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Wage and Productivity Dispersion in U.S. Manufacturing:
The Role of Computer Investment

Abstract

By exploiting establishment-level data, this paper sheds new light on the source of the changes in

the structure of production, wages, and employment that have occurred over the last several

decades.  We focus on investigating the following two related hypotheses.  The first hypothesis is

that the channel through which skill biased technical change works  through the economy is via

changes in the dispersion in wages and productivity across establishments.  The second is that

the increased dispersion in wages and productivity across establishments is linked to differential

rates of technological adoption across establishments.  Our findings are supportive of these

hypotheses.  Specifically, we find that (1) the between plant component of wage dispersion is a

growing part of total wage dispersion, (2) much of the between plant increase in dispersion is

within industries, (3) the between plant measures of wage and productivity dispersion have

increased substantially over the last few decades, and (4) a substantial fraction of the rising

dispersion in wages and productivity is accounted for by changes in the distribution of computer

investment and capital intensities across plants as well as wage and productivity differentials

associated with the same observable characteristics.
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I.  Introduction

Striking changes in the structure of production, wages, and employment have occurred

over the last several decades.  The introduction of computers and, more generally, advanced

technologies into the workplace is widely viewed as one of the major factors underlying these

changes.  In particular, the role of advanced technology and computers has been closely linked to

the rising inequality of worker wages.  One hypothesis is that the introduction of advanced

technologies and/or computers has led to a rising demand for skilled workers which, in turn, has

led to a rise in the wages of skilled workers relative to unskilled workers.  Competing hypotheses

concerning the source of rising wage inequality include shifts in product demand and changes in

institutional factors such as the decline of unions and changes in pay norms.

This paper attempts to shed new light on the source of these changes by exploiting

establishment-level data to investigate the relationship between the dispersion of wages and the

dispersion of productivity across establishments.   The focus on between establishment

dispersion in wages and productivity is a novel feature of our approach and analysis.   This focus

is motivated by recent theoretical work by Caselli (1999) and Kremer and Maskin (1996) which

links the hypothesis of skill biased technical change to predictions regarding changes in wage and

productivity dispersion across establishments.  In principle, the rise in demand for skilled

workers driven by skill biased technical change could be a within establishment phenomenon. 

That is, it may have been that the typical establishment experienced technological change that

yielded a rising demand for skilled workers.  Accordingly, the rising wage dispersion and/or any

skill mix changes observed would be exhibited in the typical or average establishment.  In

contrast, the models of Caselli (1999) and Kremer and Maskin (1996) yield predictions that the
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skill biased technical change will be associated with greater dispersion in wages and productivity

across establishments.  This greater dispersion arises from the predictions of greater segregation

in the labor market across establishments as well as related predictions about correlations

between changes in wages and productivity across establishments with observable indicators of

technology adoption across establishments.  For example, the Caselli model suggests that

changes in wage and productivity dispersion across establishments resulting from a skill-biased

technical change (in this case the information technological revolution) should be related to

changes in the distribution of capital in general and computers in particular across

establishments.  Our use of establishment-level data provides a basis for evaluating the relevance

and validity of these predictions that focus on between establishment changes.  In investigating

this between establishment channel, we also provide another vantage point for evaluating the

overall hypothesis of skill biased technical change relative to alternative hypotheses of changes in

the structure of wages, productivity, and the workforce.     

Our paper can also be viewed as helping to connect various strands of the literature

studying wages, productivity, and computers.  For example, many recent studies have sought to

understand either the relationship between computers and wages (e.g., Krueger (1993), Doms,

Dunne, and Troske (1997), Autor, Katz, and Krueger (1998)) or, alternatively,  computers and

productivity (e.g., Oliner and Sichel (1994), Greenan and Mairesse (1996), Siegel (1997) and

Bresnahan, Brynjolfsson, and Hitt (1998)).  One of our main objectives is to investigate these

relationships simultaneously.

In a related manner, our analysis builds upon the parallel but separate literatures that

exploit plant-level data to study the behavior of wages and productivity.  Work by Davis and



1  The variance decomposition of the total variance of wages into between and within
plant components used in this paper draws heavily on the methodology from Davis and
Haltiwanger (1991) (hereafter DH).  The value-added of the results in this paper on this
between/within decomposition of wage dispersion are twofold.  First, we use a more
comprehensive data set that permits inclusion of auxiliary establishments (e.g., central
administrative offices, research facilities and warehouses) while DH were forced to generate
adjustments for their nonproduction worker statistics to account for the contribution of auxiliary
establishments.  Second, the decomposition here considers the period 1977-92 while DH
considered the period 1973-86.  In addition, DH did not explore the related changes in the
dispersion of productivity nor did they investigate the role of computers in accounting for
changes in the wage and productivity dispersion. 

2  Both the earlier and current work focus on manufacturing.  However, as shown in
section IV, the rising inequality for all workers is closely mimicked by rising inequality for
workers in manufacturing.  These findings suggest that although our plant-level analysis is
confined to manufacturing, it likely has wide applicability.  The restriction to manufacturing is
dictated by data limitations.  Only for manufacturing do we have the ability to investigate the link
between productivity, wages and establishment-characteristics like capital intensity and
computers per worker in a comprehensive, integrated manner for an extended period of time.

3  This inference is based on the presumption that product demand shifts would be related
to between industry changes.  This, of course, depends upon among other things the level of
industry disaggregation.  We consider this issue in the analysis that follows.

3

Haltiwanger (1991) has shown that the overall increase in wage inequality between workers is

closely tied to an increase in the dispersion of wages between establishments.1, 2   Further, much

of the latter change is a within-industry phenomenon so that the full exploration of these

differences requires plant-level data as opposed to industry-level data.  This finding that the most

important component of rising wage inequality is between-plant but within-industry suggests that

the increase in relative demand for skilled workers is not due to a simple shift in product demand

across industries.3  Related work on the determinants of plant-level wages (e.g., Doms, Dunne

and Troske (1997)) finds that differences in the use and adoption of advanced technology is an

important correlate of differences in the mix of workers and wages among plants within

industries.



4  One exception is the work of Dwyer (1995) who examines the relationship between
productivity and wage dispersion for the textile industry.  He finds that plants in the textile
industry with higher than average total factor productivity residuals also pay higher than average
wages.
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Along these same lines, Baily, Hulten and Campbell (1992) and Olley and Pakes (1996)

show that there is tremendous within-industry variation in productivity across plants.  Further,

they demonstrate that much of the increase in aggregate (industry-level) productivity is

associated with the reallocation of resources across plants from less productive to more

productive plants within the same industry.  Unlike with wages, however, there has been little

analysis of changes in the dispersion of productivity over time and little analysis of the role of

advanced technology and computers in accounting for the observed differences in productivity

across plants.4

The paper proceeds as follows.  In Section II, we briefly outline both the Caselli (1999)

and Kremer-Maskin (1996) models as well as present the implications of these models that are

most relevant for our analysis.  In Section III we decompose the total dispersion in hourly wages

into within and between components over the 1975-92 period.  We find that virtually the entire

increase in overall dispersion in hourly wages for U.S. manufacturing workers from 1975-92 is

accounted for by the between-plant components.  This result is quite important as it is at the core

of the theories we are investigating.  

In Section IV we examine the links between productivity and wages.  At the aggregate

level, we find that both the between-plant dispersion of wages and productivity increased

markedly over the 1975-93 period.  At the plant level, we find that wages and productivity are

strongly positively correlated in both levels and changes.  Finally, we report that industries with
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large changes in the dispersion of wages across plants also exhibit large changes in the dispersion

of productivity across plants.  Putting these results together with the results in Section III

suggests that the changes in dispersion in both productivity and wages are closely linked.

In Section V we investigate these relationships by examining the role of observable and

unobservable plant characteristics in accounting for the differences across plants in wages and

labor productivity.    The observable characteristics we consider include detailed industry

controls, controls for the size and organizational structure of the establishment, measures of

capital intensity, and computer investment per worker.   We use this information to quantify the

contribution of: (i) changes in the distribution of observable plant characteristics; (ii) changes in

the wage and productivity differentials associated with these observable characteristics; and (iii)

changes in unobserved factors; to changes in wage and productivity dispersion over time.  We

find that a large percentage of the observed changes in the dispersion of wages and productivity

are accounted for by changes in the differentials associated with being a capital intensive or

computer intensive plant.  Section VI summarizes the main findings and provides an

interpretation in terms of the alternative theoretical models under discussion.

II Review of Theoretical Literature

The two theoretical papers that form the basis for our analysis are the papers by Caselli

(1999) and Kremer and Maskin (1996).  In this section we briefly outline the two models and

present the most relevant predictions of the models.  

Caselli (1999) models the effect of a technical revolution on the dispersion of wages and

productivity.  In the Caselli model a technology is a matching of workers of type i who have the

appropriate set of skills to operate machines of type i.  An important feature of this technology



5 This is in contrast to an innovation which occurs when an improvement is made on an
existing machine.

6 A revolution is “deskilling” if the new skills required to operate the new machine are
less costly to acquire than existing skills.

7 Whether this increase in relative wages persists depends on a number of factors outlined
in Caselli (1999).  
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assumption for our purposes is that workers are completely segregated by skill across plants.  A

technological revolution occurs with the development of a new type of machine.5  Examples of

new types of machines mentioned by Caselli are the assembly line, the steam engine, and

information technologies or computers.  A revolution is skill biased if the skills required to

operate the new machine are more costly for the workers to acquire than existing skills.6 

Therefore, when a skill-biased revolution occurs, high skilled workers will be the first to use the

new machines since it is less costly for them to acquire the new skills (this is the definition of

high skilled in the model).  Low skilled workers will continue to use the old machines. The

model predicts that following a skill-biased technical revolution, because technologies have

diminishing marginal returns and both types of machines must have the same rate of return in

equilibrium, high skilled workers will work with more productive capital and with a greater

amount of capital. Thus, plants that employ high skilled workers will have a higher capital-labor

ratio.

This model has three implications that are relevant for our analysis.  First, a skill-biased

technical revolution leads to an increase in the dispersion of wages across plants.7  Since more

skilled workers are using more capital and better capital relative to less skilled workers,  their

relative wages must increase, increasing the overall dispersion of wages across plants. Second, a
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skill-biased technical revolution also leads to an increase in the dispersion of productivity across

plants.  Skilled workers are using more and  better machines.  Therefore, their productivity,

measured as either output per worker or output per hour worked, will rise relative to workers

using the old machines, increasing the dispersion of productivity across plants.  Third, the

relative increases in wages and productivity should be associated with increases in capital in

general at the plants that have adopted the new technology and, in the case of the information

technological revolution, increases in computers or information technology equipment in

particular.

Kremer and Maskin (1996) also provide a theoretical structure for our empirical analysis. 

Their model can account for the simultaneous existence of increased wage inequality and

increased segregation of workers of different skill levels into different plants. These forces are set

in motion by changes in the skill distribution, which can be due to a skill-biased technical

change, but need not be. The main features of their model are imperfect substitution among

workers of different skills, complementary tasks within a plant, differences in worker skill effects

which vary by task, and an exogenous distribution of worker skills. Intuitively, there are two

competing forces at work in determining the equilibrium matching patterns at plants. The

asymmetry of tasks in the production function favors cross-matching (less segregation) but the

complementarity between tasks favors self-matching (more segregation). Unequally skilled

workers will be cross-matched up to the point in which the differences in skills is so great that

the second effect overwhelms the first and the plant moves to self-matching. With a diffuse skill

distribution, an increase in the mean skill-level exacerbates wage inequality across plants.
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The Kremer-Maskin model has three implications relevant for our analysis. First,

increases in the cross-worker dispersion of skill results in increased segregation of workers by

skill across plants.  Second, if the overall distribution of skills is sufficiently dispersed, an

increase in the mean level of worker skill will lead to an increase in the dispersion of wages

across skill levels and plants. Third, if the overall distribution of skills is sufficiently dispersed,

an increase in the mean level of skill leads to an increase in the cross-plant dispersion of

productivity.  The Kremer-Maskin model is silent about the sources of the changes in the

distribution of skills.  They argue that the change could come from an exogenous change in the

distribution of skills in the workforce and/or from skill-biased technical change that changes the

effective skill distribution.

To summarize, both the Caselli (1999) and the Kremer and Maskin (1996) models imply

that there should be a positive correlation between changes in the dispersion of wages and

productivity across plants. In contrast, if changes in institutional factors or shifts in product

demand are the source of the increased wage dispersion, we would not unambiguously expect to

see a positive correlation between changes in wage dispersion and changes in productivity

dispersion across plants. Both Caselli and Kremer-Maskin offer additional predictions about the

effects of a skill-biased technical change such as the computer revolution. The Kremer-Maskin

model suggests that these changes will also be associated with an increase in the inter-plant

segregation of workers by skill.  The Caselli (1999) model predicts that changes in the

distribution of wages and productivity across plants can be accounted for by changes in the

distribution of capital in general and computers in particular across plants.

III.  Between-Plant and Within-Plant Components of Wage Dispersion
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V � αV p
� (1�α)V n

� α(1�α)(W p
� W n)2, (1)

V j
�V j

BP � V j
WP for j�p,n. (2)

In this section, we combine data from household and establishment surveys to decompose

the variance of hourly manufacturing wages into between-plant and within-plant components. 

The decomposition methodology is from Davis and Haltiwanger (1991, 1996). The analysis in

this section extends their results over a longer time period and incorporates nonproduction

workers who work in auxiliary establishments such as central administrative offices, research

facilities, and warehouses.  The variance of hourly wages across hours worked in the

manufacturing sector can be written as:

where α denotes production workers’ share of hours worked, Vp denotes the variance of wages

across hours worked by production workers, Vn denotes the variance of wages across hours

worked by nonproduction workers, Wp is the hours-weighted mean of the production worker

wage, and Wn is the hours-weighted mean of the nonproduction worker wage.  Equation (1)

expresses the total variance of hourly wages as the hours-weighted sum of the variances of

production and nonproduction workers along with a term reflecting the contribution of

differences in the mean wages across production and nonproduction workers.  For each worker

type, the variance can be further decomposed as:

where V j
BP represents the between plant component and V j

WP the within plant component for

worker type j.



8 Section A of the data appendix provides a detailed discussion of the problems that arise
when combining information from household and establishment surveys. These measurement
difficulties suggest that the results in Section III must be interpreted with appropriate caution.  
However, these measurement difficulties should primarily impact levels rather than time series
changes.    

9 Summary statistics for the CPS and LRD wage data are presented in Table A1 of the
data appendix. 
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To estimate the components of the decompositions in (1) and (2) for the manufacturing

sector we proceed as follows.  We utilize household data from the 1975 through 1993 March

Current Population Survey (CPS) and establishment data from the Longitudinal Research

Database (LRD).8  From the individual-level wage observations in the CPS files, we calculate α,

V, Vp, Vn, Wp, Wn for all workers employed in manufacturing in each of the years under

consideration (1975-1992).    We also generate the production and nonproduction variances at the

two-digit SIC industry level.  From the plant-level observations in the LRD, we calculate the

between-plant component for each worker type for each of the corresponding years at the two-

digit level.   For each worker type, we generate the within-plant component in equation (2) by

taking the difference between the total variance calculated from the CPS and the between-plant

variance calculated from the LRD at the two-digit level.9  Appropriately aggregating the between

and within plant components across industries yields the decomposition at the total

manufacturing level.  As part of this aggregation, we decompose the overall between-plant

component for each worker type into a between-plant, within-industry component and a between-

industry component. 

The results from the formal decomposition of total variance into between- and within-

plant components based upon equations (1) and (2) are reported in Table 1 and Figure 1.  Table 1



10 Specifically the decomposition of the within plant component is:
VWP = α V p

WP  + (1-α) V n
WP + 3e se  αe (1-αe) (We

P - We
N)2 . Where the e subscript denotes an

establishment and se is the establishment’s share in total hours.
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includes just selected years while Figure 1 depicts the patterns of the components for all years

from 1975-92.  While the formal decomposition is in terms of levels of hourly wages we are

concerned about the possible effects of changes in scale.  Therefore, the components in Figure 1

are depicted in terms of coefficients of variation.  

There are several striking patterns in Table 1 and Figure 1.  Focusing first on Figure 1 we

see that the increased dispersion in overall hourly wages across workers in manufacturing over

the 1975-92 period (measured by the coefficient of variation) is associated primarily with an

increase in the dispersion of hourly wages between plants.  Between-plant dispersion for both

production and nonproduction workers increases over this time period (the dotted line).  In

contrast, the within-plant components do not exhibit a positive trend over this period (the dashed

line).  Within-plant dispersion for production workers exhibits no trend while within-plant

dispersion for nonproduction workers exhibits a negative trend.  In Table 1 we see that for total

workers the story is still one of dominant and rising between-plant wage dispersion. However,

the within-plant wage dispersion across all workers is also rising which differs from the patterns

of within-plant dispersion of the two worker types. This divergence in the within-plant patterns is

possible because total worker within-plant wage dispersion consists of an additional component, 

the within-plant wage gap between worker types.10  This within-plant wage gap can be thought of

as the within-plant component of the cross-wage term (Wp - Wn) shown in equation (1). Over the

period of analysis, the within-plant wage gap has been rising. Moreover, the within-plant wage

gap’s share of total within-plant variance has grown from 25% in 1977 to 49% in 1992.  Thus,



11  The finding that most of the increase in between plant increase in wage dispersion is a
within industry phenomenon is reinforced in results reported in Section V that consider four-digit
industry effects.  The results in this section only consider two-digit industry since this is the level
of aggregation at which the LRD and CPS statistics can be readily matched.  However, for the
purposes of investigating the role of between vs. within industry contributions of the between
plant changes in dispersion, there is no need to restrict analysis to the two-digit level.  In Section
V, we report results that show that the fraction of overall dispersion accounted for by four-digit
industry effects falls between 1977 and 1992.
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interestingly, within-plant dispersion by worker type has been steady or even declining but there

has been some offsetting increase in the gap between production and nonproduction wages

within plants.

The bulk of overall wage dispersion is accounted for by between-plant dispersion and the

contribution of this has been growing over time.  Combining the contribution of between-plant

wage dispersion for production and nonproduction workers in the lower panel of Table 1 shows

that 53% of the overall variance in 1977 is directly accounted for by between-plant differences in

wages.  In 1992, the contribution of between-plant differences to overall dispersion is 64%. 

Table 1 provides a further decomposition of the between-plant components into between-plants,

within-industries and between industries.  For this purpose, industries are defined at the two-digit

level.  The results indicate that most of the between-plant contribution arises from differences in

wages between plants within the same industry.11  The result that much of the increase is due to

an increase in the between-plant dispersion within industries indicates that explanations that rely

on shifts between industries (e.g., simple product demand shifts across industries) cannot account

for the rising dispersion.  

There is greater dispersion among nonproduction workers than among production

workers.  This fact combined with an increased nonproduction worker labor share over this time



12 Within this general trend of an increase over the years, there is apparently some cyclical
variation in the degree of segregation by skill.
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period has yielded an increasing share of overall dispersion being accounted for by differences in

wages among nonproduction workers.  Another contributing factor to overall increases in

dispersion is a widening gap between production and nonproduction worker wages.  The gap

between production and nonproduction worker wages accounts for 8% of overall dispersion in 

1977 and 11% of overall dispersion in 1992.  

To help quantify the extent of the changes in the components of the wage variation shown

in Figure 1, Table 2 shows the Kremer-Maskin segregation index for all workers, production

workers, and nonproduction workers by Census years. This index measures how correlated the

skill levels of workers are within a plant. Specifically, it is the ratio of the variance of the mean

skill level between plants to the variance of the skill level of the total population. It is equivalent

to the R2 of a regression of skill level on a series of plant dummies. When R2=0 there is no

segregation, when R2=1 there is complete segregation. In this case, skill level is measured by

wages. From Table 1 and Figure 1, it is evident that the between component has been increasing

over time while the within component has been relatively flat, and hence the segregation index

will be generally rising over time.12 The change in segregation for nonproduction workers is

especially stark. 

To sum up, we find that the between-plant components of dispersion are an important

fraction of overall wage dispersion and account for all of the increase in overall dispersion in the

1975-92 period.  These results parallel and extend similar findings in Davis and Haltiwanger

(1991, 1996) and in Kremer and Maskin (1996).   Moreover, we believe the evidence in this



13 The 90-10 differential is measured as the difference between the hourly log wage for
the worker at the 90th percentile of the hourly log wage distribution for a given year and the
hourly log wage of the worker at the 10th percentile of this distribution.  In this and subsequent
analysis using 90-10 differentials, the respective distributions are the total hours weighted
distributions across plants or workers. Details of measurement of wages and productivity from
the CPS and LRD are discussed in Section A of the data appendix.
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section makes a strong case that accounting for the sources of the increase in overall wage

dispersion necessitates accounting for the sources of the increase in between-plant wage

dispersion.  Accordingly, this gives us confidence to proceed with the remainder of the analysis

which investigates the sources of between-plant changes in wage dispersion along with

potentially related between-plant changes in productivity dispersion.  Before proceeding with that

analysis, however, we first document the plant-level link between wages and productivity. 

IV. Linking Productivity and Wages

In this section, we provide a basic description of the relationship between wages and

productivity at the sector and plant level.  Figure 2 provides some prima facie evidence that

changes in wage and productivity dispersion are closely linked.   The upper panel of Figure 2

presents measures of wage dispersion.  Using data from the March Current Population Survey

(CPS), the solid line in the upper panel depicts the hours-weighted 90-10 differential of hourly

log wages for 1975-92.13  As is now well-known, there has been a sustained increase in the

dispersion of wages among workers over this period of time.  Somewhat less well-known is that

the increase in dispersion among all workers is mimicked by an increase in dispersion among

workers employed in manufacturing industries.  Again, using the CPS, the dashed line in the

upper panel shows that the pattern for workers in manufacturing closely tracks that for all

workers.  The similar time series pattern suggests that similar factors underlie the changes for all
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workers and the changes for manufacturing workers.   Put differently, although our plant-level

analysis is confined to manufacturing, it likely has wider applicability.  

The lower-panel of Figure 2 depicts the hours-weighted 90-10 between-plant differential

of log output per hour across U.S. manufacturing plants.  Interestingly, it also exhibits a sustained

increase over this period of time.  Comparing the upper and lower panels suggests that it may be

possible to identify common factors underlying the secular increases in wage and productivity

dispersion. However, there are some notable differences in the timing of the secular changes. 

While wage dispersion increases steadily after 1979, productivity dispersion only increases

steadily after the early 1980s recession. 

Certainly, the aggregate data series suggest that there may be a close link between

changes in wage dispersion and changes in productivity dispersion in the manufacturing sector. 

However, for the analysis we are undertaking, it is also important to establish that there is a link

between productivity and wages at the plant level.  We begin first by documenting the

relationship between productivity and wages at the plant level.  The simple cross-sectional

correlation between plant wages and plant labor productivity averages .55 indicating that plants

that have higher wages also tend to have higher levels of labor productivity.  This correlation is

almost constant over time varying between .52 and .57 for all years between 1975 and 1992 and

is statistically significant at the .0001 level in all years.  Next, we examine the relationship

between plant-level changes in wages and plant-level changes in productivity.  We construct the

correlation between plant-level changes in productivity and plant-level changes in log average

hourly wages for 12,904 plants that appear in our data in the four Census years: 1977, 1982, 1987



14 Census years are the only years for which we can measure changes for all of the
surviving plants in our data.
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and 1992.14  The correlations are .35 for the 1977-1982 period, .36 for the 1982-1987 period, and

.39 for the 1987-1992 period and all statistically significant at the .005 level. 

We interpret the simple correlations as demonstrating that there exists a positive cross-

plant relationship in the level of wages and productivity and a positive cross-plant relationship in

the changes in wages and productivity. We interpret the aggregate time series evidence in Figure

2 as compelling evidence that both cross-plant changes in wage and productivity dispersion are

moving in a consistent manner over the long run.  

To sum up the findings thus far, we have found that much of the increase in overall wage

dispersion is due to an increase in the between-plant dispersion of wages across workers. This

evidence in itself is interesting as it indicates that the rising wage dispersion is associated with

greater segregation by worker skill (as measured by wages).  In addition, the findings in this

section make clear that the rising wage dispersion is accompanied by rising productivity

dispersion.  These findings alone are consistent with the hypothesis that there are some

underlying changes in the technology and/or worker mix across plants driving the changes in

wage dispersion.  Explanations that rely on shifts between industries (e.g., simple product

demand shifts across industries) cannot account for these patterns since we find in Table 2 that

most of the increase in wage dispersion is associated with rising wage dispersion within

industries.  While this evidence is suggestive, we have not yet identified observable changes in

technology across plants that can account for the dominant role of these between-plant changes. 

In the subsequent sections, we investigate the role of observable factors such as changes in
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capital intensity and the role of computers across plants as potential indicators of the changes in

technology across plants.   

V. Analysis of the Sources of Changes in Dispersion of Wages and Productivity

The objective in this section is to investigate the role of observable changes in technology

in accounting for the observed changes in wage and productivity dispersion.  Our emphasis in

this analysis is on the change in capital intensity and computer usage across plants.  This

emphasis is very much driven by the insights of the Caselli (1999) paper discussed in section II

that predicts a close correspondence between changes in capital intensity and the use of advanced

technology and changes in wage and productivity distributions across plants.  After specifying

our methodology, we first attempt to understand the role of observable factors on the overall

changes in the wage and productivity distributions.  Following this analysis, we exploit the

substantial differences in the within industry changes of wage and productivity dispersion across

industries to consider another angle on the role of observable changes in technology.

A.  Specification for Full Distribution Accounting Decomposition Exercises

In this section of the paper, we examine in greater detail the sources of the change in

between-plant dispersion for wages, productivity, and workforce structure.  Our approach will

follow Juhn, Murphy, and Pierce (1993) (hereafter JMP), and, in particular, Davis and

Haltiwanger (1991, 1996) who utilize the JMP full distribution accounting methodology in a

similar setting.  Davis and Haltiwanger examine changes in between plant wage dispersion

focusing on the role of size in accounting for these changes.  In this paper we also control for size

but focus on the relative importance of computer investment and capital intensity in accounting

for changes in the dispersion of wages and productivity.  While the influence of computer use



15  The estimated parameters do not have a direct structural interpretation – rather they are
measures of the covariance structure in the data between measures of outcomes and plant
characteristics.  The theories we outline have predictions about the changes in this covariance
structure which we attempt to test.  Thus, for example, the estimated coefficient on capital
intensity in the labor productivity equation should not be interpreted as a structural estimate of
output elasticity from a specification of an intensive production function.  The reason for this is
that the coefficient may reflect unobserved technology effects that are correlated with capital
intensity.  In our setting, it is explicitly hypothesized that such unobserved technology effects
may be correlated with observables like capital and computer intensity.  Moreover, the theories
we are investigating suggest the nature of these unobserved technology effects may have changed
over time (e.g., skill biased technical change that is embodied in observable indicators of
technology like capital intensity and computer intensity) so that the covariance between measures
of outcomes like productivity and these measures may have changed over time. 
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yit�Xitβt�µit (3)

and computer investment has been the examined in the context of explaining changes in the

mean of the distribution of wages (e.g., Krueger (1993), and Autor, Katz, and Krueger (1998)),

and average productivity (Berndt and Morrison (1992), Oliner and Sichel (1994), and Siegel

(1997)), little analysis has been undertaken investigating the role of computers in accounting for

changes in dispersion of these variables.  

The analysis starts with specification of a basic regression model of the following form:

where our plant-level variable of interest, yit, is wages, productivity, or workforce structure for

plant i in period t, Xit  is a matrix of observable plant characteristics, βt  is a parameter vector, and

µit is the residual of the regression.15  The residual term (µit) takes the form  µit =  F-
t
1 (ωit | Xit )

where ωit gives the plant's position in the distribution of residuals in year t and F-
t
1 (@ | Xit )

represents the inverse cumulative distribution function of the residuals in year t, which may vary

with the observable plant characteristics.  Given this form one can imagine independently

varying the position (or percentile) occupied by each plant (ωit) and the distribution function (F-
t
1(@



16  A more detailed explanation of the JMP methodology can be found in Juhn, Murphy
and Pierce (1993), Davis and Haltiwanger (1991, 1996) and Goldin and Margo (1992).
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yit � Xitβ � F�1(ωit|Xit) � Xit(βt�β) � (F �1
t (ωi|Xit)�F�1(ωit|Xit)) (4)

| Xit )).  We can then decompose the change in the dispersion of the dependent variable (yit) into

three components based on the regression model -- changes in the distribution of observable

plant characteristics (changes in the X’s), changes in the differentials associated with the effect of

the observables on the dependent variable (changes in the β’s), and changes in the distribution of

the unobservables (changes in the µ's).  This decomposition is what we call the JMP

decomposition and is given as:

where β& is the average effect of the observables on the dependent variable over the whole period

and F&-1(@ | Xit ) is the average inverse cumulative distribution function.  The first two terms in

equation (4) capture the impact of changes in the distribution of observable characteristics for

given effects of these observables.  The third term captures changes in the differentials associated

with the observable characteristics.  The final term (in parentheses) captures the contributions of

changes in the distribution of regression residuals that are unexplained by changes in the β’s and

changes in the distributions of the X’s.   

To intuitively understand this decomposition, consider decomposing the change in the

distribution of labor productivity between 1977 and 1992 into its three components.16  First one 

computes the actual distribution of plant-level labor productivity for 1977 and then from this

distribution computes a sample statistic such as the difference in labor productivity of plants at

the 90th and 10th percentiles of the distribution.  One next computes the same distribution but
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allowing the X's to change to their 1992 value and then computes the 90-10 differential in labor

productivity from this hypothetical distribution.  The difference in the 90-10 differential from the

actual distribution and the 90-10 differential from this hypothetical distribution is the change in

the overall labor productivity distribution attributable to the change in the distribution of

observable characteristics (the X’s).  Next one computes the distribution of productivity allowing

both the X's and the β's to change to their 1992 value and computes the 90-10 differential from

this new hypothetical distribution.  The difference between the 90-10 differential from this new

distribution and the 90-10 differential from the actual distribution is the change in the overall

distribution attributable to the change in the distributions of both the X's and the β's.  To obtain

the marginal contribution of just the β's one compares this change with the change in the overall

distribution attributable to the change in the distribution of the X's.  The marginal contribution of

changes in the distribution of the residuals is then just the total change in the 90-10 differential of

the actual distribution minus the change due to changes in both the X's and the β's.  

To actually perform this decomposition using equation (4) the change in the overall

distribution attributable to changes in the distribution of the X's is found by comparing the

change in the 90-10 differential generated by the first two terms of equation (4) with the actual

change in the 90-10 differential of the dependent variable.  Computing the marginal contribution

of the β's involves comparing the change in the distribution of the dependent variable implied by

the first three terms of the equation with the change in the distribution implied by the first two

terms.  The marginal contribution of changes in the distribution of the residuals that are not



17  We should note that it is possible to get different results depending on the order of the
decomposition as well as which year serves as the base year.  We deliberately chose to put
observable quantities first to give them the greatest opportunity to account for the changes in
dispersion.

18  The careful reader will note that a number of alternative characterizations of dispersion
are considered in the paper.  In Section II, the variance decomposition is conducted in natural
units (as required formally) and components of the decomposition in Figure 1 are depicted in
terms of coefficients of variation.  In Figure 2, as well as in this section, we focus on the 90-10
differentials of log wages per hour at the plant-level and log productivity at the plant-level. 
Comparing across dispersion measures (e.g., standard deviation of log wages, coefficient of
variation in natural units, 90-10 differential in log wages), we find similar qualitative and
quantitative patterns in the behavior of between-plant wage and productivity dispersion.  For the
analysis in this section, we focus on the 90-10 differential in log wages and productivity since we
believe this approach provides the most robust characterization of the relationship between
changes in plant-level observables and changes in wage and productivity dispersion.

19As in the previous section, we estimate the number of hours for nonproduction workers
based on the CPS average annual hours worked per nonproduction worker for each two-digit
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accounted for by changes in the β's and the X's is found in an analogous fashion.17  In what

follows, we focus our attention on decomposing changes in dispersion as measured by changes in

the 90-10 percentile range.18

B. Basic Characteristics of the Plant-Level Data.

The data used to examine between-plant changes in the dispersion of productivity, wages,

and workforce composition come from the same source as the plant-level wage data employed in

the prior section.  This analysis focuses on explaining the changes in dispersion in five plant-

level variables: the log of output-per-hour, the log of average plant hourly wages, the log of

average plant production worker hourly wages, the log of average plant nonproduction worker

hourly wages, and the nonproduction labor share of employment.  Our productivity variable, the

log of output-per-hour, is defined as the total value of shipments from the plant, measured in

constant 1987 dollars, divided by total plant hours.19   The output data are deflated by the four-



industry and apply these two-digit aggregate average hours worked for a nonproduction worker to
the plant-level nonproduction worker variable.

20Both Dunne, Haltiwanger and Troske (1997) and Berman, Bound and Griliches (1994)
discuss at considerable length the pro’s and con’s of using nonproduction labor share as a
measure of skill.  It is well documented that nonproduction workers are generally more educated
than production workers as a group.  However, it is also the case that the nonproduction worker
group includes both workers that would be considered more skilled than the typical production
workers (engineers, managers, programmers) but also includes a set of workers that may be less
skilled (janitors, guards).  Thus, one should be somewhat cautious in interpreting the
nonproduction labor share as an index of workforce skill. 
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digit industry price deflators found in the Bartelsman and Gray (1996) productivity data set.  The

wage variables are measured in the same fashion as in the preceding section.  The last variable,

the nonproduction labor share, is our attempt to capture changes in the composition of the

workforce in manufacturing establishments.  Papers such as Autor, Katz and Krueger (1998),

Berman, Bound and Griliches (1994), Caselli (1999),  Dunne, Haltiwanger, and Troske (1997),

and Kremer and Maskin (1996) have interpreted this variable as representing a measure of

workforce skill.20

The observable plant characteristics contained in the X matrix include four-digit SIC

industry controls, nine census region dummies, a set of nine size class variables, a multi-unit

dummy variable, a measure of capital intensity, and computer investment as a fraction of total

investment.  While the specification is relatively parsimonious, it allows us to examine two

variables of interest -- computer investment per worker and capital intensity.  In what follows, we

permit the coefficients on each of the plant measures (i.e., size dummies, multi-unit dummy,

capital intensity and computer investment per worker) to vary by two-digit industry. 

The computer investment variable at the plant-level is computer investment as a fraction

of total investment.    While we would prefer to have a measure of the stock of the computing



21  See Troske (1996) for a discussion of the computer investment question on the Annual
Survey of Manufactures (ASM).  On average 60% of plants in the ASM respond to this question
in each year.

22In a prior version of this paper, we constructed a relative measure for each plant-year
observation computed as the ratio of computer investment per worker at the plant-level to the
mean of this variable across all plants in the year.  A downside of this alternative procedure is
that since average computer investment per worker was increasing over time, dividing through by
this in each year implies mechanically a reduction in dispersion in this relative measure. 
Conceptually, this relative measure is very different as well since what matters is the relative
differences across plants in a given year rather than any changes in the overall distribution of
computer usage.  Details of the results using this alternative measure can be found in Dunne et.
al. (2000).  Using this alternative measure, we still found that computer usage mattered but that
the impact was primarily in terms of the wage and productivity differentials associated with this
relative measure.  Broadly speaking, these latter results are quite consistent with those reported
here.  
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equipment at each point in time, this information is unavailable.  Therefore, we use computer

investment in the plant as a proxy for computer usage in the plant (see Berman, Bound and

Griliches (1994) for a justification).  Note that Berman, Bound and Griliches (1994) as well as

Autor, Katz and Krueger (1998) use this variable in an analogous manner (although they use this

measure aggregated to the industry level). The use of the computer investment variable restricts

our analysis to census years (the only years the computer investment question is asked) and

reduces the sample size because of the low response rate to this question.21 One problem with

using the computer investment information is that because of dramatic changes in computer

quality it is difficult to turn nominal dollars of computer investment into real dollars of

investment.   Our measure at least partially circumvents this problem by taking the ratio of the

current year computer investment to the current year total investment in equipment.22

We measure capital intensity at the plant level as the real value of capital divided by total

worker hours.  Following Baily, Hulten and Campbell (1992) we construct the real value of



23 Panel A of Figure A.5 below presents the time-series pattern of the 90-10 differential in
the nonproduction labor share over the period 1977 through 1992. The graph shows that the
dispersion in the nonproduction labor share variable increases over the time period and the
increase is concentrated between 1977 to 1982. 
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capital by multiplying the book value of capital at the plant by the ratio of the real value of

capital to the book value of capital in the two-digit industry.

Table 3 presents some basic descriptive statistics for each of the variables for the years

1977, 1982, 1987, and 1992.  The statistics are hours weighted means and standard deviations. 

Panel A represents all plants used in the analysis in Section III. Panel B represents a restricted

sample that includes all plants that report detailed investment data.  The restricted sample forms

the basis of the regression and decomposition analyses in this section.  The basic statistics show

that for the wage, productivity, and nonproduction labor share variables between plant dispersion

has increased over the 15 year period for both samples.  These patterns for productivity and

wages were noted earlier in the paper.  The same is true for the nonproduction labor share

variable though the increase in the standard deviation is relatively small.23   

The bottom two rows of Panel B report the summary statistics for the capital-labor ratio

and the computer investment variables.  The mean of the capital-labor ratio has risen markedly

over the period while the dispersion in the capital-labor ratio has remained nearly constant over

the period.  It is important to note that the standard deviation of the capital-labor ratio is quite

large implying that even a small change in the wage or productivity differential associated with

capital intensity can have a very large impact on the distribution of wages or productivity.  With

respect to the computer investment, both the mean and standard deviation have increased over

time.  The sharp rise in the mean of computer investment as a fraction of total investment



24 Because of small sample sizes, we have combined plants in the Food industry (20) and
the Tobacco industry (21) into one industry, giving us 19 two-digit industries.
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represents two forces at work.  First, the percentage of plants that report positive investment

expenditures on computing equipment rises sharply over the period.  In 1977, 10.2% of plants

report positive computing expenditures while 61.9% report positive computing expenditures in

1992.  Second, the mean computer investment as a fraction of total investment  for plants with

positive spending on computer investment increased over the period. 

C.  Summary Statistics on Basic Regression Results    

Before proceeding to the JMP full distribution accounting exercises, we present summary

information on the basic regression results.  Table 4 presents selected summary parameter

estimates from the regressions involving each of the five dependent variables under

consideration: labor productivity, hourly wages, production worker wages, nonproduction worker

wages, and nonproduction labor share.  To implement the JMP exercises, the specifications are

estimated for each year and are also estimated pooling the data across years (to obtain the fixed β

component).   Recall that the regression models allow for the coefficients on the computer

investment and capital intensity variables to vary across two-digit industry.  Thus, for each

dependent variable, we have 19 computer investment coefficients and 19 capital intensity

coefficients in each year (as well as the coefficients from the pooled specification).24  

Table 4 reports the mean and the range of the coefficients for the computer and capital

variables for the base specification.  For each of the dependent variables under consideration, the

computer investment per worker coefficients change substantially over time.  For example, in

1977, the average computer investment coefficient in the productivity regressions is 



25Note that this changing correlation between computers and productivity may be part of
the reason that there has been considerably disagreement over the relationship between computer
use and productivity in the recent literature.  Studies such as Morrison and Berndt (1991) and
Oliner and Sichel (1994) found little correlation between productivity and investment in
computers while Lichtenberg (1993) and Siegel (1997) report a positive correlation. 
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-.0581.  However, by 1992, the average coefficient increases substantially to -.0048.25  This

upward trend in the computer investment coefficients is exhibited for all five dependent

variables.    In addition, to the computer variable we also present summary information for the

capital intensity coefficients.  The average capital intensity coefficient has also tended to increase

over time, although the patterns are not as systematic or monotonic across dependent variables. 

For example, the average capital intensity coefficient in the productivity regression increases

from 0.2277 in 1977 to 0.2647 in 1987 but then falls to 0.2399 in 1992.  Of course, considerable

caution must be used in translating these changes in average industry coefficients into the implied

changes in wage and productivity dispersion since ultimately we need to consider the interaction

between the changes in the coefficients for every industry with the changes in the dispersion in

capital and computer intensities in each industry.  Indeed, it is via the JMP exercises that we

consider this interaction since the JMP methodology itself provides the appropriate weighting

and aggregation of the changes in characteristics and the changes in differentials associated with

these characteristics.  Moreover, as can be seen from the table, the range of the computer and

capital intensity variables fluctuates over time.  

D.  Full Distribution Accounting Exercises 

Utilizing the information from the regressions, we examine changes in the dispersion of

the between-plant wages, labor productivity, and workforce structure using the JMP analysis

discussed above.  In the results reported in the paper, we do not condition the residual



26 While our discussion in this section of the paper focuses on changes in dispersion over
the entire 15 year period (1977 to 1992), Section B of the appendix presents the JMP analysis of
changes in dispersion for the three subperiods 1977-1982, 1982-1987, and 1987-1992 as well. 
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distribution on any observable variables.  We consider the implications of our analysis for both

the overall time series changes in dispersion and for the cross-industry patterns of changes in

wage and productivity dispersion.

Table 6 reports summary measures of the decompositions in terms of the long run

changes in dispersion from 1977-92.26  To start with focus on changes in the distribution of labor

productivity (column 1).  In the full model, changes in the distribution of observables for fixed

β’s yield a slight decrease in labor productivity dispersion from 1977-92, while changes in the β’s

account for almost 60% of the 1977-92 change (.093/.161 in Panel A).  The remaining fraction is

accounted for by changes in the distribution of the unobservables.  

The results for labor productivity based upon the marginal contribution of computer

investment per worker only, capital intensity only or size only are reported in panels B, C, and D

respectively.  These results are generated as follows.  We set all other variables at their sample

means and use the pooled coefficients for all variables and then consider the marginal

contribution of each of the variables in question to the changes in dispersion.  Panel B shows that

for computer investment there is a much larger positive marginal contribution of the observable

characteristics compared to considered all of the variables in the full model and much less of a

contribution of changes in the β’s.  How can this happen?  It is important to remember that some

variables can act to increase dispersion while others can act to decrease dispersion.  Apparently,

there are some of the “observable” variables in the full model that act to decrease dispersion.  In

what follows, we will explore which variables act in this manner.
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For the computers and capital only specifications, the contribution of the unobservables is

quite small and much smaller than for the full model.  How can the unobservables in the more

restricted models account for a smaller fraction of the time series changes?  It is important to

remember that the exercise here is to decompose changes in dispersion, not levels of dispersion. 

Table 5 makes clear that the full model accounts for a much larger fraction of the level of

dispersion in any given year.  For changes in dispersion, it is useful to emphasize that changes in

the distribution of some variables may act to increase dispersion, while changes in the

distribution of other variables may act to decrease dispersion.  Similarly, changes in the

differentials associated with some observables may increase dispersion, while others may

decrease dispersion.  In the case of productivity dispersion, there are clearly changes in the

contribution of observable factors other than capital intensity and computer investment per

worker that are acting to decrease the dispersion in between plant productivity.

The next three columns in Table 6 (2, 3, and 4), deal with changes in the dispersion of our

three wage variables — the log of average hourly wage, the log of the average production worker

hourly wage, and the log of the average nonproduction worker hourly wage.  For the full model,

the hourly wage results show that changes in the distribution of the observables for fixed β’s play

little role in increasing wage dispersion, while the contribution due to changes in the differentials

associated with the characteristics (the β’s) is substantial.  For the full model and the model with

computers only, the contribution of changes in the β’s to the 1977-92 change is around 50%

while for the capital only model the contribution is greater than 80%.  Like the results for

productivity dispersion, these results indicate that a large fraction of the increase in wage
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dispersion is associated with increases in the wage differentials across high and low computer

investment per worker plants and especially across high and low capital intensity plants.

The results for production workers’ wages are quite similar to the results for average

hourly wage.  For the full model, we find that the changes in the distribution of observable

characteristics for fixed β’s actually decrease overall dispersion.  In contrast, changes in the

differentials associated with the characteristics account for a substantial fraction of the increase

in dispersion.  For the computers and capital only models, it is again changes in the β’s that are

the most important.  In the case of the nonproduction workers, similar results are observed,

although unobservables account for a larger fraction of the overall change in dispersion.  

Turning to the nonproduction labor share results (Column 5)  we find that changes in the

distribution of characteristics for fixed β’s play a more important role.  Moreover, in this case,

the full model yields a smaller contribution of unobservables to the overall time series change

relative to the computer and capital only models.  Still, we find that a large fraction of the

increase in the dispersion in the nonproduction labor share is associated with increases in the

difference in the nonproduction share between high and low computer investment per worker

plants and high and low capital intensity plants. 

The net result of the JMP analysis is that changes in the wage and productivity

differentials across high and low computer investment per worker plants and high and low capital

intensity per worker plants account for a large fraction of the changes in wage and productivity

dispersion from 1977 to 1992.  These results indicate that understanding the changes in wage and

productivity dispersion lies in understanding increases in the wage and productivity differentials



27  Note that in unreported results we have examined the separate contributions of the
observable characteristics and the differentials associated with these characteristics for the four-
digit exercises.  Like the aggregate exercises reported in Table 6, we find that the more important
contributing factor is changes in the differentials associated with the observable characteristics.
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between high and low capital intensity plants and high and low computer investment per worker

plants.  

E. Analysis of the 4-digit Industry Changes in Productivity and Wage Dispersion

The previous section focused on examining changes in aggregate dispersion, we now turn

our attention to considering the decompositions by detailed industry.   Figures 4-6 provide results

on the decomposition of changes by four-digit industry.  Figure 4 presents results for all controls,

Figure 5 for computers only and Figure 6 for capital only.  Panel A of Figure 4 presents the

scatter plot of predicted and actual four-digit industry changes in between plant labor

productivity dispersion.  The changes in dispersion reflect changes in the 90-10 differential from

1977 and 1992 for each four-digit industry.  By predicted changes, we mean the changes

accounted for by both changes in the distribution of observable characteristics (the X’s) and

changes in the differentials associated with these observables (the β’s).  Thus, for these four-digit

industry exercises, we combine the contribution of changes in the characteristics and changes in

the differentials associated with these characteristics from the JMP exercises.27    Panel B

provides the analogous scatter plot for changes in actual and predicted between-plant wage

dispersion at the four-digit industry level.  Panel C shows the relationship between the predicted

changes for productivity and wage dispersion from observables.  Panel D shows the relationship

between the changes accounted for by the unobservables for productivity and wage dispersion. 
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Also, reported in each scatter plot is the simple correlation as well as the bivariate regression line

implied by the changes depicted in the scatter plot.

Panel A indicates that observable characteristics and β’s yield changes in between plant

productivity dispersion at the four-digit level that are strongly correlated with the actual four-

digit industry level changes.  We have also calculated the fraction of the change in dispersion

accounted for by observables for each industry and the weighted average of this fraction is 0.22

(using the absolute value of the actual change for the industry as the weight).  Panel B shows

similar patterns for the relationship between actual and predicted wage changes.  For wage

changes, the weighted average fraction accounted for by observables is equal to 0.16.  Panel C

indicates that the components of the four-digit industry changes in wage and productivity

dispersion accounted for by observables are highly correlated.  Panel D indicates that the

components of the four-digit industry changes in wage and productivity dispersion accounted for

by unobservables are also positively correlated but the correlation is substantially smaller. 

Comparing Panels C and D to Panel A of Figure 4, the pattern that emerges is that the correlation

between wage and productivity dispersion changes due to the components accounted for by the

observables exceeds the correlation in actual changes which in turn exceeds the correlation due

to the components accounted for by unobservables.

Figures 5 and 6 present the analogous exercises for the computers only and capital only

specifications.  For the computers only model (Figure 5), the predicted four-digit industry

changes are virtually uncorrelated with the actual four-digit industry changes in dispersion for

both wage and productivity dispersion.  Apparently, computer investment per worker differences

across plants are not particularly helpful in accounting for cross industry variation in the changes
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in productivity or wage dispersion.  In spite of this finding, Panel C of Figure 5 shows that the

components of industry level changes in wage and productivity dispersion accounted for by

computer investment per worker effects are highly correlated.

The most interesting results for these four-digit industry exercises are found for the

capital only specification (Figure 6).  Like the full model, predicted changes at the four-digit

level are strongly correlated with actual changes in wage and productivity dispersion.   Moreover,

the weighted average fraction of the four-digit industry level change accounted for by capital

intensity differences across plants is 0.20 for productivity dispersion changes and 0.20 for wage

dispersion changes.  Panel C shows a very high correlation between the predicted changes in

wage dispersion and productivity dispersion from capital intensity differences across plants. 

Apparently, capital intensity differences across plants yield a very strong relationship in changes

in both wage and productivity dispersion by industry. 

We summarize the four-digit industry exercises as follows.  An important basic fact

presented in Figure 3 is that industries with large changes in wage dispersion also tend to have

large changes in productivity dispersion.  The findings in this section indicate that the component

of changes in wage dispersion accounted for by observables for a given industry is highly

correlated with the component of changes in productivity dispersion accounted for by

observables in that industry.  This latter finding is especially strong for the results that focus on

the contribution of differences in capital intensities across plants. 

VI. Summary and Interpretation of Findings

This paper has documented and analyzed changes in the dispersion in wages and

productivity for the manufacturing sector.  Our main findings are that (1) the between-plant
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component of wage dispersion is an important and growing part of total wage dispersion, (2)

much of the between-plant increase in dispersion is within industries, (3) the between-plant

measures of wage and productivity dispersion have increased substantially over the last few

decades, (4) industries with large changes in between-plant wage dispersion also exhibit large

changes in between-plant productivity dispersion, (5) a substantial fraction of the rising

dispersion in wages and productivity is accounted for by increasing wage and productivity

differentials across high and low computer investment per worker plants and high and low capital

intensity plants, and (6) changes in dispersion accounted for by such observable characteristics

yield predicted industry level changes in wage and productivity dispersion that are highly

correlated. 

The results are consistent with the predictions of the models of Kremer and Maskin

(1996) regarding skill segregation across plants and the related model of Caselli (1999) regarding

the role of differential technology adoption across plants in an environment with skill segregation

and skill-biased technical change.  These models predict rising between-plant wage and

productivity dispersion which is consistent with our findings.  Moreover, the Kremer and Maskin

model predicts an increase in segregation by worker skill across plants which is also consistent

with our findings.  In addition, the Caselli model predicts that the rising wage and productivity

dispersion across plants will be associated with differences in technology adoption across plants

in response to a skill biased technological revolution.  Our findings are consistent with this latter

prediction in the sense that we find that a substantial fraction of the rising wage and productivity

dispersion is accounted for by rising wage and productivity differentials across plants with

different capital and computer intensities.  



28  Caselli (1999) presents some empirical evidence of increased dispersion in capital
intensities across four-digit industries.  He finds that industries with increased capital intensity
also exhibit an increase in wages.  While these findings are clearly suggestive that there have
been changes in the distribution of observables in a manner consistent with his model, the results
reflect changes between four-digit industries.  Since we find that the increase in between plant
dispersion of wages (and productivity) is mostly a within industry phenomenon, these changes in
the capital intensities across industries cannot account for much of the increased dispersion in
wages.
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There are some important caveats to this interpretation of the results.  First, unobservable

factors still account for a large fraction of the increases in wage and productivity dispersion. 

Second, changes in observable quantities account for only a small fraction of the changes in

wage and productivity dispersion.  That is, it was not the case that we can account for much of

the increase in wage and productivity dispersion by simply examining the differences in the

magnitude of computer investment and/or differences in the changes in capital intensity across

plants, for given differentials associated with those factors.  Instead, it is the changes in the

differentials associated with these factors that are important in this context.  This aspect of the

findings is seemingly inconsistent with the predictions of the Caselli model since the latter

predicts that, as part of the equilibrating process of returns to capital, we would observe changes

in the capital intensity distribution (or computer distribution) across plants in a parallel fashion

with the rising wage and productivity dispersion.28    

One possible reason that we did not find much evidence that changes in quantities matter

is that we cannot adequately measure quality change in the capital equipment or computers.    

For example, while we use a computer investment measure that reflects relative differences

within each year across plants to attempt to abstract from computer price deflator problems,  it

may be that the change in the quality of computers is such that a difference across plants in the
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amount of computer investment in 1992 implies something very different than the equivalent

difference across plants in 1977.  Such quality effects imply that we might observe increases in

the differentials between high and low computer investment per worker plants but not much

contribution of the changes in the measured relative differences in the quantities of computers.  

While the results are consistent with the theoretical predictions of the Kremer-Maskin and

Caselli models, there are some caveats about ruling out other competing hypotheses. The finding

that much of the increases in wage and productivity dispersion is within narrowly defined

industries is evidence against explanations that involve between industry effects (such as shifts in

product demand say due to changing trade patterns).  However, it is possible that there are

product demand shifts across plants in the same narrowly defined industry that could account for

some aspects of our results.  Consider, for example, a shift between products in the same four-

digit industry where plants in the same industry differ systematically in their product and skill

mix.  A shift towards products produced by high skilled workers and away from products

produced by low skilled workers could yield rising wage dispersion across plants in the same

industry and rising measured productivity dispersion.  The latter could arise as the four-digit

price deflators would not capture the relative price change within the industry implying

systematic productivity mismeasurement across plants in the same industry.  Even under this

scenario one would have to account for the rising wage and productivity differentials across high

and low capital intensive and high and low computer investment per worker plants.  There might

be a systematic relationship between product mix, skill mix, and technology used at the plant, but

such a systematic relationship would begin to make this scenario closely linked to a broadly

defined notion of skill biased technical change.  
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One could likewise argue that some change in institutions would yield a pattern of within

industry, between-plant increases in wage and productivity dispersion.  Consider the possible

impact of deunionization.  Deunionization arguably may have yielded less wage compression and

a relaxation of work rule constraints that could yield changes in wage and productivity dispersion

across plants.   However, again here, one would need to account for the fact that this rising wage

and productivity dispersion is associated with rising wage and productivity differentials across

high and low capital intensity plants and high and low computer investment per worker plants.     

To conclude, we have documented that the rising overall wage dispersion in the U.S.

economy is associated with rising wage and productivity dispersion across plants in the same

narrowly defined industries and a substantial fraction of this rising wage and productivity

dispersion is accounted for by rising wage and productivity differentials across high and low

capital intensity plants and high and low computer investment per worker plants.  Such findings

are consistent with models of increased segregation by skill across plants and rising wage and

productivity dispersion from skill-biased technical change that involves differential adoption of

new technologies across plants.  It may be that there are other models/hypotheses consistent with

these findings but they will have to account for both the dominant role of between-plant effects

and the important role of differences in capital intensity and computer intensity across plants.  
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29  For auxiliary establishments which, by definition, contain no production workers, we
use the average number of hours worked by production workers in a given two-digit industry in
the CPS to impute hours worked in these establishments.  

30  This adjustment imposes no restrictions on the ratios of the variances of wages of
production and nonproduction workers.

31 The between-within decompositions use the augmented LRD (columns 7-8), the JMP
decompositions use the raw LRD (columns 3-4).
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Data Appendix

A. Combining Household and Establishment Survey Data -- Measurements Issues 

Several measurement error issues arise in combining information from household and
establishment surveys.  Since Davis and Haltiwanger (1991) provide an extensive discussion of
these issues in this context, we review only the most salient issues here.  First, unlike Davis and
Haltiwanger (1991), we incorporate auxiliary establishments into our analysis using data from
the Standard Statistical Establishment List (SSEL) which includes the universe of all
establishments in each year.  Therefore, our establishment-level data contain wage information
for all manufacturing workers.    

Second, like Davis and Haltiwanger (1991, 1996), we must confront the difficulties
associated with the fact that we have hours data only for production workers.  We impute hours-
per-worker for nonproduction workers in our augmented LRD as follows.  Using the CPS, we
calculate the ratio of hours-per-worker for production and nonproduction workers at the two-digit
level.   Using this ratio, and the measured hours-per-worker for production workers at the plant-
level in the LRD, we impute the hours-per-worker for nonproduction workers in a plant by
requiring the ratios be the same in the CPS and the LRD.29  Since this is at best a crude
procedure, we further adjust the LRD means and variances of hourly wages for nonproduction
workers so that the ratio of the LRD to CPS mean of hourly wages for nonproduction workers
equals the corresponding ratio for production workers.30  We carry out this latter adjustment at
the two-digit industry level (i.e., we do not require this ratio to hold at the plant-level).

While this methodology for combining household and establishment level data may be
imprecise in a given year (especially for nonproduction workers), the time series changes in the
respective contributions should be robust as long as the measurement error problems are stable
over time.  As will become clear, there is considerable evidence in favor of this argument. 

Table A1 presents summary statistics for hourly wages for all workers, nonproduction
workers, and production workers for selected years.  The first two columns are based upon the
CPS, the second two columns are from the LRD, the next two columns are from the LRD
supplemented with auxiliary establishments, and the last two columns are from the LRD
augmented to incorporate the comparability adjustment described above (and also including the
auxiliary establishments).31  All statistics are in 1987 dollars and are on an hours-weighted basis
so that CPS and LRD tabulations  are in principle directly comparable. 



32  Note that Davis and Haltiwanger (1991,1996) also found higher average hourly
earnings in the LRD and that this was driven primarily from nonproduction workers.  One
important factor is likely the crude imputation procedure for hours for nonproduction workers
which motivates the further adjustment of nonproduction hourly wages in the LRD.  Note that we
have also discovered some differences between the results reported here and those in Davis and
Haltiwanger (1991, 1996).  Davis and Haltiwanger (1996) also augmented the LRD with
auxiliary establishments for an analysis of wage dispersion in 1982.  Their tabulations of 1982
wages from the CPS and the LRD for 1982 yield a substantially smaller gap between CPS and
LRD hourly wages.   The sources of these differences likely reflect some other differences
between the data files used in the respective analyses.  Davis and Haltiwanger use public use
CPS files with top coded wages and adjust for top coding in the manner developed by Katz and
Murphy (1992).   In contrast, we are using internal CPS files without top coded wages. 
Interestingly, we find somewhat lower average wages using the internal CPS files than the public
use files adjusted for top coding.   Another source of difference is the auxiliary establishment
CAO files.  Davis and Haltiwanger use auxiliary establishment files processed during the
economic censuses while we use auxiliary establishment files directly from the SSEL.  The files
from the economic censuses have been more thoroughly edited which may be important.  In
practice, we find higher average wages in our auxiliary establishment files from the SSELs than
the auxiliary establishment files from the economic censuses.  We created our auxiliary
establishment files from the SSELs as opposed to the economic censuses since the latter are
available only every five years.  We decided not to mix census-based auxiliary establishment
files and SSEL-based auxiliary establishment files in non-census years to avoid changes in
measurement methodology over time.  
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It is apparent from Table A1 that the LRD yields higher average hourly wages for all
workers in each year and that this is primarily driven by substantially higher average hourly
wages for nonproduction workers (for example, the LRD with auxiliary establishments included
has average nonproduction wages that are more than 10% higher than those in the CPS).32 
However, the time series patterns in the mean wages across the different data sets are quite
similar.  The five year growth rates are similar across the CPS and the LRD for all manufacturing
workers, nonproduction workers, and particularly for production workers.  In addition, the time
series patterns for average hourly wages for the different versions of the LRD exhibit similar
patterns.  The close correspondence in the time series patterns across the CPS and LRD provides
further support for the argument that one can compare the CPS and the LRD to learn about the
sources of time series changes in the patterns of wages. 

While the means should in principle match up across the CPS and the LRD,  the standard
deviations of hourly wages may exhibit quite different patterns.  The CPS standard deviation will
reflect both within-plant and between-plant differences in wages across workers while the LRD
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standard deviation will only reflect between-plant differences in wages across workers.   
Accordingly, the CPS standard deviation exceeds the LRD standard deviation in each year for all
workers and for each worker type.  Interestingly, however, the time series increase in the CPS
standard deviation of hourly wages over the 1977-92 period is mimicked by similar time series
increases in the LRD standard deviation.  Further, the fourth column in Table A.1 indicates that
the increase in between-plant wage dispersion for all manufacturing plants is associated with an
increase in between-plant wage dispersion for operating manufacturing establishments. 

B. JMP Time Series Analysis 

The decomposition of overall time series changes in dispersion are presented in the form
of a sequence of four panel graphs: Figures A1 through A5.  In each of these figures, Panel A
presents the overall 90-10 dispersion for the four years 1977, 1982, 1987, and 1992.  Panel B
presents the contribution of changes in the distribution of observable characteristics.  Panel C
presents the contribution due to changes in the differentials associated with the observable
characteristics (the β’s), and Panel D presents the contribution due to changes in the distribution
of unobservable factors.  In panel B, C, and D, the solid line is for the model that contains all
variables, the mixed (short-long) dashed line is for a model that contains only computer
investment per worker in the regression, and the short dashed line is for a model that contains
only the capital-labor ratio.  The components in these three panels are measured as deviations
from their mean.

Although there is a secular increase in labor productivity dispersion from 1977-92, there
is a pronounced decline in labor productivity dispersion from 1977-82 followed by a sharp
increase in dispersion from 1982 through 1992.  Neither changes in the distribution of capital
intensity or computers is associated with this cyclical variation in labor productivity dispersion. 
This implication is evident from the cyclical nature of the contribution of the unobservables
when only computers or capital intensity is included in the model.  However, changes in the
distribution of characteristics and changes in the distribution of β’s for some other plant
observables do help account for this cyclical variation.  Apparently, there are plant observable
characteristics other than computer investment or capital intensity for which the labor
productivity dispersion associated with these characteristics is diminished during business cycle
slumps.  

Unlike labor productivity, there is relatively little cyclical variation in the between-plant
dispersion of wages or nonproduction labor share.  Observable plant characteristics for fixed β’s
yield some modest procyclicality in wage dispersion but this is offset by the effects of these
characteristics and by the unobservables.

A final point regarding the aggregate JMP exercises concerns the timing of the changes in
dispersion.  Figures (A1-A5) depict the time-series changes in dispersion that are derived from
the JMP analysis.  In the case of productivity, productivity dispersion actually falls in the 1977 to
1982 period and then rises rapidly, whereas wage dispersion and nonproduction labor share
dispersion rise throughout the period.  In fact, for both production worker wages and the
nonproduction labor share (Figure A3 and A5), dispersion is increasing most rapidly in the same
period where productivity dispersion is falling.  The differences in timing raise some basic
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questions about the role of common factors accounting for the changes in the dispersion of wages
and productivity.  There may be several factors at work: e.g., differences in the cyclicality of
wages and productivity that impact dispersion or differences in the timing of the response of
wages and productivity to common factors.  These differences in timing are an area for further
work.
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Table 1: Between-Plant and Within-Plant Components of Hourly Wage Variance.

1977
(1)

1982
(2)

1987
(3)

1992
(4)

A. Measures of Dispersion

Total Wage Variance 43.18 42.83 58.01 61.13

Coefficient of Variation:

  Total .58 .56 .64 .68

     Within plant .43 .36 .45 .45

        Within plant, PW .22 .19 .25 .21

        Within plant, NPW .47 .32 .42 .38

     Between plant .40 .43 .45 .51

        Between plant, PW .41 .44 .45 .47

        Between plant, NPW .44 .48 .49 .56

B. Shares of Dispersion

 α VP .34 .34 .27 .21

  α VW
P .08 .05 .07 .04

  α VB
P .26 .29 .20 .17

    α VBPI
P .18 .20 .15 .13

    α VBI
P .08 .08 .05 .04

(1-α)VN .58 .58 .63 .68

  (1-α) VW
N .31 .18 .27 .21

  (1-α) VB
N .27 .40 .36 .47

   (1- α) VBPI
N .25 .37 .32 .42

   (1- α) VBI
N .03 .03 .04 .05

α(1-α) (WP-WN)2 .08 .08 .10 .11

α .68 .61 .60 .57
Notes:
(1) Measures of Dispersion: PW refers to production workers, NPW refers to nonproduction workers.
(2) Shares of Dispersion: The variance decomposition is based on equation (2) in the text. Superscript denotes worker-type (P=
production workers, N= nonproduction workers), subscript denotes component-type (W=within plants, B=between plants,
BPI=between plants, within industries,  BI=between industries). 
(3) All figures are in 1987 dollars and are computed on an hours-weighted basis. As described in the text, the tabulations are
based on data from the LRD and CPS.
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Table 2:  Kremer-Maskin Segregation Index 

All Workers
(1)

Production Workers
(2)

Nonproduction Workers
(3)

1977 0.48 0.77 0.47

1982 0.59 0.84 0.69

1987 0.50 0.76 0.57

1992 0.56 0.83 0.69
Note: The Kremer-Maskin (1996) Segregation Index is Vi

b/Vi
T, where i indexes worker type: all workers, production workers or

nonproduction workers, b indicates the variance is between plant, while T indicates the total variance.  The index is constructed
using augmented LRD data.    
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Table 3:  Descriptive Statistics of LRD Data Set

         1977                 1982                     1987                   1992          

Mean
(1)

Std.
Deviation

(2)
Mean

(3)

Std. 
Deviation

(4)
Mean

(5)

Std. 
Deviation

(6)
Mean

(7)

Std.
Deviation

(8)

A. All Plants in the Data

Log Output Per Hour 3.73 0.77 3.78 0.74 3.94 0.75 4.02 0.79

Nonproduction Labor
Share

0.26 0.18 0.31 0.20 0.31 0.21 0.31 0.21

Log Hourly Wage 2.41 0.36 2.43 0.38 2.43 0.38 2.37 0.41

Log Production
Worker Hourly Wage

2.32 0.38 2.33 0.41 2.33 0.41 2.24 0.42

Log Nonproduction
Worker Hourly Wage

2.66 0.42 2.65 0.44 2.65 0.44 2.64 0.48

B. Restricted Sample

Log Output Per Hour 3.82 0.75 3.86 0.71 4.04 0.73 4.12 0.77

Nonproduction Labor
Share

0.27 0.19 0.32 0.20 0.31 0.21 0.31 0.22

Log Hourly Wage 2.46 0.34 2.48 0.36 2.49 0.38 2.42 0.39

Log Production
Worker Hourly Wage

2.36 0.37 2.38 0.39 2.36 0.40 2.29 0.41

Log Nonproduction
Worker Hourly Wage

2.69 0.40 2.68 0.41 2.74 0.41 2.67 0.44

Log Capital-labor Ratio 3.27 1.05 3.45 1.03 3.45 1.05 3.56 1.08

Computer Investment
to Total Investment
Ratio

0.04 0.12 0.07 0.16 0.11 0.19 0.14 0.22
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The restricted sample includes only plants that report detailed investment data.
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Table 4: Summary Measures of the Distribution of Regression Coefficients By Two-Digit Industry on Computer
and Capital Intensity for Main Specification

Variable 1977
(1)

1982
(2)

1987
(3)

1992
(4)

Pooled
(5)

A. Productivity

 Computers Mean -.0581 .0213 -.0171 -.0048 -.0421

 Computers Range -.355, .423 -.170, .340 -.243, .453 -.184, .333 -.162, .330

 Capital-Labor Mean .2277 .2349 .2647 .2399 .2418

 Capital-Labor Range .065, .548 .077, .444 .138, .473 .119, .471 .116, .429

B. Hourly Wage

 Computers Mean .0417 .0687 .0730 .1047 .0754

 Computers Range -.134, .224 -.094, .311 -.089, .230 .033, .219 -.031, .201

 Capital-Labor Mean .0867 .1053 .1083 .1026 .1027

 Capital-Labor Range .033, .151 .039, .148 .059, .158 .036, .175 .059, .146

C. Production Worker
Wage

 Computers Mean .0057 -.0151 -.0173 .0309 .0010

 Computers Range -.351, .221 -.198, .147 -.219, .101 -.208, .226 -.194, .159

 Capital-Labor Mean .0860 .1051 .1092 .1017 .1025

 Capital-Labor Range .017, .150 .049, .163 .062, .157 .059, .162 .064, .147

D. Non-Production
Worker Wage

 Computers Mean .0321 .0902 .0863 .1109 .0878

 Computers Range -.216, .340 -.151, .460 -.113, .299 .017, .269 -.047, .211

 Capital-Labor Mean .0548 .0673 .0623 .0635 .0630

 Capital-Labor Range .002, .124 -.022, .145 -.027, .128 .007, .173 .004, .133

E. Non-Production Share

 Computers Mean .0860 .0933 .1150 .1064 .1034

 Computers Range -.036, .251 .012, .183 .019, .283 .027, .245 .020, .233

 Capital-Labor Mean .0046 .0109 .0112 .0146 .0109

 Capital-Labor Range -.064, .040 -.032, .047 -.036, .055 -.021, .076 -.029, .046
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Notes: Regressions include four-digit industry & region intercepts  and, in addition to the computer and capital intensity
variables, the models also includes size and multiunit status interacted with two-digit industry.
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Table 5:  JMP Full Distributional Accounting Components for Changes in 90-10 Differentials 

Labor
Productivity

(1)
Hourly Wage

(2)
Production Wages

(3)
Nonprod Wages

(4)

Nonprod. 
Labor Share

(5)

Total 1977-
1992 Change

.161 .118 .093 .128 .111

A. Full Model Decomposition

Observables -.005  .012  .002  .000 .039

Beta’s .093 .047 .045 .030 .044

Unobservables .073 .059 .047 .098 .028

B. Capital Only     

Observables .086 .045 .035 .033 .020

Beta’s -.063 -.004 .055 -.058 -.029

Unobservables .139 .076 .004 .153 .120

C. Computers Only     

Observables .033 .033 .020 .025 .041

Beta’s -.010 .012 .013 .014 .003

Unobservables .137 .073 .060 .090 .068

D. Size Only

Observables .010 .004 -.004 -.005 .007

Beta’s .110 .039 .003 .201 .028

Unobservables .040 .075 .094 -.068 .076



50

Table 6:  JMP Full Distributional Accounting Components for Changes in 90-10 Differentials 
Without Industry and Region as Controls

Labor
Productivity

(1)
Hourly Wage

(2)
Production Wages

(3)
Nonprod Wages

(4)

Nonprod. 
Labor Share

(5)

Total 1977-
1992 Change

.161 .118 .093 .128 .111

A. Full Model Decomposition

Observables .091 .010 .005 .004 .047

Beta’s .018 .050 .052 .005 .049

Unobservables .053 .058 .036 .119 .015

B. Capital Only     

Observables .008 .025 .027 .036 .034

Beta’s .167 .064 .122 .010 -.094

Unobservables -.014 .029 -.055 .082 .172

C. Computers Only     

Observables .054 .049 .024 .033 .083

Beta’s -.003 .022 .019 .012 -.003

Unobservables .110 .046 .051 .083 .032

D. Size Only

Observables -.060 .020 -.005 .028 .003

Beta’s .099 .167 .244 .159 -.008

Unobservables .122 -.069 -.145 -.059 .116
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Table A1: Mean and Standard Deviation of Worker Wages (1987 Dollars)

Year         CPS                LRD        LRD with CAOs Augmented LRD

Mean
(1)

Std.
Deviation

(2)
Mean

(3)

Std.
Deviation

(4)
Mean

(5)

Std.
Deviation

(6)
Mean

(7)

Std.
Deviation

(8)

A. All Workers

1977 11.24 6.57 11.76 4.11 12.14 4.61 11.96 4.49

1982 11.62 6.54 12.07 4.45 12.59 5.21 12.30 5.01

1987 11.88 7.62 12.45 4.69 12.95 5.55 12.67 5.38

1992 11.49 7.82 11.87 4.81 12.55 5.96 12.31 5.86

B. Nonproduction Workers

1977 13.97 8.93 15.04 5.98 15.58 6.35 14.96 6.10

1982 13.96 8.00 14.95 6.28 15.78 6.97 14.95 6.65

1987 14.78 9.55 16.01 6.63 16.69 7.53 15.97 7.23

1992 14.47 9.82 15.25 7.16 16.35 8.30 15.80 8.17

C. Production Workers

1977 9.98 4.62 10.68 4.06 10.68 4.06 10.68 4.06

1982 10.13 4.88 10.83 4.48 10.83 4.48 10.83 4.48

1987 9.92 5.11 10.67 4.45 10.67 4.45 10.67 4.45

1992 9.23 4.76 9.91 4.33 9.91 4.33 9.91 4.33
Notes: For “Augmented LRD,” the LRD wages for nonproduction workers have been adjusted so that the ratio of hourly wages for production and nonproduction workers in the
LRD is the same as that in the CPS at the two-digit industry level.  



Figure 1: Coefficient of Variation Within-Plant, Between-Plant



Figure 2: Dispersion in Log Worker Wages and Productivity


