′

CAPM FF3

Level of Significance Level of Significance

T 10% 5% 1% 10% 5% 1%
150 0.144 0.082 0.022 0.284 0.189 0.072
300 0.121 0.065 0.015 0.178 0.105 0.031
450 0.115 0.060 0.014 0.151 0.084 0.022
600 0.111 0.057 0.013 0.138 0.074 0.018
750 0.109 0.057 0.012 0.130 0.070 0.016
900 0.107 0.055 0.011 0.125 0.067 0.015

Panel B: α = D01p

CAPM FF3

Level of Significance Level of Significance

T 10% 5% 1% 10% 5% 1%
150 0.124 0.068 0.018 0.209 0.137 0.052
300 0.111 0.058 0.013 0.136 0.077 0.021
450 0.109 0.057 0.012 0.123 0.066 0.015
600 0.106 0.054 0.012 0.115 0.061 0.014
750 0.105 0.054 0.011 0.112 0.058 0.013
900 0.104 0.054 0.012 0.112 0.058 0.012

Panel C: α = D0Q
1
c

CAPM FF3

Level of Significance Level of Significance

T 10% 5% 1% 10% 5% 1%
150 0.132 0.072 0.018 0.185 0.111 0.034
300 0.116 0.061 0.013 0.138 0.076 0.019
450 0.109 0.056 0.012 0.124 0.067 0.016
600 0.108 0.055 0.012 0.119 0.062 0.014
750 0.108 0.054 0.011 0.115 0.060 0.013
900 0.105 0.053 0.010 0.111 0.059 0.013
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Table III
Empirical Size of the Rank Test

Panel A: α = q = [1 , 0′m−1]
′

CAPM FF3

Level of Significance Level of Significance

T 10% 5% 1% 10% 5% 1%
150 0.095 0.044 0.007 0.069 0.024 0.001
300 0.098 0.048 0.009 0.093 0.044 0.007
450 0.099 0.050 0.009 0.098 0.047 0.008
600 0.099 0.049 0.010 0.099 0.047 0.009
750 0.100 0.050 0.010 0.100 0.049 0.009
900 0.099 0.050 0.010 0.100 0.050 0.009

Panel B: α = D01p

CAPM FF3

Level of Significance Level of Significance

T 10% 5% 1% 10% 5% 1%
150 0.096 0.045 0.007 0.072 0.026 0.001
300 0.099 0.047 0.009 0.093 0.043 0.007
450 0.100 0.050 0.010 0.098 0.046 0.008
600 0.100 0.050 0.010 0.098 0.048 0.008
750 0.101 0.050 0.010 0.100 0.048 0.009
900 0.101 0.050 0.010 0.100 0.050 0.009

Panel C: α = D0Q
1
c

CAPM FF3

Level of Significance Level of Significance

T 10% 5% 1% 10% 5% 1%
150 0.084 0.036 0.004 0.048 0.015 0.001
300 0.093 0.044 0.007 0.079 0.033 0.004
450 0.097 0.046 0.008 0.088 0.039 0.006
600 0.097 0.046 0.008 0.091 0.043 0.007
750 0.097 0.047 0.008 0.094 0.044 0.008
900 0.097 0.048 0.009 0.095 0.045 0.008
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Table IV
Empirical Size of the Sequential Test

When α is in the Span of the Column Space of D0

Panel A: α = q = [1 , 0′m−1]
′

CAPM FF3

Level of Significance Level of Significance

T 10% 5% 1% 10% 5% 1%
150 0.145 0.082 0.022 0.284 0.189 0.072
300 0.121 0.065 0.015 0.178 0.105 0.031
450 0.115 0.060 0.014 0.151 0.085 0.022
600 0.111 0.058 0.013 0.138 0.074 0.018
750 0.109 0.057 0.012 0.130 0.070 0.016
900 0.107 0.055 0.011 0.125 0.067 0.015

Panel B: α = D01p

CAPM FF3

Level of Significance Level of Significance

T 10% 5% 1% 10% 5% 1%
150 0.141 0.072 0.018 0.210 0.137 0.052
300 0.146 0.072 0.014 0.145 0.080 0.021
450 0.149 0.075 0.015 0.143 0.073 0.016
600 0.149 0.074 0.015 0.142 0.072 0.015
750 0.149 0.074 0.015 0.145 0.072 0.015
900 0.149 0.075 0.015 0.147 0.074 0.015

Panel C: α = D0Q
1
c

CAPM FF3

Level of Significance Level of Significance

T 10% 5% 1% 10% 5% 1%
150 0.119 0.067 0.017 0.180 0.110 0.034
300 0.103 0.055 0.012 0.130 0.073 0.019
450 0.095 0.050 0.012 0.116 0.063 0.015
600 0.094 0.049 0.011 0.110 0.058 0.014
750 0.093 0.048 0.010 0.106 0.056 0.013
900 0.091 0.047 0.010 0.102 0.055 0.012

11



Table V
Empirical Power of the Rank Test

Panel A: α = 1m

CAPM FF3

Level of Significance Level of Significance

T 10% 5% 1% 10% 5% 1%
150 0.999 0.997 0.965 0.977 0.913 0.531
300 1.000 1.000 1.000 1.000 1.000 1.000
450 1.000 1.000 1.000 1.000 1.000 1.000
600 1.000 1.000 1.000 1.000 1.000 1.000
750 1.000 1.000 1.000 1.000 1.000 1.000
900 1.000 1.000 1.000 1.000 1.000 1.000

Panel B: α =
√

mq + 1m

CAPM FF3

Level of Significance Level of Significance

T 10% 5% 1% 10% 5% 1%
150 0.999 0.997 0.965 0.974 0.904 0.508
300 1.000 1.000 1.000 1.000 1.000 1.000
450 1.000 1.000 1.000 1.000 1.000 1.000
600 1.000 1.000 1.000 1.000 1.000 1.000
750 1.000 1.000 1.000 1.000 1.000 1.000
900 1.000 1.000 1.000 1.000 1.000 1.000
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Table VI
Empirical Size of the Sequential Test

When α is not in the Span of the Column Space of D0

Panel A: α = 1m

CAPM FF3

Level of Significance Level of Significance

T 10% 5% 1% 10% 5% 1%
150 0.123 0.067 0.022 0.177 0.124 0.130
300 0.110 0.057 0.012 0.132 0.072 0.018
450 0.106 0.054 0.011 0.121 0.065 0.014
600 0.104 0.053 0.011 0.116 0.061 0.013
750 0.104 0.052 0.011 0.112 0.059 0.013
900 0.103 0.051 0.011 0.110 0.057 0.012

Panel B: α =
√

mq + 1m

CAPM FF3

Level of Significance Level of Significance

T 10% 5% 1% 10% 5% 1%
150 0.124 0.065 0.022 0.211 0.151 0.142
300 0.110 0.057 0.012 0.151 0.086 0.023
450 0.108 0.054 0.011 0.134 0.073 0.018
600 0.106 0.053 0.011 0.126 0.067 0.016
750 0.105 0.052 0.011 0.119 0.063 0.015
900 0.104 0.052 0.010 0.116 0.061 0.013
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