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1 Introduction

Econometricians often face a situation where several nsantenethods are available for a particular em-
pirical problem. A relevant question i8Vhich is the bestThis question is onerous for most data to answer,
especially when the set of competing alternatives is lakdgny applications will not yield a single model
that significantly dominates all competitors because tha wanot sufficiently informative to give an un-
equivocal answer to this question. Nonetheless, it is ptessd reduce the set of models to a smaller set of
models — a model confidence set — that contains the best mdttied @iven level of confidence.

The objective of the model confidence set (MCS) procedure determine the set of models{*, that
consists of the best model(s) from a collection of modst€, wherebestis defined in terms of a criterion
that is user-specified. The MCS procedure yields a modelademiie setM*, that is a collection of models
built to contain the best models with a given level of confitienThe process of winnowing models out
of MP relies on sample information about the relative perforneanaf the models io\°. This sample
information drives the MCS to create a random data-depérsirof models M*. The setM* includes
the best model(s) with a certain probability in the same eémat a confidence interval covers a population
parameter.

An attractive feature of the MCS approach is that it ackndgéss the limitations of the data. Informa-
tive data will result in a MCS that contains only the best modess informative data makes it difficult to
distinguish between models and may result in a MCS that own&everal (or possibly all) models. Thus,
the MCS differs from extant model selection criteria thaba@te a single model without regard to the in-
formation content of the data. Another advantage is thatMis procedure makes it possible to make
statements about significance that are valid in the trawitisense. A property that is not satisfied by the
commonly used approach of reportipgvalues from multiple pairwise comparisons. Another ative
feature of the MCS procedure is that it allows for the pofigittihat more than one model can be the best,
in which caseM™* contains more than a single model.

The contributions of this paper can be summarized as foll&ivst, we introduce the model confidence
set and establish its theoretical properties. Second, oope a practical bootstrap implementation of the
MCS procedure for a set of problems that includes compasisdriorecasting models evaluated out-of-
sample and regression models evaluated in-sample. Thisnmeptation is particularly useful when the
number of objects to be compared is large. Third, the finitepda properties of the bootstrap MCS proce-
dure are analyzed in simulation studies. Fourth, we ap@yES procedure to two empirical applications.
We revisit the out-of-sample prediction problem of Stock &viatson (1999) and construct MCSs for their
inflation forecasts. We also build a MCS for Taylor rule resgiens using three likelihood criteria that
include the AIC and BIC.
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1.1 Theory of Model Confidence Sets

We do not treamodelsas sacred objects, nor do we assume that a particular mquiekents the true data
generating process. Models are evaluated in terms of aspeeified criterion function. Consequently, the
‘best’ model is unlikely to be replicated for all criterialsh, we use the term ‘models’ loosely. It can refer to
econometric models, competing forecasts, or alternathatsneed not involve any modelling of data, such
as trading rules. So the MCS procedure is not specific to cdegpes of models. For example, one could
construct a MCS for a set of different ‘treatments’ by compgarsample estimates of the corresponding
treatment effects, or a MCS for trading rules with the besirSé ratio.

A MCS is constructed from a collection of competing objegt4?, and a criterion for evaluating these
objects empirically. The MCS procedure is based orequivalence test »,; and anelimination rule
er. The equivalence test is applied to the set = M. If §,, is rejected, there is evidence that the
objects inM are not equally ‘good’ ané, is used to eliminate an object with poor sample performance
from M. This procedure is repeated uniil, is ‘accepted’, and the MCS is now defined by the set of
‘surviving’ objects. By using the same significance lewel,in all tests, the procedure guarantees that
lIMp_ o P(M* C /\7’{7“) > 1 — «, and in the case wher&1* consists of one object we have the stronger
result that lim,_, .o P(M* = A’{_a) = 1. The MCS procedure also yielgsvalues for each of the objects.
For a given object, ¢ M°, the MCSp-value, i, is the threshold at whiche /\7’{_“, ifand only if fj > «.
Thus, an object with a small MCB-value makes it unlikely that it is one of the ‘best’ altefnas in M°.

The idea behind the sequential testing procedure that weusmnstruct the MCS may be recognized
by readers who are familiar with the trace-test proceduradtecting the rank of a matrix. This procedure
involves a sequence of trace-tests, see Anderson (198d)isasommonly used to select the number of
cointegration relations within a vector autoregressivadehosee Johansen (1988). The MCS procedure
determines the number of superior models in the same waydhe-test is used to select the number of
cointegration relations. A key difference is that the tréest procedure has a natural ordering in which
the hypotheses are to be tested, whereas the MCS procedureesea carefully chosen elimination rule to
define the sequence of tests. We discuss this issue andiridatimg procedures in Section 4.

1.2 Bootstrap Implementation and Simulation Results

We propose a bootstrap implementation of the MCS procetiates convenient when the number of models
is large. The bootstrap implementation is simple to use atfwe and avoids the need to estimate a high-
dimensional covariance matrix. White (2000b) is the soofarany of the ideas that underlies our bootstrap
implementation.

We study the properties of our bootstrap implementationhef MCS procedure through simulation
experiments. The results are very encouraging as the beiloes end up in the MCS at the appropriate
frequency, and the MCS procedure does have power to weed thé poor models when the data contains
sufficient information.
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1.3 Empirical Analysis of Inflation Forecasts and Taylor Rules

We apply the MCS to two empirical problems. First, the MCSdedito study the inflation forecasting
problem. The choice of an inflation forecasting model is greemlly important issue for central banks,
treasuries, and private sector agents. The fifty plus yedition of the Phillips curve suggests it remains
an effective vehicle for the task of inflation forecastingrock and Watson (1999) make the case that “a
reasonably specified Phillips curve is the best tool fordasting inflation”; also see Gordon (1997), Staiger,
Stock, and Watson (1997b), and Stock and Watson (2003).sAtkand Ohanian (2001) conclude that this
is not the case because they find it is difficult for any of thdlis curves they study to beat a simple
no-change forecast in out-of-sample point prediction.

Our first empirical application is based on the Stock and ¥a{d4999) data set. Several interesting
results come out of our analysis. We partition the evaluagieriod in the same two subsamples as did
Stock and Watson (1999). The earlier subsample covers adoeith persistent and volatile inflation, this
sample is expected to be relatively informative about wintddels might be the best forecasting models.
Indeed, the MCS consists of relatively few models, so the Nd@Ses to be effective at purging the inferior
forecasts. The later subsample is a period in which inflag@alatively smooth and exhibits little volatility.
This yields a sample that contains relatively little infation about which of the models deliver the best
forecasts. However Stock and Watson (1999) report that ehaoge forecast, which uses last month’s
inflation rate as the point forecast, is inferior in eithebsamples. In spite of the relatively low degree of
information in the more recent subsample, we are able toledadhat this no-change forecast is indeed
inferior to other forecasts. We come to this conclusion bseahe Stock and Watson no-change forecast
never ends up in the MCS. Next, we add the no-change forecasbged by Atkeson and Ohanian (2001)
to the comparison. Their forecast uses the past year'siorlaate as the point prediction rather than
month over month inflation. This turns out to matter for theasel subsample, because the no-change
(year) forecast has the smallest mean square prediction @SPE) of all forecasts. This enables us to
reconcile Stock and Watson (1999) with Atkeson and Ohar#80X) by showing their different definitions
of the benchmark forecast, no-change (month) and no-chéyeg), respectively, explain the different
conclusions they reach about these forecasts.

Our second empirical example shows that the MCS approactsefal tool for in-sample evaluation of
regression models. This example applies the MCS to chod=ing a set of competing (nominal) interest
rate rule regressions on a quarterly U.S. sample that rons #979 through 2006. These regressions fall
into the class of interest rate rules promoted by Taylor 819%is Taylor rule forms the basis of a class
of monetary policy rules that gauge the success of monewligypat keeping inflation low and the real
economy close to trend. The MCS does not reveal which Tayler negressions best describe the actual
U.S. monetary policy, nor does it identify the best policjeruRather the MCS selects the Taylor rule
regressions that have the best empirical fit of the U.S. &dands rate in this sample period, where the
‘best fit’ is defined by different likelihood criteria.
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The MCS procedure begins with 25 regression models. Wedectupure first-order autoregression,
AR(1), of the federal funds rate in the initial MCS. The remiafy 24 models are Taylor rule regressions
that contain different combinations of lagged inflatiomgdaf various definitions of real economic activity
(i.e., the output gap, the unemployment rate gap, or reajimercost), and in some cases the lagged federal
funds rate.

It seems that there is limited information in our U.S. sanfplethe MCS procedure to narrow the set
of Taylor rule regressions. The one exception is that the MAIg holds regressions that admit the lagged
interest rate. This includes the pure AR(1). The reasoraisttte time-series properties of the federal funds
rate is well explained by its own lag. Thus, the lagged feldarals rate appears to dominate lags of inflation
and the real activity variables for explaining the curramds rate. There is some solace for advocates of
interest rate rules because under one likelihood critethienMCS often tosses out Taylor rule regression
lacking in lags of inflation. Nonetheless, the MCS indicdles the data is consistent with either lags of the
output gap, the unemployment rate gap, or real marginalptaging the role of the real activity variables in
the Taylor rule regression. This is not a surprising reddiasurement of ‘gap’ and marginal cost variables
remain an unresolved issue for macroeconometrics; for pkasee Orphanides and Van Norden (2002)
and Staiger, Stock, and Watson (1997a). It is also true tlatetary policymakers rely on sophisticated
information sets that cannot be spanned by a few aggregadbles, see Bernanke and Boivin (2003). The
upshot is that the sample used to calculate the MCS has tiffieextracting useful information to separate
the pure AR(1) from Taylor rule regressions that includel#gged federal funds rate.

1.4 Outline of Paper

The paper is organized as follows. We present the theordtamaework of the MCS in Section 2. Section
3 outlines practical bootstrap methods to implement the M@$tiple model comparison methods related
to the MCS are discussed in Section 4. Section 5 reports sdtsef simulation experiments. The MCS is
applied to two empirical examples in Section 6. Section thales.

2 General Theory for Model Confidence Set

In this section, we discuss the theory of model confidencefeet general set of alternatives. Our leading
example concerns the comparison of empirical models, ssiibracasting models. Nevertheless, we do not
make specific references to ‘models’ in the first part of tkisti®n, in which we lay out the general theory.

We consider a set\°, that contains a finite number of objects that are indexed$yi, ..., mg. The
objects are evaluated in terms of a loss function and we deahetloss that is associated with objedh
periodt asL;¢,t =1, ..., n. For example, in the situation where a point forecﬁ(gt, of Y; is evaluated in
terms of a loss functiorl,, we defineL;; = L(Y;, Yi1).
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Define the relative performance variables
dji=Liy—Lj,, forall i, jeM

This paper assumes that; = E(dj; 1) is finite and does not depend onfor all i, j € MO, We rank
alternatives in terms of expected loss, so that alternatiz@referred to alternative if 1;; < 0.

Definition 1 The set of superior objects is defined by
M ={ieM®:ip; <0 foral je M.

The objective of the MCS procedure is to determivié. This is done through a sequence of significance
tests, where objects that are found to be significantly ioféo other elements aM° are eliminated. The
hypotheses that are being tested take the form:

Hom tpij =0 foralli, j € M, Q)

where M c M°P. We denote the alternative hypothesis, # O for somei, j € M, by Ha 4. Note that
Ho 1+ Is true given our definition aM*, whereadH o, is false if M contains elements from botkt* and
its complementAM*. Naturally, the MCS is specific to set of candidate modait?, and therefore silent
about the relative merits of objects that are not included/4f

2.1 The MCS Algorithm and Its Properties

As stated in the introduction, the MCS procedure is basedha@taivalence test ,, and anelimination
rule, ers. The equivalence test,, is used to test the hypothesis 1, for any M c MO, andey, identifies
the object ofM that is to be removed from\1 in the event thaHy . is rejected. As a convention we let
sm = 0ands g = 1 correspond to the cases whetg . are ‘accepted’ and ‘rejected’ respectively.

Definition 2 (MCS Algorithm) Step 0: Initially setM = M°. Step 1: Test by usings, at levela.
Step 2: If K Aq Is ‘accepted’ we define th@l\’{_a = M, otherwise we useg to eliminate an object from
M and repeat the procedure from Step 1.

The set,/\//T’{_a, which consists of the set of ‘surviving’ objects (thosettharvived all tests without
being eliminated) is referred to as thedel confidence seTheorem 1 that is stated below shows that the
term ‘confidence set’ is appropriate in this context, predidhat the equivalence test and the elimination
rule satisfy the following assumption.

Assumption 1 For any M c M° we assume the following abo,,, erq): (@) limsup, .. P =
1Hom) < a; (b) limp o PG = 1{Ha M) = 1; and (€) limy o P(er € M*[Ha M) = 0.
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The conditions that Assumption 1 states 8oy are standard requirements for hypothesis tes#s.
requires the asymptotic level not to exceed(b) requires the asymptotic power to be one; wher@as
requires that a superior objei¢t € M* is not eliminated (ag — oo) as long as there are inferior models
in M.

Theorem 1 (Properties of MCS) Given Assumption 1, it holds thét) liminf,_ ., P(M* C /\7’{7&) >
1—a, and(ii) lim,_. P(i € M}_) =0foralli ¢ M*.

Proof. Leti* € M*. To prove(i) we consider the event that is eliminated fromM. From Assumption
l.citfollows thatP(6arr = 1, ep = i*|Ham) < P(ear = 1*|Ha ) — 0 asn — oo. So the probability
that a good model is eliminated whewl contains poor models vanishesras—> oco. Next, Assumption
l.a shows that limsup, P(6m = 1, epm = 1*|Hom) = limsup,_, . P = 1|Ho M) < «, such that
the probability that* is eliminated when all models in are good models, is asymptotically bounded by
«. To prove(ii), we first note that lim. ., P(exs = i*|Ha a¢) = 0 such that only poor models will be
eliminated (asymptotically) as long ds! ¢ M*. On the other hand, Assumptionblensures that models
will be eliminated as long as the null hypothesis is falle.

Consider first the situation where the data contains litifermation, such that the equivalence test
lacks power and the elimination rule may question a supeniadel prior to the elimination of all inferior
models. The lack of power causes the procedure to terminatedrly (on average), and the MCS will
contain a large number of models, including several infeniodels. We view this as a strength of the MCS
procedure. Since lack of power is tied to the lack of infoliorain the data, the MCS should be large when
there is insufficient information to distinguish good and lnaodels.

In the situation where the data is informative, the equivedetest is powerful and will reject all false
hypotheses. Moreover, the elimination rule will not quastany superior model until all inferior models
have been eliminated. (This situation is guaranteed asytioglly). The result is that the first time a
superior model is questioned by the elimination rule is wtienequivalence test is applied Ad*. Thus,
the probability that one (or more) superior model is elintlis bounded (asymptotically) by the size of the
test! Note that additional superior models may be elimish@tesubsequent tests, but these tests will only be
performed ifHq A4+ IS rejected. Thus, the asymptotic familywise error (FWE@ ravhich is the probability
of making one or more false rejections, is bounded by thd tbe¢ is used in all tests.

Sequential testing is key for building a MCS. However, ecoatiicians often worry about the proper-
ties of sequential testing procedures, because such camatate’ Type | errors with unfortunate conse-
quences, see e.g. Leeb and Potscher (2003). The MCS preatmis not suffer from this problem because
the sequential testing is halted when the first hypothesa&tepted'.

When there is only a single model imt* (one best model) we obtain a stronger result.

Corollary 2 Suppose that Assumption 1 holds and thdt is a singleton. Thenim,_ . P(M* =
Aifot) = 1
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Proof. WhenM* is a singleton M* = {i*}, then it follows from Theorem 1 that will be the last surviving
element with probability approaching oneras-> oo. The result now follows, because the last surviving

element is never eliminatel

2.2 Coherency between Test and Elimination Rule

The previous asymptotic results do not rely on any direcineation between the hypothesis te$t,,
and the elimination rulegy,. Nonetheless when the MCS is implemented in finite samplesetis an
advantage to the hypothesis test and elimination rule bmahgrent. The next theorem establishes a finite
sample version of the result in Theorem 1.i when there is @icecoherency between the hypothesis test
and elimination rule.

Theorem 3 Suppose that By = 1, ey € M*) < « then we have
PIM* C Myio) >1—a.

Proof. We only need to consider the first instance thgt € M* because all preceding tests will not
eliminate elements that are i*. Regardless of the null hypothesis being true or false, we Ra¥ , =

1l ey € M*) < «. So it follows thate bounds the probability that an element froit* is eliminated.
Additional elements froma\* may be eliminated in subsequent tests, but these test vyllbenundertaken
if all preceding tests are rejected. So we conclude ERait* ﬂl_a) >1—o.0

The property thatP (5, = 1,en € M*) < « holds under both the null hypothesis and the alter-
native hypothesis is key for the result in Theorem 3. For awéth the correct size, we have (6 y =
1|Hom) < o, which impliesP(Sa = 1, enpr € M*|Hp ) < «. The additional conditionP (5, =
1, ey € M*|Ha M) < «, ensures that a rejectiofi, = 1, can be taken as significant evidence #atis
not in M*.

In practice, hypothesis tests often rely on asymptoticltesbat cannot guarantde(, = 1, ey €
M*) < « holds in finite samples. We provide a definition of cohereneyMeen a test and an elimination
rule that is useful in situations where testing is groundedsymptotic distributions. In what follows, we
use P, to denote the probability measure that arises by imposiagtii hypothesis by the transformation

hij.t > dij.t — ;-
Definition 3 There is said to be coherency between test and eliminatienwhen
Pobm=1enm e M*) < Py(6pm = 1).

The coherency in conjunction with an asymptotic control e Type | error, limsup, ., Po(ba =
1) < a, translate into an asymptotic version of the assumption weenita Theorem 3. Coherency places
restrictions on the combinations of tests and eliminatidas we can employ. These restrictions go beyond

those imposed by the asymptotic conditions we formulatefissumption 1. In fact, coherency serves to

8
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curb the reliance on asymptotic properties, in order tocpeirverse outcomes in finite samples that could
result from absurd combinations of test and eliminatiore.ruCoherency prevents us from adopting the
most powerful test of the hypothesi$ 1( in some situations. The reason is that tests do not nedgssari
identify a single element as the cause for the rejection. @dganalogy is found in the standard regression
model, where & -test may reject the joint hypothesis that all regressiceffments are zero, even though
all t-statistics are insignificarit.

In our bootstrap implementations of the MCS procedure, vaphathe required coherency between the
test and the elimination rule.

2.3 MCS p-Values

In this section we introduce the notion of MQ&values. The elimination rule,, defines a sequence of
(random) setsM® = M; D My D -+ D Mm,, WhereM; = {en;, .. ., M, } andmg is the number of
elements inM°. Soey 0 = ey, is the first element to be eliminated in the event tHatvy,, is rejected,
e, is the second element to be eliminated, etc.

Definition 4 (MCS p-values) Let By, M denote the p-value associated with the null hypothesis/H
with the convention that g ,,, = 1. The MCS p-value for modelg e MO is defined byf)eMj =

maxfj PHO.Mi :

The advantage of this definition of MC&values will be evident from Theorem 4 that is stated below.
Since M, consists of a single model, the null hypothesi, A+, . simply states that the last surviving
model is as good as itself, making the conventiBg, Mg = 1, logical.

Table 1 illustrates how MC®-values are computed and how they relatgtealues of the individual
tests,PHovMi, i =1,...,myg. The MCSp-values are convenient because they make it easy to determin
whether a particular object is 'uﬂ’{w or not, for anywx. Thus, the MCSp-values are an effective way of
conveying the information in the data.

Theorem 4 Let the elements oM be indexed by i= 1,...,mg. The MCS p-valuefy;, is such that
i e M;_, ifand only iffy > a, foranyie M.

Proof. Suppose thaf < o and determine thk for whichi = ey, . Sincep, = f’emk = max; <k PHO,MJ, it
follows thatHo 4., - - ., Ho.A, are all rejected at significance level Hence, the first accepted hypothesis
(if any) occurs after = eny, has been eliminated. §9 < « impliesi ¢ /\7’{7&. Suppose now thah > «.
Then for somg < k we havePHo’Mj > a, in which caseH u; is accepted at significance levelwhich
terminates the MCS procedure before the elimination rute e, = i. So i > « impliesi € M;_.
This completes the prodil

1Another analogy is that it is easier to conclude that a mundertaken place, than it is to determine who committed thelerur
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Table 1: Computation of MC$-values

Elimination Rule p-value forHo a4, MCS p-value
e, Pho.ni, = 0.01 Pe,,, = 0.01

em, Phon, = 0.04 Pe,, = 0.04

e, Phori, = 0.02 Pen, = 0.04

em, Pho.r, = 0.03 Pe,,, = 0.04

eMs Phorie = 0.07 Pe,, = 0.07

M, Pho.ng = 0.04 Pe, = 0.07

em, Proa, = 0.11 Pe,, = 0.11

Mg Phorig = 0-25 Pery, = 0.25
My Pr, Mg = 1.00 f’emmo =100

The table illustrates the computation of M@fvalues. Note that MC$-values for some models do not coincide
with the p-values for the corresponding null hypotheses. For exantipeMCS p-value forey, (the third model to
be eliminated) exceeds thevalue forHg A, because th@-value associated withlg o, — a null hypothesis tested
prior to Hg aq, — is larger.

The interpretation of a MC®-value is analogous to that of a classigalalue. The analogy is to a
(1— ) confidence interval that contains the ‘true’ parameter wigimobability no less thand«. The MCS
p-value also cannot be interpreted as the probability thatrqoular model is the best model, exactly as a
classical p-value is not the probability that the null hyyasis is true. Rather, the probability interpretation
of a MCS p-value is tied to the random nature of the MCS because the M@&ndomsubset of models
that containsM* with a certain probability.

3 Bootstrap Implementation

3.1 Equivalence Tests and Elimination Rules

Now we consider specific equivalence tests and an elimimatile that satisfy Assumption 1. The following
assumption is sufficiently strong to enable us to implemeatMCS procedure with bootstrap methods.

Assumption 2 For some r > 2 andy > 0 it holds thatE|dj """ < oo for all i, j € MP° and that
{dij.t}i,jero Is strictly stationary andv-mixing of order—r/(r — 2).

Assumption 2 places restrictions on the relative perfomearariables{d;; 1}, not directly on the loss
variables{L;}. For example, a loss function need not be stationary as lotigedsss differentials{d;; .},
i,j € MO satisfy Assumption 2. The assumption allows for some tygestractural breaks and other
features that can create non-stationgry; }, as long as all objects iM° are affected in a ‘similar’ way that
preserves the stationarity odij ¢}.
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3.1.1 Quadratic-Form Test

Let M be some subset g§1° and letm be the number of models i = {i1, ..., in}. We define the vector
of loss-variables|. = (L, ¢, ..., Li,0), t =1,...,n, and its sample average,= n! Zt”:l L:, and we
let: = (1, ..., 1) be the column vector where afi entries equal one. The orthogonal complement ts
anm x (m — 1) matrix, ¢, that has full column rank and satisfiés = 0 (a vector of zeros). Then — 1
dimensional vectoiX; = ¢/, Ly can be viewed am — 1 contrasts because each elemenkKpfis a linear
combination ofd;j 1, i, j € M, which has mean zero under the null hypothesis.

Lemma5 Given Assumption 2, letX= /| L; and define9 = E(X;). The null hypothesis ¢l is
equivalent to = 0 and it holds that #2(X — 0) 4 N(0, ©), where X = n71Y 1 X, and =
limp_ o Var(n/2x).

Proof. Note thatX; = ¢/, Ly can be written as a linear combinationdyfy, i, j MO, because’ | = 0.
Thus Ho v is given byd = 0, and the asymptotic normality follows by the central limietnem foro-
mixing processes, see e.g. White (200@R).

Lemma 5 shows thaH o can be tested using traditional quadratic-form statistidés example is
To = nX'£#X, where: is some consistent estimator Bfand 3* denotes the Moore-Penrose inverse of
3.2 The rankq = rank() represents the effective numberaoitrasts(the number of linearly independent
comparisons) undefly . SinceS 5 ¥ (by assumption) it follows thafg 4 qu) Wherequ) denotes
the x 2-distribution withq degrees of freedom. Under the alternative hypoth@gjgjiverge to infinity with
probability one. So the testy, will meet the requirements of Assumption 1 when construétech To.
Although the matrix.; is not fully identified by the requirements;: = 0 and det/, ¢;) # O (but the
sub-space spanned by the columns,ois), there is no problem because the stati$ticis invariant to the
choice fort .

A rejection of the null hypothesis based on the quadratioiftest need not identify a model that is not
in M*. The reason is that a large valueTef can stem from severa]lj being slightly different from zero.
In order to achieve the required coherence between testlemithaion rule additional testing is needed.
Specifically, one needs to test all sub-hypotheses of aegteg] hypothesis unless the sub-hypothesis is
nested in an accepted hypothesis, before further elinoimagi justified. The underlying principle is known
as theclosed testing procedursee Lehmann and Romano (2005, 366-367).

Whenm is large relative to the sample size,reliable estimates af are difficult to obtain. The reason
is that the number of elements Bfto be estimated are of order. It is convenient to use a test statistic
that does not require an explicit estimate3bfn this case. We consider test statistics that resolve $kigei
in the next section.

2Under the additional assumption thalfj ¢ }; j< 4 is uncorrelated (across, we can us&l = n=1 Y1 (X¢ — X)(X¢ — X)'.
Otherwise, we need a robust estimator along the lines of Mewd West (1987). In the context of comparing forecasts t\Afes
Cho (1995) were first to use the test statisTig, They based their test on (asymptotic) critical values frp?mil).
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3.1.2 Tests Constructed front-Statistics

This section develops two tests that are based on muttiptatistics. This approach has two advantages.
First, it bypasses the need for an explicit estimat&ofecond, the multiplé-statistic approach simplifies
the construction of an elimination rule that satisfies thgomoof coherency formulated in Definition 3.

Define the relative sample loss statistidg,= n' Y "{_, d;; andd;. = m~*Y";_,,d;;. Hered; mea-
sures the relative sample loss betweerni ttteand j -th models, whiled;. is the sample loss of thieth model
relative to the average across models\ih The latter can be seen from the identity= (L; — L.), where
Li=n1>  LitandL. =m™3Y",_,, Li. From these statistics we construct thetatistics

tij :L and ti,:L fOfi,j e M,

Jvand;) Vvand.)
wherevar(d;;) andvar(d,.) denote estimates of v@f;) and vard,.) respectively. The first statisti¢, , is
used in the well known test for comparing two forecasts, seb@d and Mariano (1995) and West (1996).
Thet-statisticst;j andt;., are associated with the null hypothesis thigt: n;; = 0 andH;. : ;. = 0 where
wi. = E(d..). These statistics form the basis of tests of the hypothidsis,;. We take advantages of the
equivalence betweeHg v, {Hjj, for alli, j € M}, and{H;. foralli e M}. With M = {iy, ..., in} the
equivalence follows from

i, =+ = i, < wj =0foralli,j e M & ;. =0foralli e M.

Moreover, the equivalence extends{tq. < 0 for alli € M} as well as{|w;;| < O for alli, j € M}, and
these two formulations of the null hypothesis map naturially the test statistics
Thmaxm = ine]/%(Xti' and Trm = iTE% Itij |,

which are available to test the hypothesig .2 The asymptotic distributions of these test statistics are n
standard because they depend on nuisance parametersifotiddre null and the alternative). However, the
nuisance parameters pose few obstacles as the relevaittidishs can be estimated with bootstrap methods
that implicitly deal with the nuisance parameter problernisTeature of the bootstrap has previously been
used in this context by Kilian (1999), White (2000b), Han$2803b, 2005), and Clark and McCracken
(2005).

Characterization of the MCS procedure needs an eliminatita) ey, that meets the requirements of
Assumption 1.c and the coherency of Definition 3. For thedesistic Tyax A4 the natural elimination rule
IS €max. M = arg maxe ti. because a rejection of the null hypothesis identifies thetngsisi;. = 0 as
false, forj = emaxa- In this case the elimination rule removes the model thatrimrtes most to the test
statistic. This model has the largest standardized exosss¢lative to the average across all modelsin
With the other test statisticlr 1¢, the natural elimination rule isg A1 = arg maxeam SUp cpq tij because

3An earlier version of this paper has results for the tesissied, Tp = T:ltiz_ andTq.
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this model is such thdt ,,; = Tr m, for somej € M. These combinations of test and elimination rule
will satisfy the required coherency.

Proposition 6 Letdmax A1 @ndSr ¢ denote the tests based on the statistigs, X+ and Tr 4, respectively.
Then(§maxm» €maxm) and (r a1, €r A1) Satisfy the coherency of Definition 3.

Proof. Let T; denote eithet;. or max <4 tij, and note that the test statisti@ax 14 andTgr 4, are both of
the formT = maxca( Ti. Let Py be as defined in Section 2.2. From the definitions$.adndt;; we have
fori € M* the first order stochastic dominance resBifimaxc ¢ Ti > X) > P(maxcar Ti > X) for any
M’ ¢ M*and allx € R. The coherency now follows from

P(T > c,epy =i forsomel € M*) = P(T > ¢, T =T, for somei € M¥)

=P( max Ti>c T >T,forallje M) <P( max T, >0
ieMnNM* ieMnNM*

< Po( max T > c) < Pp(maxT; > c) = Py(T > ¢).
ie MNM* ieM

This completes the proofll
Next, we establish two intermediate results that undetpérbbotstrap implementation of the MCS.

Lemma 7 Suppose that Assumption 2 holds and define (dy., ..., dy.)". Then
NY2(Z — ) S Np(0,Q),  asn— oo, )
wherey = E(Z) andQ = lim,_, var(n*?Z), and the null hypothesis, $J1, is equivalent toxy = 0.

Proof. From the identityd;, = L; — L. = L; — MY icum L= m‘lzjeM([i -Lj)= m‘lzjeMaij,
we see that the elements gfare linear transformations of from Lemma 5. Thus for somen(— 1) x m
matrix G we haveZ = G’X, and the result now follows, wherng = G'60 andQ = G’'SG. (Them x m
covariance matrix2, has reduced rank, as raidk) <m— 1.)H

In the following, we leto denote thenxm correlation matrix that is implied by the covariance matfix
of Lemma 7. Further, given the vector of random varialgles Ny (0, 0), we letF, denote the distribution
of max &;.

Theorem 8 Let Assumption 2 hold and suppose thgt = var(n'/2d,.) = nvard;.) LY w?, where w?,

i =1,..., mare the diagonal elements@f Under H 1 we have Fax a1 4 F, and under the alternative
hypothesis, H (¢, we have that J.x »« — oo in probability. Moreover, under the alternative hypottgesi
we have faxm = tj. where = enaxm ¢ M*, for n sufficiently large.

Proof. Let D = diag@?, ..., %) andD = diag@?, ..., ®5). From Lemma 7 it follows that, =
Eipr.e o Emn) = DY202Z & Ny (0, 0), sinceg = D-Y2QD-Y2 Fromt,. = d./v/Vand,)
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nY2d;. /& = Eingr it now follows thatTmax v = max t2 = max (D~Y/2n%/22), 4 F,. Under the alterna-
tive hypothesis we havéj. L wj. > Oforanyj ¢ M*, so that both;. and Trax A diverge to infinity at
raten®/2 in probability. Moreover, it follows thagmax v ¢ M*, for n sufficiently large B

Theorem 8 shows that the asymptotic distributionTgfx ¢ depends on the correlation matrix,
Nonetheless, as discussed earlier, bootstrap methodsecamployed to deal with this nuisance param-
eter problem. Thus, we construct a testHf o, by comparing the test statistiG,ax » t0 an estimate of the
95%-quantile, say, of its limit distribution under the niajipothesis. Although the quantile may depend on
o, our bootstrap implementation leads to an asymptoticaligl tast because the bootstrap consistently esti-
mates the desired quantile. A detailed description of ootdicap implementation is available in a separate
appendix, Hansen, Lunde, and Nason (2009).

Theorem 8 formulates results for the situation where the ME&8nstructed wWitimax a1 @aNdemnax v =
arg maxt;.. Similar results hold for the MCS that is constructed frdg andeg r¢. The arguments are
almost identical to those used for Theorem 8.

3.2 MCS for Regression Models

This section shows how to construct the MCS for regressiodatsausing likelihood-based criteria. Infor-
mation criteria, such as the AIC and BIC, are special caseluitding a MCS of regression models. The
MCS approach departs from standard practice where the AdB#A select a single model, but are silent
about the uncertainty associated with this selection. TimesMCS procedure yields valuable additional in-
formation about the uncertainty surrounding model sedactin Section 6.2, we apply the MCS procedure
in-sample to Taylor rule regressions that indicates theettinty can be substantial.

Although we focus on regression models for simplicity, itlWe evident that the MCS procedure laid
out in this setting can be adapted to more complex models, asithe type of models analyzed in Sin and
White (1996).

3.2.1 Framework and Assumptions

Consider the family of regression mode¥s,= /8]— Xjt+ejut=1...,n whereX; is a subset of the
variables inX;, for j = 1, ..., my. The set of regression model$/°, may consist of nested, nonnested,
and overlapping specifications.

Throughout we assume that the p@dy, X{) is strictly stationary and satisfies Assumption 1 in Goneslv
and White (2005). This justifies our use of the moving-blooktstrap to implement our resampling proce-
dure. The framework of Goncalves and White (2005) permitskngerial dependence (iY;, X{), which is
important for many applications.

The population parameters for each of the models are defiyngld;b= [E(Xj,tX],t)]_lE(X,—,th) and
agj = E(ej1)% wheresj; = Y; — Boj Xjt, t = 1,...,n. Furthermore, the Gaussian quasi-log-likelihood
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function is, apart from a constant, given by
n 1
0. 0% = = logo? — 0;25 D =B X%
t=1

3.2.2 MCS by Kullback-Leibler Divergence

One way to define the best regression model is in terms of tHivadk-Leibler information criterion
(KLIC), see e.g. Sin and White (1996). This is equivalentanking the models in terms of the expected
value of the quasi-log-likelihood function, when evaluhtg their respective population parameters, i.e.
E[¢(Bo; agj )]. Itis convenient to define

" (Y, — B Xj0)2

2 b
t=1 o]

Q(Z.0)) = —2(Bj.0%) =nlogo? +

whered; can be viewed as a high dimensional vector that is restrinyetie parameter spac®,; C O, that
defines thg -th regression model. The population parameters are hega gy, = argmirba_)j E[Q(Z, )],
j =1,..., mg, and the best model is defined by mE[Q(Z, 6¢;)]. In the notation of the MCS framework
the KLIC leads to,

Miuc = {J : E[Q(Z, 90])] = miin E[Q(Z, 90i)]} s

which (as always) permits the existence of more than onerbedel? The extension to other criteria, such
as the AIC and the BIC, is straight forward. For instance séteof best models in terms of the AIC is given
by M. = {j : E[Q(Z, 0¢)) + 2Kk;] = min; E[Q(Z, 0i) + 2ki]}, wherek; is the degrees of freedom in
the j-th model.

The likelihood framework enables us to construct eitﬁtuc or /\//TZ,C by drawing on the theory of
quasi-maximum likelihood estimation, see e.g. White (39%lince the family of regression models are
linear, the quasi-maximum likelihood estimators are qu@j = (Zt”:l Xj,tX],t)il > XjtYe, and
62 =n"1y 0 &7, whered;; =Y, — B/J X; . We have

Q(Z.6)) — Q(Z.6¢)) =n {(logogj — |Ogc}J2) + (n—lzgit/agj — 1)} :
t=1

which is the quasi-likelihood ratio (QLR) statistic for thall hypothesisHo : 6 = 6;.

In the event that thg-th model is correctly specified, it is well known that the ilirdistribution of
Q(Z,éj) — Q(Z,00)) is kaj), where the degrees of freedorky, is given by the dimension ofy; =
<,35j,agj)/. In the present multi-model setup, it is unlikely that all netedare correctly specified. More
generally, the limit distribution of the QLR statistic hattetform,z:(j:l Aij 2?2

N Where)\,l’j,...,)\,kj’j are

4In the present situation, we have@(Zj, 0p;)] o a(z)j. The implication is that the error varianoe(z)j, induces the same
ranking as KLIC, so thaM(, ¢ = {j : o; = minj/ cr(z)j,}.
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the eigenvalues on‘ljj andZy j, ..., Zy.j ~ iidN(0O, 1). The information matriceg; andJ; are those
associated with thg-th model,Z; = diag(o5?E(X; (X] ). 305;*) and

—4. 15N e e X 15,=6p-1§y Y
J =E O N Zs,t:l XJ,SSJ,sthXj,t 500; N Zs,t:l XJ,SSJ,SSJ,t
= o 1,-8-1 Zn (82 &2 _gh ) ’
29 0j st=1\%j,s%jt 0]

The effective degrees of freedok],, is defined by the mean of the QLR’s limit distribution,

k}‘ = A1j +“'+)“kj,j =U‘{Ij_l‘7j}

n n
—tr {[E(Xj,tX}’t)]_laojzn_l > E(xj,se,-,sx],te,-,t)} it Y gl g,
st=1 st=1
The previous expression points to estimatiigvith HAC-type estimators that account for the autocorre-
lation in {Xj &} ¢} and{sJ?,t}, e.g. Newey and West (1987) and Andrews (1991). Below we usmples
bootstrap estimate &, which is also employed in our simulations and our empiriegldr rule regression
application.

The effective degrees of freedom in the context of misspatifhodels was first derived by Takeuchi
(1976). He proposed a modified AIC, sometimes referred thea$iC, which computes the penalty with the
effective degrees of freedom, rather than the number ohpetexs as is used by the AIC, see also Sin and
White (1996) and Hong and Preston (2008). We use the notAlidn and BIC to denote the information
criteria that are defined by substituting the effective degrof freedomk?, for k;, in the AIC and BIC,
respectively. In this case, our At@s identical to the TIC by Takeuchi (1976).

3.2.3 The MCS Procedure

The MCS procedure can be implemented by the moving-blocksbap applied to the paity;, X;), see
Goncalves and White (2005). We compute resamgfes= (Y,, Xi )i, forb=1,..., B, which equates
the original point estimat@,j , to the population parameter in tiegh model under the bootstrap scheme.

The literature has proposed several bootstrap estimafatiseceffective degrees of freedork; =
E[Q(Z, 6oj) — Q(Z,0))], see e.g. Efron (1983, 1986) and Cavanaugh and Shumway (198&ye and
additional estimators are analyzed and compared in Sh{t@8v). We adopt the estimator f&J that is
labelledBs in Shibata (1997). In the regression context this estimatas the form

B B ~2

P _ A A% _ O . ZI’]: (6‘*» )2

ki=B 1} :Q(ZS,QJ)—Q(ZS,%,-)= B 1}: nlog&*JZ n tl&sz.J,t —nt.
b=1 b=1 b. |

wheree} = Y — B Xt i 800 = Yo — Bo X5 i @nd6, = n 1Y 0 (45 % This is an estimate
of the expected overfit that results from maximization ofltkelihood function. For a correctly specified
model we havek]* = Kj, so we would expedi]* ~ Kj when thej-th model is correctly specified. This is
indeed what we find in our simulations, see Section 5.2.
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Given an estimate of the effective degrees of freedlﬁijmpompute the AIC statistic Q(Z, 6 i)+ k?,
which is centered abol{Q(Z, 6oj)}. The null hypothesi$iy 4 states that ED(Z, 0¢i) — Q(Z, 0oj)] =0
foralli, j € M. This motivates the range statistic:

T = max [Q(Z,6) + K1 - [QZ.0)) + K|

and the elimination ruley, = argmax ([ Q(Z, éj) + Rf]. This elimination rule removes the model with
the largest bias adjusted residual variance. Our tesststaliz ¢, iS @ range-statistic over recentered QLR
statistics computed for all pairs of model.M. In the special case with iid data and just two modeldin
we could simply adopt the QLR test of Vuong (1989) as our exjaiwce test.

Next, we estimate the distribution @k _n¢ under the null hypothesis. The estimate is calculated with
methods similar to those used in White (2000b) and Hansedbj2 he joint distribution of

(Q(Z.61) + ki —E[Q(Z.00D]. ... Q(Z. Omy) + Kipy — EIQ(Z. Oom,)]).

is estimated by the empirical distribution of

(QE, 850 + K — Q(Z,60), ..., QUEL, by ) + Koy — QZ, B} (3)

forb=1,..., B, becauseQ(Z, é,—) play the role of EQ(Z, 0¢;)] under the resampling scheme. These
bootstrap statistics are relatively easy to compute bectngsstructure of the likelihood function is
A %2

A%k ~ A A o N
Q(Z. 6y ) — Q(Z.6;) =n(log6;2 + 1) — n(logé? + 1) = nlog 5>,

O-.

j

Where&’g?j =nt Z{‘:l(Ygft—Bij g,j,t)z. For each of the bootstrap resamples, we compute the tastistat
Tnu = max [{Q(E. 05 + K - Qz.00| - [z 0 ) +K - z.dp]|.

The empirical distribution OWJR,M yields an estimate of the distribution &k n¢, asn, B — oo. The
p-value for the hypothesis test with which we are concernedisputed by

B
pM = B*l Z 1lTb*jR’MZTR,M ] .
b=1

It is also straightforward to construct the MCS using eittier AIC, the BIC, the AIC, or the BIC.
The relevant test statistic has the form

Tew = max|[Q(Z.6) +6] - [QZ.0) + ]|

wherec; = 2k; for the AIC, ¢; = log(n)k; for the BIC,c; = ZR]* for the AIC*, andc; = Iog(n)Rj* for the
BIC*. The computation of the resampled test statisfigs, ,,. is identical for the three criteria. The reason
is that the location shift¢;, has no effect on the bootstrap statistics, once the null thgses is imposed.
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Under the null hypothesis we recenter the bootstrap statiabout zero and this offsets the location shift
C —Gj.

When two models are nested, the null hypothesis used WItt€KE[Q(Z, 0))] = E[Q(Z, 6¢;)], has
the strong implication thaQ(Z, 0q) = Q(Z,6;) a.e. (almost everywhere), and this causes the limit
distribution of the quasi likelihood ratio statistiQ(Z, ;) — Q(Z, éj), to differ for nested or non-nested
comparisons, see Vuong (1989). This property of nested adsgms can be imposed on the bootstrap
resamples, by replacin@(Z, éj) with Q(Z*, éj), because the latter is the bootstrap varianQo£, 6o;).
The MCS procedure can be adapted, so that different boptstf®emes are used for nested and non-nested
comparisons. Imposing the stronger null hypotheRi6Z, 6o) = Q(Z, 0o;) a.e. may improve the power of
the procedure. However, such a bootstrap implementatiomysapplicable to KLIC because the underlying
null hypotheses of other criteria, such as Alhd BIC, do not imply Q(Z, 6¢i) = Q(Z, 6o;) for nested
models. Therefore, this paper does not pursue an adaptistiap implementation in this paper.

4 Relation to Existing Multiple Comparisons Methods

The introduction discusses the relation between the MC $henlace-test used to select the number of coin-
tegration relations, see Johansen (1988). The MCS andabe-test share an underlying testing principle
known agntersection-union testinUT). Berger (1982) is responsible for formalizing the IWhile Pan-
tula (1989) applies the IUT to the problem of selecting tlgelEngth and order of integration in univariate
autoregressive processes.

Another way to cast the MCS problem is as a multiple compasigwoblem. The multiple comparisons
problem has a long history in the statistics literature, Gepta and Panchapakesan (1979), Hsu (1996),
Dudoit, Shaffer, and Boldrick (2003) and Lehmann and Rom@005, chapter 9) and references therein.
Results from this literature have recently been adoptetieretonometrics literature. One problem is that
of multiple comparisons with besivhere objects are compared to that with the ‘best’ sampf@peance.
Statistical procedures fanultiple comparisons with besre discussed and applied to economic problems
in Horrace and Schmidt (2000). Shimodaira (1998) uses amnaaf Gupta’s subset selection, see Gupta
and Panchapakesan (1979), to construct a set of modelsthertrhs a model confidence set. His procedure
is specific to a ranking of models in terms offC;), and his framework is different from ours in a number
of ways. For instance, his preferred set of models does matadhe FWE. He also invokes a Gaussian
approximation that rules out comparisons of nested models.

Our MCS employs a sequential testing procedure that mintegsdown procedures for multiple hy-
pothesis testing, see e.g. Dudoit, Shaffer, and Boldridl082, Lehmann and Romano (2005, chapter
9) or Romano, Shaikh, and Wolf (2008). Our definition of M@Ssalues implies the monotonicity,
f’eml < IﬁeMz < ... < f)eMmO, that is key for the result of Theorem 4. This monotonicity lisoaa
feature of the so-callestep-down Holm adjusted p-values
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4.1 Relation to Tests for Superior Predictive Ability

Another related problem is the case where the benchmarkhichvall objects are compared, is selected
independent of the data used for the comparison. This proldeknown asmultiple comparisons with
control. In the context of forecast comparisons, this is the prolbileat arises when testing fauperior
predictive ability(SPA), see White (2000b), Hansen (2005), and Romano and(Q06).

The MCS has several advantages over tests for superiorcpvedability. Thereality check for data
snoopingof White (2000b) and the SPA test of Hansen (2005) are dedigmaddress whether a particular
benchmark is significantly outperformed by any of the aléues used in the comparison. Unlike these
tests the MCS procedure does not require a benchmark to bigisgewhich is very useful in applications
without an obvious benchmark. In the situation where theeenatural benchmark, the MCS procedure can
still address the same objective as that of the SPA tests. iSldione by observing whether the designated
benchmark is in the MCS or not, where the latter correspoadsrejection of the null hypothesis that is
relevant for a SPA test.

The MCS procedure has the advantage that it can be employetbftel selection, whereas a SPA-test
is ill-suited for this problem. A rejection of the SPA-testlpidentifies one or more models as significantly
better than the benchma?KkThus, the SPA-test offers little guidance about which medeside inM*. We
are also faced with a similar problem in the event that thehygdothesis is not rejected by the SPA-test. In
this case the benchmark may be the best model, but this layeftso be applied to other models. This issue
can be resolved if all models serve as the benchmark in essefricomparisons. The result is a sequence
of SPA-tests that define the MCS to be the set of ‘benchmarkdeisathat are found not to be significantly
inferior to the alternatives. However, the level of indivad SPA-tests need to be adjusted for the number of
tests that are computed to control the FWE. For examplegifdtel in each of the SPA-testsagm, the
Bonferroni bound states that the resulting set of ‘sungvimenchmarks is a MCS with coverageé — «).
Nonetheless, there is a substantial loss of power assdamtk the small level applied to the individual
tests. The loss of power highlights a major pitfall of sediaisPA-tests.

Another drawback of constructing a MCS from SPA-tests i tha null of a SPA-test is a composite
hypothesis. The null is defined by several inequality camsts which affects the asymptotic distribution
of the SPA-test statistic because it depends on the numbgnadihg inequalities. The binding inequality
constraints create a nuisance parameter problem. Thissmlédficult to control the Type | error rate
inducing an additional loss of power, see Hansen (2003aoimparison, the MCS procedure is based on a
sequence of hypotheses tests that only involve equalitieigh avoids composite hypothesis testing.

5Romano and Wolf (2005) improve upon the reality check byfifiging the entire set of alternatives that significantlywioate
the benchmark. This set of models is specific to the choicenthbmark and has therefore no direct relation to the MCS.
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4.2 Related Sequential Testing Procedures for Model Selach

This subsection considers some relevant aspects of aarople evaluation of forecasting models, and how
the MCS procedure relates to these issues.

Several papers have studied the problem of selecting thédresasting model from a set of competing
models. For example, Engle and Brown (1985) compare seteptiocedures that are based on six infor-
mation criteria and two testing procedures (‘generalgeesfic’ and ‘specific-to-general’), Sin and White
(1996) analyze information criteria for possibly missfied models, and Inoue and Kilian (2006) compare
selection procedures that are based on information @igeril out-of-sample evaluation. Granger, King, and
White (1995) argue that the general-to-specific selectiongrlure is based on an incorrect use of hypothe-
sis testing, because the model chosen to be the null hypeihes pairwise comparison is unfairly favored.
This is problematic when the data set under investigatias ¢t contain much information, which makes
it difficult to distinguish between models. The MCS proceddoes not assume that a particular model is
the true model, nor is the null hypothesis defined by a singideh Instead, all models are treated equally
in the comparison and only evaluated on out-of-sample piigdiability.

4.3 Aspects of Parameter Uncertainty and Forecasting

Parameter estimation can play an important role in the atialu and comparison of forecasting models.
Specifically when the comparison of nested models reliesaoarpeters that are estimated using certain es-
timation schemes, the limit distribution of our test statsneed not be Gaussian, see West and McCracken
(1998) and Clark and McCracken (2001). In the present ctntiesre will be cases that do not fulfil As-
sumption 2. Some of these problems can be avoided by usindjreyreindow for parameter estimation,
known as theolling scheme This is the approach taken by Giacomini and White (2006)erAktively one
can estimate the parameters once (using data that are datetbghe evaluation period) and then compare
the forecastgonditional on these parameter estimatétowever, the MCS should be applied with caution
when forecasts are based on estimated parameters becaasswmptions need not hold in this case. As a
result, modifications are needed in the case with nested Is)ya#® Chong and Hendry (1986), Harvey and
Newbold (2000), Chao, Corradi, and Swanson (2001), ank@lzat McCracken (2001) among others. The
key modification that is needed to accommodate the case edtied models is to adopt a test with a proper
size. With proper choices fdry, andey the general theory for the MCS procedure remains. Howewer, i
this paper we will not pursue this extension, because it @oblscure our main objective, which is to lay
out the key ideas of the MCS.

4.4 Bayesian Interpretation

The MCS procedure is based on frequentist principles, Bambles some aspects of Bayesian model
selection techniques. By specifying a prior over the model$1°, a Bayesian procedure would produce
a posterior distribution for each model, conditional on dlctual data. This approach to MCS construction
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includes those models with the largest posteriors which auleast to 1— «. If the Bayesian were also to
choose models by minimizing the ‘risk’ associated with thesl attributed to each model, the MCS would
be a Bayes decision procedure with respect to the modelrpmsteNote that the Bayesian and frequentist
MCSs rely on the metric under which loss is calculated ane@:dé@n sample information.

We argue our approach to the MCS and its bootstrap implerti@mteompares favorably to Bayesian
methods of model selection. One advantage of the frequepj®oach is that it avoids having to place
priors on the elements of1° (and their parameters). Our probability statement is aasamt with the
random data-dependent set of models that is the MCS. Itftiterss meaningful to state that the best model
can be found in the MCS with a certain probability. The MC®glaces moderate computational demands
on the researcher, unlike the synthetic data creation rdstbie which Bayesian Markov chain-Monte Carlo
methods rely.

5 Simulation Results

This section reports on Monte Carlo experiments that shewt@@ S to be properly sized and possess good

power in various simulations designs.

5.1 Simulation Experiment |

We consider two designs that are based omthgimensional vecto = (0, L+, ..., 2=2 1)’x//n, that
defines the relative performances; = E(dij:) = 6; — 0;. The experimental design ensures that
consists of a single element, unless= 0, in which case we havé1* = MP. The stochastic nature of the

simulation is driven by

1 fori = j,

X¢ ~ iid Nym(0, X), whereX;; = 0
P fori # j, forsomeO< p <1,

wherep controls the degree of correlation between alternatives.
Design I.A (Symmetric distributed loss): Define the (vector of) loss variables to be

&
VE@)
ande; ~ iid N(0, 1). This implies that Ey;) = —¢/{2(1 — ¢?)} and vary;) = ¢/(1 — ¢?), such that
E(a) = exp(E(yy) + var(y;)/2} = exp{0} = 1, and vata) = (explg/(1— ¢?)} — 1). Further Ea?) =
var(a,) +1 = exp{¢/(1— ¢?)} such that vail;) = 1. Note thaty = 0 corresponds to homoskedastic errors

Li=6+ Xi,  wherea; = exp(yy), &t = + oY1+ Vs,

¢
21+ ¢)

andg > 0 corresponds to (GARCH-type) heteroskedastic errors.

The simulations employ 2,500 repetitions, whire: 0, 5, 10, 20,0 = 0.00, 0.50, 0.75, 0.9% = 0.0,
0.5, 0.8, andn = 10, 40, 100. We use the block-bootstrap, in which blocks hengthl = 2, and results
are based oB = 1, 000 resamples. The size of a synthetic sampleds 250. This approximates sample

sizes often available for model selection exercises in o&@mMomics.
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Table 2: Simulation Design I.A

Panel A:p =0
Frequency at whichv* ¢ A1y, (Size)
o= 0 05 075 095 0 Q5 075 095 0 Q5 075 095

A=0 0.879 0.889 0.880 0.880 0.865 0.866 0.859 0.857 0.846 08834 0.844
A=5 0.989 0.988 0.991 1.000 0.978 0.978 0.974 0.984 0.972 0M921 0.976
A =10 0.994 0.997 0.999 1.000 0.979 0.982 0.984 0.993 0.97020@976 0.980
A =20 0.998 1.000 1.000 1.000 0.987 0.981 0.992 1.000 0.976700984 0.991
A =40 1.000 1.000 1.000 1.000 0.993 0.995 0.998 1.000 0.9834010890 0.998

Average number of elements Wy, (power)

A=0 9.590 9.628 9.624 9.606 38.41 38.52 38.62 38.57 96.23 9925 96.20
A=5 6.501 4.715 3.251 1.549 25.00 18.64 13.32 6.397 58.59 432180 14.99
A =10 3.369 2.400 1.732 1.027 13.54 9.807 7.156 3.280 31.84222@888 7.915
A =20 1.704 1.308 1.062 1.000 7.074 5.034 3.636 1.678 16.92918.818 4.079
A =40 1.072 1.005 1.000 1.000 3.576 2.608 1.842 1.052 8.7846643339 2.096

Panel B:¢p = 0.5

Frequency at which* c 14, (Size)

p = 0 05 075 095 0 Q5 075 095 0 Q5 075 095
A=0 0.898 0.894 0.900 0.892 0.898 0.888 0.891 0.892 0.898 0(B8%90 0.889
rA=5 0.984 0.990 0.995 1.000 0.968 0.973 0.977 0.984 0.967 0B84 0.969
A =10 0.990 0.999 1.000 1.000 0.980 0.981 0.982 0.995 0.970700881 0.985

A=20 0.999 1.000 1.000 1.000 0.987 0.989 0.989 1.000 0.97810M979 0.992
A =40 1.000 1.000 1.000 1.000 0.996 0.996 1.000 1.000 0.978201@890 0.999

Average number of elements W, (power)

A=0 9.644 9.637 9.650 9.624 38.67 38.64 38.75 38.73 97.19 996283 96.69
A=5 6.171 4.597 3.276 1.587 24.00 17.52 13.04 6.168 56.10 4R9149 14.43
A =10 3.255 2.354 1.730 1.037 12.90 9.290 6.884 3.218 29.92121030 7.562
A=20 1.746 1.288 1.073 1.000 6.896 4.974 3.621 1.695 15.86518.526 3.978
A =40 1.088 1.009 1.000 1.000 3.586 2.596 1.850 1.064 8.425564434 2.072

Panel C:¢ = 0.8
Frequency at whichv* c A1, (Size)
p = 0 05 075 095 0 Q5 075 095 0 Q5 075 095

A=0 0.928 0.922 0.928 0.936 0.946 0.938 0.938 0.935 0.940 0@488 0.938
A=5 0.990 0.997 0.997 1.000 0.979 0.979 0.986 0.991 0.962 0m@871 0.978
A =10 0.998 1.000 1.000 1.000 0.980 0.982 0.993 0.998 0.973200974 0.991
A=20 1.000 1.000 1.000 1.000 0.990 0.991 0.996 1.000 0.97710@890 0.996
A =40 1.000 1.000 1.000 1.000 0.998 0.999 1.000 1.000 0.9914010994 0.999

Average number of elements W, (power)

A=0 9.738 9.759 9.771 9.796 39.39 39.33 39.33 39.27 98.33 98&%H63 98.43
A=5 4.546 3.578 2.587 1.414 16.64 12.62 9.395 4.670 38.12 220680 10.63
A =10 2.622 2.058 1.540 1.102 9.580 6.896 5.121 2.605 20.708141853 5.822
A=20 1574 1.284 1.146 1.016 5.066 3.791 2.784 1.546 11.248864355 3.132
A =40 1.134 1.055 1.022 1.003 2.888 2.149 1.613 1.115 6.284443%880 1.796

The two statistics are the frequency at whitf,,, containsAt* and the other is the average number of

models inM,,, The former shows the ‘size’ properties of the MCS procedune the latter is informative
about the ‘power’ of the procedure.
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We report two statistics from our simulation experimentdshena = 10%. One is the frequency at
which /\7130% containsM* and the other is the average number of modelﬁgb%. The former shows the
‘size’ properties of the MCS procedure and the latter isrimfative about the ‘power’ of the procedure.

Table 2 presents simulation results that show the small kapnpperties of the MCS procedure closely
match its theoretical predictions. The frequency that th&t Imodels are contained in the MCS is almost
always greater thafl — «), and the MCS becomes better at separating the inferior méabeh the superior
model, as they; s become more disperse (e.g. ascreases). Note also that a larger correlation makes it
easier to separate inferior models from superior models iBmot surprising because @y ;) = var(L;)+
var(L ;) — 2couLit, Ljt) = 2(1 — p), which is decreasing ip. Thus, a larger correlation (holding the
individual variances fixed) is associated with more infaiiorathat allows the MCS to separate good from
bad models. Finally, the effects of heteroskedasticityrelegively small, but heteroskedasticity does appear
to add power to the MCS procedure. The average number of mbd&?go% tends to fall ag increases.

Corollary 2 has a consistency result that applies when 0. The implication is that only one model
entersM* under this restriction. Table 2 shows thet* often contains only one model given> 0. The
MCS matches this theoretical prediction in Table 2 becaﬁ\%% = M*in a large number of simulations.
This equality holds especially whenand p are large. These are also the simulation experiments tekat yi
size and power statistics equal (or nearly equal) to oneh ¥¥fte close to one or equal to one, observe that
M* C My, (in all the synthetic samples). On the other hand;,, is reduced to a single model (in all
the synthetic samples) when power is close to one or equaldo o

Design |.B (Dependent loss):This design setd; ~ iid Nig(6, ¥), where the covariance matrix has
the following structure,Z;; = pl'~Jl, for p = 0,0.5, and 075. The mean vector takes the form=
©,...,0, % e, %)’ so that the number of zero-elementinlefines the number of elements*. We
report simulation results for the case wherg= 10 andM* consists of either one, two, or five models.
The simulation results are presented in Figure 1. The lefelsadisplay the frequency at whiaﬁ;o%
containsM* (‘size’) at various sample sizes. The right panels predemtaiverage number of models in
/\730% (‘power’). The two upper panels contain the results for tasecwhereM* is a single model. The
upper-left panel indicates that the best model is almosaydwcontained in the MCS. This agrees with
Corollary 2, that states thaf/ﬁ_a Y M* asn — oo, wheneverM* consists of a single model. The
upper-right panel illustrates the ‘power’ of the procedbesed orlmax v = MaXcaq ti.. We note that it
takes about 800 observations to weed out the nine inferiatetsan this design. The MCS procedure is
barely affected by the correlation parameterput we note that a larger results in a small loss in ‘power’.
In the lower-left panel we see that the frequency at whidh is contained in/\//Tgo% is reasonably close to
90% except for the very short sample sizes. From the midghg-and lower-right panel we see that it takes
about 500 observations to remove all the poor models. Weralsothat the correlation parameter has a

larger effect on the ‘power’ wheM* contains more than a one model.
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Figure 1: Simulation design 1.B with 10 alternatives and 19125 elements inV*. The left panels report

e~

the frequency at whictM* is contained inM3, (size properties) and the right panels report the average

—

number of models inV§,,, (power properties).

24



Model Confidence Set

The middle-right and lower-right panels illustrate anothspect of the MCS procedure. For large
sample sizes we note that the average number of mode@jg% falls below the number of models in
M*. The explanation is simple. After all poor models have beémiehted, as occurs with probability
approaching one as — oo, there is a positive probability thaiy ,(- is rejected, which causes the MCS
procedure to eliminate a good model. Thus, the inference raw ffom the simulation results are quite
encouraging for th& . ¢ test.

5.2 Simulation Experiment Il: Regression Models

Next we study the properties of the MCS procedure in the abofan-sample evaluation of regression mod-
els, as we laid out in Section 3.2. We consider a setup witpasigntial regressors{; = (X1, ..., Xe.1)',
that are distributed as follows,

X; ~iid Ng(0, &),  whereX;; = 1 forf =1

P fori # j, forsome 0< p < 1,

wherep measures the degree of dependence between the regressodefité the dependent variable by
Y = pn+ BXet + \/l——,Bzet, whereg; ~ iid N(0O, 1). In addition to the six variables iX;, we include a
constant,Xo; = 1, in all regression models. The set of regressions being atgains given by the twelve
regression models that are listed in each of the panels ile Bab

We report simulation results based on 10,000 repetitiosisgua design with afR? = 50% (i.e. 82 =
0.5) and eitherp = 0.3 or p = 0.9.5 For the number of bootstrap resamples we Bse- 1, 000. Since
Xot = 1lisincluded in all regression models, the relevant MCSsdited are invariant to the actual value for
i, Sowe sejr = 0 in our simulations.

The definition of M* will depend on the criterion. With KLIC the set of best modeld*, is given by
the set of regression models that includ@s The reason is that KLIC does not favor parsimonious models,
unlike the AIC and BIC. With these two criteriapM*, is defined to be the most parsimonious regression
model that include(;. The models inM* are identified by the shaded regions in Table 3.

Our simulation results are reported in Table 3. The averafjeewofQ(Zj, éj) is given in the first pair
of columns, followed by the average estimate of the effectiggrees of freedonk?. The Gaussian setup
is such that all models are correctly specified. So the @fedegrees of freedom is simply the number of
free parameters, which is the number of regressors plusumeff Table 3 shows that the average value
of ki, is very close to the number of free parameters in jttth regression model. The last three pairs of
columns report the frequency that each of the models atdfy,,. We want large numbers inside the shaded
region and small numbers outside the shaded region. Thiksrase intuitive. As the sample size increases,
from 50 to 100 and then to 500, the MCS procedure becomes bettBminating the models that do not re-
side inM*. With a sample size af = 500, the consistent criterion, BfChas reduced the MCS to the single

8simulation results fop? = 0.1 and 09 are available in a separate appendix, see Hansen, Lurdidlason (2009)
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Table 3: Simulation Experiment Il

Q(Z;,0) k* KLIC AIC* (TIC) BIC*
Panel A: n=50
o= 03 09 03 09 03 09 03 09 03 09
Xo 481 481 1.99 2.00 0.058 0.038 0.085 0.070 0.118 0.124
Xo, X1 12.4 124  3.02 3.02/ 0.99¢ 0.999 1.00C 1.000  1.00C 1.000
Xos ..., X2 11.3 11.3  4.08 4.08 0.99¢ 0.999 0.962 0.999 0566 0.940
Xos ..., X3 10.2 10.2 518 518 0.99¢ 0.999 0.940 0.998  0.469 0.912
Xo, ..., Xa 9.09 9.04 6.32 6.32 1.00C 1.000 0.905 0.997 0.367 0.803
Xo ..., X5 7.95 7.88 7.50 7.50 1.00C 1.000 0.867 0.994  0.279 0.598
Xos ..., Xe 6.77 6.69 8.73 874 1.00C 1.000 0.806 0.990  0.203 0.400
Xo, X2 447 21.0 3.02 3.02 0.086 0905 0.100 0.935 0.099 0.877
Xo, X2, X3 423 181 4.08 408 0.106 0948  0.107 0.949 0.077 0.806

Xos X2, ...y Xy 40.4 16.3 5.18 5.18 0.120 0.958 0.105 0.938 0.054 0.665
Xo, X2, ..., X5 38.8 14.8 6.32 6.32 0.132 0.962 0.100 0.913 0.036 0.501
Xo, X2, ..., Xg 37.2 134 7.50 7.51 0.145 0.964 0.094 0.869 0.022 0.348

Panel B: n= 100

o= 03 09 03 09 0.3 09 0.3 09 0.3 09

Xo 98.0 98.1 1.99 1.99 0.000 0.000 0.000 0.000 0.000 0.000
Xo, X1 276 27.8 3.00 3.00 0.99¢ 1.000 1.00C 1.000 1.00C 1.000

Xoy o vs X2 26.6 26.7 4.03 4.03 0.99¢ 1.000 0.959 0.982 0.402 0.675
Xoy .-y X3 255 257 5.07 5.06 0.99¢ 1.000 0.939 0.975 0.276 0.619
Xoy ooy Xg 24.4 24.6 6.12 6.12° 1.00C 1.000 0.908 0.960 0.174 0.545
Xos -y X5 23.4 23.6 7.19 7.18 1.00C 1.000 0.864 0.942 0.101 0.390
Xos -+, X 22.3 225 8.28 8.27 1.00C 1.000 0.800 0.920 0.059 0.238
Xo, X2 92.4 45.1 3.00 3.01 0.000 0.548 0.000 0.585 0.000 0.490
Xo, X2, X3 88.8 40.4 4.03 4.03 0.000 0.691 0.000 0.666 0.000 0.443

Xos X2, ...y Xy 86.1 38.1 5.07 5.07 0.000 0.736 0.000 0.675 0.000 0.338
Xos X2, ..., X5 83.9 36.3 6.12 6.12 0.000 0.759 0.000 0.655 0.000 0.236
Xo, X2, ..., Xg 82.0 34.8 7.19 7.19 0.001 0.772 0.000 0.631 0.000 0.143

Panel C: n= 500

o= 03 09 03 09 0.3 09 0.3 09 0.3 09

Xo 498 498 2.00 2.00 0.000 0.000 0.000 0.000 0.000 0.000
Xo, X1 151 151 3.00 3.00 0.99¢ 0.999 1.00C 1.000 1.00C 1.000

Xoy - vy X2 150 150 4.00 4.00 0.99¢ 0.999 0.958 0.960 0.207 0.206
Xoy -5 X3 149 149 5.01 5.01 0.99¢ 1.000 0.938 0.938 0.100 0.099
Xoy ooy Xg 148 148 6.02 6.01 1.00C 1.000 0.907 0.901 0.044 0.042
Xo,.-+s X5 147 147 7.03 7.02 1.00C 1.000 0.858 0.852 0.020 0.017
Xos -+, X 145 146 8.04 8.03 1.00C 1.000 0.790 0.792 0.006 0.008
Xo, X2 474 238 3.00 3.00 0.000 0.000 0.000 0.000 0.000 0.000
Xo, X2, X3 460 219 4.00 4.00 0.000 0.002 0.000 0.002 0.000 0.002

Xo, Xo, ..oy, Xy 451 211 5.01 5.01 0.000 0.004 0.000 0.004 0.000 0.001
Xos X2, ..., X5 444 206 6.02 6.01 0.000 0.006 0.000 0.006 0.000 0.001
Xo, X2, ..., Xg 439 203 7.03 7.02 0.000 0.008 0.000 0.007 0.000 0.000

The average value of the maximized log-likelihood functmultiplied by minus two is reported in the first
two columns. The next pair of columns has the average of fieetefe degrees of freedom. The last three
pairs of columns report the frequency that a particulareggjon model is in theﬂgo% for each of the three
criteria, KLIC, AIC* and BIC'.
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best model in the majority of simulation¥his is not true for the AIC criterion. Although it tends to
settle on more parsimonious models than the KLIC, the*Ai&s a penalty that makes it possible for an
overparameterized model to have the best*Allhe bootstrap testing procedure is conservative when the
comparisons involve nested models under KLIC, see our slsson in the last paragraph of Section 3.2.
This explains that both Type | and Type Il errors are closeeto z2vhenn = 500, an ideal outcome that is
not guaranteed whet;,. includes non-nested modéls.

6 Empirical Applications

6.1 US Inflation Forecasts: Stock & Watson (JME, 1999) Revised

This section revisits the Stock and Watson (1999) study efuist out-of-sample predictors of inflation.
Their empirical application consists of pairwise compamis of a large number of inflation forecasting
models. The set of inflation forecasting models include®isgvthat have a Phillips curve interpretation,
along with autoregressive and a no-change (month over momtkcast. We extend their set of forecasts
by adding a second no-change (12 months over 12 monthsyfirdwat was used in Atkeson and Ohanian
(2001).

Stock and Watson (1999) measure inflatiop, as either the CPI-U, all item®UNEW) or the headline
personal consumption expenditure implicit price defla@MDC). The relevant Phillips curve is

Tieh —my = ¢+ BLHU + y(L)YA - L)my + &4, 4)

whereu, is the unemployment raté, is the lag polynomial operator, armg,, is the long-horizon inflation
forecast innovation. Note that the natural rate hypothissi®t imposed on the Phillips curve (4) and that
inflation as a regressor is in its first difference. Stock arats6h also forecast inflation with (4) where the
unemployment rate; is replaced with different macro variabl@s.

The entire sample runs from 1956t to 1997m9. Following Stock and Watson, we study the properties
of their forecasting models on the pre- and post-1984 supkesnof 1970m1-1983mM12 and 1984u1-
1996M9.° The former subsample contains the great inflation of the 4@if@ the rapid disinflation of the
early 1980s. Inflation does not exhibit this volatile beloavh the post-1984 subsample. We follow Stock
and Watson in order to replicate their inflation forecastowelver, our MCS bootstrap implementation,
which is described in Section 3, relies on an assumptiondthais stationary. This is not plausible when the
parameters are estimated with a recursive estimation sshesrwas used in Stock and Watson (1999). We

"In an unreported simulation study wheke}, . was designed to include non-nested models, we found thedrey by which
Mijie € Mg, cONverge to 90%

8The data for this applications was downloaded from Mark \fatswebpage. We refer the interested reader to Stock and
Watson (1999) for details about the data and model spedificat

9Stock and Watson split their sample at the end of 1983 to atdou structural change in inflation dynamics. This struatu
break is ignored when estimating the Phillips curve modgh@t the alternative inflation forecasting equations. Thjsstified
by Stock and Watson because the impact of the 1984 strutitgak on their estimated Phillips curve coefficients is $mal
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avoid this problem by following Giacomini and White (2006)dapresent empirical results that are based
on parameters estimated over a rolling window with a fixed ieimof observation¥) Regressions are
estimated on data that begins no earlier than 1@80although lagged regressors impinge on observations
back to 1959u1.

Table 4: MCS for simple regression-based inflation forecast

PUNEW GMDC

1970-1983 1984-1996 1970-1983 1984-1996
Variable Trans RMSE puycs RMSE  pucs RMSE pumcs RMSE  pucs
No change (month) 3.290 .005 2.140 .099 2.208 .083 1.751 .000
No change (year) - 2.798 .015 1.207 00 2100 .204 0.888 1.00*
uniar - 2.802 .011 1.330 .851 2.026 .278 1.070 .547*
'Gaps’ specifications
dtip DT 2,597 110 1.475 .785 2.103 .177 1.050 .554*
dtgmpyq DT 2.751 .046 1.691 .487 2.090 .296* 1.125 .468*
dtmsmtq DT 2202 .896 1.704 671 1.806 .575 1.046 .554*
dtlpnag DT 2591 140 1433 .825* 2.132 137 1.026 .554*
ipxmca Lv 2.609 .122 1.318 .851* 2.040 .468* 1.034 .554*
hsbp LN 2.114 106 1.582 .754 1.967 .550* 1.034 .554*
lhmu25 Lv 2.968 .015 1439 .75% 2231 122 1.040 .554*
First difference specifications
ip DLN 2.344 485 1.393 .85%" 1.946 .509* 1.058 .554*
gmpyq DLN 2306 .88% 1524 .624* 1.709 1.06* 1.158 .254*
msmtq DLN 2158 .8986 1.391 .85% 1.857 575 1.066 .554*
lpnag DLN 2.408 .608 1.341 .851* 1.940 .509* 1.027 .554*
dipxmca DLV 2379 .26% 1.353 .85% 1.903 .575 1.041 .554*
dhsbp DLN 2.850 .008 1.456 .804 2.076 .137 1.070 .547*
dihmu25 DLV 2383 .31%& 1.440 .75& 2.035 .190 1.065 .547*
dihur DLV 2296 .763* 1.429 .80& 1.904 516 1.067 .547*
Phillips curve
LHUR 2.637 .071 1.388 .851 2.076 .184 1.162 .480*

RMSEs and MC-values for the different forecasts. The forecastﬁgo% and /\7’7‘5% are identified by one and
two asterisks, respectively.

We compute the MCS across all of the Stock and Watson infldtimtasting models. This includes
the Phillips curve model (4), the inflation forecasting d@rathat runs through all of the macro variables
considered by Stock and Watson, a univariate autoregeessddel, and two no-change forecasts. The first
no-change forecast is the past month’s inflation rate andebend no-change forecast uses the past year’s
inflation rate as its forecast. The former matches the nogdhdorecast in Stock and Watson (1999) and

10The corresponding empirical results that are based on deasthat are estimated with the recursive scheme, as welsrus
Stock and Watson (1999), are available in a separate appesedti Hansen, Lunde, and Nason (2009). Although our asgmpt
do not justify the recursive estimation scheme, it prodyzs=udo-MCS results that are very similar to those obtaimelbiuthe
rolling window estimation scheme.
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the latter matches the no-change forecast in Atkeson andi@hg001). Stock and Watson also present
results for forecast combinations and forecasts basediocigal component indicator variablés.

Tables 4-5 report (the level of) the root mean square errf§R) and MCSp-values for each of the
inflation forecasting models. The first column of Table 4 disis the transformation of the macro variable
employed by the forecasting equation.

Our Table 4 matches the results reported in Stock and Wal€89( table 2). The initial model space
MU is filled with a total of 19 models. The results for the two rimnge forecasts and the AR are the first
three rows of Table 4. The RMSEs and {w@alues for the Phillips curve forecasting model (4) appeéne
bottom row of our Table 4. The rest of the rows of Table 4 arédghp’ and ‘first difference’ specifications
of Stock and Watson'’s aggregate activity variables thagapjm place oty in inflation forecasting equation
(4). The ‘gap’ variables are computed with a one-sided Hidaind Prescott (1997) filter, see Stock and
Watson (1999, p. 301) for detaits.

A glance at Table 4 reveals that the MCS of subsamples 1£[£0983m12 and 1984v1-1996Mm9
are strikingly different for botPUNEW and GMDC. The MCS of the pre-1984 subsample places nine
forecasting models iﬁ’UNEV\H\//T’;E,% and 11 models irGMDC—/W;S%. For the post-1984 subsample, all
but one model ends up 'LN’Z%% for both PUNEWandGMDC. The only model that is consistently kicked
out of these MCSs is the ‘monthly’ no-change forecast, whiess last month’s inflation rate as its forecast.

Another intriguing feature of Table 4 is the inflation foretag models that reside in the MCS when
faced with the 197011-1983m12 subsample. The nine models that ar@lﬂlNEV\H\//T’;E,% are driven by
macro variables related either to real economic activity.(enanufacturing and trade, capacity utilization,
and building permits) or to the labor market. The labor mavkeiables ardpnag (employees on nonagri-
cultural payrolls) andilhur (first difference of the unemployment rate, all workers 1érgeand older). Thus,
there is labor market information that is important for peédg inflation during the pre-1984 subsample.
This result is consistent with traditional Keynesian meeswf aggregate demand.

Table 4 also shows that there are two levels and six firstrdifiee specifications of the forecasting
equation that consistently appear/ﬁ;s% using the 1970u1-1983m12 subsample. On this subsample,
only msmtq(total real manufacturing and trade) is consistently ewdmnleoyPUNEW andGMDC-/\//T’;E,%
whether in levels or first differences. In summary, we intetpghese variables as signals about the antic-
ipated path either of real aggregate demand or real aggregaply that help to predict inflation out-of-
sample in the pre-1984 subsample.

There are several more inferences to draw from Table 4. Tomseern the two types of no change
forecasts whose predictive accuracy is strikingly differerhe no-change (month) forecast fails to appear

in /T/l\és% either on the pre-1984 or on the post-1984 subsamples, adhéne no-change (year) forecast

11see Stock and Watson (1999) for details about their modstirgegy, forecasting procedures, and data set.

12The MCS p-values are computed using a block sizel o 12 in the bootstrap implementation. The MQ@Bvalues are
qualitatively similar when computed with= 6, andl = 9. These are reported in a separate appendix, see Hansen,, lamtde
Nason (2009).
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e~

finds its way intoM3;,, for the post-1984 subsample, but not the 187D31983M12 subsample. These
results are especially of interest because the no-chamge) (forecast yields the best inflation forecasts on
the 1984m1-1996M9 subsample for botRUNEWandGMDC. These empirical results for the no-change
inflation forecasts are interesting because they recoti@leesults of Stock and Watson (1999) with those
of Atkeson and Ohanian (2001). Stock and Watson (1999, p) Ba{ that: “The conventionally speci-
fied Phillips curve, based on the unemployment rate, wasdféarperform reasonably well. Its forecasts
are better than univariate forecasting models (both agitessions and random walk models)”. In contrast,
Atkeson and Ohanian (2001, p. 10) conclude that: “econsrhigte not produced a version of the Phillips
curve that makes more accurate inflation forecasts thare thiom a naive model that presumes inflation
over the next four quarters will be equal to inflation over it four quarters.” The source of the disagree-
ment is that Stock and Watson and Atkeson and Ohanian stifdyedit no-change inflation forecasts. The
no-change forecast Stock and Watson (1999) deploy is lasthisanflation rate, whereas the no-change
forecasts in Atkeson and Ohanian (2001) is the past yedlaion rate.

We agree with Stock and Watson that the Phillips curve is &ddhat yields better forecast of inflation
in the pre-1984 period. The releva,h/ﬂés% do not include either of the no-change forecastsHOINEW
andGMDC. However for the post-1984 sample we observe that no-ch@mge) forecast has the smallest
sample loss of all forecasts which supports the conclusidtli@son and Ohanian (2001).

Table 5 generates MCSs using factor models and forecasticatian methods that replicates the set
of forecasts in Stock and Watson (1999, table 4). They coenhitarge set of inflation forecasts from
an array of 168 models using sample means, sample mediamhsjdge estimation to produce forecast
weighting schemes. The other forecasting approach depmngsincipal components of the 168 macro-
predictors. The idea is that there exists an underlyingfamtfactors (e.g., real aggregate demand, financial
conditions) that summarize the information of a large satretlictors. For example, Solow (1976) argues
that a motivation for the Phillips curves of the 1960s and0Ewas that unemployment captured, albeit
imperfectly, the true unobserved state of real aggregateadd.

The factor models and forecast combination methods pradéleéion forecasts that are in general better
than those in Table 4. The forecasts constructed from ‘Alidators’ and ‘Real activity indicators’ in Panels
A and B do particularly well across the board. Interestintilg best forecast during the 19v1-1983m12
subsample is the one-factor ‘All indicators’ model, whitetsecond best is the one-factor ‘Real activity
indicators’ model. Most of the forecasts constructed from ‘Money’ variables do not find their way into
the MCSs.

Despite the better predictive accuracy produced by factmtats and forecast combinations, during the
post-1984 period the best forecast is the no-change (ye@gdst.
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Table 5: MCS results for shrinkage-type inflation forecasts

PUNEW GMDC

1970-1983 1984-1996 1970-1983 1984-1996
Variable RMSE Pmcs RMSE Pmcs RMSE Pmcs RMSE Pmcs
No change (month)  3.290  .012 2.140 .000 2.208  .009 1.751  .000
No change (year) 2.798  .039 1.207 00 2.100 .132 0.888  1.00*
Univariate 2.802 .019 1.330 .834 2.026  .067 1.070  .540
Panel A. All indicators
Mul. factors 2.367 .383 1.407 101 2.105 .218 1.013 .72%
1 factor 2.106 1.09 1.351  .258F 1.746  1.00¢ 1.038 .72%
Comb. mean 2423 158 1.269  .939%" 1.880 .664 1.030 .72%1
Comb. median 2.585 .051 1.294  .939 1.939  .445¢ 1.055  .598*
Comb. ridge reg. 2.121 985 1.318 .939" 1.918  .664 1.013 .72%
Panel B. Real activity indicators
Mul. factors 2.245 737 1416  .035 1959 445 0990 .721*
1 factor 2.115 .985 1.347 478 1.774 718 1.041 .72%1
Comb. mean 2284 737 1263  .939%" 1.827 718 1.012 T2
Comb. median 2329 .633 1.284  .939% 1.854  .664 1.038 .70&
Comb. ridge reg. 2.160 .737 1.326  .923* 1.888  .664 1.013 .72%
Panel C. Interest rates
Mul. factors 2.828  .037 1512 .008 2.215  .013 1.294  .017
1 factor 2.776  .054 1.463 .006 2.111 .012 1.102  *243
Comb. mean 2474 151 1349 174 1.935  .445¢ 1.060  .598*
Comb. median 2,567 .127 1.377 .049 1.974 402 1.066  .592*
Comb. ridge reg. 2436  .266 1.372 101 1.962  .313¢ 1.052 .598*
Panel D. Money
Mul. factors 2.801 .027 1.340 .740 2.028 .029 1.075 .084
1 factor 2.805 .022 1.352  .258 2.027  .045 1.104 .038
Comb. mean 2.742  .037 1.390 .035 2.033  .017 1.088 .023
Comb. median 2.752  .037 1.340 514 2.032 .013 1.077  .140
Comb. ridge reg. 2.721  .037 1.446  .010 2.013 192 1.088 .017
Phillips curve
LHUR 2.637 .054 1.388 .035 2.076  .045 1.162 598

RMSEs and MCp-values for the different forecasts. The forecastsﬁgo% and M\és% are identified by one and

two asterisks, respectively.

6.2 Likelihood-Based Comparison of Taylor-Rule Models

Monetary policy is often evaluated with the Taylor (1993krtA Taylor rule summarizes the objectives and

constraints that defines monetary policy by mapping (inithticfrom this decision problem to the path of

the short-term nominal interest rate. A canonical mongtatigy loss function penalizes the decision maker

for volatility in inflation against its target and output atility around its trend. The mapping generates a

Taylor rule that has the interest rate respond to inflaticth @utput deviations from trend. Thus, Taylor

rules measure ex post the success monetary policy has hagetingithe goals of keeping inflation close
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to target and output at trend. Taylor (1999), Clarida, Gaid Gertler (2000), and Orphanides (2003) are
leading examples of using Taylor rules to evaluate actualetawy policy, while McCallum (1999) provides
an introduction for consumers of monetary policy rules.

This section shows how the MCS can be used to evaluate whidbrTale regression best approximates
the underlying data generating process. We posit the gefeybor rule regression

Pr Py

R=0-p) y0+zyn,j7[t—j+zyy,jyt—j + pRi-1+ i, (5)

j=1 j=1

where R, denotes the short-term nominal interest ratgjs inflation, y; equals deviations of output from
trend {.e., the output gap), and the error term, is assumed to be a martingale difference process. The
Taylor principle is satisfied igjpgl Y x,j €Xceeds one because a one percent rise in the sipp lalgs of
inflation indicates thai® should rise by more than 100 basis points. The monetaryypmigponse to real
side fluctuations is given bEjpil ¥y.j On thepy lags of the output gap. The intercepy is the equilibrium
steady state real rate plus the target inflation rate (wetghy 1— ijgl Yx.j)- The Taylor rule regression
(5) includes lagged interes®; _;, which may be interpreted as interest rate smoothing by thialeébank.
Alternatively, the lagged interest rate could be intemueds a proxy for other determinants of the interest
rate that are not captured by the regression (5). Note a#&dlik Taylor rule regression (5) avoids issues
that arise in the estimation of simultaneous equation Bystgecause contemporaneous inflation,and
the output gapy;, are not regressors, only lags of these variables are.drc#isie, structural interpretations
have to be applied to the Taylor rule regression (5) with.care

The Taylor rule regression (5) is estimated by ordinarytlegsares on a U.S. sample that runs from
19791 to 2006Q4. Table 6 provides details about the data used to estimat€ayior rule regressiotr.
The (effective) federal funds rate defines the Taylor rulecpoate, R;. The growth rate of the implicit GDP
deflator is our measure of inflation;. The cyclical component of the Hodrick and Prescott (199@rfis
applied to real GDP to obtain estimates of the output gapWe also employ two real activity variables
to fill out the model space and to act as alternatives to theubgfap. These real activity variables are the
Baxter and King (1999) filtered unemployment rate gap, and the Nason and Smith (2008) measure of
real unit labor costsiulc;. We compute the Baxter-Kingr; using the maximum likelihood-Kalman filter
methods of Harvey and Trimbur (2003).

The model space consists of 25 specifications. The modeéspduilt by settingo to zero or esti-
mating it, p, = 1 or 2 py, = 1 or 2 and equatingy; with the output gap, or replacing it with either the
unemployment rate gap or real unit labor costs. We add t@théd= 2 x 2 x 3 x 2) regressions a pure
AR(1) model of the effective federal funds rate.

13\We have generated results on a shorter post-1984 sampletif@ntine volatile 1979-1983 period from the analysis doass n
substantially change our results, beyond the loss of irdition that one would expect with a shorter sample. Thesétsestmilable
in a separate appendix found in Hansen, Lunde, and Nasof);200
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Table 6: Taylor Rule Regression Data Set.

Observable Construction
Dependent Variable
R:: Interest rate Effective Fed Funds Rate (EFFR), Tempoegbyregate daily
Réed fundst return (annual rate) to quarterly,
_ Ried funds
R =100x In[1 + W]
Independent Variables
m¢: Inflation, Implicit GDP Deflatorf, ¢ = 400 x In[P,/P_4]
Seasonally Adjusted (SA)
V. Output gap I, — trendQy, i.e. Transitory Apply Hodrick-Prescott filter
Component of Output. Wher®, to In Qq
is Real GDP in Billions of Chained
2000 $, SA at Annual Rates.
ur¢: Unemployment rate gap UR, — trendUR,, i.e. transitory Temporally aggregate monthly

component oJR,. WhereUR; isthe  to quarterly frequency to gegR.
is the civilian unemployment rate, SA.  Apply Baxter-Kindtér to UR

rulce: Real unit labor costs The cointegrating residual of Nominaulc, = LS — LP;
ULCi(= LS — LS) and InP.. LS is —&—qt—&Ink
Labor Share, i.e. log of compensation
per hour in the non-farm business
sector.LP; is Labor Productivity, i.e.
log of output per hour of all persons
non-farm business sector

The effective federal funds rate is obtained from H.15 Sekkinterest Rates in Federal Reserve Statistical Releases
The implicit price deflator, real GDP, the unemployment ratempensation per hour, and output per hour of all
persons are constructed by the Bureau of Economic Analpsissaavailable at the FRED Data Bank at the Federal
Reserve Bank of St. Louis. The sample period is 187192006Q4. The data is drawn from data available online
from the Board of Governors and FRED at the Federal Resermk 8&St. Louis.

We present results of applying the MCS and likelihood-bas@edria to the choice of the best Taylor
rule regression (5) and AR(1) regressions in Tables 7 andBleT7 reportQ(Z;, éj) (the log-likelihood
function multiplied by minus two); the bootstrap estimafehe effective degrees of freedoi; and the
realizations of the three empirical criteria, KLIC, AlGand BIC. The numbers surrounded by parentheses
in columns headed by KLIC, AIC and BIC, are the MCSp-values, and an asterisk identifies the spec-
ifications that entevﬂ;o%_ Table 8 lists estimates of the regressions models thahaﬁg'o% along with
their corresponding-statistics in parentheses. Thetatistics are based on robust standard errors following
Newey and West (1987).
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Table 7: MCS for Taylor Rules: 19781 to 2006Q4

Model Specification Q(Z;,6) k* KLIC AlC* BIC*
R_1 93.15 13.74 106.89 (0.30) 120.63 (0.47¥ 157.99 (0.63y
Ti1 Vi1 284.82 11.44 296.25 (0.00) 307.69 (0.00) 338.79 (0.00)
Te_jy =12 Ve i, j=12 258.95 14.66 273.61 (0.00) 288.28 (0.01) 328.14 (0.01)
Ti1 Ure_q 289.65 10.20 299.84 (0.00) 310.04 (0.00) 337.75 (0.00)
Te_jy =12 Ure_j, j—1.2 268.90 12.82 281.72 (0.00) 294.53 (0.00) 329.37 (0.01)
Ti1 rulc;_s 289.99 9.89 299.88 (0.00) 309.77 (0.00) 336.67 (0.01)
Tty j=1.2 rulcy_;, j-1.2 266.07 12.12 278.19 (0.00) 290.31 (0.01) 323.26 (0.01)
Vi1 ure_1 387.45 17.04 404.49 (0.00) 421.54 (0.00) 467.86 (0.00)
Ve jsj=12 Ure i, j—12 385.86 23.42 409.28 (0.00) 432.69 (0.00) 496.35 (0.00)
Vi1 rulc;_; 386.47 14.92 401.39 (0.00) 416.32 (0.00) 456.89 (0.00)
Ve jsj=12 rulcy_;, j-1.2 385.43 19.44 404.87 (0.00) 424.31 (0.00) 477.16 (0.00)
ure_s rulc_y 386.21 15.41 401.62 (0.00) 417.02 (0.00) 458.90 (0.00)
urej, j—12 rulcy_;, j-1.2 384.82 19.86 404.68 (0.00) 424.54 (0.00) 478.52 (0.00)
R_1 Ti1 Vi1 68.57 17.71 86.28 (0.86) 103.98 (1.00y 152.12 (0.64y
R_1 Tty j=1.2 Ve jo1.2 62.11 22.11 84.22 (1.00) 106.32 (0.93) 166.43 (0.41)
R_1 Ti1 ure_1 77.57 16.32 93.89 (0.72) 110.22 (0.89y 154.60 (0.64y
R_1 Tty j=1.2 Ure i, j—12 73.27 18.79 92.07 (0.80) 110.86 (0.89)* 161.95 (0.57y
R_1 Ti1 rulc;_s 72.80 16.06 88.86 (0.86) 104.92 (0.93) 148.58 (1.00y
R_1 Tejy =12 rulc_j, j—1.2 69.21 19.26 88.47 (0.86) 107.73 (0.92y 160.09 (0.58y
R_1 Vi1 ure_q 86.16 19.16 105.33 (0.33) 124.49 (0.38) 176.59 (0.16)
R_1 Ve i, j=12 Ure_j, j=1.2 85.51 24.32 109.83 (0.28) 134.16 (0.18) 200.28 (0.02)
R_1 Vio1 rulc;_s 89.42 18.92 108.35 (0.29) 127.27 (0.31¥ 178.72 (0.15)
R_1 Ve i, j=12 rulc_j, j—1.2 88.11 22.42 110.53 (0.28) 132.94 (0.20) 193.88 (0.03)
R_1 ure_s rulc_s 87.42 18.07 105.49 (0.33) 123.55 (0.38)* 172.66 (0.21)
R_1 Urej, j=1.2 rulc_j, j—1.2 85.93 21.32 107.25 (0.30) 128.56 (0.28) 186.51 (0.06)

18S 92U8pPLUOD [SPOIN

We report the maximized log-likelihood function (multiedi by minus two), the effective degress of freedom, and treetbriteria, KLIC, AIC and
BIC*, along with the corresponding MC@values. The regression modelsArg,,, and M3, are identified by one and two asterisks, respectively.
See the text and Table 6 for variable mnemonics and defisition
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Table 7 shows that the MCS procedure selects 10 to 13 of theo&&ilppe regressions depending on
the information criteria. The lagged nominal ra®_; is the one regressor common to the regressions
that enterﬂgo% for the KLIC, AIC*, and BIC. Besides the AR(l)A//Tgo% consists of the six Taylor rule
specifications that nest the AR(1). Under the KLIC and Altie Taylor rule regressions include all one or
two lag combinations of ¢, V;, ur¢, andrulc;. The BIC produces a smalle‘/r/l\go% because it ejects the two
lag Taylor rule specifications that exclude lagged Thus, the Taylor rule regression-MCS example finds
the BIC tends to settle on more parsimonious models. This setexpected, given its larger penalty on
model complexity.

The AR(1) falls intoﬂ;o% under the KLIC, AIC, and BIC'. Although the first line of Table 7 shows
that the AR(1) has the large€i(Zj, 6 j) of the regressions covered Wgo%, the MCS recruits the AR(1)
because it has a relatively small estimate of the effectegreks of freedonk*. It is important to keep
in mind that estimates of the effective degrees of freedoenlanger than the number of free parameters
in each of the models. This reflects the fact that the Gaussiaatel is misspecified. For example, the
conventional AIC penalty (that doubles the number of freepeeters) is misleading in the context of
misspecified models, see Takeuchi (1976), Sin and Whiteg)19®d Hong and Preston (2008).

It is somewhat disappointing that the MCS procedure yietdnany as 13 models m?go%. The reason
is that the data lacks the information to resolve precisetyctv Taylor rule specification is best in terms
of Kullback-Leibler discrepancy. The large set of modelalg an outcome of the strict requirements that
characterize the MCS. The MCS procedure is designed toatdht familywise error rate (FWE), which
is the probability of making one or more false rejections. Wilkbe able to trimM* further if we relax the
control of the FWE, but that will affect the interpretatiohﬁj_a. For instance, if we control the probability
of makingk or more false rejection&-FWE, see e.g. Romano, Shaikh, and Wolf (2008), additiorwlets
can be eliminated. The drawback locFWE and other alternative controls is that the MCS loose&aly
property, which is to contain the best models with probgbili— «.

Table 8 provides information about the regressions/\//iﬁo%-KLIC. The shaded area identifies the

e~

models inM3g,,-BIC*. First, note that the estimated Taylor rules always satiséyTaylor principle i¢e.,
Y21 > lory. .+ 7., > 1). The coefficients associated with real activity variatave insignificant
t-statistics in most cases. Only the first lag of the output gapluces a positive coefficient withtaatio
above two in the first Taylor rule regression listed in Tahlé/®reover, the statistically insignificant coef-
ficients for the unemployment rate gap and real unit labotsoeariables often have counter intuitive signs.
Finally, the estimates qf are between 0.83 and 0.87 in the Taylor rule regressiongrtiate a lag ofry,
which suggests interest rate smoothifg.

The fact that the MCS cannot settle on a single specificaioi a surprising result. Monetary policy-
makers almost surely rely on a more complex informationtsa tan be summarized by a simple model.

Furthermore, any real activity variable is an imperfect suga of the underlying state of the economy, and

1%we have also estimated Taylor rule regressions with mowegaae errors, as an alternative to usiig 1 as a regressor. The
empirical fit of models with MA errors is, in all cases, infarto the Taylor rule regressions that incluge_1.
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there are important and unresolved issues regarding theumamaent of ‘gap’ and marginal cost variables,
which translate into uncertainty about the proper defingiof the real activity variables.

o~

Table 8: Regression models.ivil§,,-KLIC.

Yo 1Y Ve V2 Yy Vy.2 Yur1 Yur2 Y rule,1 Y rulc,2
5.29 0.96
(2.50) (30.1)
0.12 0.84 1.87 1.20
(0.13) (17.0) (7.01) 2.17)
0.00 0.80 0.77 1.14 1.50 -0.39
(0.00) 12.1) (2.58) (4.76) (1.25) (0.33)
0.82 0.86 1.60 1.58
(0.67) (16.8) (4.85) (0.25)
0.64 0.83 0.68 0.97 5.90 -6.56
(0.56) (12.9) .77 (2.85) (0.68) (1.16)
0.37 0.87 1.76 -0.81
(0.30) (17.0) (5.38) (1.56)
0.39 0.84 0.76 0.99 -0.18 -0.55
(0.35) (12.9) 2.12) (3.55) (0.23) (0.68)
5.63 0.97 4.89 45.9
(2.20) (37.3) (1.05) (0.79)
5.56 0.97 6.42 -1.71 60.7 -22.9
2.12) (32.3) (0.58) (0.19) (0.66) (0.42)
5.33 0.97 1.04 -2.47
2.22) (35.5) (0.32) (0.79)
5.42 0.97 8.37 -8.05 2.52 -5.43
2.22) (32.6) (0.64) (0.56) (0.75) (0.96)
5.35 0.97 30.9 -3.62
(2.02) (37.8) (0.63) (1.04)
5.43 0.97 52.5 -25.6 -1.18 -2.74
(2.10) (34.2) (0.64) (0.54) (0.30) (0.85)

Parameter estimates withstatistics (in absolute values) in parentheses. The shads identifies the models in
M3, -BIC*.

7 Summary and Concluding Remarks

This paper introduces the model confidence set (MCS) proeedelates it to other approaches of model
selection and multiple comparisons, and establishes §ramstic theory of the MCS. The MCS is con-
structed from a hypothesis testy, and an elimination rulegy. We defined coherency between test and
elimination rule, and stressed the importance of this goinfoe the finite sample properties of the MCS. We
also outline simple and convenient bootstrap methods Wirtplementation of the MCS procedure. The
paper employs Monte Carlo experiments to study the MCS plioeethat reveal it has good small sample
properties.
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Itis important to understand the principle of the MCS pragedn applications. The MCS is constructed
such that inference about the ‘best’ follows the convemianeaning of the word ‘significance’. Although
the MCS will contain only the best model(s) asymptoticailynay contain several poor models in finite
samples. Akey feature of the MCS procedure is that a mod@dsudled only if it is found to be significantly
inferior to another model. Models remain in the MCS untily@o inferior, which has the implication that
not all models in the MCS may be judged good models.

An important advantage of the MCS, compared to other selegtiocedures, is that the MCS acknowl-
edges the limits to the informational content of the datathBathan selecting a single model without
regard to degree of information, the MCS procedure yieldstabok models that summarizes key sample
information.

We applied the MCS procedure to the inflation forecastindplero of Stock and Watson (1999). Results
show that the MCS procedure provides a powerful tool forwai@thg competing inflation forecasts. We
emphasize that the information content of the data matterthé inferences that can be drawn. The great
inflation-disinflation subsample of 19701 - 1983m12 has movements in inflation and macro variables
that allows the MCS procedure to make relatively sharp @soacross the relevant models. The information
content of the less persistent, less volatile 1884: 1996M9 subsample is limited in comparison because
the MCS procedure lets in almost any model that Stock and avatensider. A key exception is the
no-change (month) forecasts that uses last month’s inflaite as a predictor of future inflation. This
no-change forecast never resides in the MCS in either thierear the later periods. A likely explanation
is that month-to-month inflation is a noisy measure of coffation. This view is supported by the fact
that a second no-change (year) forecast, which employs reoyeeyear inflation rate as the forecast, is
a better forecast. This result enables us to reconcile tharieml results in Stock and Watson (1999)
with those of Atkeson and Ohanian (2001). Nonetheless, dkstipn of what constitutes the best inflation
forecasting model for the last 35 years of U.S. data remaiasswered because the data provide insufficient
information to distinguish between good and bad models.

This paper also constructs a MCS for Taylor rule regressi@s®d on three likelihood criteria. Such
interest rate rules are often used to evaluate the successrdtary policy, but this is not our intent for the
MCS. Instead, we study the MCS that selects the best fittidpiTaule regressions under either a quasi-
likelihood criterion, the AIC, or the BIC using the effectidegrees of freedom. The competing Taylor rule
regressions consist of different combinations of lags féiion, lags of three different real activity variables,
and the lagged federal funds rate. Besides these Tayloregtessions, the MCS must also contend with
a first-order autoregression of the federal funds rate. €geessions are estimated on a 1919200604
sample of U.S. data. Under the three likelihood criteri@ MCS settles on Taylor rule regressions that
satisfy the Taylor principle, include all three competimglractivity variables, and add the lagged federal

15The proportion of models iVVtLa that are members o¥1* can be related to thfalse discovery ratand theg-value theory
of Storey (2002). See McCracken and Sapp (2005) for an atijglitcthat compares forecasting models. See also RomaaikhSh
and Wolf (2008).

37



Model Confidence Set

funds rate. Further we find that the first-order autoregoesaiso enters the MCS. Thus, the U.S. data lack
the information to resolve precisely which Taylor rule dfieation best describes the data.

Given the large number of forecasting problems economégts &t central banks and other parts of
government, in financial markets, and other settings, th&M@cedure faces a rich set of problems to study.
Furthermore, the MCS has a wide variety of potential usegorm forecast comparisons and regression
models. We leave this work for future research.
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1. Bootstrap Procedure

This section describes the bootstrap implementation oMG& procedure used in the forecasting application.

1. (Bootstrap indexes for resampling)
This is the first step because we need to use common randonensifobthe bootstrap resamples in each

iteration of the sequential test.

(a) Choose the block-length bootstrap paramétérhe optimal choice fot is tied to the persistence
ind.y =m™ ZjeMo djt, i =1,..., m, which is difficult to estimate precisely whenis large.
Instead one can use different choiceslfaand verify that the result is not sensitive to the choice.

(b) GenerateB bootstrap resamples ¢f,...,n}. l.e.,forb=1,...,B:

i Choos@tJl ~U{l,...,n}and set(tp1,..., Tp|) = Ep &b, +1, ..., 6 + | — 1), with the
conventionn+i =i fori > 1.
ii. Choosegb2 ~U{1,...,n}and set(tp|+1, ..., Th2) = (EpyEp, +1, ..., 6, +1-1).
iii. Continue until a sample size of, is constructed.

iv. This is repeated for all resamplbs= 1, ..., B, using independent draws of thé&s.

(c) Save the full matrix of bootstrap indexes.
Alternatively one can use a different bootstrap schemed) siscthe stationary bootstrap of Politis

and Romano (1994).

2. (Sample and Bootstrap Statistics)

(a) For each model and each point in time we evaluate thepeaftce to obtain the variablés,, for
i=1,...,mandt =1,...,n. These variables are used to calculate the sample averageecfo

modelli. = 2> Li,i=1,....m

(b) The corresponding bootstrap variables are now given by
it =Lim, for b=1....Bi=1...,m andt=1...,n,

and calculate the bootstrap sample averaggs,= 2 >, L;; . The only variables that need to
be stored ard; and¢;; = Lj; — Lj, as all required statistics can be calculated from these two

variables.
3. (Sequential Testing)initialize by settingM = M.

(a) Letm denote the number of elementsirl, and calculate

I L 1 _ 18
LEEZL“ {E‘,,.=—Z§’{,,i, and @r(di.)zgg(g’g,i—z’g,)z-
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Alternatively one can defingar(-) to be its analytical value given the employed bootstrap reehe
Now definet;. = d;./v/var(d,.) and calculate the test statisfig., = max t;..

(b) The bootstrap estimate @f’s distribution is given by the empirical distribution of
Tymax = Maxty;, for b=1...,B,
, AXlp,

wheret?, = (¢5; — ¢)/V/Vand,.).

(c) Thep-value ofHp r4 is given by

1 B
PHO*M = E Z lHTmaX>Tb*.maxi ’
b=1 !

where 1, is the indicator function.

(d) If Py, ,, < a, wherea is the level of the test, thehip o is rejected aney, = arg maxt;. is
eliminated fromM.

(e) The steps in 3.(a)-(d) are repeated until first ‘acceqganThe resulting set of models is denoted
M;_,, and referred to as thd — «) MCS.

1.1. Justification of bootstrap implementation

LetZ, = (dy.y, ..., Om.y)’ then by Lemma 5 we have that/’2(Z — ) > Np(0, 2), whereZ = S, Z,. The
bootstrap variable§Z .} are generated such thﬁz(Zg - 27) 4 Nm(0, ©2), where the covariance matrix can
be estimated by its analytical form under the bootstrapmehé;ﬁ say, Wheréz;q is consistent fof2 asn — oc.
Alternatively, 2 can be estimated directly from the resampleshys = n/B Y o ,(Z; — Z)(Z; — Z)', where
Qng > O asB — oo by the law of large numbers.

Our implementation is based @2, 5, and the identity
_ o1& _ _ _ - - -

Chi— b =Lpi —Li— izlj(u;,i — L= — L5 — (L — L) =dy;. —dh.

that shows that the diagonal elementsoére given by
B ) B ) n B )
/B (Z5;—20*=n/B) (dy; — )%= 2 (5 — ;)7 =@,
b=1 b=1 b=1

Under the null hypothesis, the distribution Bfi.« is approximated by

m_ax(lﬁ—lfznl/z(Z;; - Z)) = max(diag(var(d, ), .. ., vard)) " Y2(Z; — 2)),
I I

= maxd_g’i' —d = maxgzg’i b _ maxt*
= MaX——e= = MAX——u— = b.i-

ty/var(d.) ! var(d;.) '
= Tb*,maX'
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2. Inflation Forecasting

Here we investigate the sensitivity of our MCS for Stock anat&wn (JME,1999) to the choice of estimation
scheme and equivalence test.

2.1. Sensitivity Analysis of MCS’s to estimation scheme andhbize of test for EPA

The Tables corresponding to Table 2 in Stock and Watson (I889) are as follows.
TableA.1 use an expanding recursive estimation scheme.
TableA.2 use a rolling estimation scheme.
The Tables corresponding to Table 4 in Stock and Watson (I889) are as follows.
TableA.3 use a expanding recursive estimation scheme.
TableA.4 use an rolling estimation scheme.

These tables also display the root MSE of each model.

3. Regression Simulation

Here we present simulation results fb?r = 0.1, 0.5, 0.9 for the simulation experiment in section 5.2.

TablesA.5-A.7 report the fraction that each of the specifications is in theSvfor the KLIC, AIC" and
BIC*.

TablesA.9-A.10 report the average MCS p-value for the KLIC, Alénd BIC:'.

4. Taylor Rules

The Tables are as follows.

Table A.11 gives MCS results when the models are estimated on a sampéa movering 1979Q1 to
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2006Q4.

TableA.12 gives MCS results when the sample period only span 1984QQG6Q4 .

References
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Table A.1: MCSp-values for Stock and Watson JME (1999, table 2) (recursitieise).

PUNEW: 1970-1983 PUNEW: 1984-1996 GMDC: 1970-1983 GMD(84-9996
Variable Trans RMSE pg P9 pi2 RMSE pg P9 P12 RMSE  ps Po pi2 RMSE ps Po P12
No change (month) 3.290 .003 .005 .010 2.140 .007 .009 .007 2082..023 .045 .057 1.751 .003 .001 .001
No change (year) - 2,798 .017 .029 .034 1.207 ‘T0D.00O* 1.00* 2.100 .040 .078 .089 0.888 1:001.00* 1.00**
uniar - 2.675 .014 .024 .029 1.360 .900.899* .897* 1.941 .078 .112 .12r 1.082 .311* .320"* .305*
'Gaps’ specifications
dtip DT 2519 .045 .061 .060 1.310 .900.921** .936* 1.913 .094 .119 .12 1.043 .404* 417 .408*
dtgmpyq DT 2.644 011 .019 .024 1.446 .518585* .552* 2.067 .038 .074 .088 1.103 .2854.253* .235
dtmsmtq DT 2.341 .158 .166° .158 1.280 .900* .921** .936** 1.844 109 .152 .139% 1.007 .444* 468* 472+
dtlpnag DT 2482 .051 .065 .060 1.323 .90Q921** .936* 2.024 065 .108 .116° 1.012 .444* 468* 472+
ipxmca LV 2373 .107 .119° .118 1.264 .900* .921** .936" 1.887 .098 142 .139° 1.026 .444* 468* 472+
hsbp LN 2205 .76% .769* .766* 1.392 .873* .884* .884"* 1.829 .109 .152 .139% 0.993 .444* 468* .472*
Ihmu25 LV 2433 .054 .065 .060 1.401 .866.871* .860* 1.937 .071 112 114 1.055 .410* .424* .447*
First difference specifications
ip DLN 2.384 .090 .065 .060 1.429 .704.687* .668* 1.819 .109 .152 .139% 1.115 .252* 248 .228&
gmpyq DLN 2.233 .622 .576* .506™ 1.532 .405" .450* .417* 1.565 1.00* 1.00* 1.00* 1.149 .260* .259* .240°
msmtq DLN 2.169 1.06 1.00* 1.00* 1.353 .900* .921** .936 1.778 .109 .152 .139° 1.062 .410* .424* 447+
Ipnag DLN 2308 .176 .175 .165° 1.317 .900* .921* .936** 1.809 .109 .152 .139% 1.009 .444* 468* .472*
dipxmca DLV 2355 .107 .119 .118 1.456 .643* .684* .668* 1.839 .109 .144 139 1.128 .229 .225 .203
dhsbp DLN 2.701 .012 .019 .024 1.405 .866874* .860** 1.969 .059 .100 .105 1.077 .358* .367* .354*
dlhmu25 DLV 2352 .107 .119 .118  1.474 223 244 22% 1.878 .098 137 .124 1103 .241 241 222
dihur DLV 2321 .176 .175 .165  1.451 .432* .462* .436* 1.843 .109 .144 .13% 1.088 .300* .313* .298*
Phillips curve
LHUR 2.387 .051 .065 .060 1.371 .866.874* .860* 1.939 .078 .119 .12 1.050 .410* .424* .418*

RMSEs and MCSo-values for the different forecasts. For egeivalue the bootstrap block length is identified by the supscFhe forecasts iaﬂgo% andﬁ/l\%% are

identified by one and two asterisks, respectively.
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Table A.2: MCSp-values for Stock and Watson JME (1999, table 2) (rollingesad).

PUNEW: 1970-1983 PUNEW: 1984-1996 GMDC: 1970-1983 GMD(34-9996
Variable Trans RMSE pg Po pi2 RMSE Ps Po P12 RMSE Ps P9 pi2 RMSE Ps Pa P12
No change (month) 3.290 .001 .002 .005 2.140 *16332 .099 2.208 .073 .087 .083 1.751 .002 .001 .000
No change (year) - 2,798 .008 .012 .015 1.207 ‘T0D.00* 1.00* 2.100 .147 .20 .204 0.888 1.00* 1.00* 1.00*
uniar - 2.802 .002 .004 .011 1.330 .853861* .851* 2.026 .245 291 .278* 1.070 .524* 550%* 547
'Gaps’ specifications
dtip DT 2597 .045 .059 110 1.475 .793* .791* .785* 2.103 120 .77 177  1.050 .524* 552 554*
dtgmpyq DT 2751 .006 .009 .046 1.691 .A14470* 467 2.090 .263* .305* .296™ 1.125 .448* 470 .468*
dtmsmtq DT 2.202 .88t .891* .896* 1.704 578" .635* .671* 1.806 .555* 572* 575* 1.046 .524* 552 554+
dtlpnag DT 2591 .108 .123 .140° 1.433 .817¢ .834* .825* 2.132 120 .154 .137 1.026 .524* 552 554*
ipxmca LV 2609 .090 .108 .12 1.318 .853* .861* .85I* 2.040 .434* 475* .468* 1.034 .524* 552 554*
hsbp LN 2.114 1.00 1.00* 1.00* 1.582 .718" .762** .754* 1.967 527 .549* 550* 1.034 .524* 552 554+
Ihmu25 LV 2,968 .006 .009 .015 1.439 .793.777* 754 2231 .058 .129 .12 1.040 .524* 552 554*
First difference specifications
ip DLN 2.344 .408* .456 .485* 1.393 .853* .861* .85I* 1.946 .498¢ 532+ 509* 1.058 .524* 552 554+
gmpyq DLN 2.306 .853 .872* .88I* 1.524 .718" .737* .624™* 1.709 1.00* 1.00* 1.00* 1.158 .303* .301* .254*
msmtq DLN 2.158 .88T .891* .896* 1.391 .853* .861* .85I* 1.857 .555* 572* 575* 1.066 .524* 552 554*
Ipnag DLN 2.408 .55# .583* .606™ 1.341 .853" .861** .851** 1.940 .527* .545* 509* 1.027 .524* 552 554+
dipxmca DLV 2379 .199 .231 .261* 1.353 .853* .861* .85I* 1.903 .555* 572* 575* 1.041 .524* 552 554+
dhsbp DLN 2.850 .003 .005 .008 1.456 .798814"* .804* 2.076 .130 .154 .137 1.070 .524* 550* 547
dlhmu25 DLV  2.383 .25% .285* .314* 1.440 .793* .777* .754* 2.035 .228 .19T .190° 1.065 .524* 550 547
dihur DLV  2.296 .728* .747* .763* 1.429 .798* .814* .804* 1.904 555 545* 516 1.067 .524* 550 .547*

Phillips curve
LHUR 2.637 .050 .064 .071 1.388 .8%33.861* .85I* 2.076 .144 186" .184° 1.162 .463" .483* .480*

RMSEs and MCS-values for the different forecasts. For egeivalue the bootstrap block length is identified by the suipscihe forecasts ia\//\lgo% and/\//\l%% are
identified by one and two asterisks, respectively.
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Table A.3: MCSp-values for Stock and Watson JME (1999, table 4) (recursitieise).

PUNEW: 1970-1983 PUNEW: 1984-1996 GMDC: 1970-1983 GMD(84:9996
Variable RMSE  ps Po P12 RMSE g Po P12 RMSE  ps Po Pz RMSE  pg Po P12
No change (month) 3.290 .009 .015 .012 2.140 .000 .000 .000 2082. .000 .002 .005 1.751 .000 .000 .000
No change (year) 2.798 .016 .025 .035 1.207 *f.0D.00* 1.00* 2100 .003 .008 .017 0.888 1:001.00* 1.00*
Univariate 2.675 .016 .025 .035 1.360 .827842* .835* 1.941 .039 .080 .109 1.082 .212 .199 .175
Panel A. All indicators
Mul. factors 2.158 .35% .394%* .395* 1.291  .958* .969* .971* 1.894 146 .176° .214& 0.964 .714* .698* .659*
1 factor 2.069 781 .772* .718* 1.274  .958* .969* .97I* 1.692 1.06* 1.00* 1.00* 1.002 .71&* .698* .659*
Comb. mean 2439 .022 .030 .037 1.289 95869+ 971 1.853 .189 .196 .218& 1.036 .577* .606* .564*
Comb. median 2550 .022 .025 .037 1.316 94452 955 1.895 129 .149 .17F 1.063  .340" .342* .325*
Comb. ridge reg. 2.209 .123.12% .109 1.280 .958* .969* .97I* 1.842 .200 .210¢ .23C 1.019 .577% .549* 545*
Panel B. Real activity indicators
Mul. factors 2.019 1.0¢ 1.00* 1.00* 1.357 .871* .888* .889* 1.792 .234 .260* .288* 0.946 .71&* .698* .659*
1 factor 2.079 781 .772* .718* 1.281  .958* .969* .97I* 1.753  .256* .273* .292* 1.017 577" .606* .564*
Comb. mean 2.346 .033 .042 .052 1.284 95869* .971* 1.807 .22% 224 246 1.020 .577* .558* .545*
Comb. median 2.381 .026 .036 .052 1.299 9585 954 1.831 .207 .210¢ .23C¢ 1.036  .375" .342* ,325*
Comb. ridge reg. 2192 .191.205 .192 1.298 .958* .969* .97I* 1.773  .256* .260* .288* 1.022 577" .499* .485*
Panel C. Interest rates
Mul. factors 2585 .022 .030 .037 1495 .088 .052 .026 1.97®90. .11% .14r 1.173 176 177 .155
1 factor 2524 030 .042 .052 1.495 .015 .008 .003 2.038 .006 . .014 1.077 .306 .302* .284*
Comb. mean 2.424 033 .042 .052 1.341 90313 .915* 1.900 .129 .149 .169 1.079 .199 .187 .166°
Comb. median 2513 .022 .030 .037 1.336 92330 .934* 1.912 .103 .126° .156 1.078 .278* 218 .194
Comb. ridge reg. 2432 .038 .044 .052 1.368 B2&H83* .494* 1.943 .010 .015 .025 1.123 .163.153 .134
Panel D. Money
Mul. factors 2679 .016 .025 .031 1.360 .724704* .645* 1.933 .090 .102 .124 1.080 .228 .239 .21%
1 factor 2.679 .016 .025 .035 1.360 .805819* .810* 1.933 .090 .10% .130C¢ 1.080 .252* .267* .246°
Comb. mean 2.664 .016 .025 .035 1.350 85@B67* .865* 1.964 .004 .017 .028 1.066  .449.499* .485*
Comb. median 2.670 .016 .025 .035 1.348 888B93* .891* 1.954 .016 .037 .054 1.070 .378.388* .370*
Comb. ridge reg. 2.638 .016 .025 .035 1.385 136296* .214 1934 .090 .111 .14rF 1.121 .187 .164 .144
Phillips curve
LHUR 2.387 .026 .036 .045 1.371  .604.552* .470* 1.939 .108 .134 .173 1.050 .532* .469* .450*

RMSEs and MCS-values for the different forecasts. For egeivalue the bootstrap block length is identified by the suipscihe forecasts ia\//\lgo% and/\//\l%% are

identified by one and two asterisks, respectively.

xipuaddy - S19S 92UBpIUOD) [9PON :UOSEN pue apunT ‘ussueH



Table A.4: MCSp-values for Stock and Watson JME (1999, table 4) (rollingesad).

PUNEW: 1970-1983 PUNEW: 1984-1996 GMDC: 1970-1983 GMD(84:9996
Variable RMSE  ps Ppo  pi2 RMSE  ps Po P12 RMSE  ps Po P12 RMSE  pe Po P12
No change (month) 3.290 .008 .013 .012 2.140 .000 .000 .000 2082. .001 .004 .009 1.751 .000 .000 .000
No change (year) 2.798 .020 .036 .039 1.207 *%.0D.00* 1.00* 2100 .118 .162 .132 0.888 1.00* 1.00* 1.00*
Univariate 2.802 .014 .018 .019 1.330 .804829* .834* 2.026 .029 .048 .067 1.070  .477.534* 540*
Panel A. All indicators
Mul. factors 2.367 .378 .390* .385* 1.407 .085 .125 .1071* 2105 .068 .104 .218 1.013 .667* .712* 721
1 factor 2106 1.0 1.00* 1.00* 1.351 .177 .235 .258* 1.746 1.00* 1.00* 1.00* 1.038 .667* .712"* .72I*
Comb. mean 2.423 197 .202° .158& 1.269 .909* .928* .939* 1.880 .493* 532* .664* 1.030 .667* .712* .72I*
Comb. median 2585 .050 .053 .051 1.294 90928+ 939+ 1.939 .409* .448* .445* 1.065 .548" 596* ,598*
Comb. ridge reg. 2121  .982 .985* .985* 1.318 .909* .928* .939* 1.918  .434* 456* .664* 1.013 .667* .712* .72I*
Panel B. Real activity indicators
Mul. factors 2.245 . 73% .698* 737* 1.416 .021 .035 .035 1.959  .434.456* .445* 0.990 .667* .712* 721
1 factor 2.115 .98% .985* .985*  1.347 .406* .464* .478* 1.774 .685* .715* .718* 1.041 .667* .712* 721
Comb. mean 2.284  .658.698* .737* 1.263 .909* .928* ,939* 1.827 .67% .694* .718* 1.012 .667* .712* .72I*
Comb. median 2.329 526 .580* .633* 1.284 .909* .928* .939* 1.854 539" 585* .664* 1.038 .65&* .695* .704*
Comb. ridge reg. 2.160 .783.729* .737* 1.326  .892* .913* .923* 1.888 .532* 532* .664* 1.013 .667* .712* .72I*
Panel C. Interest rates
Mul. factors 2.828 .039 .028 .037 1.512 .005 .008 .008 2.21%02. .005 .013 1.294 008 .016 .017
1 factor 2776 .060 .061 .054 1.463 .003 .004 .006 2111 .0005 . .012 1.102 .044 .128 .243
Comb. mean 2.474  .26® .255* 151 1.349 125 .168 .174 1.935 .398* 439* .445* 1.060 .477* .596* .598*
Comb. median 2567 .059 .061 .¥27 1.377 .065 .049 .049 1.974 .321.376* .402* 1.066 .478" 596* ,592*
Comb. ridge reg. 2.436  .310.307* .266* 1.372 .021 .108 .1071* 1.962 .226 .281* .313* 1.052 .524* 596* ,598*
Panel D. Money
Mul. factors 2801 .016 .022 .027 1.340 A77721* .740* 2.028 .008 .017 .029 1.075 .150.072 .084
1 factor 2.805 .017 .028 .022 1.352 .210252%* .258* 2.027 .016 .031 .045 1.104 .009 .019 .038
Comb. mean 2.742 .017 .028 .037 1.390 .021 .035 .035 2.0334 .0009 .017 1.088 .021 .039 .023
Comb. median 2.752 .017 .028 .037 1.340 72612 514* 2.032 .002 .005 .013 1.077 .273.341* .140°
Comb. ridge reg. 2721 .018 .028 .037 1.446 .006 .010 .010 132.0.068 .104 .192 1.088 .008 .016 .017
Phillips curve
LHUR 2.637 .060 .061 .054 1.388 .021 .035 .035 2.076 .016 .03145 1.162  .47T .596* .598*

RMSEs and MCSo-values for the different forecasts. For egeivalue the bootstrap block length is identified by the supscFhe forecasts iaﬂgo% andﬁ/l\%% are
identified by one and two asterisks, respectively.
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Hansen, Lunde and Nason: Model Confidence Sets - Appendix

Table A.5: Simulation Experiment 12 = 0.1, fraction in MCS

Q(z;j, éj) k* KLIC AIC* (TIC) BIC*
Panel A: n=50
0= 0.3 09 03 09 03 0.9 03 0.9 03 0.9
Xo 47.8 48.1 2.00 1.99 0.974 0.956 0.985 0.980 0.988 0.989
Xo, X1 41.4 41.8 3.03 3.03 1.00C 0.999 1.00C 0.999 0.97¢ 0.960
Xo, ...y Xo 40.3 40.8 4.09 4.09 1.00C 0.999 0.998 0.999 0.928 0.922
Xo, ..., X3 39.3 39.7 5.19 519 1.00C 1.000 0.997 0.998 0.840 0.832
Xo, ..., Xa 38.2 38.5 6.33 6.33 1.00C 1.000 0.994 0.996 0.676 0.653
Xo, ..., X5 37.0 374 751 751 1.00C 1.000 0.987 0.989 0.482 0.435
Xo, ..., Xg 35.8 36.2 8.75 8.74 1.00C 1.000 0.970 0.965 0.312 0.250
Xo, Xo 46.3 42.8 3.03 3.03 0.979 0.997 0.984 0.999 0.944 0.959
Xo, X2, X3 45.0 41.5 4.09 4.09 0.982 0.998 0.978 0.999 0.812 0.914

Xos Xoy ooy Xg 43.7 40.3 5.19 5.18 0.983 0.999 0.966 0.998 0.612 0.808
Xo, X2, ..., X5 42.5 39.2 6.33 6.32 0.983 0.999 0.946 0.995 0.422 0.609
Xo, X2, ..., Xg 41.3 38.0 7.51 7.51 0.983 0.999 0.906 0.987 0.271 0.396

Panel B: n= 100

o= 0.3 09 03 09 0.3 09 0.3 09 0.3 09

Xo 97.9 98.2 2.00 1.99 0.859 0.806 0.903 0.886 0.930 0.943
Xo, X1 86.2 86.7 3.01 3.01 1.00C 0.999 1.00C 1.000 0.99¢ 0.991

Xos vy X2 85.2 85.6 4.03 4.03 1.00C 1.000 0.994 1.000 0.926 0.973
Xos ooy X3 84.2 84.6 5.07 5.07 1.00C 1.000 0.990 1.000 0.864 0.900
Xos -y Xq 83.1 83.5 6.12 6.12 1.00C 1.000 0.987 1.000 0.677 0.684
Xos -y X5 82.0 824 7.19 7.19 1.00C 1.000 0.980 0.999 0.447 0.412
Xos -+ X 80.9 81.4 8.28 8.27 1.00C 1.000 0.972 0.993 0.268 0.220
Xo, X2 95.9 88.7 3.01 3.00 0.881 0.994 0.900 0.998 0.847 0.988
Xo, X2, X3 94.4 87.2 4.03 4.03 0.894 0.997 0.884 0.999 0.628 0.957

Xos Xoy ooy Xg 93.1 86.0 5.07 5.07 0.901 0.998 0.865 0.998 0.406 0.837
Xos X2, ..., X5 91.8 84.9 6.12 6.12 0.904 0.998 0.826 0.997 0.242 0.591
Xo, X2, ..., Xg 90.5 83.7 7.19 7.18 0.906 0.998 0.770 0.991 0.140 0.343

Panel C: n= 500

p = 0.3 09 03 09 0.3 09 0.3 09 0.3 09

Xo 498 498 2.00 2.00 0.002 0.001 0.005 0.003 0.015 0.018
Xo, X1 444 444 3.00 3.00 1.00C 1.000 1.00C 1.000 1.00C 1.000

Xos - vy X2 443 443 401 4.01 1.00C 1.000 0.957 0.999 0.215 0.779
Xos .oy X3 442 442 5.01 5.01 1.00C 1.000 0.937 0.998 0.109 0.554
Xos - vy Xa 441 441 6.02 6.02 1.00C 1.000 0.903 0.996 0.054 0.208
Xos -y X5 440 440 7.03 7.03 1.00C 1.000 0.859 0.992 0.031 0.085
Xos -+ X 439 439 8.04 8.04 1.00C 1.000 0.796 0.986 0.014 0.035
Xo, X2 493 454 3.00 3.00 0.007 0.849 0.011 0.886 0.013 0.717
Xo, X2, X3 489 451 4.00 4.00 0.011 0.915 0.013 0.916 0.008 0.478

Xos X2, ..oy, Xg 486 449 5.01 5.01 0.016 0.932 0.015 0.909 0.003 0.241
Xos X2, ..., X5 484 448 6.02 6.02 0.019 0.939 0.016 0.886 0.002 0.100
Xos X2, ..., Xg 483 447 7.03 7.02 0.022 0.943 0.016 0.843 0.001 0.042

The average value of the maximized log-likelihood functioultiplied by minus two is reported in the first two
columns. The next pair of columns has the average estimdteafegrees of freedom. The last three pairs of

columns report the frequency that a particular regressiodehis in theMg,, for each of the three criteria,
KLIC, AIC* and BIC".



Hansen, Lunde and Nason: Model Confidence Sets - Appendix

Table A.6: Simulation Experiment 12 = 0.5, fraction in MCS

Q(z;j, éj) k* KLIC AIC* (TIC) BIC*
Panel A: n=50
0= 0.3 09 03 09 03 0.9 03 0.9 03 0.9
Xo 48.1 48.1 1.99 2.00 0.058 0.038 0.085 0.070 0.118 0.124
Xo, X1 124 12.4 3.02 3.02 0.99¢ 0.999 1.00C 1.000 1.00C 1.000
Xo, ...y Xo 11.3 11.3 4.08 4.08 0.99¢ 0.999 0.962 0.999 0.566 0.940
Xo, ..., X3 10.2 10.2 5.18 5.18 0.99¢ 0.999 0.940 0.998 0.469 0.912
Xo, ..., Xa 9.09 9.04 6.32 6.32 1.00C 1.000 0.905 0.997 0.367 0.803
Xo, ..., X5 7.95 7.88 7.50 7.50 1.00C 1.000 0.867 0.994 0.279 0.598
Xo, ..., Xg 6.77 6.69 8.73 8.74 1.00C 1.000 0.806 0.990 0.203 0.400
Xo, Xo 447 21.0 3.02 3.02 0.086 0.905 0.100 0.935 0.099 0.877
Xo, X2, X3 42.3 18.1 4.08 4.08 0.106 0.948 0.107 0.949 0.077 0.806

Xos Xoy ooy Xg 40.4 16.3 5.18 5.18 0.120 0.958 0.105 0.938 0.054 0.665
Xo, X2, ..., X5 38.8 14.8 6.32 6.32 0.132 0.962 0.100 0.913 0.036 0.501
Xo, X2, ..., Xg 37.2 134 7.50 7.51 0.145 0.964 0.094 0.869 0.022 0.348

Panel B: n= 100

o= 0.3 09 03 09 0.3 09 0.3 09 0.3 09

Xo 98.0 98.1 1.99 1.99 0.000 0.000 0.000 0.000 0.000 0.000
Xo, X1 27.6 27.8 3.00 3.00 0.99¢ 1.000 1.00C 1.000 1.00C 1.000

Xos vy X2 26.6 26.7 4.03 4.03 0.99¢ 1.000 0.959 0.982 0.402 0.675
Xos ooy X3 255 25.7 5.07 5.06 0.99¢ 1.000 0.939 0.975 0.276 0.619
Xos -y Xq 24.4 24.6 6.12 6.12 1.00C 1.000 0.908 0.960 0.174 0.545
Xos -y X5 23.4 23.6 7.19 7.18 1.00C 1.000 0.864 0.942 0.101 0.390
Xos -+ X 22.3 225 8.28 8.27 1.00C 1.000 0.800 0.920 0.059 0.238
Xo, X2 92.4 45.1 3.00 3.01 0.000 0.548 0.000 0.585 0.000 0.490
Xo, X2, X3 88.8 40.4 4.03 4.03 0.000 0.691 0.000 0.666 0.000 0.443

Xos Xoy ooy Xg 86.1 38.1 5.07 5.07 0.000 0.736 0.000 0.675 0.000 0.338
Xos X2, ..., X5 83.9 36.3 6.12 6.12 0.000 0.759 0.000 0.655 0.000 0.236
Xo, X2, ..., Xg 82.0 34.8 7.19 7.19 0.001 0.772 0.000 0.631 0.000 0.143

Panel C: n= 500

p = 0.3 09 03 09 0.3 09 0.3 09 0.3 09

Xo 498 498 2.00 2.00 0.000 0.000 0.000 0.000 0.000 0.000
Xo, X1 151 151 3.00 3.00 0.99¢ 0.999 1.00C 1.000 1.00C 1.000

Xos - vy X2 150 150 4.00 4.00 0.99¢ 0.999 0.958 0.960 0.207 0.206
Xos .oy X3 149 149 5.01 5.01 0.99¢ 1.000 0.938 0.938 0.100 0.099
Xos - vy Xa 148 148 6.02 6.01 1.00C 1.000 0.907 0.901 0.044 0.042
Xos -y X5 147 147 7.03 7.02 1.00C 1.000 0.858 0.852 0.020 0.017
Xos -+ X 145 146 8.04 8.03 1.00C 1.000 0.790 0.792 0.006 0.008
Xo, X2 474 238 3.00 3.00 0.000 0.000 0.000 0.000 0.000 0.000
Xo, X2, X3 460 219 4.00 4.00 0.000 0.002 0.000 0.002 0.000 0.002

Xos X2, ..oy, Xg 451 211 5.01 5.01 0.000 0.004 0.000 0.004 0.000 0.001
Xos X2, ..., X5 444 206 6.02 6.01 0.000 0.006 0.000 0.006 0.000 0.001
Xos X2, ..., Xg 439 203 7.03 7.02 0.000 0.008 0.000 0.007 0.000 0.000

The average value of the maximized log-likelihood functioultiplied by minus two is reported in the first two
columns. The next pair of columns has the average estimdteafegrees of freedom. The last three pairs of

columns report the frequency that a particular regressiodehis in theMg,, for each of the three criteria,
KLIC, AIC* and BIC".
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Hansen, Lunde and Nason: Model Confidence Sets - Appendix

Table A.7: Simulation Experiment 12 = 0.9, fraction in MCS

Q(z;j, éj) k* KLIC AIC* (TIC) BIC*
Panel A: n=50
0= 0.3 09 03 09 0.3 09 0.3 0.9 03 09
Xo 47.9 48.1 2.00 1.99 0.000 0.000 0.000 0.000 0.000 0.000
Xo, X1 -68.4 -68.3 3.03 3.03 0.99¢ 0.999 1.00C 1.000 1.00C 1.000
Xo, ...y Xo -69.5 -69.3 4.09 4.09 0.99¢ 0.999 0.959 0.962 0.521 0.521
Xo, ..., X3 -70.6 -70.4 5.19 519 0.99¢ 0.999 0.939 0.941 0.405 0.406
Xo, ..., Xa -71.7 -71.5 6.33 6.32 1.00C 0.999 0.909 0.908 0.283 0.289
Xo, ..., X5 -72.8 -72.7 751 751 1.00C 1.000 0.858 0.864 0.190 0.202
Xo, ..., Xg -74.0 -73.9 8.75 8.75 1.00C 1.000 0.786 0.797 0.119 0.135
Xo, Xo 42.6 -18.5 3.03 3.02 0.000 0.005 0.000 0.007 0.000 0.009
Xo, X2, X3 39.2 -27.2 4.09 4.08 0.000 0.021 0.000 0.023 0.000 0.016

Xos Xoy ooy Xg 36,5 -314 5.19 5.18 0.000 0.036 0.000 0.032 0.000 0.018
Xo, X2, ..., X5 343 -34.2 6.33 6.32 0.000 0.048 0.000 0.036 0.000 0.014
Xo, X2, ..., Xg 323 -36.4 7.51 7.50 0.000 0.056 0.000 0.038 0.000 0.010

Panel B: n= 100

o= 03 09 03 09 0.3 0.9 0.3 09 0.3 0.9

Xo 98.0 98.0 1.99 1.99 0.000 0.000 0.000 0.000 0.000 0.000
Xo, X1 -134 -133 3.01 3.00 0.99¢ 0.999 1.00C 1.000 1.00C 1.000

Xos - vy X2 -135 -134 4.03 4.02 1.00C 0.999 0.958 0.958 0.400 0.400
Xos .oy X3 -136 -135 5.07 5.06 1.00C 1.000 0.937 0.937 0.277 0.275
Xos -y Xq -137 -137 6.12 6.11 1.00C 1.000 0.903 0.904 0.176 0.166
Xos -y X5 -138 -138 7.19 7.18 1.00C 1.000 0.855 0.859 0.103 0.100
Xos -+ X -139 -139 8.28 8.27 1.00C 1.000 0.796 0.796 0.057 0.053
Xo, X2 88.5 -33.9 3.00 3.00 0.000 0.000 0.000 0.000 0.000 0.000
Xo, X2, X3 82.7 -50.2 4.02 4.03 0.000 0.000 0.000 0.000 0.000 0.000

Xos Xoy ooy Xg 785 -57.4 5.06 5.06 0.000 0.000 0.000 0.000 0.000 0.000
Xos X2, ..., X5 75.2 -61.8 6.11 6.12 0.000 0.000 0.000 0.000 0.000 0.000
Xo, X2, ..., Xg 72.4 -64.8 7.18 7.19 0.000 0.000 0.000 0.000 0.000 0.000

Panel C: n= 500

p = 03 09 03 09 0.3 0.9 0.3 09 0.3 0.9

Xo 499 499 2.00 2.00 0.000 0.000 0.000 0.000 0.000 0.000
Xo, X1 -654 -654 3.00 3.00 0.99¢ 0.999 1.00C 1.000 1.00C 1.000

Xos - vy X2 -656 -655 4.01 4.00 1.00C 1.000 0.957 0.956 0.206 0.202
Xos ooy X3 -657 -656 5.01 5.01 1.00C 1.000 0.937 0.936 0.097 0.093
Xos vy Xa -658 -657 6.02 6.02 1.00C 1.000 0.902 0.901 0.040 0.037
Xos -y X5 -659 -658 7.03 7.03 1.00C 1.000 0.858 0.852 0.019 0.015
Xos -+ X -660 -659 8.04 8.04 1.00C 1.000 0.796 0.789 0.006 0.006
Xo, X2 455 -156 3.00 3.00 0.000 0.000 0.000 0.000 0.000 0.000
Xo, X2, X3 430 -233 4.00 4.00 0.000 0.000 0.000 0.000 0.000 0.000

Xos X2y ..oy, Xg 413 -264 5.01 5.01 0.000 0.000 0.000 0.000 0.000 0.000
Xos X2, ..., X5 401 -282 6.01 6.02 0.000 0.000 0.000 0.000 0.000 0.000
Xo,s X2, ..., Xg 392 -293 7.02 7.02 0.000 0.000 0.000 0.000 0.000 0.000

The average value of the maximized log-likelihood functioultiplied by minus two is reported in the first two
columns. The next pair of columns has the average estimdteafegrees of freedom. The last three pairs of

columns report the frequency that a particular regressiodehis in theMg,, for each of the three criteria,
KLIC, AIC* and BIC".
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Table A.8: Simulation Experiment 182 = 0.1, average MCS p-value

Q(z;j, éj) k* KLIC AIC* (TIC) BIC*
Panel A: n=50
0= 0.3 09 03 09 0.3 0.9 03 09 0.3 09
Xo 47.8 48.1 2.00 1.99 0.682 0.659 0.729 0.739 0.744 0.768
Xo, X1 41.4 41.8 3.03 3.03 0.927 0.918 0.93¢ 0.908 0.84. 0.794
Xo, ...y Xo 40.3 40.8 4.09 4.09 0.90¢ 0.921 0.784 0.820 0.504 0.515
Xo, ..., X3 39.3 39.7 5.19 5.19 0.90¢ 0.925 0.738 0.765 0.366 0.359
Xo, ..., Xa 38.2 38.5 6.33 6.33 0.907 0.928 0.690 0.705 0.258 0.242
Xo, ..., X5 37.0 37.4 751 751 0.90¢ 0.927 0.635 0.635 0.176 0.158
Xo, ..., Xg 35.8 36.2 8.75 8.74 0.90: 0.919 0.575 0.560 0.117 0.099
Xo, Xo 46.3 42.8 3.03 3.03 0.702 0.880 0.676 0.848 0.474 0.696
Xo, X2, X3 45.0 41.5 4.09 4.09 0.711 0.893 0.631 0.791 0.334 0.486

Xos Xoy ooy Xg 43.7 40.3 5.19 5.18 0.716 0.900 0.579 0.738 0.234 0.339
Xo, X2, ..., X5 42.5 39.2 6.33 6.32 0.717 0.901 0.522 0.675 0.161 0.228
Xo, X2, ..., Xg 41.3 38.0 7.51 7.51 0.714 0.897 0.465 0.606 0.108 0.150

Panel B: n= 100

o= 03 09 03 09 0.3 09 0.3 0.9 0.3 0.9

Xo 97.9 98.2 2.00 1.99 0.421 0.390 0.485 0.490 0.521 0.552
Xo, X1 86.2 86.7 3.01 3.01 0.91¢ 0.920 0.96+ 0.936 0.95( 0.893

Xos vy X2 85.2 85.6 4.03 4.03 0.88¢ 0.916 0.732 0.814 0.450 0.490
Xos .oy X3 84.2 84.6 5.07 5.07 0.88¢ 0.921 0.689 0.768 0.324 0.333
Xos -y Xq 83.1 83.5 6.12 6.12 0.88: 0.925 0.650 0.720 0.224 0.215
Xos -y X5 82.0 82.4 7.19 7.19 0.88( 0.925 0.609 0.663 0.148 0.134
Xos -+ X 80.9 814 8.28 8.27 0.87¢ 0.921 0.566 0.603 0.094 0.080
Xo, X2 95.9 88.7 3.01 3.00 0.451 0.824 0.471 0.802 0.345 0.674
Xo, X2, X3 94.4 87.2 4.03 4.03 0.467 0.849 0.444 0.756 0.227 0.447

Xos Xoy ooy Xg 93.1 86.0 5.07 5.07 0.476 0.858 0.412 0.712 0.149 0.298
Xos X2, ..., X5 91.8 84.9 6.12 6.12 0.483 0.861 0.378 0.660 0.095 0.190
Xo, X2, ..., Xg 90.5 83.7 7.19 7.18 0.488 0.859 0.343 0.605 0.058 0.117

Panel C: n= 500

p = 03 09 03 09 0.3 09 0.3 0.9 0.3 0.9

Xo 498 498 2.00 2.00 0.006 0.005 0.008 0.006 0.013 0.014
Xo, X1 444 444 3.00 3.00 0.90¢ 0.925 0.96: 0.968 0.99° 0.984

Xos - vy X2 443 443 401 4.01 0.86¢ 0.883 0.646 0.706 0.114 0.264
Xos ooy X3 442 442 5.01 5.01 0.86¢ 0.883 0.588 0.670 0.053 0.149
Xos vy Xa 441 441 6.02 6.02 0.86¢ 0.882 0.535 0.635 0.031 0.080
Xos -y X5 440 440 7.03 7.03 0.86z 0.880 0.480 0.598 0.021 0.045
Xos -+ X 439 439 8.04 8.04 0.85¢ 0.880 0.427 0.559 0.015 0.026
Xo, X2 493 454 3.00 3.00 0.009 0.410 0.011 0.427 0.011 0.284
Xo, X2, X3 489 451 4.00 4.00 0.011 0.490 0.012 0.455 0.008 0.168

Xos X2, ..oy, Xg 486 449 5.01 5.01 0.013 0.521 0.012 0.441 0.005 0.088
Xos X2, ..., X5 484 448 6.02 6.02 0.014 0.537 0.013 0.417 0.003 0.046
Xos X2, ..., Xg 483 447 7.03 7.02 0.016 0.546 0.013 0.388 0.002 0.026

The average value of the maximized log-likelihood functioultiplied by minus two is reported in the first two
columns. The next pair of columns has the average estimdteafegrees of freedom. The last three pairs of
columns report the average MGBvalue for each of the three criteria, KLIC, At@nd BIC'.
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Table A.9: Simulation Experiment 182 = 0.5, average MCS p-value

Q(z;j, éj) k* KLIC AIC* (TIC) BIC*
Panel A: n=50
0= 0.3 09 03 09 0.3 0.9 03 09 0.3 09
Xo 48.1 48.1 1.99 2.00 0.027 0.021 0.035 0.031 0.043 0.046
Xo, X1 124 12.4 3.02 3.02 0.897 0.918 0.95¢ 0.958 0.98: 0.971
Xo, ...y Xo 11.3 11.3 4,08 4.08 0.85¢ 0.885 0.644 0.725 0.293 0.438
Xo, ..., X3 10.2 10.2 5.18 5.18 0.857 0.888 0.584 0.690 0.204 0.345
Xo, ..., Xa 9.09 9.04 6.32 6.32 0.85¢ 0.889 0.529 0.650 0.148 0.258
Xo, ..., X5 7.95 7.88 750 7.50 0.85: 0.888 0.470 0.605 0.108 0.189
Xo, ..., Xg 6.77 6.69 8.73 8.74 0.84¢ 0.887 0.417 0.554 0.079 0.133
Xo, Xo 447 21.0 3.02 3.02 0.035 0.491 0.040 0.494 0.038 0.383
Xo, X2, X3 42.3 18.1 4.08 4.08 0.041 0.566 0.041 0.511 0.032 0.314

Xos Xoy ooy Xg 40.4 16.3 5.18 5.18 0.045 0.594 0.040 0.491 0.024 0.241
Xo, X2, ..., X5 38.8 14.8 6.32 6.32 0.048 0.608 0.038 0.457 0.018 0.177
Xo, X2, ..., Xg 37.2 134 7.50 7.51 0.051 0.615 0.037 0.418 0.013 0.125

Panel B: n= 100

o= 03 09 03 09 0.3 09 0.3 0.9 0.3 0.9

Xo 98.0 98.1 1.99 1.99 0.001 0.000 0.001 0.001 0.001 0.001
Xo, X1 27.6 27.8 3.00 3.00 0.89¢ 0.914 0.957 0.964 0.99(C 0.990

Xos vy X2 26.6 26.7 403 4.03 0.86: 0.873 0.652 0.667 0.213 0.290
Xos .oy X3 255 25.7 5.07 5.06 0.86: 0.873 0.592 0.618 0.130 0.229
Xos -y Xq 24.4 24.6 6.12 6.12 0.86: 0.870 0.539 0.574 0.081 0.174
Xos -y X5 23.4 23.6 7.19 7.18 0.86( 0.868 0.482 0.535 0.051 0.126
Xos -+ X 22.3 225 8.28 8.27 0.85¢ 0.865 0.429 0.496 0.031 0.086
Xo, X2 92.4 451 3.00 3.01 0.001 0.207 0.001 0.230 0.001 0.183
Xo, X2, X3 88.8 40.4 4.03 4.03 0.001 0.286 0.001 0.276 0.001 0.164

Xos Xoy ooy Xg 86.1 38.1 5.07 5.07 0.002 0.319 0.001 0.280 0.001 0.124
Xos X2, ..., X5 83.9 36.3 6.12 6.12 0.002 0.338 0.002 0.271 0.001 0.087
Xo, X2, ..., Xg 82.0 34.8 7.19 7.19 0.002 0.351 0.002 0.256 0.000 0.056

Panel C: n= 500

p = 03 09 03 09 0.3 09 0.3 0.9 0.3 0.9

Xo 498 498 2.00 2.00 0.000 0.000 0.000 0.000 0.000 0.000
Xo, X1 151 151 3.00 3.00 0.90: 0.905 0.96( 0.962 0.99° 0.997

Xos - vy X2 150 150 4.00 4.00 0.86¢ 0.864 0.644 0.648 0.112 0.110
Xos ooy X3 149 149 5.01 501 0.86¢ 0.865 0.587 0.592 0.050 0.050
Xos vy Xa 148 148 6.02 6.01 0.86¢ 0.864 0.533 0.536 0.023 0.022
Xos -y X5 147 147 7.03 7.02 0.86( 0.859 0.480 0.482 0.011 0.011
Xos -+ X 145 146 8.04 8.03 0.85¢ 0.855 0.430 0.432 0.005 0.006
Xo, X2 474 238 3.00 3.00 0.000 0.000 0.000 0.000 0.000 0.001
Xo, X2, X3 460 219 4.00 4.00 0.000 0.002 0.000 0.002 0.000 0.002

Xos X2, ..oy, Xg 451 211 5.01 5.01 0.000 0.004 0.000 0.004 0.000 0.002
Xos X2, ..., X5 444 206 6.02 6.01 0.000 0.005 0.000 0.005 0.000 0.001
Xos X2, ..., Xg 439 203 7.03 7.02 0.000 0.006 0.000 0.005 0.000 0.001

The average value of the maximized log-likelihood functioultiplied by minus two is reported in the first two
columns. The next pair of columns has the average estimdteafegrees of freedom. The last three pairs of
columns report the average MGBvalue for each of the three criteria, KLIC, At@nd BIC'.
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Table A.10: Simulation Experiment 182 = 0.9, average MCS p-value

Q(z;j, éj) k* KLIC AIC* (TIC) BIC*
Panel A: n=50
0= 0.3 09 03 09 0.3 09 0.3 0.9 03 09
Xo 47.9 48.1 2.00 1.99 0.000 0.000 0.000 0.000 0.000 0.000
Xo, X1 -68.4 -68.3 3.03 3.03 0.90: 0.899 0.957 0.955 0.98: 0.983
Xo, ...y Xo -69.5 -69.3 4.09 4.09 0.86: 0.861 0.644 0.647 0.279 0.285
Xo, ..., X3 -70.6 -70.4 5.19 519 0.86( 0.860 0.582 0.584 0.188 0.191
Xo, ..., Xa -71.7 -71.5 6.33 6.32 0.86( 0.859 0.524 0.526 0.127 0.131
Xo, ..., X5 -72.8 -72.7 751 751 0.85¢ 0.856 0.465 0.469 0.085 0.090
Xo, ..., Xg -74.0 -73.9 8.75 8.75 0.85. 0.850 0.411 0.413 0.057 0.061
Xo, Xo 42.6 -18.5 3.03 3.02 0.000 0.005 0.000 0.006 0.000 0.007
Xo, X2, X3 39.2 -27.2 4.09 4.08 0.000 0.013 0.000 0.013 0.000 0.010

Xos Xoy ooy Xg 36,5 -314 5.19 5.18 0.000 0.018 0.000 0.016 0.000 0.010
Xo, X2, ..., X5 343 -34.2 6.33 6.32 0.000 0.021 0.000 0.017 0.000 0.009
Xo, X2, ..., Xg 323 -36.4 7.51 7.50 0.000 0.024 0.000 0.018 0.000 0.007

Panel B: n= 100

o= 03 09 03 09 0.3 0.9 0.3 09 0.3 0.9

Xo 98.0 98.0 1.99 1.99 0.000 0.000 0.000 0.000 0.000 0.000
Xo, X1 -134 -133 3.01 3.00 0.90: 0.900 0.96( 0.958 0.99: 0.990

Xos - vy X2 -135 -134 4.03 4.02 0.86: 0.863 0.644 0.654 0.211 0.214
Xos .oy X3 -136 -135 5.07 5.06 0.86. 0.862 0.586 0.592 0.127 0.128
Xos -y Xq -137 -137 6.12 6.11 0.86. 0.862 0.531 0.536 0.079 0.079
Xos -y X5 -138 -138 7.19 7.18 0.85 0.858 0.477 0.480 0.048 0.047
Xos -+ X -139 -139 8.28 8.27 0.85¢ 0.854 0.426 0.428 0.028 0.028
Xo, X2 88.5 -33.9 3.00 3.00 0.000 0.000 0.000 0.000 0.000 0.000
Xo, X2, X3 82.7 -50.2 4.02 4.03 0.000 0.000 0.000 0.000 0.000 0.000

Xos Xoy ooy Xg 785 -57.4 5.06 5.06 0.000 0.000 0.000 0.000 0.000 0.000
Xos X2, ..., X5 75.2 -61.8 6.11 6.12 0.000 0.000 0.000 0.000 0.000 0.000
Xo, X2, ..., Xg 72.4 -64.8 7.18 7.19 0.000 0.001 0.000 0.000 0.000 0.000

Panel C: n= 500

p = 03 09 03 09 0.3 0.9 0.3 09 0.3 0.9

Xo 499 499 2.00 2.00 0.000 0.000 0.000 0.000 0.000 0.000
Xo, X1 -654 -654 3.00 3.00 0.90¢ 0.910 0.96: 0.963 0.997 0.997

Xos - vy X2 -656 -655 4.01 4.00 0.86¢ 0.868 0.646 0.646 0.111 0.110
Xos ooy X3 -657 -656 5.01 5.01 0.86¢ 0.866 0.588 0.587 0.047 0.047
Xos vy Xa -658 -657 6.02 6.02 0.86¢ 0.864 0.535 0.532 0.022 0.021
Xos -y X5 -659 -658 7.03 7.03 0.86: 0.860 0.480 0.478 0.011 0.010
Xos -+ X -660 -659 8.04 8.04 0.85¢ 0.854 0.427 0.426 0.005 0.005
Xo, X2 455 -156 3.00 3.00 0.000 0.000 0.000 0.000 0.000 0.000
Xo, X2, X3 430 -233 4.00 4.00 0.000 0.000 0.000 0.000 0.000 0.000

Xos X2y ..oy, Xg 413 -264 5.01 5.01 0.000 0.000 0.000 0.000 0.000 0.000
Xos X2, ..., X5 401 -282 6.01 6.02 0.000 0.000 0.000 0.000 0.000 0.000
Xo,s X2, ..., Xg 392 -293 7.02 7.02 0.000 0.000 0.000 0.000 0.000 0.000

The average value of the maximized log-likelihood functioultiplied by minus two is reported in the first two
columns. The next pair of columns has the average estimdteafegrees of freedom. The last three pairs of
columns report the average MGBvalue for each of the three criteria, KLIC, At@nd BIC'.
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Table A.11: MCS for Taylor Rules: 19781 to 2006Q4

Model Specification Q(Z;,0) k* KLIC AlC* BIC*
R_; 93.15 13.74 106.89 (0.30) 120.63 (0.47¥ 157.99 (0.63)*
i1 Vio1 284.82 11.44 296.25 (0.00) 307.69 (0.00) 338.79 (0.00)
Tty j=1.2 Ve jsj=12 258.95 14.66 273.61 (0.00) 288.28 (0.01) 328.14 (0.01)
i1 ure_s 289.65 10.20 299.84 (0.00) 310.04 (0.00) 337.75 (0.00)
Ty j=1.2 urej, j—12 268.90 12.82 281.72 (0.00) 294.53 (0.00) 329.37 (0.01)
i1 rulc,_; 289.99 9.89 299.88 (0.00) 309.77 (0.00) 336.67 (0.01)
Tty j=1.2 rulcy_;, j1.2 266.07 12.12 278.19 (0.00) 290.31 (0.01) 323.26 (0.01)
Vi1 ure_s 387.45 17.04 404.49 (0.00) 421.54 (0.00) 467.86 (0.00)
Yeojs =12 ure_j, j=1.2 385.86 23.42 409.28 (0.00) 432.69 (0.00) 496.35 (0.00)
i1 rulc,_4 386.47 14.92 401.39 (0.00) 416.32 (0.00) 456.89 (0.00)
Ve js j=12 rulce_j, j—12 385.43 19.44 404.87 (0.00) 424.31 (0.00) 477.16 (0.00)
ure_g rulc;_; 386.21 15.41 401.62 (0.00) 417.02 (0.00) 458.90 (0.00)
U, j—12 rulce_j, j—12 384.82 19.86 404.68 (0.00) 424.54 (0.00) 478.52 (0.00)
R.o1 71 Vo1 68.57 17.71 86.28 (0.86) 103.98 (1.00" 152.12 (0.64)
Ro1 T j,je12 Ve jrj=12 62.11 22.11 84.22 (1.00) 106.32 (0.93)" 166.43 (0.41%
R.1 71 ure_s 77.57 16.32 93.89 (0.72) 110.22 (0.89 154.60 (0.64)"
Ro1 712 urej, j—12 73.27 18.79 92.07 (0.80) 110.86 (0.89)" 161.95 (0.57
R.o1 71 rulc,_; 72.80 16.06 88.86 (0.86) 104.92 (0.93)" 148.58 (1.00
Ro1 T jje12 rulce_;, j—1.2 69.21 19.26 88.47 (0.86) 107.73 (0.92 160.09 (0.58)*
R_; Vio1 ure_s 86.16 19.16 105.33 (0.33) 124.49 (0.38)" 176.59 (0.16)
R_; Ve js j=12 Ure j, j—1.2 85.51 24.32 109.83 (0.28) 134.16 (0.18) 200.28 (0.02)
R_; Vio1 rulc;_; 89.42 18.92 108.35 (0.29) 127.27 (0.31% 178.72 (0.15)
R_; Ve j»j=1.2 rulce_;, j—1.2 88.11 22.42 110.53 (0.28) 132.94 (0.20) 193.88 (0.03)
R_; ure_g rulc,_4 87.42 18.07 105.49 (0.33) 123.55 (0.38}" 172.66 (0.21)
R_; Urej, j—12 rulce_j, j—12 85.93 21.32 107.25 (0.30) 128.56 (0.28)" 186.51 (0.06)

xipuaddy - S19S 92UBpIUOD) [9PON :UOSEN pue apunT ‘ussueH

We report the maximized log-likelihood function (multigdl by minus two), the effective degress of freedom, and treethriteria, KLIC, AIC and

— -~

BIC*, along with the corresponding MGSvalues. The regression modelsirg,,, and M., are identified by one and two asterisks, respectively. See
the text and Table 6 for variable mnemonics and definitions.
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Table A.12: MCS for Taylor Rules: 19841 to 2006Q4

Model Specification Q(Z;,0) k* KLIC AlC* BIC*
R_; -38.90 6.97 -31.93 (0.56) -24.96 (0.93)* -7.39 (1.00%*
i1 Vio1 208.37 11.57 219.93 (0.00) 231.50 (0.00) 260.68 (0.00)
Tty j=1.2 Ve jsj=12 190.30 13.76 204.06 (0.00) 217.83 (0.00) 252.54 (0.00)
i1 ure_s 227.79 11.91 239.70 (0.00) 251.61 (0.00) 281.63 (0.00)
Ty j=1.2 urej, j—12 220.78 14.10 234.88 (0.00) 248.97 (0.00) 284.52 (0.00)
i1 rulc,_; 228.07 10.34 238.41 (0.00) 248.75 (0.00) 274.83 (0.00)
Tty j=1.2 rulcy_;, j1.2 213.53 12.06 225.59 (0.00) 237.65 (0.00) 268.07 (0.00)
Vi1 ure_s 226.30 12.82 239.12 (0.00) 251.93 (0.00) 284.25 (0.00)
Yeojs =12 ure_j, j=1.2 216.60 16.04 232.65 (0.00) 248.69 (0.00) 289.15 (0.00)
i1 rulc,_4 225.63 12.38 238.01 (0.00) 250.39 (0.00) 281.62 (0.00)
Ve js j=12 rulce_j, j—12 216.68 14.39 231.07 (0.00) 245.46 (0.00) 281.76 (0.00)
ure_g rulc;_; 238.39 12.46 250.85 (0.00) 263.31 (0.00) 294.74 (0.00)
U, j—12 rulce_j, j—12 233.41 14.90 248.31 (0.00) 263.21 (0.00) 300.78 (0.00)
R.o1 71 Vo1 -66.21 14.74 -51.47 (0.78) -36.73 (0.96)* 0.44 (0.92)
Ro1 T j,je12 Ve jrj=12 -70.85 16.93 -53.92 (1.00) -37.00 (1.00)* 5.69 (0.86)*
R.1 71 ure_s -45.39 9.63 -35.76 (0.6%) -26.13 (0.93)* -1.84 (0.92)
Ro1 712 urej, j—12 -45.55 13.23 -32.31 (0.58) -19.08 (0.74)* 14.30 (0.57)
R.o1 71 rulc,_; -51.84 11.31 -40.53 (0.72) -29.22 (0.93)* -0.71 (0.92y
Ro1 T jje12 rulce_;, j—1.2 -53.68 12.74 -40.94 (0.72) -28.21 (0.93) 3.91 (0.88)*
R_; Vio1 ure_s -58.05 13.50 -44.55 (0.72) -31.05 (0.93)* 2.99 (0.89)*
R_; Ve js j=12 Ure j, j—1.2 -62.18 16.65 -45.53 (0.72) -28.88 (0.93)* 13.12 (0.60)*
R_; Vio1 rulc;_; -58.72 14.20 -44.52 (0.72) -30.32 (0.93)* 5.50 (0.86)*
R_; Ve j»j=1.2 rulce_;, j—1.2 -64.74 15.81 -48.94 (0.78) -33.13 (0.93) 6.74 (0.86)*
R_; ure_g rulc,_4 -50.00 12.00 -37.99 (0.6%) -25.99 (0.93)* 4.28 (0.87)
R_; Urej, j—12 rulce_j, j—12 -50.96 15.73 -35.22 (0.62) -19.49 (0.74)* 20.19 (0.35)*

xipuaddy - S19S 92UBpIUOD) [9PON :UOSEN pue apunT ‘ussueH

We report the maximized log-likelihood function (multigdl by minus two), the effective degress of freedom, and treethriteria, KLIC, AIC and

— -~

BIC*, along with the corresponding MGSvalues. The regression modelsirg,,, and M., are identified by one and two asterisks, respectively. See
the text and Table 6 for variable mnemonics and definitions.
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