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Using the Kalman Filter to Smooth the Shocks of a
Dynamic Stochastic General Equilibrium Model

1. Introduction

This paper shows how to use the Kalman Filter (Kalman, 1960) to back out the shocks of

a dynamic stochastic general equilibrium model. The idea is as follows: First, we write the

model in what is called the State-Space Representation. Second, we use the Kalman Filter to

write the likelihood function of the observed data and estimated the structural parameters

of the model.1 Third, using the estimate parameters, we estimated the values of the model

perturbations during the sample period conditional on all the observed data.2 This procedure

is very useful because it allows us to use a general equilibrium model to make inference about

which shocks the economy was facing during any period in the sample based on the full set

of collected data. In the first part of the paper we describe how to implement the Kalman

filter to estimate structural parameters and smooth the shocks to an abstract linear system.

In the second part, we use a sticky price model to show how to use the procedure in practice.

2. The State-Space Representation

The first step is to write the model in State-Space form. Let ηt be a (nx1) vector the observed

variables at date t and let ξt be a (rx1) vector of unobserved variables at date t (this vector

1By structural parameters, we mean those that define technology, preferences and the stochastic processes.
2This procedure is called “smoothing” of the shocks.
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is also called the state vector). The State-Space Representation of the system is3

ξt+1 = Fξt + vt+1 (1)

ηt = H
0ξt + wt (2)

where F and H 0 are matrices of the needed dimensions. Equation (1) is called State Equation,

and (2) is the Observed Equation. vt and wt are uncorrelated normally distributed white noise

vectors, therefore:

E (vtv
0
τ ) =


Q for τ = t

0 otherwise

E (wtw
0
τ ) =


R for τ = t

0 otherwise

and

E (wtv
0
τ ) = 0 for all t, τ

3. Using the Kalman Filter to Write the Likelihood Function of the

Model

Once the model has be written in State-Space form, the second step is to estimate the

structural parameters that define the model. In order to do that, we will need to write the

likelihood function of the observed data, ηT = {η1, η2, ..., ηt}. We will use the Kalman Filter

to write the likelihood function `
¡
ηT |F,H 0, Q,R

¢
=
QT
t=1 `

¡
ηt|ηt−1F,H 0, Q,R

¢
.

3To see examples of State-Space representations of linear models, see Hamilton (1994) Chapter 13.
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First, we need to introduce some notation. Let

ξt+1|t = E
¡
ξt+1|ηt

¢
,

be the linear projection of ξt+1 on ηt and a constant, and let

ηt+1|t = E
¡
ηt+1|ηt

¢
= H 0ξt+1|t

be the linear projection of ηt+1 on ηt and a constant. Also let

Pt+1|t = E
¡
ξt+1 − ξt+1|t

¢ ¡
ξt+1 − ξt+1|t

¢0
,

be the mean squared forecasting error when projecting ξt+1, and let

Σt+1|t = E
¡
ηt+1 − ηt+1|t

¢ ¡
ηt+1 − ηt+1|t

¢0
=

= E
¡
H 0ξt+1 + wt+1 −H 0ξt+1|t

¢ ¡
H 0ξt+1 + wt+1 −H 0ξt+1|t

¢0
=

H 0Pt+1|tH +R

be the mean squared forecasting error when projecting ηt+1. Finally notice that

E
¡
ηt+1 − ηt+1|t

¢ ¡
ξt+1 − ξt+1|t

¢0
=

= E
¡
H 0ξt+1 + wt+1 −H 0ξt+1|t

¢ ¡
ξt+1 − ξt+1|t

¢0
=

H 0Pt+1|t
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Since vt and wt are normally distributed and the system is linear ηt|t−1 and ξt|t−1 will be

normally distributed and can write

 ξt

ηt

 |ηt−1 ∼ N

 ξt|t−1

H 0ξt|t−1

 ,
 Pt|t−1 Pt|t−1H

H 0Pt|t−1 H 0Pt|t−1H +R




which implies that4

ξt|ηt ∼ N(ξt|t, Pt|t)

where the expectation of ξt conditional on ηt is:

ξt|t = ξt|t−1 +H
0Pt|t−1

£
H 0Pt|t−1H +R

¤−1 ¡
ηt − ηt|t−1

¢
,

and its MSE is:

Pt|t = Pt|t−1 − Pt|t−1H
£
H 0Pt|t−1H +R

¤−1
H 0Pt|t−1.

3.1. The algorithm

Therefore, given ξt|t−1, Pt|t−1 and observation ηt, the Kalman filter algorithm is:

ηt|t−1 = H
0ξt|t−1,

4This result is due to the following feature of the normal distribution. If X and Y conditional on w are
jointly normal

[X0|w Y 0|w]0 ∼ N
µ·

x
y

¸
,

·
Σxx Σxy
Σyx Σyy

¸¶
then X 0|y,w is also normally distributed with the following distribution:

X|y,w ∼ N ¡x+ΣxyΣ−1yy (y − y) ,Σxx −ΣxyΣ−1yy Σyx¢
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Σt|t−1 = H 0Pt|t−1H +R,

ξt|t = ξt|t−1 +H
0Pt|t−1

£
H 0Pt|t−1H +R

¤−1 ¡
ηt − ηt|t−1

¢
,

Pt|t = Pt|t−1 − Pt|t−1H
£
H 0Pt|t−1H +R

¤−1
H 0Pt|t−1,

ξt+1|t = Fξt|t,

and

Pt+1|t = FPt|tF 0 +Q.

3.2. The Likelihood Function

Since
·
ξ0t η0t

¸0
|ηt−1 is normally distributed, ηt|ηt−1 is also normally distributed. In addi-

tion, since the considered model has only one lag, we can write ηt|ηt−1 = ηt|ηt−1. This implies

that

log `
¡
ηT |F,H 0, Q,R

¢
=

TX
t=1

log `
¡
ηt|ηt−1, F,H 0, Q,R

¢
=

−
TX
t=1

"
n

2
log 2π +

1

2
log
¯̄
Σt|t−1

¯̄
+
1

2

TX
t=1

¡
ηt − ηt|t−1

¢0
Σ−1t|t−1

¡
ηt − ηt|t−1

¢#

Once the likelihood function of ηT has been obtained, we can either maximize it or com-

bine it with some prior distribution about F,H 0, Q, and R to get the MLE or the posterior

distribution of the structural parameters.
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4. Smoothing

At this point we have used the Kalman Filter to estimate the structural parameters of a linear

model. In some settings, the vector ξt has a structural interpretation.
5 An important goal is

to estimate ξT = {ξt}Tt=1 conditional on the full set of data ηT . Therefore, the objective of

this section is to get the smoothed estimated of ξt denoted by:

ξt|T = E
¡
ξt|ηT

¢
.

Assume that, given ηt, we are told the true value of ξt+1. Then the linear projection of ξt on

ξt+1, η
t and a constant is6

E
¡
ξt|ξt+1, ηt

¢
= ξt|t +

³
E
¡
ξt − ξt|t

¢ ¡
ξt+1 − ξt+1|t

¢0´
P−1t+1|t

£
ξt+1 − ξt+1|t

¤
.

But

E
¡
ξt − ξt|t

¢ ¡
ξt+1 − ξt+1|t

¢0
= Pt|tF 0

therefore

E
¡
ξt|ξt+1, ηt

¢
= ξt|t + Jt

£
ξt+1 − ξt+1|t

¤
5In a Dynamic Stochastic General Equilibrium Model ξt can be interpreted as the structural shocks that

the economy faces at time t.
6The result is based on the formula for updating the linear projection

P (Y3|Y2, Y1) = P (Y3|Y1) +H32H−122 [Y2 − P (Y2|Y1)]

where
H32 = E (Y3 − P (Y3|Y1)) (Y2 − P (Y2|Y1))0

H22 = E (Y2 − P (Y2|Y1)) (Y2 − P (Y2|Y1))0
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where

Jt = Pt|tF 0P−1t+1|t (3)

Finally, notice that7

E
¡
ξt|ξt+1, ηt

¢
= E

¡
ξt|ξt+1, ηt+j

¢ ∀j > 0
that implies that

E
¡
ξt|ξt+1, ηt

¢
= E

¡
ξt|ξt+1, ηT

¢
= ξt|t + Jt

£
ξt+1 − ξt+1|t

¤
.

The final step is to get

E
¡
ξt|ηT

¢
= E

¡
E
¡
ξt|ξt+1, ηT

¢ |ηT¢ = ξt|t+Jt
£
E
¡
ξt+1|ηT

¢− ξt+1|t
¤
= ξt|t+Jt

£
ξt+1|T − ξt+1|t

¤
(4)

4.1. Smoothing Algorithm

The sequence of smoothed estimates
©
ξt|T
ªT
t=1
is calculated as follows: first, using the Kalman

Filter, we calculate
©
ξt|t
ªT
t=1
,
©
ξt+1|t

ªT−1
t=0
,
©
Pt|t
ªT
t=1
, and

©
Pt+1|t

ªT−1
t=0
. Note that ξT |T is the

last entry of
©
ξt|t
ªT
t=1

and that we can use (3) to calculate {Jt}Tt=1 and (4) to determine©
ξt|T
ªT
t=1
.

7This is true because we can write ηt+j as

ηt+j = H
0 ¡F j−1ξt+1 + F j−2vt+2 + ...+ vt+j¢+wt+j

for any j > 0, and
ut = ξt −E

¡
ξt|ξt+1, ηt

¢
is uncorrelated with ξt+1, vt+2, ..., vt+j , and wt+j .
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5. An Application: The Sticky Price and Sticky Wage Model

In this section we are going to describe how to use the Smoothing Algorithm just described

to estimate the perturbations that the economy faced at any historical date t.

We are not going to fully describe the model here. For a full description see Rabanal and

Rubio-Ramírez (2003).

The equations are obtained by taking a log-linear approximation around the symmetric

steady-state equilibrium with zero price and wage inflation rates. In what follows, the lower-

case variables denote log-deviations from the steady-state value.8

First, we have the Euler equation, which relates consumption, ct, with the real rate of

interest, rt, inflation, ∆pt+1, and a preference-shifter (or demand shock) gt in the following

way:

ct = Etct+1 − σ(rt −Et∆pt+1 + Etgt+1 − gt). (5)

The production function relates output gap with a productivity shock, at, and hours worked,

nt:

yt = at + (1− δ)nt. (6)

The marginal cost, mct, is related with wages, wt, prices, pt, hours worked and output:

mct = wt − pt + nt − yt. (7)

The marginal rate of substitution, mrst, between consumption and hours worked takes the

8For every variable Xt, we define the log-linear approximation as xt = logXt − log(XSS), where XSS is
the variable’s steady state-value.
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form

mrst =
1

σ
yt + γnt − gt. (8)

We use the following specification for the Taylor rule

rt = ρrrt−1 + (1− ρr)
£
γπ∆pt + γyyt

¤
+mst, (9)

where γπ and γy are the long-run responses of the monetary authority to deviations of inflation

and output from their steady-state values andmst is the monetary shock, to be defined below.

We include an interest rate smoothing parameter, ρr, following recent empirical work (as in

Clarida, Galí, and Gertler, 2000).

The pricing decision of the firm under the Calvo-type restriction delivers the following

forward-looking equation for inflation:

∆pt = βEt∆pt+1 + κp(mct + λt), (10)

where κp = (1− δ)(1− θpβ)(1− θp)/(θp(1+ δ(ε̄−1))), ε̄ = λ̄/(λ̄− 1) is the steady-state value

of ε, and λt is a mark-up shock.

The nominal wage growth equation (∆wt) is:

∆wt = βEt∆wt+1 + κw(mrst − (wt − pt)), (11)

where κw = (1− θw)(1− βθw)/ (θw (1 + φγ)).

Real wages, wt − pt, relate to last period real wage, inflation and nominal growth in the

9



following way:

wt − pt = wt−1 − pt−1 +∆wt −∆pt. (12)

The market clearing condition is:

ct = yt. (13)

We specify the shocks in the following way

at = ρaat−1 + εat , (14)

gt = ρggt−1 + εgt , (15)

mst = εmt , (16)

and

λt = ελt , (17)

where each innovation εit follows a N(0,σ
2
i ) distribution. The innovations are uncorrelated

with each other. Let εt =
¡
εat , ε

ms
t , ε

λ
t , ε

g
t

¢0
.

5.1. The State-Space Representation of the Model

To write the State-Space representation of the model, we solve it using the Uhlig (1999)

algorithm. Let

xt = (wt − pt, rt,∆pt,∆wt, yt)0

µt = (nt,mct,mrst, ct)
0

10



and

zt = (at,mst,λt, gt)
0

Then, if we write:

0 = Axt +Bxt+1 + Cµt +Dzt,

0 = Et
¡
Fxt+1 +Gxt +Hxt−1 + Jµt+1 +Kµt + Lzt+1 +Mzt

¢
,

and

zt = Nzt−1 + εt,

Uhlig (1999) shows how to get a solution of the form:

xt = Pxt−1 + Zzt,

µt = Rxt−1 + Szt,

and

zt = Nzt−1 + εt.

In our case the observable vector is ηt = (wt − pt, rt,∆pt, yt)0. Therefore, if we let ξt = (x0t, z0t)0,

the the State Space representation of the model is:

ξt =

 P ZN

N 0

 ξt−1 +

 Z
I

 εt, (18)
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and

ηt =



1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0


ξt. (19)

If we want to make the mapping from (18) and (19) to (1) and (2), we need to consider the

following relations:

F =

 P ZN

N 0



H 0 =



1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0



vt =

 Z
I



Q =

 Z
I





σ2a 0 0 0

0 σ2ms 0 0

0 0 σ2λ 0

0 0 0 σ2g



 Z
I


0

and

wt = 0
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Now we are ready to apply the kalman filter to estimate the structural parameters of the

model and smooth ξt. Notice that the 6th, 7th, 8th and 9th components of ξt are the

structural shocks that affect the model, and as a consequence, when smoothing ξt we are also

smoothing the structural perturbations.
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