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Analyzing Imputed Financial Data: A New Approach to Cluster Analysis 
 

 
1. Introduction 
 

We introduce and apply a novel statistical approach to cluster analysis for financial data 

in this paper.  We have two main goals.  First, we wish to handle cases in which a subset of 

variables is missing for some observations.  Second, we wish to find homogeneous groups within 

the data.  Put differently, we want to determine the most likely number of categories comprising 

the data, and to assign observations to those categories optimally.  Our approach is flexible in 

that it handles large and complex data structures with missing observations and with both 

quantitative and qualitative measurements.  We achieve this by mapping the data to a new 

structure that is free of distributional assumptions in choosing homogeneous groups of 

observations.  For example, when processing credit card transactions of customers, a company 

may want to explore the possibility of encouraging different or additional transactions by those 

customers.  In this case, the task is to find homogeneous transactions and to forecast the 

willingness of a new customer to use the credit card to make a different or additional transaction, 

even if the data are not continuous and even if there are missing data.  Our new method also 

provides the researcher with insight into the number of different categories needed for 

classifying the data. 

Classification methods have a long history of productive uses in business and finance.  

Perhaps the most common are discrete choice models.  Among these, the multinomial logit 

approach has been used at least as far back as Holman and Marley (in Luce and Suppes, 1965).  

McFadden (1978) introduced the Generalized Extreme Value model in his study of residential 

location, and Koppelman and Wen (1997) have recently developed newer variations.  The nested 

logit model of Ben-Akiva (1973) is designed to handle correlations among alternatives.  Yet 
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another variation of multinomial logic has been developed or used by Bierlaire, Lotan and Toint 

(1997).  More recently, Calhoun and Deng (2000) use multinomial logit models to study loan 

terminations.  

Another form of discrete choice model is cluster analysis.  Shaffer (1991) offers one 

example.  He studies federal deposit insurance funding and considers its influence on taxpayers.  

Dalhstedt, Salmi, Luoma, and Laakkonen (1994) use cluster analysis to demonstrate that 

comparing financial ratios across firms is problematic.  They argue that care is necessary even 

when the firms belong to the same official International Standard Industrial Classification 

category.  von Altrock (1995) explains how fuzzy logic, a variation of cluster analysis, can be 

useful in practical business applications.  

Methods that produce a continuous variable rather than a discrete choice can also be used 

as classification methods.  For example, credit scoring uses information to produce a continuous 

variable called the credit score.  Lending institutions overlay this continuous score with a grid, 

producing discrete categories.  Applicants with a score below a certain point might be rejected 

automatically.  Applicants above a specified higher point might be accepted automatically.  

Scores falling between these trigger points might be given further investigation.  See Mester 

(1997) for an example.  Altman (2000) follows a somewhat similar approach to update the 

popular method of zeta® analysis. 

Related to the problem of classifying data is the issue of determining the number of 

categories.  In addition, some methods that can determine the number of categories provide no 

evidence on which observations fall within each class.  For example, Baillie and Bollerslev 

(1989) use cointegration methods to study the number of common stochastic trends in a system 

of exchange rates.  In this case, it makes little economic sense to attempt to classify exchange 
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rates along some dimension.  Instead, Baillie and Bollerslev calculate the number of common 

stochastic trends to gain insight regarding the extent of market efficiency and potentially 

profitable trading opportunities. 

2. Clustering and Bayesian Data Augmentation 

Cluster analysis has been developed mainly through the invention of empirical, and lately 

Bayesian study of ad hoc methods, in isolation from more formal statistical procedures.  It has 

been found that basing cluster analysis on a probability model can be useful both for 

understanding when existing methods are likely to be successful and for suggesting new 

methods.  For examples, see Hartigan (1975), Kaufman and Rousseeuw (1990), and Bensmail 

and Bozdogan (2002). 

We assume that the population of interest consists of K different subpopulations 

G1,…GK  and that the density of a p-dimensional observation x from the kth subpopulation is 

fk(y,θk) for some unknown vector of parameters θk (k = 1… K).  Given observations y = (y1 … 

yk), we let ν = (ν 1 … νk)t denote the unknown identifying labels, where νi = k if yi is from the kth 

subpopulation.  Clustering data using a mixture distribution framework has been successful and 

many authors have proposed different approaches.  A good source of references is Hosmer 

(1973).  In most cases, the data to be classified are viewed as coming from a mixture of 

probability distributions (McLachlan and Basford, 1988), each representing a different cluster.  

Therefore, the likelihood function is: 

p(θ1…θK; π1 … πK | x) = ∏
=

n

i 1

K

k 1=
Σ πkfk(yi | θK),     (1) 

where πk is the probability that an observation belongs to the kth component (πk ≥ 0; ΣK
i=1 = 1). 

Clustering data with missing values has always been difficult.  In some cases, sample 
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means were used to replace the missing values and any of several clustering methods would be 

applied to the complete data.  Recently, the EM algorithm (Dempster, Laird, and Rubin, 1977) 

has been used to overcome the limitations of the average and maximum likelihood estimators.  

Within the Bayesian framework, similar to the usual EM algorithm, a data-augmentation (DA) 

algorithm (Tanner and Wong; 1987) has been proposed. 

Defining y as an observation from the sample, we denote an observed value as yobs  and 

a missing observation as ymiss.  We want to estimate the parameter θ given in Equation (1) 

based on y = (ymiss,yobs).  We assume that the data (observed and missing) comprise K clusters; 

these clusters G1, . . , GK  are unknown.  Each observation yi  belonging to a cluster Gk  is a 

random variable drawn from a normal distribution Np(µk,Σk), where µk and Σk are the mean and 

covariance matrix of the cluster Gk such that 

(yi| µk,Σk) ~ Np(µk,Σk)       (2) 
 
The distribution function of a sample (y1, . . . ,ynk) representing a subpopulation Gk is: 

)()(y
2
1(- exp ||  ),|y, . . . ,(y

k
k

k

n

1i

1
i

2/n-
kkkn1 ∑ ∑

=

−
−−Σ∝Σ
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t

k yp µµµ  

= )
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1exp(|| 12/ −− Σ−Σ kk
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=Σ= ∈ υ  iki
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In the Bayesian clustering approach, one needs to estimate the posterior distribution of 

the parameter θ involved given its prior distribution.  When ymiss denotes a subvector of y 

containing the missing components, the posterior distribution of the parameter θ given the 

observed data yobs is 

missobsmissobsmissobs dyyyfyyfyf )|(),|()|( ∫= θθ      (4) 

 
Equation (4) is a mixture of the posterior distribution of θ given the data (observed and 



  5

missing) where the mixing proportion is given by the marginal conditional distribution of ymiss.  

This is typically very difficult to use; often it cannot even be expressed in a closed form. 

The data augmentation (DA) algorithm is very useful for circumventing these difficulties.  

Data Augmentation refers to methods for constructing iterative algorithms via the introduction of 

unobserved data or latent variables.  For deterministic algorithms, the method was popularized in 

the general statistical community by the seminal paper of Dempster, Laird, and Rubin (1977) on 

the EM algorithm for maximizing a likelihood function, or more generally, a posterior density.  

For stochastic algorithms, the method was popularized in the statistical literature by the Tanner 

and Wong (1987) Data Augmentation algorithm for posterior sampling.  The Swendsen and 

Wang (1987) algorithm has been used in the physics literature.  Data augmentation schemes 

were used by Tanner and Wong to make simulation feasible and simple, while Swendsen and 

Wang (1987) adopted auxiliary variables to improve the speed of iterative simulation.  In 

general, however, constructing data augmentation schemes that result in both simple and fast 

algorithms is a matter of art, in that successful strategies vary greatly with the observed-data 

models being considered (Tierney, 1994). 

We now describe the DA algorithm for imputing the missing data.  The algorithm iterates 

as follows: 

To go from iteration (t) to iteration (t+1) we do the following: 

1. I-step: imputation: generate 
 

),|(~1 t
obsmiss

t
miss yyfy θ+       (5) 

 
2. P-step: posterior estimation: generate 

 
),|(~1 t

missobs
t yyf θθ +       (6) 

 
2.1 Imputation 
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To evaluate Equation (5) we use the following Lemma from Anderson (1984): 

If y is a random variable having a multivariate normal distribution, then the 
conditional distribution of any subvector of y given the remaining elements is 
once again multivariate normal.  If we partition y into subvectors y = (y1,y2 ), then 
p (y1|y2) is (multivariate) normal such that 

 
)),((~| 21

1
212122

1
212121 ΣΣΣ−Σ−ΣΣ+ −− µµ yNyy     (7) 

 
where 
 
y1 ~ N(µ1,Σ1) and y2 ~ N(µ2,Σ2)     (8) 
 

and 
 

Σ12 = Σ21 = cov(y1, y2)       (9) 
 
Case 1: One missing value and many observed values 

Suppose that an observation y = (y1, y2, . . . , yp) has one missing value.  Consider z1 = y1 

the missing value and z2 = (y2, . . . . , yp) the remaining observed values.  Then the only 

information needed is part of the vector mean µ = (µ1, µ2,. . . , µp) and the covariance matrix Σ.  

Given the mean µ and given the covariance matrix 





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the only input we need is the first row of the covariance matrix excluding the first variance term; 

i.e. the vector ),...,,( 11312)1(1 pk σσσσ =−  and the covariance matrix minus the first row and the 

first column.  We denote this matrix as )1,1(−Σ : 


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We can then use these blocks to estimate the missing value z1 = y1 by generating the data 

from a normal distribution: 

z1 | z2  ~ N 







Σ−

−−Σ+

−−−

−−
t
kk

ppk yy

)1(1)1,1()1(111

22)1,1()1(11 )',...,(
σσσ

µµσµ
 

 
Case 2: The General Case 

For the general case, we have multivariate data y = (y1, y2,  . . . . , yp) where two yj and yh 

or more are missing.  Using the same scheme as before, the only information needed is part of 

the vector mean µ and the covariance matrix Σ.  Using Anderson’s Lemma (1984), (yj, yh)|(y2 . . . 

, yp, µ, Σ) is normally distributed with mean vector µ~ and covariance matrix Σ~ .  See Bensmail 

and Bozdogan (2003b) for details.  

2.2 Posterior Estimation 

To estimate the parameters µ and Σ we need to specify priors on those parameters.  Here 

we use conjugate priors for the parameters π which is a Dirichlet distribution Dirichlet(α1 …. 

αK).  Because the log-likelihood is a quadratic form in µk, the conjugate prior distribution of µk is 

given by: 

),/,(~| kkkpkk N τξµ ΣΣ         (10) 

and a conjugate prior of Σk is given by: 
),(~ 1

kkpk mW ΨΣ −          (11) 
 
The posterior distribution of µk and Σk given the missing and observed data are then given by: 

),,|( kobsmissk yy Σµ ∝ )]/(),/()[( kkkkkkkkp nnynN ττξ +Σ++    (12) 
and 

))')((,((~),,|( 1
kkkk

kk

kk
kkkkpobsmissk yy

n
nWmnWyy ξξ

τ
τψυ −−
+

++Σ −   (13) 

2.3 Algorithm 
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We estimate the parameters by simulating from the joint posterior distribution of ymiss, 

π, θ, and υ using the Gibbs sampler (Smith and Roberts 1993, Bensmail et. al. 1997, Bensmail 

and Bozdogan 2003b).  In our case this consists of the following steps: 

1. Simulate the classification variables υι  according to their posterior 
probabilities tik,k = 1, . . . ,K) conditional on π, ymiss and θ, namely 

 

ni
yf

yft K

h hhh

KKk
ik ...,1;

),|(
),|(

1

=
Σ

Σ
=

∑ =
µπ

µπ           (14) 

 
2. Simulate the missing values ymiss given yobs from 

 
ymiss ~ f(ymiss|yobs, µκ, Σκ).      (15) 

 
3. Simulate the vector π of mixing proportions according to its posterior 
distribution conditional on the υ .  This consists of simulating π from its 
conditional posterior distribution, namely  
 
π ~ Dirichlet { } { }),...1( 1 KII iki =Σ+=Σ+ υαυα . 

 
4. Simulate the parameters µk and Σk  according to their posterior distribution: 

))')((,(~,| 11
kkkk

kk

kk
kkkk

t
missobs

t
k yy

n
n

WmnWyy ξξ
τ

τ
ψ −−

+
++Σ −+       (16) 

))/(),/()((~,| 11
kkkkkkkk

t
missobs

t nnynNyy ττξµ +Σ++Σ ++   
 

where ky and wk are the sample mean and variance matrix of the data, and w-1 
denotes the inverse Wishart distribution.  

3. Bayesian Model Selection for Choosing the Number of Clusters 

Determining the number of clusters is usually the most important component of any 

cluster analysis.  Many authors have investigated different criteria for model selection and 

choosing the number of clusters.  Proposed methods include the Akaike Information Criteria 

(AIC) (Akaike 1973), the Information Complexity Criteria (ICOMP) (Bozdogan 1987), the 

Normalized Entropy of assessment (NEC) (Celeux and Soromenho 1996), and the Bayesian 

Information criterion (BSC) introduced by Schwarz (1978).  The new work of Bensmail and 
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Bozdogan (2003 a,b) develops ICOMP in choosing the number of components in both 

multivariate kernel mixture-models and Bayesian kernel mixture-model cluster analysis of mixed 

and imputed data. 

We use Schwarz’s criterion.  Although regularity conditions for this may not hold for 

mixture models, there is considerable theoretical and practical support for its use (Roeder and 

Wasserman, 1997; Dasgupta and Raftery, 1998). 

BSC is defined as the maximum of: 

BSC(Mk) = -2logL( )log()(),~
kkk nkmM +θ      (17) 

 
where L(θ~ ,Mk) is the likelihood of the posterior mode θ~  for the model Mk (here, the number of 

components or categories k), m(k) is the number of parameters to estimate and nk is the size of 

the subpopulation Gk.  Maximizing the BSC determines the optimal dimension of the model. 

4. Example: Simulated data 

We simulate a sample of 60 observations from a bivariate normal distribution with mean 

µ1 = (0,2) and variance matrix 







−

−
=Σ

11
12

 and 60 observations from a bivariate normal 

distribution with mean µ2 = (0,0) and variance matrix 







=Σ

10
01

.  To illustrate the capability of 

our method to handle missing observations, we next set four values to missing: y(10,1), y(15,2), 

y(101,1), and y(120,2).  We find in general that the Data Augmentation algorithm converges fast and 

is stable.  Table 1 shows that the BSC criterion identifies two groups, which is the correct 

number for our simulated data. 

Table 1 
 
BSC for values of k = 1 … 4 
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k SBC 
1 1811.10
2 1637.03
3 1752.29
4 1748.40

 
Table 2 gives the Confusion matrix.  Our method correctly classifies 58 of the 60 

observations from the first distribution and 56 of 60 from the second distribution.  The overall 

accuracy rate is 95%. 

Table 2 
 
Confusion matrix 
 

k  1 2  Total 
1  58  2 60 
2  4 56 60 
Total  62 (cluster 1) 58 (cluster 2) n=120 

 
The plot of the mean vector µ1 (variate wide) based on 5000 simulations is shown in 

Figure 1.  Its estimated value is =1µ̂  [-0.3971, 2.0560], compared to the true values of =1µ  [0, 

2].  The convergence plot for the variance covariance matrix (variate wide) is shown in Figure 2 

and the Bayesian estimate is 







−

−
=Σ

3.11.1
1.11.2ˆ

1 , compared to the true values of 







−

−
=Σ

11
12

1 . 
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Figure 1 
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Figure 2 

The mean vector for the second population is given by =2µ̂  [0.001, 0.02] and the 

Bayesian estimate of the covariance matrix 







−

−
=Σ

2.10.0
0.00.1ˆ

2 , compared to the true values of 

=2µ  [0, 0] and 







=Σ

10
01

2 .  Both the mean vector and the variance matrix are very close to 

their true values.  The estimated values of the missing observations (with the corresponding 

actual values in parentheses) are y(10,1) = 2.4569 (2.08), y(15,2) = 1.7973 (2.013), y(101,1) = 0.137 

(1.008) and y(120,2) = -0.659 (-0.25).  These are reasonable compared to the neighboring observed 

data within the column (variable), and also when compared to the average values of the variable 

(column) containing the missing values. 

5. Analysis of Financial Data 



  13

We apply this new approach to a sample of companies that offer direct investment plans 

and a corresponding, size-matched set of companies without such plans.  Dividend 

Reinvestment Plans and a more general class of investments, Direct Investment Plans, allow 

investors to avoid investment channels typically used in the past, such as securities brokers.  A 

Dividend Reinvestment Plan is a mechanism that permits shareholders to reinvest their dividends 

in additional shares automatically.  No broker is involved, unless he is the agent of the plan 

administrator.  If the firm does not restrict its plan to current shareholders, then the plan is also 

what is called a Direct Investment Plan, sometimes known as a Super DRIP.  Transactions costs 

are typically much lower than when using traditional brokerage accounts. 

DRIPS are not a different class of security, such as swaps or options.  They are simply a 

new way of selling the traditional equity security.  The privileges and obligations of equity 

ownership are unchanged.  For example, DRIP investors receive the usual mailings and retain all 

voting rights.  Tax implications are unaffected, and stock splits are handled exactly as if the 

investor were using a traditional brokerage account.  Readers seeking more detailed information 

about such plans should see DeGennaro (2003). 

Data are from the firms listed in The Guide to Dividend Reinvestment Plans (1999) and 

the Compustat database.  These data comprise 15 financial variables and are a subset of those 

used in DeGennaro (2003).  Because DRIP firms tend to be much larger in terms of total assets 

than companies without such plans (DeGennaro, 2001), we match the 906 DRIP companies with 

available data to a sample of firms without such plans, for a total of 1812 companies.  We use 

total assets in 1999 as our matching variable.  Some companies have missing values for certain 

variables, but this is not a serious problem given our method; indeed one of the strengths of our 

approach is that it handles such characteristics.  From the perspective of the financial economist, 
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these data provide information that may let us determine the likelihood that companies without 

plans will adopt one.  Given the results of Dubofsky and Bierman (1988), the ability to predict 

such an adoption before the marginal investor can do so represents a potentially profitable 

trading opportunity.  In addition, companies that administer direct investment plans that seek 

new customers can produce a list of firms most likely to be interested in purchasing their 

services.  The reverse is also possible: we can improve our predictions of which companies are 

likely to abandon their plans, and plan administrators can improve their predictions about which 

customers are at greatest risk to become former customers.  Predicting changes in plan terms 

may also be possible. 

Table 3 presents sample statistics.  Only two variables (Total Assets and After Tax 

Return on Total Assets) have no missing values.  Still, we have upwards of 1650 observations 

but one variable. Because of certain screens to eliminate extreme observations (DeGennaro, 

2003), almost all observations on all variables lie within a reasonable range.  Exceptions occur 

for certain ratios with denominators near zero.  For example, Compustat defines the Payout Ratio 

as essentially the dollar amount of dividends paid to common shareholders divided by earnings.  

Because earnings can be near zero, ratios can be large in absolute value.  Even these cases, 

though, are relatively rare. 
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                                                     Table 3 

Sample Statistics 
 

Variable N Mean Std Dev Minimu
m 

Maximum 

Total Assets (MM$) 1,812 14,140.7 45,776.1 6.38 575,167 
Research and Development Expense 
(MM$) 

698 262.93 799.06 0 7,100 

Net Sales (MM$) 1,809 5,289.74 13,163.4 0 173,215 
Payout Ratio 1,755 36.1 166.41 -3,626.04 3,192.31 
Dividend Yield 1,682 2.81 10.15 0 394.45 
Common Shares Outstanding (MM) 1,765 194.88 460.09 0 6,133.40 
Common Shares Traded 1,680 165.82 514.06 0 8,129.70 
Common Shareholders (M) 1,387 36.92 156.99 0 4,206.32 
Employees (M) 1,620 21.33 54.26 0 1,140 
Net Profit Margin 1,807 4.75 47.96 -1,324.84 726.95 
After Tax Return on Common Equity 1,801 9.8 270.12 -6,812.12 8,563.59 
After Tax Return On Total Assets 1,812 2.78 9.73 -117.33 157.33 
Debt Ratio 1,810 0.69 0.23 0 2.74 
Market To Book 1,669 2.96 8.82 -238.17 121.53 
P/E at Fiscal Year End 1,682 18.39 101.13 -1,693.8 1,437.50 

 
Source: Authors’ calculations. 
 

Table 4 contains the number of observations for the subsets of firms with and without 

DRIPs, and where meaningful, the means for each group.  It also reports t-ratios testing the 

equality of the means.  The first question of interest is the efficacy of the size-matching 

procedure.  Because the number of DRIP firms is a fairly large proportion of the total firms in 

the size range, there is simply no good match for all companies.  In such cases, we match to the 

closest available company, even though this sometimes means that an individual firm is perhaps 

10% larger or smaller than its matched company.  This procedure works well under the 

circumstances, though.  Companies without DRIPs are a little bigger than those with plans, but 

the difference is less than 4% and is insignificant by any conventional standard. 

Table 4 shows that several variables do differ significantly.  For example, DRIP 

companies have higher payout ratios and dividend yields (the table is constructed so that a 
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negative t-ratio means companies with plans have the larger value.  They tend to have more 

common shareholders and more employees.  They tend to be more profitable, with higher net 

profit margins and higher after-tax return on total assets.  Economic reasons for these results and 

further tests are in DeGennaro (2003).  For our purposes, the point is that these differences hold 

promise for partitioning the data into homogeneous clusters. 

 Table 4 
 
Means and t-tests, 906 Companies with DRIPs Compared to 906 Companies without 
 

Variable Number of 
Observations 

Mean Maximum 

 
 No 

plan  
DRIP 
plan 

No 
plan 

DRIP 
plan 

t-statistic 

Total Assets (MM$) 906 906 14,412 13,870 0.25 
Research and Development Expense 
(MM$) 

317 381 265.96 260.4 0.09 

Net Sales (MM$) 904 905 4,737 5,842 -1.79 
Payout Ratio 875 880 19.34 52.77 -4.23** 
Dividend Yield 777 905 1.46 3.96 -5.07** 
Common Shares Outstanding (MM) 862 903 181.43 207.73 -1.2 
Common Shares Traded 774 906 191.9 143.56 1.92 
Common Shareholders (M) 675 712 23.46 49.65 -3.17** 
Employees (M) 800 820 18.49 24.1 -2.08* 
Net Profit Margin 902 905 1.3 8.2 -3.06** 
After Tax Return on Common Equity 896 905 14.79 4.85 0.78 
After Tax Return On Total Assets 906 906 1.53 4.04 -5.53** 
Debt Ratio 905 905 0.69 0.69 0.44 
Market To Book 766 903 3.07 2.87 0.46 
P/E at Fiscal Year End 777 905 20.8 16.31 0.91 

 
Source: Authors’ calculations. 

Using Data Augmentation and the Gibbs sampler, we run the algorithm for 1000 

iterations.  The BSC criterion (Table 5) shows that the most likely number of clusters is two.  

This is consistent with partitioning the companies into those that have DRIPS and those that do 

not.  The confusion matrix for the two clusters is in Table 6.  The misclassification error rate is 



  17

only 3.4%. 

Table 5 
BSC values for different number of components 
 

K BSC 
1   7818.19 
2   7680.90 * 
3   8798.92 
4   8448.44 

 
Table 6: Confusion matrix 
 
K  No DRIP  DRIP Total 
No Plan 851  55  906 
Plan  5  901  906 
Total  856 (cluster 1)  956 (cluster 2) n = 1812 

 
6. Discussion 

What economic or managerial implications can we draw from this study?  Table 6 is the 

key.  The first row shows that our method correctly classifies 851 of the 906 companies without 

DRIPS, meaning that 55 companies have been misclassified: According to the model, they 

should have DRIPS, but in reality, they do not.  One interpretation is that the model is simply 

wrong about 6% of the time when it is used to identify companies with DRIPS.  However, 

another interpretation is that these companies are likely candidates to adopt a plan.  A DRIP plan 

administrator could do far worse than contacting the representatives of these 55 companies to 

gauge their interest in introducing a DRIP.  This is because these companies’ financial data show 

that some aspect of their operations corresponds to firms that typically offer DRIPS.  These firms 

are probably the most likely candidates to start a plan.  The second row shows that the procedure 

does even better for firms that have no DRIP: only five companies classified as having no DRIP 

actually have them, while 901 are correctly classified as having a DRIP.  Applying the same 

reasoning as for the first row, the managerial interpretation is that the plan administrator is most 
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likely to lose these five companies as customers – the data indicate that some aspect of their 

financial statements corresponds to firms that do not offer DRIPs. 

Other financial applications of this method are easy to find.  First, it has obvious value to 

regulators.  Consider the problem of mortgage lending discrimination. Regulators have long been 

charged with monitoring fairness.  Essentially, the problem reduces to determining whether 

members of one race are equally likely to be denied a mortgage compared to similarly situated 

member of other races.  This problem is extremely difficult for any of several reasons (see Black, 

Boehm and DeGennaro, 2001 and Black, Boehm and DeGennaro, 2003 for details).  Part of the 

problem is missing data.  For example, loan officers often fail to collect all of the usual data for 

loan applications that are almost sure to be denied, because collecting all of it is likely to be a 

waste of time.  In addition, institutions sometimes gather information that other lenders ignore.  

This produces missing values when the data are combined across lenders.  Because our paper’s 

approach handles missing data well, we conjecture that regulators could identify rejected 

applicants that, at least according to the method, could easily have been approved.  Given that 

regulatory resources are scarce, it makes sense to concentrate on the cases that are most likely to 

be problems.  

Managers in the private sector, of course, see the matter from the other side.  They 

might use the method to insure compliance with regulations rather than to identify lapses.  In 

addition, this could identify potential profit opportunities.  After all, the model identifies a pool 

of mortgage applications that were denied, yet which had financial characteristics very similar to 

other applications that were approved.  By studying this pool of rejections, management could 

possibly refine its approval process so that profitable loans are less likely to be missed. 
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