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Liquidity in an Automated Auction

Abstract

The rapid adoption of automated limit order book systems for equities, derivatives, and bonds world-
wide has generated considerable interest in the operation of such markets.  Using a new database com-
prising the limit order book for stock index futures trading in an automated market, we analyze the links
between market liquidity, order placement behavior, and returns.  We obtain several new results.  First,
we completely characterize the shape of the demand and supply schedules over time and use these to
compute metrics of liquidity.  We document wide intertemporal variation in overall market liquidity.
Second, we provide evidence that traders strategically time their trades to take advantage of the time-
variation in liquidity.  Third, we analyze the dynamic relation between measures of liquidity and short-
horizon expected returns.  We find support for microstructure models where liquidity is a factor in ex-
pected returns, but also complicated dynamics from past returns to market depth.

JEL Classification: G10, G34
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1. Introduction

The automated auction is transforming the landscape of securities markets.  Unlike traditional

markets, trading in an automated auction is through an electronic limit order book without the need for a

physical exchange floor or designated market makers.  Advantages of speed, simplicity, scalability, and

cost drive the worldwide adoption of automated auctions to trade equities, bonds, foreign exchange,

and derivatives.1  But in the absence of designated dealers, an automated auction is dependent on public

limit orders for liquidity.  At times, even small trades can induce large price movements if the limit order

book is thin.  The periodic lack of liquidity presents a serious problem for institutional traders with rela-

tively large orders because it greatly increases the costs of trading.  Time-variation in liquidity is also im-

portant given growing evidence that liquidity affects expected returns.

This paper examines empirically the time-variation in liquidity in an automated auction and the

resulting dynamics of overall market liquidity, order placement behavior, and returns.  In particular, we

are interested in the following issues: (1) What are the characteristics of liquidity at any point in time?  In

particular, what shapes do the instantaneous demand and supply schedules take, and what implications

does this have for the cost of trading?  (2) Does overall market liquidity vary significantly over time?  If

so, what drives the dynamics of liquidity variation, and are changes in liquidity predictable?  (3) Do

traders react to variation in liquidity by altering their order placement strategies? (4) How does this af-

fect the cost of trading and asset returns?

We examine these questions using intraday order-level data obtained from the electronic market

for stock index futures (henceforth OMX) in Sweden.  The data are in many respects ideally suited for

our study.  The index futures contracts traded represent claims to the entire equity market, so that our

analysis is one of aggregate liquidity.  Further, the automated limit order book system used in Sweden is

typical of many markets, including the Toronto Stock Exchange and Paris Bourse, allowing for some

                                                

1 Outside the US and a handful of emerging markets, virtually all equity and derivative trading systems are auto-
mated.  A partial list of major automated markets includes, for equities, the Toronto Stock Exchange, Euronext (Paris,
Amsterdam, Brussels), Borsa Italiana, National Stock Exchange (India), London Stock Exchange, Tradepoint, SEATS
(Australian Stock Exchange), Copenhagen Stock Exchange, Deutsche Borse, and Electronic Communication Net-
works such as Island.  Fixed income examples include eSpeed, Euro MTS, BondLink, and BondNet.  Foreign exchange
examples are Reuters 2002 and EBS.  Derivative examples include Eurex, Globex, Matif, and LIFFE. Domowitz (1993)
provides a taxonomy of automated systems.
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confidence that our results are not artifacts of special institutional arrangements.  Our data are new,

comprising one of the few complete limit order book datasets in existence.2

Our data show not only the quantities offered at the best bid or offer prices, but also the quanti-

ties offered away from these prices, in effect the demand and supply schedules at every point in time.

The observable instantaneous demand and supply curves yield natural metrics for liquidity in terms of the

responsiveness of price to order flow.  Without order level data, it is difficult to measure liquidity given

realized prices and volumes because traders may strategically alter their order submissions in response

to a perceived lack of depth. The instantaneous demand and supply schedules are of considerable inter-

est in themselves because their shape gives clues to the optimal dynamic trading strategy necessary to

minimize transaction costs.  Specifically, with linear schedules, it is optimal for a trader to breakup a

large order into equal sub-blocks over the trading horizon.  By contrast, if the schedules are nonlinear

traders may either “front-load” or “back-load” the order as opposed to using the uniform strategy.

An unusual feature of our database is that it identifies orders arising from the so-called “upstairs”

market where large-block trades are negotiated and crossed. Failure to distinguish these trades from

regular trades biases any assessment of the real costs of trading and true underlying liquidity of the mar-

ket.  For example, if the market is very illiquid, institutions may send large orders upstairs market so that

more crosses are observed.  Without explicit identifiers, such mid-quote executions would falsely sug-

gest a high level of liquidity.

We analyze the links between market liquidity, order placement behavior, and returns. Meas-

ures of overall market liquidity are constructed, based on the instantaneous demand and supply curves.

We show that liquidity exhibits both economically and statistically meaningful variation over time.  This

suggests that traders can add value by strategic order placement behavior.  We present evidence in fa-

vor of this hypothesis.  In particular, the actual execution costs incurred by traders are significantly lower

that the costs that would be incurred under a naïve strategy that ignores time-variation in liquidity.  The

cost differences are especially pronounced for larger trades, even after excluding crossed trades.  One

implication of this result is that institutional traders who simply partition their orders mechanically over

                                                

2 The Paris Bourse data, for forty stocks, is described by Biais, Hillion, and Spatt (1995).  Hollifield, Miller, and
Sandås (1999) and Sandås (1999) use OM data, but for a selection of 10 stocks traded on the equities order book.
Data also are available for trading that occurs on the Australian SEATS automated system.
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the day with the objective of trading at the “value weighted average price” could benefit from attempting

to time their trades to take advantage of periodic liquidity surpluses while avoiding liquidity deficits.  The

nonlinear nature of the demand and supply schedules, together with systematic intraday variation in li-

quidity, generally implies that the optimal dynamic trading strategy is not uniform.

Finally, we analyze the dynamic relation between measures of liquidity and short-horizon ex-

pected returns using structural vector autoregressive models.  A growing literature suggests that there is

a relation between liquidity and expected returns.  In particular, Amihud and Mendelson (1986, 1991)

find evidence of a positive relation between asset returns and bid-ask spreads.  Amihud, Mendelson,

and Lauterbach (1997) document large changes in asset values for stocks moving to more liquid trading

systems on the Tel Aviv Stock Exchange. Brennan and Subrahmanyam (1996) and Brennan, Chordia,

and Subrahmanyam (1999) show that liquidity can explain the cross-sectional variation in returns while

Hasbrouck and Seppi (2000) examine commonality in liquidity.  Our results support for microstructure

models where liquidity is a factor in expected returns, but also suggest more complicated dynamics from

past returns to market depth.

The paper proceeds as follows: Section 2 examines institutions and data; Section 3 presents re-

sults on the instantaneous supply and demand schedules; Section 4 presents the autoregressive model

for joint analysis of liquidity and returns; Section 5 examines the dynamic relation between liquidity and

volatility, and Section 6 concludes.

2. Institutions and Data

2.1. Market Architecture

Trading in Swedish stock index futures contracts takes place via a consolidated automated

trade execution system, including activity from Sweden, the U.K., Denmark, and the Netherlands.  We

refer to the overall market as OMX, given the complete integration of trading across countries.3

The electronic system functions as a continuous pure limit order book market.  Trading on the

order book is in round lots of 10 contracts.  Orders are prioritized on the book in terms of price, then

time.  There are two ways in which a trade may be executed.  Counterparty limit orders may match on
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the book in terms of price, in which case the maximum feasible size is filled.4  Alternatively, a trader may

“hit the bid” or “lift the offer,” taking up to as much quantity as advertised on the book.  This is accom-

plished by executing a single keystroke and submitting desired volume.  Once a trade is completed, un-

executed volume at the trade price remains on the order book, until cancelled.  Cancellations of orders

are possible at any time.

The trading day is six hours, beginning at 9:00 AM and ending at 3:00 PM, GMT.  Unlike many

automated markets, such as the Paris Bourse, there is no opening algorithm or batch auction at the be-

ginning of the day.  With that exception, the design and mechanics of the OMX market are quite similar

to that described by Biais, Hillion, and Spatt (1995) for the CAC system, and by Domowitz (1993) for

generic price/time priority continuous limit order systems.

There are some additional features that are relevant to the analysis to follow.  Block transactions

are allowed, in the form of “crosses.”  Crosses are arranged “upstairs” or off-exchange, and the two

sides are not listed on the order book.   Nevertheless, crosses, described in terms of price and quantity,

are displayed in the continuous time transaction record observed by traders.  Unlike the practice in

some other markets, there is no interference with a cross from activity on the limit order market.5  A

small amount of odd-lot trading also takes place. A separate facility exists for this activity, but such

trading is integrated with the main book.  For example, an odd lot of 3 contracts and one of 7 contracts

automatically matches with a round lot of 10 contracts on the main book.

Order and trade information are distributed directly from the trading system, making the OMX

highly transparent.6  Specifically, market participants observe a transactions record (price and volume)

                                                                                                                                                            

3 Clearing is conducted on a local basis.  The Swedish contract originated on OM Stockholm in 1985, and OMLX, the
London Securities and Derivatives Exchange, was established in 1989, with the additional links following thereafter.
4 “Locked markets” do not result if an entered bid price is higher than an offer price on the book.  A transaction oc-
curs based on time priority, at the offer price in this example.
5 The Swiss SOFFEX derivatives system, for example, exposes arranged trades to the limit order book, similar to the
practice on the NYSE for upstairs blocks.
6 Transparency refers to the quantity and quality of information provided to market participants during the trading
process.  Limit order markets are typically highly transparent because they provide relevant information before
(quotes, depths) and after (actual prices, volumes) trade occurs. By contrast, foreign exchange and corporate junk
bond markets rely heavily on dealers to provide continuity but offer very little transparency while other dealer mar-
kets, such as  Nasdaq, offer moderate degrees of transparency.



5

and the five best bids and offers on the book, with aggregate volume at each price.7  No “indicative”

prices or other non-price expressions of trading interest are provided.  A trader may view information

through OM’s interface or accept a real-time feed, which allows for customized screens and data proc-

essing.  Although this seems to be a small detail, it proves relevant in the analysis of trading cost man-

agement to follow.

2.2. Data

Our database comprises the complete limit order book for Swedish stock index futures con-

tracts from the period 7/31/95 through 2/23/96.  The data are obtained from a trading house that chose

the real-time feed, permitting the collection of some historical information for analysis.8  Prices are de-

nominated in Swedish currency (SEK), and volume is given in number of contracts.  Information is time-

stamped to the second.  Transactions files and order information are matched.  The order book is re-

constructed from the raw data and completely consistent with transactions reported.9  Odd-lot trades

are identified, but constitute only about three percent of all trades, and average less than five contracts

per trade.  Crosses are isolated, and matched in time with limit order book trading activity.

Activity for near-term contracts is analyzed in what follows, since there is little liquidity in con-

tracts for which expiration is further away.  Some data is eliminated at the end of expiration cycles, miti-

gating liquidity effects stemming from lack of trading due to rollover effects. The daily average number of

orders, cancels, and transactions in the data analyzed below are 1941, 1334, and 177, respectively.

3. Liquidity and Trading Activity

The existence and dissemination of limit order book information sharply reduces the costs of

monitoring the market, and permits real-time assessment of liquidity, as well as of price movements.  In

the model of Spiegel and Subrahmanyam (1995), monitoring possibilities introduce discretionary timing

of trades, a feature also of the theory in Admati and Pfleiderer (1988) and Scharfstein and  Stein

                                                

7 There is some facility for so-called “hidden orders,” which rotate into the book and are unobserved by traders.  As
in the analyses of Biais, Hillion, and Spatt (1995) and Hollifield, Miller, and Sandås (1999), we cannot ascertain the ef-
fects of such orders, since they are not observable by the econometrician either.
8 We thank Lester Loops, who provided the raw numbers and some assistance with issues involved in merging the
order and transactions records.
9 Irregularities, initially constituting about one percent of trading activity, were uncovered, but all are reconciled with
the assistance of the trading house that provided the original data.
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(1990).  The first empirical question is logically whether or not we observe such discretionary timing.

Evidence to date is largely circumstantial, in that theory often is compared to opening and closing peri-

ods of a trading session, as opposed to measures of liquidity over time and observables used by market

participants in the monitoring function.

Discretionary timing of trades involves several underlying hypotheses and predictions.  In Ad-

mati and Pfleiderer (1988), it is optimal for discretionary uninformed traders to trade at the same time,

for example.  This in turn implies liquidity clustering, in an environment in which informed trading further

exaggerates the clustering effect.  In Scharfstein and Stein (1990), large order flows, observable here

through the book, encourage entry by traders, suggesting that greater liquidity should be correlated with

more and larger trades.  A similar herding effect in the case of discretionary timing is postulated by

Spiegel and Subrahmanyam (1995), based on risk sharing, as opposed to price pressure.

We investigate these issues by examining the supply and demand schedules inherent in limit or-

der book information.  Evidence with respect to discretionary entry is examined in the context of the

price impact of trades, since this is most logical given theory's emphasis on liquidity.  We then turn to the

hypotheses surrounding the implications of discretionary timing.

3.1. Demand and Supply Schedules

In what follows, we define market liquidity or depth as the number of contracts offered for sale

at up to k ticks from the midquote.  We distinguish between liquidity on the buy and sell sides, denoted

by )(kDb and )(kD S , respectively.  These measures are natural in that they can be interpreted as the

volume necessary to move the price by k ticks.  More liquid markets are deeper in that they can ac-

commodate larger trades for a given price impact.

Table 1 contains summary statistics relating to the depth of the order book, in number of con-

tracts, by time of day, averaged over 105 trading days.  Data for the bid side appears in Panel A, and

data for the offer side appears in Panel B.  Column headings indicate the number of ticks away from the

midpoint of the best quote in the market at the time.  The figures reported are the number of contracts

available at or below that number of ticks away from the midquote.  Essentially, these figures constitute

the instantaneous supply and demand curves, averaged across days.
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For example, from Panel A, at 10:15 AM, there are (on average) 58 contracts offered for sale at up to

8 ticks below the midquote.  The numbers in parentheses are the probability, in percent, of observing

volume at the indicated number of ticks away from the midquote.   These probabilities show the uncer-

tainty faced by a trader with respect to whether volume will be available at any given price away from

the quote.  Again, at 10:15 AM, there is a 35% chance of observing a sell order that will move the price

by 8 ticks.

Market depth at any distance from the midquote is lowest at the opening session.  The finding is

consistent with models where risk averse traders are unwilling to place limit orders when there is greater

uncertainty about fundamentals.  Trading activity is correspondingly thin, with respect to trades done

based on order book inventory.  On the other hand, crosses are especially frequent during the opening

half-hour.  The combination of results is generally accord with the theory behind Subrahmanyam (1991)

with respect to the trading of stock index futures, in which risk aversion plays a key role.

Although depth appears to be unusually good at the closing session, the probabilities of execu-

tion are lower.  An obvious explanation is an unwillingness to place large orders on the book at the

close, especially evident in the low probabilities of execution for trades far away from the midquote.

The low probability of order book execution explains the fact that the largest incidence of off-exchange

crosses occurs in the presence of greatest market liquidity, near the the close of the trading session.

The shape of the demand and supply schedules provides some clue with respect to strategic

trading activity. Linear schedules suggest that large orders are broken up into equal size blocks for sub-

mission over the trading day in a uniform manner.  Nonlinearity suggests departures from such a uniform

strategy.

We investigate the potential nonlinearity of schedules by estimating polynomial approximations

to the bid and offer curves.10  The regressions relate average depth to the number of ticks away from

the midquote.  The approximations are graphed in Figure 1 for bid and offer schedules. A linear ap-

proximation is also illustrated.  The bid and offer functions are roughly S-shaped, with some convexity at

prices close to the spread midpoint, and considerable departure from linearity starting at about eight

ticks (approximately 0.16 percent of value) away from the midquote.

                                                

10 A fifth-order polynomial is used for the results reported.
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Comparing Panels A and B, the bid and offer sides of the book are roughly symmetric in terms

of depth and execution probabilities.  There appears to be little difference between the demand and

supply schedules, on average, which also is evident from Figure 1.  This suggests that trading behavior

and patterns arising from order imbalances are likely to be short-lived, a topic investigated further in

section 4.

Casual inspection of depth by time of day suggests little time variation in liquidity, except for the

open.  This is incorrect.  First-order autoregressive models of depth suggest a moderate degree of mean

reversion in liquidity, and a large residual variance relative to mean depth.11 First, this finding implies li-

quidity clustering, consistent with the theoretical predictions of Admati and Pfleiderer (1988) and

Scharfstein and Stein (1990).  Such results also suggest substantial time variation, but not necessarily

that which would be captured by simple time-of-day analysis.  In fact, models such as that of Admati

and Pfleiderer (1988) do not predict time-of-day effects, although they are often associated with em-

pirical phenomena at the open or close.  Rather, they predict that patterns in liquidity and trading occur

over time, with no statement as to the clock, as pointed out by O'Hara (1995, p. 139).

3.2. Price Impact Functions

We turn now to an analysis of the strategic behavior of traders.  We begin by summarizing in a

simple manner the expected trading costs facing a trader at any point in time based on the prevailing

demand and supply schedules.  In particular, consider a market order of size Q (with the sign conven-

tion that Q > 0 represents a purchase and Q < 0 a sale) that, given the extant book, is executed at k

different prices, with qk shares executing at a price pk, where Σ qk = Q.  The price impact of the trade is

then defined in terms of the appropriately signed percentage difference between the weighted-average

execution price and the pre-trade midpoint:

)(ln)(
0

Qsign
Qp

qp
Q kk











= ∑λ , (1)

                                                

11 First order serial correlation coefficients for depth at 6 ticks away from the midquote, for example, are 0.66 and 0.60
on the bid and offer side, respectively, with estimated residual standard deviations of between 22 and 23, relative to
means of between 24 and 50 in Table 1, and constant terms of 13 to 15 in the autoregressions.
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where p0 is the midpoint of the bid-ask spread at the time of the trade.  The price impacts thus defined

are inversely related to the depth measures defined above.  So, for example, if )(kDB = Q,

the total price movement associated with a buy order of size Q is k.12

Table 2 contains the expected price impact of trades, reported in percentage terms relative to

the quote midpoint, by time of day.  Calculations are done for hypothetical trades of 10 to 100 con-

tracts in increments of 10, compared with the observed order book at a specific time of day, averaged

over 105 trading days.  Figures in the row marked “average” are computed based on computations at

15-minute intervals over the trading day, averaged over intervals and trading days.  Panel A contains

data for transactions at the bid, and Panel B contains figures for transactions at the offer.  Consistent

with our intuition, the price impact of the trade is strictly increasing in order size, ranging from 7 to 15

basis points overall.  Consistent with table 2, the price impacts are much higher at the open, but do not

vary by whether the order is a market buy or a market sell.

In equity market studies, it is increasingly common to model the price impact of a trade as a

concave function of size.  Hasbrouck (1991), for example, advocates the use of square-root transfor-

mations for order size.  Similar results are obtained by Madhavan and Smidt (1991), among others.  By

contrast, the price impacts here are convex functions of size.

The difference between our results and those based on NYSE or Nasdaq data might be the re-

sult of market structure.  On the NYSE, for example, the trading crowd and specialist may step in to

provide liquidity for large orders, while Nasdaq dealers may offer volume discounts to their customers.

On an automated auction like the OMX, however, traders are unwilling to offer large quantities at prices

far away from the current price.  Such limit orders constitute free options to the market, options that will

be taken if the market moves by a large amount.  The absence of depth at far prices implies that the

price impact function is convex, because large trades incur proportionately greater costs.

It is also possible that the difference in the shape of the price impact function reflects upstairs

trades.   The data used to test models of the U.S. equity markets do not identify large-block trades exe-

cuted upstairs.  These trades typically occur within the bid-ask spread, possibly biasing the estimated

                                                

12  The actual percentage price impact depends on the distribution of limit orders on the price grid.
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costs of execution for large orders downward.  This is not an issue for us, since the computations in ta-

ble 2 use the current limit order book.

3.3. Realized Price Impact Costs

According to Admati and Pfleiderer (1988), discretionary traders take liquidity as given, and

their competitive behavior leads to trading in the lowest cost period presented by the market.  It is

therefore important to juxtapose the hypothetical price impacts computed above with the actual or real-

ized price impacts based on the trade data.  This provides an indication of whether traders take advan-

tage of time-variation in liquidity, and provides a direct test of the Admati-Pfleiderer hypothesis.  In

computing the realized price impacts, we separate out “upstairs” or crossed trades, because their inclu-

sion would downward bias the cost estimates for large trades.

Table 3 contains the actual price impact of trades, reported in percentage terms relative to the

quote midpoint, by time of day. We use equation (2) to compute these impacts except that we use the

realized executions from an incoming market order in computing the trade price.  Calculations are done

for actual trades of 10 to 100 contracts in increments of 10, compared with the observed order book at

the time of trade, over 105 trading days.

In contrast to table 2, the realized impacts in table 3 are surprisingly constant across order sizes.

This pattern is true for both trades on the bid and offer sides, as well as crosses.  It is evident that trad-

ers obtain substantially lower costs than they would through a naïve order submission strategy, espe-

cially for large orders, even ignoring crosses.

Constancy of price impact across size has an immediate practical implication.  Many institutional

managers use the value-weighted average price (VWAP) as their benchmark price in evaluating trade

performance.  Consistent with this, some traders attempt to realize VWAP by breaking up their trades

over the trading day.  Our findings suggest that this strategy is suboptimal; efforts to take advantage of

time-varying liquidity may result in substantially better executions.  These results are precisely what was

to be expected given the evidence on nonlinearity of the demand and supply schedules illustrated in Fig-

ure 1.

Interestingly, many crosses do not go down at the midpoint.  The crosses are often at the bid or

offer, as is is obvious from the nonzero price impacts reported in table 3.  Crossing away from the mid-

quote does not save much money relative to doing the trade directly with the book, except for large-



11

block trades of 90 contracts or more.  Crosses are largely down in the morning, with a thin book, but

also an even greater number towards the close, with a very thick book, perhaps because traders are

concerned that they might not be able to execute a large block trade with little time remaining in the

trading day.  This is consistent with the evidence on the proportion of block transactions in the US eq-

uity market, which also diminishes sharply at the end of the day.

3.4. Strategic Order Placement Behavior

The difference between hypothetical and actual price impacts confirms the existence of discre-

tionary timing, and is consistent with strategic behavior on the part of traders.  All theories relating to

discretionary trading then predict that traders time purchases and sales for periods when the market is

especially deep, avoiding those periods when market depth is low.  If so, the pooling of liquidity should

result in markets in which depth is associated with more trades and larger trade size.

Table 4 contains the mean depth, number of contracts, number of trades, and trade size corre-

sponding to different levels of aggregate depth as a function of distance from the midquote.

“Below 50” is everything below the median; “80-95” and “95-100” are the percentiles for large depth.

“Depth” is total depth available at 4 ticks away (Panel A) and 6 ticks away (Panel B) for the aggregate

of bids and offers (we do not report separate tables because the qualitative results are so similar).

“Contracts” refers to the number of contracts traded per 5-minute interval.  “Trades” is number of

trades, and size is average trade size, all computed on the 5 minute basis.

The variation in liquidity evident from the numbers in the table is clearly related to order place-

ment strategy.  Trading frequency and trade size are positively related to depth.  Traders place larger

orders when markets are deep and spreads are narrow.  The univariate statistics provide support for

theory arising from discretionary trading, but confirmation that trading activity is indeed positively related

to liquidity requires some control for other factors that may affect activity.

The natural object of interest is trading frequency.  Since this variable is discrete and can take

on the value 0, we model trading activity using a Poisson model.  Let y denote the number of trades in a

five minute interval and X denote a vector of explanatory variables.  Then, with Xβλ ′=)ln( , the Pois-

son model is:

,...2,1,0;
!

]|Pr[ ===
−

k
k

e
ky
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X , (2)
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We estimate this model separately for buys and sells.  Table 5 contains coefficients and stan-

dard errors (in parentheses) for Poisson models of trade arrivals for buyer-initiated and seller-initiated

trades.  Estimates are computed by maximum likelihood techniques, based on 5-minute intervals over

105 trading days.  The vector X includes a constant, the number of trade arrivals on the opposite side of

the market (“side”), returns (measured as change in the midquote), open and close dummies, depth of

the market up to six ticks away from the midquote, and the effective spread, computed for trade sizes of

20 contracts. All estimated coefficients are statistically significant for both sides, and are of the expected

sign.

Trading activity is positively related to depth and negatively related to spreads.  Interestingly,

depth and spreads both have economically and statistically significant effects.  Taken together as meas-

ures of liquidity, both results reinforce the hypotheses stemming from discretionary entry into the market.

An increase in order arrivals on the opposite side of the market implies greater activity.  The

finding highlights the theoretical prediction of Scharfstein and Stein (1990), that high contraside order

flows generate entry on the other side of the market.  Intuitively, this is simply   consistent with greater

pressures to trade quickly.

The coefficient estimates for returns are consistent with the hypothesis that traders place buy or-

ders following market dips and sell following price upturns. Further, as traders observe upwards price

pressure, they tend to place more sell-side orders at prices away from the best quotes, accounting for

part of the result. Open and close dummies are positive.  There is nothing new about this result, since it

is consistent with the well-known U-shaped volume pattern observed in many markets.  The finding

suggests, however, that market structure has little influence on the informational and behavior influences

leading to U-shaped activity over the course of the trading day.

4. Dynamics of Liquidity and Returns

We now turn to an investigation of the dynamics of market liquidity and its time-varying effect

on returns.  The method of analysis is reminiscent of Hasbrouck's (1991) examination of specialist quote

setting.  The goal in that paper is to relate specialist quote revisions to trades, modeled as empirically

signed volume.  In doing so, Hasbrouck identifies the effects of random trade innovations on quote revi-
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sions, and interprets a measure of the expected cumulative quote revision as an index of private infor-

mation.  The measure used is the impulse response function of a bivariate vector autoregression.

There is no specialist in a limit order book market, and the changes in midquote prices used by

Hasbrouck (1991) are more naturally interpreted here as returns to trading activity. Our interest centers

upon the interplay between liquidity and prices, and in the dynamic relationship between liquidity char-

acteristics on opposite sides of the market.  There are several hypotheses of interest within such a dy-

namic setting.

Amihud and Mendelson (1986) suggest a positive relationship between asset returns and liquid-

ity, proxied in their case by a bid-ask spread.  As in Brennan, Chordia, and Subrahmanyam (1999), it is

the cross-sectional variation in returns that is examined, and liquidity is a univariate construct.  In con-

trast, we ask whether liquidity dynamics, represented by movements in the instantaneous supply and

demand curves, have a predictable influence on short horizon expected returns.  The possibility of com-

plicated dynamic links between liquidity and short horizon expected returns is embedded in the frame-

work of Spiegel and Subrahmanyam (1995), for example.

In Admati and Pfleiderer (1988), discretionary uninformed traders take liquidity as given, act

competitively, and in doing so, trade in the lowest cost period. This prediction is supported by the data.

In a strategic setting, however, discretionary traders choose when to trade, recognizing that liquidity

differs across periods, and their behavior subsequently affects liquidity. The latter feedback is ruled out

by assumption in strategic trading models, and is therefore an interesting hypothesis to test.13

  Finally, dynamic feedback between demand and supply curves is a feature of discretionary

trading models, but has not been empirically examined.  In Scharfstein and Stein (1990), for example,

"unusual" order flow on one side of the market generates entry, hence increased liquidity, on the contra-

side, in anticipation of higher returns.  In Spiegel and Subrahmanyam (1995), traders enter to offset

fluctuations in contraside order flow.

Throughout our discussion we use market depth as our measure of liquidity.  Our conclusions

also hold for other metrics including price impacts.  As in Hasbrouck (1991), the ideal vehicle is a gen-

eralized vector autoregression, and we first turn to the assumptions underlying the model.
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4.1. Identification and the Statistical Model

The model is necessarily complicated because liquidity itself depends on the state of the market,

which finds expression through the returns process.  In order to isolate the dynamics and effects of li-

quidity, per se, we need to identify the components of liquidity that are not responding to returns, i.e.,

that are exogenous.  A solution to this identification problem requires assumptions, and ours are dis-

cussed below.  We associate a shock to market liquidity with the random error term in a regression of

the form

( ) dtttD εϕ +ℑ= , (3)

where Dt is a  multivariate measure of market liquidity (measured by depth), ϕ is a linear function, and

ℑt is an observable information set, including past history.  The specification of Dt is two-dimensional,

consisting of the bid and offer sides of the market, denoted Dbt and Dat, respectively.  The random

component, εdt, is a serially uncorrelated disturbance, also assumed to be uncorrelated with the ele-

ments of ℑt.  In order to rationalize the interpretation of the disturbance as an exogenous shock to

depth, the conditions essentially correspond to the assumption that shocks to market depth at time t do

not affect the elements of ℑt.

 The dynamic response of a variable to a market liquidity shock is measured by the coefficients

in the regression of the variable on current and lagged values of the fitted residuals in equation (3).

More commonly, use is made of the (asymptotic) equivalence of such a procedure to one based on fit-

ting a particular vector autogression (VAR), which might be written as

∑
=

− +=
q

s
tstst YAY

1

η . (4)

The vector Yt-s, s=0,1,…q, contains both elements of Dt and those entering the information set, ℑt.

We combine elements of the structural form, represented by equation (3), and the reduced form

VAR in equation (4), by estimating a complete dynamic simultaneous equation system of the form,

t

q

s
stst YBRY ν+= ∑

=
−

1

(5)

                                                                                                                                                            

13 O'Hara (1995, p. 135) makes this point, and discusses why game theoretic models such as that of Admati and Pflei-
derer (1988) have difficulty in endogenizing such interaction.
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The reduced form coefficients are obtained through the relationship, As = R-1Bs.  Similarly, the reduced

form error structure is R-1νt, which under suitable identification conditions, isolates the market liquidity

shock in equation (3).

Use of the complete dynamic system, as opposed to simply the reduced form, has two main ad-

vantages.  First, estimates of the complete model also include contemporaneous influences, permitting

description of current period effects on market liquidity itself.  Second, it permits explicit delineation of

the identification conditions required to isolate shocks to market liquidity.  These conditions often are

hidden in the estimation of the reduced form alone, confusing inference with respect to the shocks of in-

terest.14

The identification conditions chosen here are expressed in terms of the variance-covariance ma-

trix of νt and the elements of the matrix R.  Identification is similar to that of a Wold causal chain.15  In

our case, the covariance matrix of the structural error is block diagonal, and restrictions are imposed on

R such that the matrix is block triangular.  We make the latter assumptions explicit below, once the ele-

ments of Y have been specified.

4.2. Specification and Estimation of Market Liquidity Dynamics

Alternative measures of market liquidity correspond to different specifications of Dt and ℑt
., in

equation (3).  In what follows, we report figures only for market liquidity in terms of depth of market at

a certain number of ticks away from the quote midpoint.

Our primary interest, beyond a characterization of the dynamics of liquidity, is in the dynamic

relationship of returns with depth.  We therefore specify the vector Yt as (Dbt, Dat, ∆mt)’, where ∆mt is

the change in the quote midpoint.  A variety of additional elements of Y suggest themselves, and several

alternative specifications are estimated.  The addition of such predetermined variables does not change

the nature of the results reported here, which exclude them.

Theoretical treatments of the relationship between liquidity and returns are essentially static in

nature. Our approach to identification is therefore empirical, using elements of the techniques in Swan-

son and Granger (1997) and Sims (1986).  The combination of techniques involves the use of different

                                                

14 There is a large literature devoted to this point, starting with Sims (1986) and explicated in more detail in Hamilton
(1994).
15 See, for example, Sims (1986).
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identification schemes, each allowing the assessment of the strength of various correlations among the

variables.  The scheme below represents a choice based on this procedure, but also is intuitively plausi-

ble in nature.

The variance-covariance matrix of the structural error vector is taken to be block diagonal.  In

particular, it is assumed that shocks to liquidity on the bid and offer sides of the market are contempora-

neously correlated. Returns are assumed to be uncorrelated, which is supported by the data.  Lag

lengths are truncated at s = 1. The matrix of contemporaneous effects, R, is specified as
















−
−

=
100

10
01

23

13

ρ
ρ

R .  (6)

The matrix of lagged effects, B, is unrestricted, with the exception of the coefficient on lagged returns.

The combination of restrictions has the following economic intuition.  Neither bid nor offer side

depth contemporaneously affect returns.  This has some intuitive appeal, in that depth is a function of

bids and offers, which naturally precede transactions.  As such, bid and offer depth should affect returns

in the next period, if at all, which is allowed by the specification.  Similarly, depth on one side of the

market does not contemporaneously affect depth on the other side, but does so with a lag.  Identifica-

tion schemes that permit estimation of contemporaneous effects of depth on returns and side of the mar-

ket yield economically and statistically insignificant R-matrix coefficients.16  On the other hand, the

model assumes that shocks to depth on the bid and offer sides of the market are correlated, since such

shocks may derive from the same source of market information.

The specification permits a contemporaneous effect of returns on depth in both sides of the

market.  Price movements influence the current submission of bids, offers, and cancellations, reflected in

the depth measures.  Prior returns also have an influence on current depth in the specification.  The in-

clusion of both contemporaneous and lagged effects permits a test as to whether discretionary behavior,

manifested through returns, has any instantaneous or lagged feedback into liquidity provision.  The rela-

                                                

16 Hasbrouck (1991) maintains a different timing convention, in that trades contemporaneously influence quote revi-
sions, but not vice versa.  The cited test suggests that the same interpretation cannot be used here, and we use the
opposite timing convention for liquidity and returns.
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tive strength of the contemporaneous and lagged influences of returns on liquidity is an empirical ques-

tion.

Based on the above identification conditions, equation (5) is estimated by method of moments,

and the standard errors are computed using the usual GMM form.  Results are reported in table 6 for li-

quidity measured in terms of number of contracts available at six ticks away from the quote midpoint.

The liquidity clustering predicted by Admati and Pfleiderer (1988) is clearly evident from the es-

timates and standard errors.  The first-order serial correlation of depth with lagged depth ranges from

0.33 to 0.38 and is very precisely estimated.  The correlation of depth on the offer side with lagged buy

side liquidity is 0.04, and statistically significantly different from zero.  Although this coefficient, and that

relating lagged sell side liquidity to current buy side depth, are economically small, the results do suggest

not only that the liquidity clustering hypothesis holds even across buy and sell sides, but also that the en-

try predictions of Scharfstein and Stein (1990) and Spiegel and Subrahmanyam (1995) appear to hold.

We investigate the last point further in the context of the impulse response functions.

The contemporaneous impacts of returns on market depth are symmetric and different from

zero at any reasonable level of statistical significance.  As returns rise, liquidity increases on the offer

side of the market and falls on the bid side.  Lagged returns are both economically and statistically insig-

nificantly different from zero in terms of their effect on liquidity.

 These results clearly do not derive from the mechanics of a limit order book market.  Simple

mechanics would imply that buying pressure increases depth on the buy side, at least for prices at or

very near the best quote, for example.  Such results would be expected only for depth measured in

terms of number of contracts available very close to the quote midpoint.  In fact, this empirical phe-

nomenon is observed only for depth measured at two ticks away from the midpoint in our sample.

The findings have an interpretation consistent with the results on management of transactions

costs.  An increase in prices occurs due to pressure on the buy side of the market.  Some sellers may

simply hit the bid in a rising market, reducing depth at the top of the book on the bid side, but this is

relatively costly.  Generally, buying pressure implies that potential bidders must pick contracts off the

offer curve in order to achieve execution. Stale bids below best quotes are cancelled, further reducing

bid-side liquidity.  The response of sellers is to put in offers at prices higher than the prevailing best
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quote in the market.  As a result, liquidity on the offer side rises, as returns go up. In a rising market, this

order placement behavior achieves savings in transactions costs due to price impact, as liquidity is rising.

Conversely, decreases in liquidity on the bid side, and increases in liquidity on the offer side, are

associated with larger returns, but with a lag.  This relationship is significant for both depth and effective

spreads.  It suggests that the effect of liquidity shocks upon returns is dynamic and potentially persistent,

and we now turn to an analysis of the interplay between the two over time.

4.3. Impulse Response Functions

The dynamic responses of returns to market liquidity shocks, and those of depth on one side of

the market to shocks on the other side, are computed based on the estimated version of equation (5)

specified by full simultaneous equations model,

t

q

s
stst RYBRY ν̂ˆˆˆ 1

1

1 −

=
−

− += ∑ (7)

This autoregression is transformed into its infinite order vector moving average representation, through

the device of matching moments.17  The moving average representation is then used to generate the im-

pulse response functions.

Table 7 contains results for shocks to liquidity and returns, illustrated graphically in Figure 2.

Results are presented for shocks to liquidity on the bid side (panel A), on the offer side (panel B), and

for shocks to midquote returns (panel C).  Dynamic responses are given for the first five minutes, as well

as average responses over time periods following the initial shock, up to 60 minutes.  Shocks to market

liquidity consist of an increase in depth of 20 contracts.  Shocks to returns are in units of 10 ticks.18

Responses for liquidity are measured in terms of number of contracts; those for spreads and returns are

given in terms of ticks.

Our dynamic results show that a positive shock to liquidity results in higher returns. This re-

sult is consistent with Amihud and Mendelson (1986), who employ realized spreads as a liquidity meas-

ure.  Results for liquidity measured in terms of contracts available for trading echo those with respect to

the contemporaneous effects previously discussed.  Shocks to liquidity on the bid side of the market

                                                

17 See Hamilton (1994, chapter 11).
18 The precise scaling is immaterial, given the linearity of the system.  A shock of 100 contracts to depth, for example,
results in a response that is 5 times what is given in the table.
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tend to lower returns, while increases in liquidity on the offer side raise them. The effects are short-

lived, in that most of the effect occurs during the first 10 minutes following the liquidity event.

The combination of results suggests that price movements tend to dominate market depth, with

respect to the dynamic response of returns to a shock in liquidity.  The response of returns with respect

to a liquidity shock also is quite small in magnitude.  A simple calculation shows, for example, that an in-

crease in bid depth of 625 contracts is required to lower returns by a single standard deviation.19

A positive shock to returns increases liquidity on the bid side over time, while lowering sell side

liquidity.  This finding stands in contrast to that based on the contemporaneous relationship between re-

turns and liquidity.  Over time, buying pressure reduces offer-side liquidity through transactions at higher

offer prices.  As the return shock filters through the market, the number of orders placed to buy con-

tracts at better prices than offered increases, in part due to trading cost management, consistent with our

earlier results.

The magnitudes of responses due to returns shocks also are larger than those observed for

shocks to liquidity.  With respect to market depth, for example, a positive return shock of 34 ticks, only

0.68 percent of contract value, is required to increase bid side depth by a single standard deviation.

An increase in liquidity on one side of the market leads to a rise in liquidity on the other side.

Interpreted as a form of liquidity clustering, the result is confirmatory of the predictions of Admati and

Pfleiderer (1988) with respect to discretionary timing of trading activity.  Althernatively, the findings

support the predictions of Spiegel and Subrahmanyam (1995) and Scharfstein and Stein (1990).  In

those papers, herding behavior also involves entry on the opposite side of the market, given increases in

order flow activity. Although the impact declines quickly over time, as suggested by the small magnitude

of the regression coefficients, the initial impacts are not particularly small.  In the case of depth, a sell-

side shock of about 77 contracts is required to move bid depth by one standard deviation.

5. Volatility

It is generally assumed that increased market liquidity is associated with lower volatility, and vice

versa.  Such a prediction also follows naturally from the theories relating to discretionary timing of
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trades.  On the other hand, there is no direct empirical evidence on this point, to the best of our knowl-

edge.  Rather, trading volume and the absolute value of price changes are commonly found to be posi-

tively correlated, and there is some evidence that the volatility/volume correlation extends to common

factors in prices and volumes.20  We now extend the investigation of the last section to include an analy-

sis of the dynamic interactions between depth on the order book, effective spreads, and volatility.

4.1. Regression Results

Volatility is easily captured in our present framework.  We redefine the vector Yt in equation (5)

as (Dbt, Dat, |∆m|t)′, where |∆m|t is the absolute value of the change in the quote midpoint.  The same

identification scheme is employed as before.  The correlation of current and lagged absolute returns is

left unrestricted, however, following the large literature on volatility clustering.  Results are reported in

table 8 for liquidity measured in terms of number of contracts available at six ticks away from the quote

midpoint.

Volatility has a contemporaneous, statistically significant negative effect on liquidity, regardless

of side of market.21 The result stands in sharp contrast to the typically trading volume/volatility relation-

ship, in which the positive correlation between variables typically is attributable to information effects

(e.g., Blume, Easley, and O’Hara (1994)).  In an open limit order book system, higher volatility in-

creases the value of the free option stemming from liquidity provision to the order book. Periods of

higher information intensity and concomitant higher volatility increase the likelihood of adverse selection,

and adverse selection effects have been found to be large in electronic markets.22  In both cases, the in-

centive to provide liquidity to the book in the form of limit orders decreases, and market liquidity falls.

Increases in market liquidity lower future price volatility.  The result is intuitively plausible, and

consistent with the findings of Bollerslev and Domowitz (1991) in their investigation of the relationship

between volatility dynamics and generic order book systems.  The effects are economically larger, and

statistically significant, on the bid side of the market, relative to the offer side. The difference might be

                                                                                                                                                            

19 The standard deviation of returns is 5.185 ticks, the measured response is -0.032, and  (5.185/0.032) = 31.25, times
20 contracts is 625.  Other calculations summarized in text are done similarly.
20 See, for example, Karpoff (1987), Gallant, Rossi, and Tauchen (1992), and Hasbrouck and Seppi (1999).
21 The effects of lagged volatility on depth are economically negligible and statistically insignificantly different from
zero.
22 See Kofman and Moser (1997) and Coppejans and Domowitz (1999).
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thought to represent variability in this particular sample, since there is no obvious reason for a disparity.

On the other hand, the literature on trading costs suggests that costs are substantially higher for sells than

for buys in both traditional market structure (Keim and Madhavan, 1998) and electronic venues (Do-

mowitz and Steil, 1999).  Such findings are consistent with the fact that volatility does not respond sig-

nificantly to offer-side depth, remaining relatively high even when the market is relatively deep on the sell

side.

5.2. The Dynamic Relationship Between Liquidity and Volatility

The dynamic responses of shocks to liquidity and volatility are summarized in table 9 and Figure

3, for liquidity defined in terms of number of contracts 6 ticks away from the midquote.  As in the previ-

ous analysis, we report the initial 5-minute effect, as well as averages over subperiods within the hour

following the shocks.  The magnitude of the shocks to liquidity is as discussed previously.  Shocks to

volatility represent an increase of 10 ticks, or about 0.2 percent of contract value.23

Increases in market liquidity lower volatility. The volatility impacts of the liquidity shocks die

away quickly, with the responses over the 15 to 25 minute interval being only 9 to 14 percent of the av-

erage impacts over the first 10 minutes.  A shock of 63 contracts to depth is required to move volatility

by one standard deviation.  An alternative characterization is that a 2-standard deviation increase in

depth decreases volatility by one standard deviation.24

Shocks to volatility not only have a contemporaneous effect on liquidity, but also a strong effect

over time.  Higher volatility clearly decreases liquidity over the hour following the shock. An increase in

volatility of 1.3 percent of value decreases depth by about 30 contracts.  Once again, the effects are es-

pecially strong in the first 10 minutes following the volatility event.

Shocks to liquidity on one side of the market move the other side of the market in the same di-

rection as the initial shock. A shock of 80 contracts in depth on the offer side moves bid depth by about

30 contracts, or a single standard deviation, for example.  These results are similar to those obtained

using the structural VAR system incorporating midquote returns.

                                                

23 Average 5-minute volatility over the estimation period is 3.67 ticks, with a standard deviation of 3.6 ticks.  A move
of two standard deviations is approximately the size of the average bid-ask spread.
24 Calculations are illustrated for the bid side of the market.  The standard deviation of volatility is about 3.5, and the
5-minute impact is -1.12.  The depth figures are obtained by (3.5/-1.12) x 20 contracts = 62.5 contracts.
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6. Conclusion

The rapid adoption of electronic limit order book systems for equities, derivatives, and bonds

worldwide has generated considerable interest in the operation of such markets.  We use intraday data

on stock index futures trading in an electronic market to analyze the links between market liquidity, or-

der placement behavior, and returns.  Specifically, using unique data on the limit order book for the fu-

tures market in Sweden, we construct measures of liquidity and market depth.

We show that these measures vary widely over time, suggesting that traders can add value by

strategic order placement behavior.  We document evidence in favor of this hypothesis.  In particular,

the actual execution costs incurred by traders are significantly lower that the costs that would be in-

curred under a naïve strategy that fails to account for time-variation in liquidity.  The cost differences are

especially pronounced for larger trades, even after excluding trades that are crossed.  We examine the

dynamic relation between measures of liquidity and short-horizon expected returns using vector autore-

gressive models.   The results support for microstructure models where liquidity is a factor in expected

returns, but also suggest more complicated dynamics from past returns to market depth.
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Table 1
Average Depth of the Book by Tick, Time and Side

This table contains summary statistics relating to the depth of the order book, in number of contracts, by
time of day, averaged over 105 trading days.  Data for the bid side appears in Panel A, and data for the
offer side appears in Panel B.  Column headings indicate the number of ticks away from the midpoint of
the best quote in the market at the time.  The figures reported are the number of contracts available at or
below that number of ticks away from the midquote.  Numbers in parentheses are the probability, in
percent, of observing volume at the indicated number of ticks away from the midquote.

Panel A: Bid side of the book
Time 4 6 8 10 12 16 20
9:15 12 25 37 48 58 77 86

(33) (40) (35) (32) (24) (23) (10)

10:15 26 42 58 84 109 140 143
(41) (44) (35) (44) (37) (17) (5)

12:15 21 37 56 80 103 129 137
(49) (40) (48) (47) (45) (23) (6)

14:15 25 38 58 77 102 130 137
(47) (30) (46) (39) (49) (15) (6)

15:00 31 50 63 82 95 117 124
(31) (35) (25) (38) (31) (11) (3)

Panel B: Offer side of the book
Time 4 6 8 10 12 16 20
9:15 12 24 33 47 60 79 92

(36) (35) (29) (34) (31) (30) (20)

10:15 28 42 60 81 108 139 145
(35) (39) (39) (43) (44) (21) (3)

12:15 18 33 50 68 92 126 132
(44) (39) (48) (37) (45) (24) (11)

14:15 26 40 56 77 102 127 133
(50) (35) (38) (43) (44) (17) (5)

15:00 27 46 58 77 94 113 122
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(24) (40) (25) (36) (30) (14) (7)
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Table 2
Hypothetical Price Impacts by Time of Day

This table contains the price impact of trades, reported in percentage terms relative to the quote mid-
point, by time of day.  Calculations are done for hypothetical trades of 10 to 100 contracts in incre-
ments of 10, compared with the observed order book at a specific time of day, averaged over 105
trading days.  Figures in the row marked “average” are computed based on computations at 15 minute
intervals over the trading day, averaged over intervals and trading days.  Panel A contains data for
transactions at the bid, and Panel B contains figures for transactions at the offer. Trades at the bid are
necessarily negative, and the absolute value is reported here.

Panel A: Bid Transactions

Time 10 20 30 40 50 60 70 80 90 100

9:15 0.08 0.09 0.10 0.12 0.13 0.14 0.15 0.16 0.17 0.19

10:15 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.12 0.13 0.14

12:15 0.07 0.08 0.09 0.10 0.11 0.12 0.12 0.13 0.14 0.15

14:15 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15

15:00 0.06 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14

Average 0.07 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15

Panel B: Offer Transactions

Time 10 20 30 40 50 60 70 80 90 100

9:15 0.08 0.10 0.11 0.12 0.13 0.14 0.15 0.17 0.18 0.19

10:15 0.06 0.07 0.08 0.08 0.10 0.11 0.12 0.12 0.13 0.14

12:15 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15 0.15

14:15 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15

15:00 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14

Average 0.07 0.07 0.09 0.10 0.10 0.11 0.12 0.13 0.14 0.15
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Table 3
Actual Price Impacts by Time of Day

This table contains the price impact of trades, reported in percentage terms relative to the quote mid-
point, broken down by time of day, by side (bid or offer), and for regular trades and crosses.    Calcu-
lations are done for actual  trades of 10 to 100 contracts in increments of 10, compared with the ob-
served order book at the time of trade, over 105 trading days.   Trades at the bid are necessarily nega-
tive, and the absolute value is reported here.

10 20 30 40 50 60 70 80 90 100

Bid Side 0.04 0.04 0.04 0.04 0.05 0.05 0.04 0.04 0.06 0.04

Offer Side 0.04 0.04 0.05 0.05 0.05 0.05 0.05 0.05 0.04 0.07

Cross Bid ----- ----- 0.05 0.04 0.05 0.05 0.05 0.07 0.03 0.05

Cross Offer ----- ----- 0.04 0.05 0.05 0.04 0.06 0.06 0.02 0.05
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Table 4
Contracts, Trades, and Sizes by Depth and Tick Distance

This table shows the mean depth, number of contracts, number of trades, and trade size corresponding
to different levels of depth for two tick distances from the midquote.  “Below 50” is everything below
the median;  “80-95” and “95-100” are the percentiles for large depth.  Depth is total depth available at
4 ticks away (Panel A) and 6 ticks away (Panel B). Contracts refers to the number of contracts traded
per 5-minute interval.  Trades is number of trades, and size is average trade size, all computed on the 5
minute basis.

Panel A: 4 ticks away from midquote

Depth Contracts Trades Size
Below 50% 16.76 37.37 2.204 16.95
80%-95% 82.39 46.62 2.649 17.60
95%-100% 135.9 54.63 2.835 19.27

Panel B: 6 ticks away from midquote

Depth Contracts Trades Size
Below 50% 40.51 37.46 2.228 16.81
80%-95% 126.6 44.95 2.534 17.74
95%-100% 189.3 55.81 2.926 19.08
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Table 5
Poisson Models of Trade Arrivals

This table contains coefficients and standard errors (in parentheses) for Poisson models of trade arrivals
for buyer-initiated and seller-initiated trades. Estimates are computed based on 5-minute intervals over
105 trading days.  The specification of the conditional mean is E[y|X] = exp(β‘X), where y is the num-
ber of trades in a five minute period and X denotes the vector of explanatory variables. The vector in-
cludes a constant, the number of trade arrivals on the opposite side of the market (“side”), returns
(measured as change in the midquote), open and close dummies, depth of the market up to six ticks
away from the midquote, and the effective spread, computed for trade sizes of 20 contracts.

Buy-side Sell-side

Constant 0.401 0.456
(0.058) (0.055)

Side 0.054 0.066
(0.005) (0.005)

Return -0.099 0.106
(0.003) (0.004)

Open 0.373 0.356
(0.047) (0.045)

Close 0.227 0.310
(0.040) (0.041)

Depth 0.024 0.028
(0.005) (0.005)

Effective Spread -0.006 -0.006
(0.002) (0.002)

R2 0.147 0.165
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Table 6
Coefficient Estimates for the Model of Depth and Returns

This table contains estimates of the dynamic simultaneous equations model,
ttt BYRY ν+= −1 ,

in which Yt = (Dbt, Dat, ∆mt)’, where ∆mt is the change in the quote midpoint, Dbt is depth of market,
measured in lots of 10 contracts on the bid side of the order book at 6 ticks away from the quote mid-
point, and Dat is the same measure, computed for the offer side of the book.  The matrix, R, is given by
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Figures in the table are coefficient estimates (GMM robust standard errors in parentheses) for the re-
gression of each of the elements of Yt (column headings) on the variables in the left hand column.  Esti-
mation is based on 5-minute intervals.

Bid depth Offer depth ∆midquote

Constant 2.344 2.345 -0.192

(0.065) (0.067) (0.131)

∆midquotet -0.027 0.033 --------

(0.007) (0.007)

Bid deptht-1 0.384 0.035 0.084

(0.017) (0.012) (0.021)

Offer deptht-1 0.016 0.326 -0.058

(0.012) (0.018) (0.022)

∆midquotet-1 0.008 -0.003 --------

(0.005) (0.006)
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Table 7
Dynamic Responses to Shocks in Depth and Returns

This table contains the dynamic responses (impulse response function estimates) of bid-side depth, of-
fer-side depth, and midquote returns, to shocks to market depth on the buy side (Panel A), market
depth on the sell side (Panel B), and returns (Panel C). Depth of market is measured in number of con-
tracts on bid and offer sides of the order book at 6 ticks away from the quote midpoint. Calculations
are based on five-minute intervals, and use coefficient estimates of a complete dynamic simultaneous
equations model, also estimated over 5-minute periods.  Figures in the first row, labeled “5 minutes” are
responses to the initial shock.  The remainder of the rows give figures for average effects over the inter-
val indicated (e.g., 15-25 minutes is the response calculated for five minute periods, starting at 15 min-
utes and ending at 25 minutes, averaged over the period).  Depth responses are given in number of
contracts.  Return responses are given in number of ticks.

Panel A:  20 Contract Shock to Depth on Bid Side

Bid depth Offer depth ∆midquote

5 minutes 7.640 0.356 -0.032

5-10   minutes 5.280 0.300 -0.021

15-25 minutes 0.585 0.072 -0.000

30-60 minutes 0.020 0.002 -0.000

Panel B:  20 Contract Shock to Depth on Offer Side

Bid depth Offer depth ∆midquote

5 minutes 0.748 6.480 0.142

5-10   minutes 0.634 4.302 0.093

15-25 minutes 0.160 0.335 0.007

30-60 minutes 0.006 0.006 0.000
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Panel C:  10 Tick Shock to Midquote Returns

Bid depth Offer depth ∆midquote

5 minutes 0.837 -0.578 -0.042

5-10   minutes 0.568 -0.375 -0.024

15-25 minutes 0.054 -0.023 -0.000

30-60 minutes 0.001 -0.000 -0.000
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Table 8
Coefficient Estimates for the Model of Depth and Volatility

This table contains estimates of the dynamic simultaneous equations model,
ttt BYRY ν+= −1 ,

in which Yt = (Dbt, Dat, |∆mt|)’, where |∆mt| is volatility, measured as the absolute value of the change in
the quote midpoint, Dbt is depth of market, measured in lots of 10 contracts on the bid side of the order
book at 6 ticks away from the quote midpoint, and Dat is the same measure, computed for the offer side
of the book.  The matrix, R, is given by
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Figures in the table are coefficient estimates (GMM robust standard errors in parentheses) for the re-
gression of each of the elements of Yt (column headings) on the variables in the left-hand column.  Esti-
mation is based on 5-minute intervals.

Bid depth Offer depth |∆midquote|

Constant 2.730 2.626 3.247

(0.084) (0.087) (0.114)

|∆midquote|t -0.085 -0.070 --------

(0.010) (0.010)

Bid deptht-1 0.373 0.032 -0.054

(0.017) (0.012) (0.015)

Offer deptht-1 0.146 0.321 -0.021

(0.012) (0.017) (0.015)

|∆midquote|t-1 -0.006 0.001 0.193

(0.008) (0.008) (0.019)
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Table 9
Dynamic Responses to Shocks in Depth and Volatility

This table contains the dynamic responses (impulse response function estimates) of bid-side depth, of-
fer-side depth, and volatility, measured as the absolute value of midquote returns, to shocks to market
depth on the buy side (Panel A), market depth on the sell side (Panel B), and volatility (Panel C).  Cal-
culations are based on five-minute intervals, and use coefficient estimates of a complete dynamic simul-
taneous equations model, also estimated over 5-minute periods.  Figures in the first row, labeled “5
minutes” are responses to the initial shock.  The remainder of the rows give figures for average effects
over the interval indicated (e.g., 15-25 minutes is the response calculated for five minute periods, start-
ing at 15 minutes and ending at 25 minutes, averaged over the period).  Depth responses are given in
number of contracts.  Volatility responses are given in number of ticks.

Panel A: 20 Contract Shock to Depth on Bid Side

Bid depth Offer depth |∆midquote|

5 minutes 7.552 0.328 -1.118

5-10   minutes 5.222 0.284 -0.822

15-25 minutes 0.570 0.074 -0.116

30-60 minutes 0.015 0.003 -0.003

Panel B: 20 Contract Shock to Depth on Offer Side

Bid depth Offer depth |∆midquote|

5 minutes 0.712 6.452 -0.764

5-10   minutes 0.610 4.274 -0.552

15-25 minutes 0.156 0.330 -0.072

30-60 minutes 0.006 0.006 -0.001
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Panel C:  10 Tick Shock to Volatility

Bid depth Offer depth |∆midquote|

5 minutes -0.540 -0.213 1.992

5-10   minutes -0.428 -0.166 1.208

15-25 minutes -0.077 -0.027 0.045

30-60 minutes -0.002 -0.000 0.000
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Figure 1:  Linear and nonlinear estimates of average depth.  The darker line is the bid side, and the

lighter line is the ask side.

0

20

40

60

80

100

120

140

160

1 3 5 7 9 11 13 15 17 19

Ticks

D
ep

th



38

Figure 2:  Impulse Responses to Shocks in Depth and Returns.  Solid line is returns, dashed line is bid

side depth, and dotted line is ask side depth.  Own effects represents the effect of a shock on bid side

depth, ask side depth, and returns on bid side depth, ask side depth, and returns, respectively.  The

three other plots capture the remaining responses.  For example, the plot Bid Side represents the effects

on ask side depth and returns given that bid side depth has been shocked.  The plots Ask Side and

Returns are defined analogously.
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Figure 3:  Impulse Responses to Shocks in Depth and Volatility.  Solid line is volatility, dashed line is

bid side depth, and dotted line is ask side depth.  Own effects represents the effect of a shock on bid

side depth, ask side depth, and volatility on bid side depth, ask side depth, and volatility, respectively.

The three other plots capture the remaining responses.  For example, the plot Bid Side represents the

effects on ask side depth and volatility given that bid side depth has been shocked.  The plots Ask Side

and Volatility are defined analogously.
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