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1 Introduction

Since the seminal work of Rotemberg and Woodford (1997), there has been increasing use of im-

pulse response function matching to estimate parameters of dynamic stochastic general equilibrium

(DSGE) models. Impulse response function matching is a limited information approach that mini-

mizes the distance between sample and DSGE model generated impulse responses. Those applying

this estimator to DSGE models include, among others, Christiano, Eichenbaum and Evans (2005),

Altig, Christiano, Eichenbaum, and Lindé (2005), Iacoviello (2005), Jordà and Kozicki (2007),

DiCecio (2005), Boivin and Giannoni (2006), Uribe and Yue (2006) DiCecio and Nelson (2007),

and Dupor, Han, and Tsai (2007). Despite the widespread use of impulse response function (IRF)

matching, only ad hoc standards have been available to choose which IRFs and how many of their

lags to match.

This paper presents a new method to improve impulse response function matching estimators

(IRFMEs). We develop a criterion, the Redundant Impulse Response Selection Criterion (RIRSC),

to select IRFs and their dimension for IRFME that has the flexibility to work in many different

estimation environments. The RIRSC provides the means to select which IRFs to match and the

number of lags of each IRF to include. Our method has solid econometric foundations, applies to

several different classes of IRFMEs, is easy to implement, and offers improved statistical inference

for IRFMEs.

Our criterion answers two questions. The first is: “Can the performance of the matching estima-

tor be improved by selecting the IRF that are most informative about DSGE model parameters?”.

Since the linearized approximate solutions of many DSGE models take a state-space form with

cross-equation restrictions tied to a relatively small number of parameters, some linear dependence

is imposed on the IRFs. It seems reasonable to conjecture that not accounting for this linear de-

pendence can lead to small sample bias in and incorrect inference about DSGE model parameters.

Our proposed criterion selects IRFs for the matching estimator that appears to perform well in

small samples. The key idea is that our criterion holds onto the relevant IRFs for estimation, while

discarding the irrelevant IRFs.

The second question is: “How many lags in the relevant IRFs should be matched?”. So far

the literature has proceeded with ad-hoc rules for choosing which IRF elements to match. For

example, Christiano, Eichenbaum and Evans (CEE) and Altig, Christiano, Eichenbaum, and Lindé
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(ACEL) match a pre-specified number of IRF lags. However, this procedure fails to recognize that

even impulse responses that are zero may well be informative about the parameters of interest

(e.g. restrictions imposed via long-run identification) and that some impulse responses might

contain more information on the parameters of interest than other IRFs. Our criterion exploits

information in the data to choose the IRF lag length, as well as which lags to match. Thus, we

provide a criterion to choose the IRF lag length, as well as which IRFs to match. This gives applied

researchers a theoretically sound criterion for selecting the dimension of the relevant IRFs to match

that is easy to use and addresses an important and, up to this point, neglected issue.

This paper develops a criterion to select IRFs and their dimension for IRFME that has the

flexibility to work in many different estimation environments. Our criterion (i) provides the means

to separate the relevant from the redundant IRFs and to choose the appropriate lag length for the

relevant subset of IRFs; this can be especially useful for the researcher who does not have strong

opinions on which IRFs to match (e.g. say, between an IRF tied to an identified monetary policy

shock or to an IRF generated by a technology shock); (ii) can be used when IRFs are identified

by short-run, long-run, or a combination of both types of restrictions;1 (iii) does not depend on

having access to an optimal weighting matrix; (iv) works in the presence of calibrated parameters;

(v) improves inference; and (vi) is easy to implement; it only requires an estimate of the variances

of the DSGE parameters given a particular choice of the number of lags in the IRFs, which is

already available because it is computed to conduct inference.2

Our selection criterion is applied to the DSGE models of CEE and ACEL. We often obtain point
1Sign restrictions cannot be used for identification in our framework because only intervals of IRFs are produced,

not point estimates.
2The IRF matching estimator is a limited information approach to estimation of DSGE models. Limited informa-

tion estimators do not rely on a full model specification. Thus, the IRF matching estimator can ignore the full set of

predictions of which the DSGE model is capable, and be more robust to misspecification. For example, Christiano,

Eichenbaum, and Evans (2005) estimate DSGE model parameters by matching the sample and theoretical responses

of inflation and other macro variables only to an identified monetary policy shock. This contrasts with full infor-

mation approaches in which the likelihood expresses the complete set of predictions inherent in the DSGE model.

Although the solutions of the linearized DSGE models we study have well defined likelihoods, we adopt the limited

information motivation of the IRF matching estimator to better understand its properties and behavior. Besides

IRF matching and maximum likelihood, simulation estimators in the frequentist domain are used to estimate DSGE

models. A useful survey of simulation estimators is Gourieroux and Monfort (1997).
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estimates that are little changed from those CEE and ACEL report. Nonetheless, the RIRSC yields

economically important changes in several key parameters that leads to inference with strikingly

different conclusions than those of CEE and ACEL. Monte Carlo exercises indicate that the small

sample bias of IRFMEs is mitigated by RIRSC compared to using a fixed lag length. Thus, the

RIRSC should be attractive to analysts at central banks and other institutions conducting policy

evaluation with DSGE models, as well as academic researchers testing newly developed DSGE

models.

The criterion that we propose is connected to several strands of the literature that estimate

DSGE models. Rotemberg and Woodford (1996), CEE (2005), and ACEL (2005) employ IRFMEs

that minimize the difference between sample and theoretical IRFs using a non-optimal weighting

matrix to which our selection criterion can be applied. Jordà and Kozicki (2007) show that our

criterion meshes with an IRFME estimator based on local projections and an optimal weighting

matrix. Note that our criterion is applicable whether the weighting matrix is efficient or not.

Finally, we show that our criterion can be an element of the Sims (1989) and Cogley and Nason

(1995) simulation estimator.3

The paper is organized as follows. Section 2 presents our new criterion for the IRFME in

the leading VAR case and discusses the assumptions that guarantee its validity. In section 3, we

provide a clarifying example. The projection and simulation-based estimators are studied in section

4. Sections 5 and 6 present the empirical results and Monte Carlo analyses. Section 7 concludes.

All technical proofs and assumptions are collected in the Appendix.

2 The VAR-based IRF matching estimator

In this section, we consider the leading case in which the researcher is interested in estimating

the parameters of a DSGE model by using a VAR-based IRFME. This estimator is obtained by
3The method proposed in this paper is further related to Andersen and Sorensen (1996) and Hall, Inoue, Jana,

and Shin (2007). The former paper shows (in a different context than ours) that minimum distance and GMM

estimators do not work well in finite samples when the number of overidentifying restriction is large. The latter set

of co-authors propose a “relevant moment selection criterion” based on entropy arguments that is useful for solving

that problem. They show that the limiting distribution of a GMM estimator can be written in terms of long-run

canonical correlations between the moment function and the true score vector. We adapt their concept, although our

focus is on minimum distance estimators, which is appropriate for the IRF matching problem.
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minimizing the distance between the sample IRFs obtained by fitting a VAR to the actual data

and the theoretical IRFs generated by the DSGE model. The sample and the theoretical IRFs are

identified by restrictions implied by the DSGE model. This requires we assume that the DSGE

model admits a structural VAR representation, and so that, the sample IRFs are informative for

the DSGE model parameters. We are interested in the VAR:

yt = Φ0 + Φ1yt−1 + Φ2yt−2 + ...+ Φp0yt−p0 + εt, (1)

where yt is ny × 1, t = 1, 2, ..., T , and εt is white noise with zero mean and variance Σε. The

population VAR lag order, p0, can be either finite or infinite. For (1) to have an infinite order Vector

Moving Average (VMA) representation and IRFs, we make the following standard assumption:

Assumption 1 In equation (1), Φ(L) = Iny −Φ1L−Φ2L
2− · · · −Φp0L

p0 is invertible, where L is

the lag operator and Iny is the (ny × ny) identity matrix.

Let γi,j,τ denote IRFs of each variable yi,t+τ to a structural shock εj,t at horizon τ , where

i, j = 1, ..., ny, τ = 1, ...,H, and H is the maximum horizon of the IRFs.4 Let γ
τ

be a
(
n2
y × 1

)
vector that collects the population IRFs at a particular horizon τ :

γ
τ

= (
i=1︷ ︸︸ ︷

γ1,1,τ , γ1,2,τ , ..., γ1,ny ,τ ,

i=2︷ ︸︸ ︷
γ2,1,τ , γ2,2,τ , ..., γ2,ny ,τ , ...,

i=ny︷ ︸︸ ︷
γny ,1,τ , ..., γny ,ny ,τ )′

The population IRFs at horizons τ = 1, 2, ...,H will be collected in a
(
n2
yH × 1

)
vector γH :

γH =
(
γ′

1
, γ′

2
, ..., γ′

H

)′
.

4For simplicity we assume that the dimension of yt, ny, and that of εt, nε, are equal. However, ny can be greater

than nε. For example, suppose that a tri-variate VAR(2) with two shocks is fitted to the actual data in order

to estimate eight DSGE model parameters using an optimal weighting matrix. When H = 2, suppose the 18×18

asymptotic covariance matrix of all possible IRFs is singular with rank of 12. Suppose the Moore-Penrose generalized

inverse of the asymptotic covariance matrix is used as the weighting matrix and that the 18×8 Jacobian matrix of the

theoretical IRF has rank of 8, which is implicit in assumption (1). In this case, the eight DSGE model parameters

will be identified. If instead the tri-variate VAR(2) is driven only by one shock, the asymptotic covariance matrix has

rank six. As a result, the inverse of the asymptotic covariance matrix of the IRFME is singular and the DSGE model

parameters will not be identified. The dimension of shocks matters for identification but not necessarily relative to the

dimension of yt. Provided rank conditions are satisfied, adding a redundant vector of variables to the VAR system,

while holding the number of shocks fixed, will not violate the identification condition. However, the finite-sample

performance of the IRFME estimator can deteriorate.
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Let the model’s parameters (referred to as deep parameters) be collected in a (q × 1) vector θ,

θ ∈ Θ, and the theoretical IRFs up to horizon H be denoted by gH (θ).5 The validity of IRFMEs

requires that theoretical IRFs equal population IRFs:

Assumption 2 g∞(θ0) = γ∞ for some θ0 ∈ Θ.

Let c be a n2
yH × 1 selection vector that indicates which elements of the candidate impulse

responses are included in estimation. We use c to index functions of impulse responses, that is,

γH(c) and gH(·; c), and, for notational simplicity, we will drop the subscript H. If cj = 1 then the jth

element of γH is included in γ(c), and cj = 0 implies this element is excluded. For example, if only

impulse responses up to horizons h < H are selected, c = [11×n2
yh

01×n2
y(H−h)]′ where 1m×n and

0m×n denote m×n matrices of ones and zeros, respectively. If the impulse responses of the second

element of yt to the first element of εt are used, c = Iny×1 ⊗ [01×ny 0 1 01×(ny−2) 01×(ny−2)ny
]′.

Note that |c| = c′c equals the number of elements in γ(c). The set of all possible selection vectors

is denoted by CH , that is

CH =
{
c ∈ <n2

yH ; cj = 0, 1, for j = 1, 2, . . . n2
yH, and c = (c1, . . . cn2

yH
)′, |c| ≥ 1

}
.

The IRF Matching Estimator (IRFME) is a classical minimum distance estimator based on

Assumption 2:

θ̂(c) = arg min
θ∈Θ

[γ̂T (c)− g (θ; c)]′ ŴT (c) [γ̂T (c)− g (θ; c)] , (2)

where γ̂T (c) is an estimate of γ(c) and ŴT (c) is a weighting matrix. ŴT (c) could be the inverse

of the covariance matrix of the IRFs γ̂T (c) or, as often found in practice, a restricted version of

this matrix that has zeros everywhere except along its diagonal. In general, ŴT (c) can be readily

obtained from standard package procedures that compute IRF standard error bands.

In order to implement the IRFME in practice, the researcher has to choose which impulse

responses to use in (2). Our contribution to the existing literature is to provide statistical criteria

to choose c. The criterion that we propose allows the researcher to avoid using the IRFs that contain
5Theoretical models may also contain additional parameters whose values are not estimated but calibrated. We

denote such parameters by φ. Let gH (θ, φ) denote the mapping between the parameters of the DSGE model and its

theoretical IRFs. Since the calibrated parameters do not play any role in our analysis, in order to simplify notation

we ignore φ and write gH(θ) rather than gH(θ, φ).
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only redundant information and to identify the “relevant horizon” of the IRFs. Since IRFs that do

not contain additional information only add noise to the estimation of the deep parameters, these

IRFs should be eliminated. The following definitions formalize these concepts: Let Vθ(c) denote

the asymptotic covariance matrix of the IRMFE based on selection vector c. We denote the set of

selection vectors that are asymptotically efficient relative to the candidate set by

CE,H ≡ {c; c ∈ CH ; Vθ(ιn2
yH

) = Vθ(c)},

where ιn is an n× 1 vector of ones, and the subset of CE,H containing vectors of minimum length

by

Cmin,H ≡ {c; c ∈ CE,H , |c| ≤ |c̄| for all c̄ ∈ CE,H} .

If c ∈ Cmin,H we call γ(c) a relevant IRF. Let’s denote the selection vector of the relevant IRFs

with cr. We assume that there is a unique relevant IRF in Cmin,H .

Assumption 3 Cmin,H = {cr},

Our goal is to identify the fewest number of IRFs that guarantee that, asymptotically, the

covariance matrix of the IRFME estimator is as small as possible.

We define the redundant impulse responses selection criterion by

RIRSC(c) = ln(|V̂T (c)|) + κ(|c|, pT , T ), (3)

where pT is the lag order of the VAR fitted to (1) that can depend on the sample size, and

κ(|c|, pT , T ) is a deterministic penalty that is an increasing function of the number of impulse

responses.6

We select impulse response functions by minimizing the criterion (3):

ĉT = arg min
c∈CH

RIRSC(c). (4)

Note that we allow for some selection vectors for which the parameters are not identified provided

Assumption 3 holds. We will show that ĉT
p→ cr and ĉT

a.s.→ cr. Let CI,H denote the set of selection

vectors for which the deep parameter θ is identified and CNI,H denote the set of c for which the

deep parameter θ is not identified. For weak consistency, we assume
6It can be shown that our criterion can be given a canonical correlations interpretation along the lines of Hall,

Inoue, Jana and Shin (2007).
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Assumption 4 (a) g : Θ×CH → <|c| is twice continuously differentiable in θ in a neighborhood

of θ0 for every c ∈ CH and H.

(b) CH = CI,H ∪ CNI,H . For all sufficiently large H, CI,H is non-empty and satisfies

√
T (θ̂ − θ0) d→ N(0, Vθ(c)) (5)

for every c ∈ CI,H .

(c) For sufficiently large H so that CI,H 6= ø, there is an estimator V̂θ,T (c) such that |V̂θ,T (c)| =

|Vθ(c)|+Op(p2
TT
−1/2) uniformly in c ∈ CI,H . For any c ∈ CNI,H , |V̂θ,T (c)| p→∞.

(d) For every c ∈ CH , ŴT (c) is a sequence of positive semi-definite matrices and satisfies ŴT (c) =

W (c) +Op(T−1/2), where W (c) is positive definite.

(e) H = kpT where k ≥ 1 is some constant.

Remark 1. Assumption 4(b) requires that if θ is identified then θ̂T (c) is asymptotically normal,

which follows from more primitive assumptions for classical minimum distance estimators (e.g.,

Newey and McFadden, 1994, Theorem 3.2). CNI,H is the set of c for which the deep parameter θ

is not identified. If it is unidentified or weakly identified, the asymptotic covariance matrix Vθ(c)

is not well-defined and Assumption 4(c) assumes that the asymptotic covariance matrix estimator

V̂θ(c) diverges, which is expected because the Jacobian of g(θ0; c) is rank-deficient.

Remark 2. Assumption 4(e) requires that the maximum horizon H diverges at the same rate as

the lag order pT in case pT →∞.

We must also impose certain “identification” restrictions involving the deterministic penalty

term.

Assumption 5 lim
T→+∞

(T
1
2 /pT )(κ(|c1|, pT , T )−κ(|c2|, pT , T )) = +∞ for any sequences of c1,H , c2,H ∈

CH such that |c1,H | > |c2,H |, and limT→+∞ κ(|c|, pT , T ) = 0 for any sequence of cH ∈ CH .
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Remark 3. The SIC-type penalty term,

κ(|c|, pT , T ) =

 |c|
ln(
√
T)√
T

for pT = p0 <∞

|c| ln(
√
T/pT )√
T/pT

for pT →∞
(6)

satisfies Assumption 5 whereas the AIC-type penalty term,

κ(|c|, pT , T ) =


2|c|√
T

for pT = p0 <∞
2|c|√
T/pT

for pT →∞
(7)

does not.

We show that our criterion is weakly consistent in the following theorem:

Theorem 1 (Weakly consistent IRFs selection (VAR case)) Let the structural model have

a VAR(p0) representation (1), and the estimator of the deep parameters be defined as (2), where c

is chosen by (4). Suppose that Assumptions 1, 2, 3, 4 and 5 hold. Then ĉT
p→ cr.

By focusing on the case in which p0 <∞, our results can be strengthened to strong consistency

results. The strong consistency result may shed light on explaining the difference between the

SIC-type and Hannan-Quinn-type information criteria, as discussed below.

Assumption 6 κ(|c|, pT , T ) = k(|c|)mT where k(·) is strictly increasing, mT →∞ as T →∞ with

mT = o(T 1/2) and either: (i) lim infT→∞ T 1/2mT /(lnlnT )1/2 = µ where z < µ < ∞ and z is a

positive constant that is defined in Appendix B; or (ii) lim infT→∞ T 1/2mT /(lnlnT )1/2 = +∞.

Theorem 2 (Strongly consistent IRFs selection (VAR case)) Suppose that Assumptions 1,

2, 3, 4, 6, 7 and 8 hold where Assumptions 7 and 8 are presented in Appendix A. Let ŴT (c) =

V̂ −1
T (c) and pT = p0 <∞. Then ĉT

a.s.→ cr.

Remark 4. Theorem 2 establishes conditions under which ĉT is strongly consistent for cr. It

can be seen that the conditions on the penalty term are necessarily satisfied if κ(|c|, p, T ) =

(|c|− q)ln[T 1/2]/T 1/2, which is the penalty term associated with the Schwarz information criterion.

However, the conditions are not necessarily satisfied if κ(|c|, p, T ) = (|c|−q)ln[ln
(
T 1/2

)
]/T 1/2, which
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is the penalty term associated with the Hannan and Quinn information criterion. In the latter case,

if selection is over all possibilities then strong consistency requires that z = 21/2(ωξ(cr) + ωξ(c))

for all c ∈ CE,H where ωξ(c) is defined in Appendix B. Notice that if this condition fails for some

c̄ ∈ CE,H then one of two scenarios unfolds: if µ = z then the assignment is random between cr

and c̄; if µ < z then ĉT →a.s. c̄ and so more moments are included than is necessary to achieve the

minimum variance. The data dependence of the condition governing these outcomes makes this

choice of penalty term unattractive.

Remark 5. It is interesting to contrast the conditions on the penalty term for the case considered

here in which the order of convergence of V̂θ,T (c) to Vθ(c)is T−1/2. For weak consistency, it is only

necessary that mT →∞ and mT = o(T 1/2). Given Remark 4, the strong consistency results suggest

the use of a penalty term for which lim infT→∞ T 1/2mT /(lnlnT )1/2diverges. Theorem 2 therefore

provides more guidance on the choice of penalty term than the corresponding weak consistency

result.

Remark 6. Theorem 2 relies crucially on Assumptions 7 and 8, which are high level assumptions

that guarantee approximations by the law of iterated logarithms. For simplicity, Theorem 2 also

relies on the use of the optimal weighting matrix, which however is not crucial. Theorem 2 would

still hold with any positive definite weighting matrix.

Theorems 1 and 2 describe the asymptotic behavior of a criterion, the RIRSC, that considers

all possible combinations of IRFs. Applied researchers, however, often impose an ad hoc maximum

lag length to all the IRFs a DSGE model is asked to match. In this ad hoc approach, the set of

possible IRFs consists of γ1, γ2, ..., γH only:

C̄H =
{
ch = [11×n2

yh
01×n2

y(H−h)]
′, for h = 1, 2, ...,H

}
.

where 1m×n and 0m×n denote m× n matrices of ones and zeros, respectively. Our RIRSC can be

easily tailored to this special case. Define C̄E,H , C̄min,H and c̄r by CE,H , Cmin,H and cr, respectively,

with CH replaced by C̄H . Using these definitions, we implement the RIRSC by selecting the
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maximum of lag of IRFs to minimize:

ĥT = arg minh∈{1,2,...,H}RIRSC(ch). (8)

Let hr denote the corresponding IRF lag length implied by cr. It follows immediately from Theorems

1 and 2 that hr is consistent both weakly and strongly:

Corollary 3 (Weakly consistent IRFs selection (VAR case)) Let the structural model have

a VAR(p0) representation (1), and the estimator of the deep parameters be defined as (2), where c

is chosen by (8). Suppose that Assumptions 1, 2, 3, 4 and 5 hold with C̄H , C̄min,H and c̄r replaced

by CH , Cmin,H and cr, respectively. Then ĥT
p→ hr.

Corollary 4 (Strongly consistent IRFs selection (VAR case)) Suppose that Assumptions 1,

2, 3, 4, 6, 7 and 8 hold with C̄H , C̄min,H and c̄r replaced by CH , Cmin,H and cr, respectively, where

Assumptions 7 and 8 are presented in Appendix A. Let ŴT (ch) = V̂ −1
T (ch) and pT = p0 <∞. Then

ĥT
a.s.→ hr.

3 Interpretation of the RIRSC

This section provides examples that clarify the identification problem for DSGE model parameters

estimated by IRF matching. The examples also make concrete the definitions of redundant and

relevant IRFs under the RIRSC.

Example 1 (Labor productivity and hours) Christiano, Eichenbaum and Vigfusson (2006,

Section 2) discuss an RBC model in which a technology shock is the only disturbance that affects

labor productivity in the long run. By imposing the parameterization ρl = φ = 1 and the short-run

restriction az = 0, the model implies a VAR(2) of labor productivity (yt/lt) and employment (lt): ∆ln
(
yt

lt

)
∆ln(lt)

 =

 β0δ −αβ0δ

δ −αδ

 ∆ln
(
yt−1

lt−1

)
∆ln(lt−1)


+

 β0δ −αβ0δ

δ −αδ

 ∆ln
(
yt−2

lt−2

)
∆ln(lt−2)

+

 1 β0

0 1

 ηt

νt


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where β0 = −β1, δ = −ãz/(1 − α), ηt = (1 − α)σzεzt , vt = alσlε
l
t, and εlt, ε

z
t have zero mean, unit

variance and are uncorrelated. The structural parameters of interest are α, σ2
l , σ2

z , al and ãz (cfr.

Watson, 2006, eqs. 3,4). Let

Γj =

 γj,11 γj,12

γj,21 γj,22


denote the jth-step structural IRFs. The restrictions on the first three-steps IRFs are

γ0,11 = (1− α)2σ2
z (9)

γ0,12 = −α (alσl)
2 (10)

γ0,21 = 0 (11)

γ0,22 = (alσl)
2 (12)

γ1,11 = −α(1− α)ãzσ2
z (13)

γ1,12 = 2α2ãz (alσl)
2 /(1− α) (14)

γ1,21 = (1− α)ãzσ2
z (15)

γ1,22 = −2αãz (alσl)
2 /(1− α) (16)

γ2,11 = (α(1− α)ãz + 2α2ã2
z)σ

2
z (17)

γ2,12 = −2α2 (alσl)
2 ãz/(1− α) (18)

γ2,21 = −((1− α)ãz + 2αã2
z)σ

2
z (19)

γ2,22 = 2α (alσl)
2 ãz/(1− α). (20)

Since al and σl cannot be separately identified (only their product is identified), four out of the

five deep parameters are identified. For example, α is identified from restrictions (10) and (12),

while alσl, ãz and σ2
z are identified from restrictions (12), (13) and (9), respectively.

There are two trivial examples of redundant impulse responses. One is restriction (11). Another

is restrictions on Γj , for j > 2: since the model is a VAR(2) model, restrictions for j > 2 are non-

linear transformation of (9)–(20), and thus are first-order equivalent to some linear combinations of

the above restrictions. Therefore, adding these restrictions will not reduce the asymptotic variance.

However, even if an impulse response depends on the parameters of interest and its horizon is less
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than or equal to p, the impulse response may be redundant.7

When the order of a VAR is finite, it is unlikely that there is efficiency gain from using additional

IRFs once sufficiently many IRFs are included. Even when the underlying processes are of infinite

order, it is not always necessary to use all IRFs that are available. Consider a simple growth

model in which total factor productivity growth follows a first-order moving average process with

parameter θ and the Cobb-Douglas production has parameter α. In this model consumption growth

follows an ARMA(1,1) process:

∆ct = θ∆ct−1 + εt − (θ − α)εt−1, (21)

and thus it has an infinite-order moving average representation. We report below the asymptotic

efficiency loss from estimating α and θ from a finite number of impulse responses by computing the

ratio of determinants of asymptotic covariance matrices of the IRFME estimator of α and θ.8 A

number greater than one denotes the existence of efficiency losses deriving from not using infinitely

many impulse responses.

horizon 1 2 3 4 5 6 7 8

efficiency loss ∞ 1.857 1.177 1.044 1.011 1.003 1.001 1.000

While the two parameters are identified by the IRFs at lags one and two, the table shows there

are some efficiency gain from using IRFs at lags higher than two. This efficiency gain disappers

quicky after seven lags, however. This simple example shows that even when the data generating

processes are of infinite-order, efficiency can be effectively achieved by using only a finite number

of impulse responses.
7For example, suppose α = 0.5, σz = al = σl = eaz = 1, where α is to be estimated and the latter parameters

are instead known. Let the covariance matrix of the impulse responses be the identity matrix. When α is estimated

by using the optimal weighting matrix, using (9), (10), (14)-(20) produces the same asymptotic variance as using

(9),(10),(13)-(20). Thus (13) is a redundant impulse response (it does not help to identify α, as it is used to identify

other parameters that are assumed to be known in the example in this note). Although the redundant impulse

response does not change the asymptotic variance, it can inflate the variance in finite samples. The other IRF are

all relevant. Omitting any of these IRFs increases the asymptotic variance and will likely increase the finite sample

variance.
8In the calculations, we set α = 0.5, θ = 0.25 and var(εt) = 1. The asymptotic covariance matrix of the IRFME

estimator for the infinite-order case is approximated by the one that uses the first thousand impulse responses. The

results do not change when a larger number of impulse responses is used.
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4 Alternative IRF matching estimators

Although the VAR-based IRFME is the most widely used IRFME, alternative IRFME have been

proposed in the literature. Jordà and Kozicki (2007) proposed IRFME based on local projections. In

addition, researchers have been interested in simulation-based methods to approximate theoretical

impulse responses. This section extends the RIRSC to these IRF matching estimators, and describes

how our criterion is implemented in these contexts.

4.1 The IRF Matching Projection Estimator

Consider first the local projections method advocated by Jordà (2005) and used in Jordà and

Kozicki (2007). The simplest version of his estimator for the τ−th step impulse response is B̂1,τD,

where B̂1,τ is directly estimated from

yt+τ = B0,τ +B1,τyt−1 +B2,τyt−2 + · · ·+Bp,τyt−p + ut+τ

for τ = h, ...,H, and D is a matrix derived from the identification procedure.

Jordà’s local projection impulse responses estimator is:

θ̂J(c) = arg min
θ∈Θ

(γ̂T (c)− γ(θ; c))′ŴT (c)(γ̂T (c)− γ(θ; c)) (22)

where γ̂T (c) is a vector of structural impulse responses estimated by local projections, g(θ; c) is the

vector of the model’s theoretical impulse responses given structural parameter θ, and ŴT (c) is a

weighting matrix.

Theorem 5 (Consistent IRF selection (Local projections case)) Suppose that Assumptions

1, 2, 3, 4 and 5 hold with V̂T (c) replaced by the asymptotic covariance matrix of θ̂J,T (c), V̂J,T (c).

Let the estimator of θ be (22), where c is chosen such that:

ĉT = arg min
h∈CH

RIRSCJ(c), and

RIRSCJ(h) = log(|V̂J(c)|) + κ(h, pT , T ).

Then ĉT
p→ cr.
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4.2 The IRF Matching Simulation Estimator

The third estimator that we consider is the simulation-based estimator, which we will refer to as

the Sims-Cogley-Nason (SCN) estimator. In this case, we assume that the DSGE model implies an

infinite-order VAR process; the reason is that when the VAR is of finite order there is no advantage

from using simulation-based estimators because there is no lag-truncation problem.

The SCN estimator is implemented as follows. First, fit a VAR(p) to the actual data to obtain

sample impulse responses γ̂T (c).9 Next, draw a vector of shock innovations of length T and simulate

synthetic data from the DSGE model with parameter vector θ and apply the VAR(p) procedure to

obtain a vector of simulated theoretical IRFs. Let g̃(s)
T (θ; c) denote the vector of simulated impulse

responses from the s-th synthetic sample, s = 1, .., S, where S is the total number of simulation

replications. Finally, define g̃T (θ; c) to be the average across the ensemble of simulated IRFs, which

we refer to as the approximate theoretical impulse responses: g̃T (θ; c) =(1/S)
∑S

s=1 g̃
(s)
T (θ; c). Note

that the vector of shock innovations is drawn only once and held fixed as θ is adjusted to move

g̃T (θ; c) closer to γ̂T (c).

The SCN estimator of θ minimizes the distance between the average simulated theoretical

impulse responses and the sample impulse responses:

θ̂SCN,T (c) = arg min
θ∈Θ

(γ̂T (c)− g̃T (θ; c))′ŴT (c)(γ̂T (c)− g̃T (θ; c)), (23)

where ŴT (c) is a weighting matrix.10 Let V̂SCN (c) denote a consistent estimate of the asymptotic

variance of θ̂SCN (c), which is computed in the Appendix (see eq. (64)).

Next, consider the problem of selecting the impulse responses for the IRFME. Theorem (6)

describes the IRF selection criterion we propose for the SCN estimator:

Theorem 6 (Consistent IRF selection (Simulation-based estimators case)) The estima-

tor of θ̂SCN (c) is (23), where h is chosen s.t.:
9All the subsequent estimated parameters should also be function of p, the estimated VAR lag length. However,

in order to simplify notation, we drop this dependence in the notation.
10In other words, the SCN estimator can be viewed as an indirect-inference estimator with a sequence of finite-order

VAR models used as an auxiliary model (see Smith (1993) and Gourieroux, Monfort and Renault (1993) for examples

of indirect inference applied to DSGE models and financial models, respectively). The Appendix shows that, under

quite mild conditions, θ̂SCN (c) is consistent and asymptotically normal.
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ĉT = arg min
c∈C

RIRSCSCN (c),

RIRSCSCN (c) = ln(|V̂SCN,T (c)|) + κ(|c|, pT , T ),

where V̂SCN,T (c) is an estimate of the asymptotic covariance matrix of θ̂SCN,T (c). Let Assumptions

1, 2, 3, 4 and 5 hold, with θ̂T (c) and V̂θ,T (c) replaced by θ̂SCN,T (c) and V̂SCN,T (c); then ĉT
p→ cr.

5 Empirical analysis of two representative DSGE models

This section applies a VAR-based IRFME and the RIRSC to the new Keynesian DSGE models of

CEE and ACEL. The goal is to assess the impact of the RIRSC on the estimated parameters of

these DSGE models. Thus, we estimate the CEE and ACEL models fixing the maximum number

of impulse response lags at 20 (excluding those that are zero by assumption) and employing the

RIRSC. In either case, the IRFME is implemented with a diagonal weighting matrix.11

The CEE and ACEL DSGE models use different schemes to identify IRFs. The former model

is estimated by matching the responses of nine aggregate variables only to an identified monetary

policy shock. The identification relies on an impact restriction that orthogonalizes the monetary

policy shock with respect to the nine aggregate series. We use this identification to estimate nine

parameters of the CEE DSGE model.

We follow ACEL by identifying the sample and theoretical IRFs with long-run neutrality re-

strictions. The ACEL DSGE model is constructed to satisfy three restrictions: (i) neutral and

capital embodied shocks are the only shocks that affect productivity in the long run; (ii) the capi-

tal embodied shock is the only shock that affects the price of investment goods; and (iii) monetary

policy shocks do not contemporaneously affect aggregate quantities and prices. These restrictions

identify IRFs for ten aggregate variables with respect to neutral technology, capital embodied and

monetary policy shocks. The ACEL DSGE model presents 18 parameters to estimate.

Table 1(a) reports the results for the ACEL DSGE model. From the left to right of the table,

the columns list parameters, parameter estimates and standard errors under RIRSC, and parameter

estimates and standard errors given a fixed IRF lag length of 20. We implement the RIRSC by
11ACEL remark that the diagonal weighting matrix ensures that the estimated DSGE model parameters are such

that theoretical IRFs lie as much as possible within confidence bands of estimated IRFs.



16

matching the IRFs with respect to the three shocks and progressively reduce the lags in all three

IRFs one by one. Next, the RIRSC criterion (3) is applied as the number of lags in each IRF ranges

from two to 20, which gives a total of number of IRF points (h) ranging between 6 and 60. The

RIRSC selects h = 3 for the three IRFs, which makes it possible for the 18 ACEL DSGE model

parameters to be identified.

The RIRSC has one important effect on ACEL DSGE model parameter estimates. Across the

RIRSC and fixed lag length IRFMEs, there are six ACEL DSGE model parameters with t-ratios

greater than two, with qualitatively similar point estimates. The fixed lag length IRFME yields an

additional parameter, ρµz , which is the AR(1) coefficient on the growth rate of the labor neutral

productivity shock, whose point estimate is 0.89 with a standard error of 0.16. This implies a

persistent growth rate of the labor neutral productivity shock (e.g., its half-life to an own shock

is over six quarters) that contrasts with the RIRSC-based estimate ρµz = 0.24 and a standard

error of 0.70. Since this standard error is nearly three times larger than its point estimate, under

RIRSC, inference points to a random walk labor neutral productivity shock for the ACEL DSGE

model. Although the remaining 11 ACEL DSGE model parameters have t-ratios less than two,

note the distance across the RIRSC and fixed lag estimates (which are close to those reported by

ACEL). For example, the RIRSC and fixed lag IRFMEs produce an estimate of the coefficient on

marginal cost in the new Keynesian Phillips curve (NKPC), γ, of 0.21 and 0.04, respectively. The

latter estimate produces a steeply sloped NKPC, while the latter suggests monetary policymakers

face a weaker trade-off. Nonetheless, these estimates of γ are smaller than the associated standard

errors. Another appealing feature of the RIRSC-IRFME appears from the standard errors reported

in parentheses below the estimates reported in Table 1(a). Note that the RIRSC-IRFME is overall

more efficient, which tends to be in smaller standard errors.

INSERT TABLES 1,2 HERE

A crucial aspect of the ACEL DSGE model is the implied average time between firms’ price

re-optimization, which is a function of γ. Since the RIRSC-IRFME estimate of γ is larger than

the fixed lag IRFME estimate, according to Table 1(b) the former estimate implies that on av-

erage monopolistically competitive firms change their prices at most about every three quarters

in the homogeneous capital model. This contrasts with the fixed lag IRFME, which estimates
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price changes every five quarters on average. From the standard errors reported in parentheses

below the estimates reported in Table 1(a): note that the differences are statistically significant at

conventional levels.

Table 2 presents estimates of the CEE DSGE model, where the monetary policy shock is the

only shock of interest. In this case, the RIRSC chooses 6 lags for the impulse response. We see

that RIRSC and the fixed lag length IRFMEs generate nearly identical results for the five CEE

DSGE model parameters with t-ratios greater than two. The remaining four parameter estimates

differ across the RIRSC and the fixed lag length IRFMEs. However, the fixed lag length IRFME

delivers estimates that are often close to those reported by CEE.12

As a robustness analysis, we investigate whether the insensitivity of our point estimates in Tables

1 and 2 to a different IRF lag length is robust to different choices for the initial parameter values and

to the step size for the numerical derivatives. Unreported results show that a slight perturbation of

the initial parameter values does not substantially change the main results, although the estimates

might change considerably when the magnitude of the perturbation is large.13 The results are

considerably less sensitive to the choice of the step size; in that case, the estimates and standard

errors change only very slightly.

6 Monte Carlo robustness analysis

The striking difference in the estimates of some key parameters in the previous section deserves

an additional careful investigation into the causes of why this happens. In this section, we argue

that the difference in the estimates is likely caused by small sample biases, and report Monte Carlo

simulations to show that the use of our methodology provides substantially more precise estimation

of the deep parameters of the structural models. Unfortunately, a careful Monte Carlo analysis of
12We attribute any disparities between the fixed lag estimates of Table 2 and those of CEE to modifications to

the computational procedure used to implement the IRFME. For example, we make it more robust to changes in

the initial parameter values. Further, we aim to obtain more precise results by (i) using a Newton-Raphson type

algorithm rather than a simplex algorithm; (ii) increasing the maximum iterations to 1000 rather than 10; and (iii)

changing the grid sizes for numerical derivatives. The latter two are responsible for most of the differences in the

numerical parameter values.
13In particular, results were robust to adding a Normal(0, σ) shock to the initial parameter values with σ ∈ [1, 10],

but were not robust to ad-hoc initial parameter values (e.g. the origin).



18

ACEL and CEE is currently computationally infeasible, so we consider a simple univariate AR(1)

process; and the structural VAR(2) example discussed in (1).

6.1 The AR(1)

To start, first consider the following simple univariate AR(1):

yt = ρyt−1 + εt , t = 1, 2, ...T

where εt are random draws from a normal distribution with mean zero and variance one, ρ = 0.4 and

T = 100. We estimate the deep parameter ρ by the IRFME that minimizes the distance between

the vector of IRFs estimated by fitting an AR(2) to the data and the theoretical IRF derived from

the AR(1). The weighting matrix W is the inverse of the covariance matrix of the estimated IRFs

calculated by using Monte Carlo simulation. In this section we let H denote either the number of

IRFs matched by the IRFME with a fixed number of IRF lags (when we refer to the usual IRFME)

or the maximum number of IRFs considered when criterion (3) is used to select the relevant IRF

lag length.

Table 3 reports, for various values of H, both the estimated average bias (“bias”) and the empir-

ical rejection rates (“rej. rate”) of nominal 5% significance level tests for the following estimators:

the IRF matching estimator with H IRF lags, labeled “IRFME”; the IRF matching estimator us-

ing only the IRFs selected by (3), labeled “IRFMERIRSC”; and the usual AR(1) estimator, labeled

“AR(1)”. Note that the IRFME with H = 1 is the maximum likelihood estimator. We performed

1,000 Monte Carlo replications, discarding replications in which the estimator did not converge

numerically.

The table shows that the bias of IRFME tends to increase (in absolute value) with the number

of IRFs used (H) and its rejection rates are well above the nominal level of 0.05 for H ≥ 5, and

tend to go to one as H increases. The table also shows that the RIRSC method that we propose

does not suffer from over-rejections, and that it substantially reduces the bias of the traditional

IRFME.

INSERT TABLE 3 HERE
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6.2 The structural VAR(2) discussed in example (1)

We consider estimation of α and γl in example 1 by IRFME. We set α = 0.35, γl = 1, ρ = 1, σl = 1

and σz = 1. 14 The sample sizes considered are T = 100, 200, 400 and the number of Monte Carlo

replications is set to 1000. We focus on the choice of horizons and the minimum and maximum

horizons are 1 and 12, respectively.

Table 4 reports the median of absolute bias, variance and coverage probabilities of the 95%

confidence interval baed on the t test when the number of impulse responses is fixed. As expected,

both the bias and the variance become smaller and the coverage becomes more accurate as the

sample size increases. In this DGP, the coverage probability is most affected by the number of

impulse responses. The best coverage probability is obtained when h = 1 or h = 2 and it deteriorates

as more impulse responses are included.

Table 5 shows that the performance of the IRFME using all the impulse responses and the

IRFME using the only the IRFs selected by the RIRSC. The table shows that the RIRSC signif-

icantly improves the coverage probability. It also reduces bias and variance for γ1. Although the

AIC-type penalty term does not satisfy Assumption 5, it reduces the number of impulse responses

which results in the improved performance of the IRFME.

Table 6 presents summary statistics of the selected numbers of impulse responses. The RIRSC

with the SIC-type penalty term tends to choose h = 2 as the sample size grows in the sense that

the variance becomes small. The RIRSC with the AIC-type penalty term tends to choose larger

numbers of impulse responses and the variance is also larger than the other types of the penalty

term.

INSERT TABLES 4,5,6 HERE

7 Conclusions

This paper’s objective is to contribute to the literature on the estimation of dynamic stochas-

tic general equilibrium (DSGE) models by using impulse response function matching estimators
14We have looked at all the cases in which α ∈ {0.275, 0.35, 0.425}, ρl = {0.75, 0.85, 0.9, 0.95, 0.975, 1}, σl =

{0.5, 0.75, 1, 1.25, 1.5}. They are qualitatively similar to the reported results and are available upon request to the

authors.
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(IRFMEs). We propose a simple and econometrically sound method for doing so. We show by

Monte Carlo simulations that our method can substantially improve the precision of the parameter

estimates and decrease their small sample biases. We also show that our method can substantially

change key parameter estimates of existing representative DSGE models. We hope that the sim-

plicity and the usefulness of the criterion that we propose will increase the applicability of impulse

response function matching estimators in practice.

Our framework assumes, as in most of the literature on IRF matching, that the IRFs to be

used in the estimation are correctly specified. Although it could be interesting to identify correctly

specified IRFs and those that are not, it is outside the scope of this paper.

Our paper provides an information criterion to improve upon commonly used IRFMEs. We

do not provide a systematic analysis of the relative merits of using IRFMEs versus alternative

estimators (e.g. MLE or Bayesian methods). The latter use the entire likelihood of the model

whereas the IRF matching focuses only on selected aspects of the model (e.g. limited information

methods), therefore giving rise to the usual trade-off between efficiency and robustness. We leave

these issues to future work.
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Appendix A: Notation and Additional Assumptions

Notation. In what follows,
p→ denotes convergence in probability, d→ denotes convergence in dis-

tribution, dim(x) denotes the length of vector x, and for a matrix A: ‖A‖2 ≡ tr(A′A), Â denotes

an estimate of A, “p.s.d.” denotes positive-semidefinite, “p.d.” denotes positive-definite, and E (.)

denotes the expectation operator. Finally, Bc denotes the complement of a set B.

Assumption 7

T 1/2(θ̂T (c)− θ0) = −
{
G(c)′W (c)G(c)

}−1
G(c)′W (c)T 1/2[γ̂T (c)− f(θ0; c)]

+ o(1) a.s. (24)

T 1/2vec{ĜT (c)−G(c)} = Ḡ(c)T−1/2(θ̂T (c)− θ0) + o(1) a.s. (25)

T 1/2vech{V̂T (c)− V (c)} = T 1/2
T∑

t=1+m

hv(yt, θ0; c) + o(1) a.s. (26)

T 1/2(γ̂T (c)− g(θ0; c)) = T−1/2
T∑

t=1+m

hγ(yt, θ0; c) + o(1) a.s. (27)

for some 0 < m <∞, and where Ḡ(c) = (∂/∂θ′)vec {∂g(θ; c)/∂θ′}
∣∣
θ=θ0

.

Assumption 8 Let h(yt, θ0; c) = [hγ(yt, θ0; c)′ hv(yt, θ0; c)′]′.

Define Ωh(c) = limT→∞V ar[T−1/2
∑T

t=1 h(vt, θ0; c)].
∑T

t=1 h(vt, θ0; c) satisfies the Law of Iterated

Logarithms (LIL) in the sense that for all b ∈ <dim(h) with ‖b‖ = 1,

lim supT→∞

{
1

(2T lnlnT )1/2

∣∣b′Ωh(c)−1/2
T∑
t=1

h(vt, θ0; c)
∣∣} = 1, a.s.

for all c ∈ C.

Assumption 9 (Asymptotic Normality of Simulation-Based Estimators) In model (1): (a)

As pT , T → ∞, p4
T /T → 0. (b) The parameter space Θ is compact. (c) Let g(θ; c, pT ) denote

a vector of population impulse responses implied by a VAR(pT ) model fitted to the data simu-

lated with θ and selected by c; to simplify notation, we let gT (θ; c) ≡ g(θ; c, pT ). There is a

sequence of covariance matrix {ΣgT (θ;c)} such that, for any sequence of vectors {`pT } satisfying

0 < L1 ≤ ‖`pT ‖ ≤ L2 < ∞ for all pT ,
√
T`′pT

(γ̂T (c) − gT (θ0; c)) d→ N(0, limpT→∞ `
′
pT

ΣgT (θ0;c)`pT )

and
√
T`′pT

(g̃(s)
T (θ; c) − gT (θ; c)) d→ N(0, limpT→∞ `

′
pT

ΣgT (θ;c)`pT ) jointly and independently for ev-

ery θ ∈ Θ and s = 1, 2, ..., S. (d) limpT→∞ ‖gT (θ; c) − gT (θ0; c)‖ = 0 if and only if θ = θ0. (e)
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{gT (θ; c)} is continuously differentiable and the rank of GT (θ0; c) ≡ (∂/∂θ′)vec {∂gT (θ; c)/∂θ′}
∣∣
θ=θ0

is dim(θ) for c ∈ CI,H and sufficiently large H. (f) gT (θ; c) and g̃T (θ; c) satisfy Lipschitz condi-

tions, ‖gT (θ1; c)− gT (θ2; c)‖ < L‖θ1 − θ2‖ and ‖g̃T (θ1; c)− g̃T (θ2; c)‖ < L̃‖θ1 − θ2‖ where L and L̂

do not depend on θ and θ′ and are O(1) and Op(1), respectively, uniformly in T . (g) Each row of

{GT (θ0; c)} is summable. (h) There is a sequence of matrices {WT (c)} such that, for any absolutely

summable sequence of vectors {`pT }, `′pT
(ŴT (c)−WT (c))`pT = Op

(
p2
T /
√
T
)

. (k) The eigenvalues

of {WT (c)} are all positive and bounded away from zero and bounded above by some finite constant.

(l) For any absolutely summable sequence of vectors, {vpT }, limpT→∞ v
′
pT
WT vpT is well-defined.

(m) There are consistent estimators of ΣgT (θ0;c) and ΣgT (θ;c), Σ̂gT (θ0,c) and Σ̃(s)
gT (θ;c) respectively,

such that, for any absolutely summable sequence of vectors {`pT }, `′pT
Σ̂gT (θ0,c)`pT −`′pT

ΣgT (θ0;c)`pT =

Op(p2
T /
√
T ) and `′pT

Σ̃(s)
gT (θ;c)`pT − `′pT

ΣgT (θ;c)`pT = Op(p2
T /
√
T )

Remark 7. The asymptotic normality of structural impulse responses estimators in Assumption 2

is a high-level assumption, and follows from arguments similar to those in Lewis and Reinsel (1985)

and Lütkepohl and Poskitt (1991).

Appendix B: Proofs

Proof of Theorem 1 when pT = p0: First suppose that c ∈ CE,H and c 6= cr. It follows from

Assumptions 3, 4(c) and 5 that

T 1/2(RIRSC(c)−RIRSC(cr)) = T 1/2(ln(|V̂θ,T (c)|)− ln(|V̂θ,T (cr)|))

+T 1/2(κ(|c|, pT , T )− κ(|cr|, pT , T ))

→ +∞ (28)

as the first term is Op(1) by Assumption 4(c) and the second term diverges to infinity by Assump-

tions 3 and 5. Thus T 1/2(RIRSC(c) − RIRSC(c0)) is positive with probability approaching one

as T → ∞. Next consider the case in which c ∈ CI,H ∩ CcH,E . By Theorem 22 of Magnus and

Neudecker (1999, p.21), it follows from Assumption 3 that ln(|Vθ(c)|) − ln(|Vθ(cr)|) > 0. Thus it
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follows from Assumptions 4(c) and 5

RIRSC(c)−RIRSC(cr) = ln(|V̂θ,T (c)|)− ln(|V̂θ,T (cr)|) + κ(|c|, pT , T )− κ(|cr|, pT , T )

= ln(|Vθ(c)|)− ln(|Vθ(cr)|) + op(1)

> 0 (29)

with probability approaching one. Third, when c ∈ CNI,H ∩CcE,H , it follows from Assumption 4(c)

that

RIRSC(c)−RIRSC(cr)
p→ +∞. (30)

Because CE,H ∪ (CI,H ∩ CcE,H) ∪ (CNI,H ∩ CcE,H) = CI,H ∪ CNI,H = CH ,

RIRSC(cr) < RIRSC(c) (31)

for all c ∈ CH such that c 6= cr with probability approaching one asymptotically. Since

RIRSC(ĉT ) ≤ RIRSC(c)

for all c ∈ CH ,

RIRSC(ĉT ) ≤ RIRSC(cr) (32)

Therefore it follows from (31), (32) and Assumption 3 that ĉT
p→ cr.

Proof of Theorem 1 when pT → ∞ as T → ∞: First consider the case in which |cr| < ∞. By

Assumption 4(e), cr ∈ CH for sufficiently large H. By using the proof for the case pT = p0 with

T 1/2 replaced by T 1/2/pT , we obtain

RIRSC(c)−RIRSC(cr) = ln(|V̂θ(c)|)− ln(|V̂θ(cr)|) + κ(|c|, pT , T )− κ(|cr|, pT , T )

= ln(|Vθ(c)|)− log(|Vθ(cr)|) + op(1)

> 0 (33)

with probability approaching one. Second, we consider the case |cr| = ∞. For all c such that

|c| = ∞, either Vθ(c) = Vθ(cr) or Vθ(c) > Vθ(cr) holds because cr is an efficient selection vector

by Assumption 3. If Vθ(c) > Vθ(cr) then (33) holds for sufficiently large T by Assumption 5. If
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Vθ(c) = Vθ(cr)

T 1/2

pT
(RIRSC(c)−RIRSC(cr)) =

T 1/2

pT
(ln(|V̂θ,T (c)|)− ln(|V̂θ,T (cr)|))

+
T 1/2

pT
(κ(|c|, pT , T )− κ(|cr|, pT , T ))

→ +∞, (34)

where the first term is Op(1) by Assumption 4(c) and the second term diverges to infinity by

Assumptions 3 and 5. Thus, for any c ∈ CH

RIRSC(c)−RIRSC(cr) > 0 (35)

with probability approaching one. Therefore ĉT − cr
p→ 0 by (32), (35) and Assumption 3.

Proof of Theorem 2: Let

M̂T (c) = V̂θ,T (c)−1 = ĜT (c)′ŴT (c)ĜT (c),

which implies

RIRSC(c) = −ln[|M̂T (c)|] + κ(|c|, T ). (36)

Also define M(c) = G(c)′W (c)G(c).

We have the following expression for M̂T (c)−M(c):

M̂T (c)−M(c) = ĜT (c)′ŴT (c)ĜT (c) − G(c)′W (c)G(c) (37)

= ĜT (c)′ŴT (c){ĜT (c) − G(c)} + ĜT (c)′{ŴT (c)−W (c)}G(c)

+{ĜT (c) − G(c)}′W (c)G(c) (38)

We also have the following representation:

ŴT (c)−W (c) = W (c)
{
V (c) − V̂T (c)

}
ŴT (c) (39)

and

vec
{
VT (c) − V̂T (c)

}
= Bvech

{
VT (c) − V̂T (c)

}
(40)

where (39) follows since ŴT (c) = (V̂T (c))−1 and B is the matrix such that vec(.) = Bvech(.).

The above equations are the foundations for the analysis. The proof rests on equations derived

in the following three steps.
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• Step 1: From (38)–(40) and Assumptions 7-8, it follows that

M̂T (c)−M(c) = G(c)′ŴT (c){ĜT (c) − G(c)} + G(c)′{ŴT (c)−W (c)}G(c)

+ {ĜT (c) − G(c)}′W (c)G(c) + o({T/lnlnT}−1/2) a.s.

≡ aT (c) + o({T/lnlnT}−1/2) (41)

• Step 2: Using Dhrymes (1984)[Proposition 89, p.105], we have

tr
{
M(c)−1(M̂T (c)−M(c))

}
= vec{M(c)−1}′vec{M̂T (c)−M(c)} (42)

From (41), it follows that aT (c) can be written as

aT (c) = vec{G(c)′ŴT (c)[ĜT (c) − G(c)]} + vec{G(c)′[ŴT (c)−W (c)]G(c)}

+ vec{[ĜT (c)− G(c)]′W (c)G(c)} (43)

= a1,T (c) + a2,T (c) + a3,T (c). (44)

Taking the terms of the right hand side of (44) in turn, we have

– a1,T (c):

From Dhrymes (1984)[Corollary 25, p.103], it follows that

a1,T (c) = vec{G(c)′ŴT (c)[ĜT (c)− G(c)]}

=
[
Ip ⊗G(c)′ŴT (c)

]
vec{ĜT (c) − G(c)} (45)

From Assumptions 7-8 and equation (45), it follows that

a1,T (c) = −
[
Ip ⊗G(c)′W (c)

] {
Ḡ(c)

{
G(c)′W (c)G(c)

}−1
G(c)′W (c)(γ̂T (c)− g(θ0; c))

}
+ o({T/lnlnT}−1/2) a.s. (46)

where the rate follows from the law of iterated logarithms in Assumption 8.

– a2,T (c):

From A−1−B−1 = B−1(B−A)A−1 and Dhrymes (1984)[Corollary 25, p.103], it follows

that

a2,T (c) = vec{G(c)′[ŴT (c)−W (c)]G(c)}

=
[
G(c)′ŴT (c)⊗G(c)′W (c)

]
vec{S(c)− ŜT (c)} (47)
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Using (40), (47), and Assumptions 7-8, it follows that

a2,T (c) = −
[
G(c)′W (c)⊗G(c)′W (c)

]
B {γ̂(c)− g(θ0; c)}

+ o({T/lnlnT}−1/2) a.s. (48)

– a3,T (c):

From Dhrymes (1984)[Corollary 25, p.103], it follows that

a3,T (c) = vec{[ĜT (c)− G(c)]′W (c)G(c)}

=
[
G(c)′W (c)⊗ Iq

]
vec{ĜT (c)′ − G(c)′}

=
[
G(c)′W (c)⊗ Iq

]
N vec{ĜT (c) − G(c)} (49)

where N is the permutation matrix such that vec(A′) = Nvec(A). It follows from (49)

and Assumptions 7-8 that

a3,T (c) =
[
G(c)′W (c)⊗ Iq

]
NG(c)(θ̂T (c) − θ0)

+o((T/lnlnT )−1/2) a.s. (50)

From Assumptions 7-8 and equation (50), it follows that

a3,T (c) = −
[
G(c)′W (c)⊗ Iq

]
N

{GT (c)
{
G(c)′W (c)G(c)

}−1
G(c)′W (c)(γ̂(c)− g(θ0; c))}

+ o({T/lnlnT}−1/2) a.s. (51)

• Step 3: From Phillips and Ploberger’s (2003, p.665) Proposition A8, we have the following

Taylor series expansion of ln[|M |] around M = M0 for non-negative definite M , M0 such that

‖M −M0‖‖M−1
0 ‖ < 1,

ln[|M |] = ln[|M0|] + tr
{
M−1

0 (M −M0)
}
− tr

{
(M −M0)M−1

0 (M −M0)M−1
0

}
+ o

(
‖M−1‖3‖(M −M0)‖3

1− ‖M−1‖‖M −M0‖

)
(52)

Setting M = M̂T (c) and M0 = M(c) and using (41), (42), (44), (46), (48) and (51) we obtain

ln[|M̂T (c)|] = ln[|M(c)|] + tr
{
M(c)−1(M̂T (c)−M(c))

}
+ o(ν−1

T ) a.s. (53)
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where {T/lnlnT}1/2/νT → 0 and ‖M −M0‖‖M−1
0 ‖ < 1 as T →∞.

From (53), (42), (46), (48) and (51), it follows that

ln[|M̂T (c)|] = ln[|M(c)|] + vec{M(c)−1}′D(c)T−1
T∑
t=1

h(vt, θ0; c)

+ o({T/lnlnT}−1/2) a.s. (54)

where D(c)′ = [D1(c), D2(c)] and

D1(c) = −
{
{[Ip ⊗G(c)′W (c)] + [G(c)′W (c)⊗ Iq]N}GT (c)

×
{
G(c)′W (c)G(c)

}−1
G(c)′W (c) (55)

D2(c) = −
[
G(c)′W (c)⊗G(c)′W (c)

]
B (56)

Now define ξt(c) = vec{M(c)−1}′D(c)h(vt, θ0; c) and ω2
ξ (c) = limT→∞ V ar[T−1/2

∑T
t=1 ξt(c)].

Then(
T

lnlnT

)1/2

RIRSC(c) = −
(

T

lnlnT

)1/2

ln[|M(c)|] −
(

T

lnlnT

)1/2

T−1
T∑
t=1

ξt(c)

+
(

T

lnlnT

)1/2

κ(|c|, T ) + o(1) a.s. (57)

We now use the above results to establish Theorem 2. The proof proceeds by considering two

cases.

Part (i): Consider c1 and c2 such that Vθ(c1)−Vθ(c2) is p.s.d. and hence ln[|M(c2)|] > ln[|M(c1)|].

Since κ(|c|, T ) = o(T 1/2) from Assumption 6, it follows from (57) and Assumption 8 that(
T

lnlnT

) 1
2

[RIRSC(c1) − RIRSC(c2) ] =
(

T

lnlnT

) 1
2

(ln[|M(c2)|] − ln[|M(c1)|]) + o(1) a.s.

(58)

Since Vθ(c) − Vθ(cr) is p.s.d. for all c ∈ CH , it follows from (58) that RIRSC(c) ≥ RIRSC(cE)

a.s. for any c ∈ CH and cE ∈ CE,H . Because RIRSC(c) ≥ RIRSC(ĉT ) holds for any c ∈ CH by

definition of ĉT , it has to be the case that ĉT ∈ CE,H a.s. for T sufficiently large.
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Part (ii): Consider ca ∈ CE,H such that cr 6= ca. From Assumption 8, it follows that for c = cr, ca

we have

lim sup
T→∞

(
T

lnlnT

)1/2

|T−1
T∑
t=1

ξt(c)| ≤ 21/2ωξ(c), a.s. (59)

Set r(cr, ca) = RIRSC(cr) − RIRSC(ca). Since M(cr) = M(ca) by definition in this case, it

follows from (57) and (59) that

lim sup
T→∞

(
T

lnlnT

)1/2

r(cr, ca) ≤ lim sup
T→∞

(
T

lnlnT

)1/2

|T−1
T∑
t=1

ξt(cr)|+ lim sup
T→∞

(
T

lnlnT

)1/2

|T−1
T∑
t=1

ξt(ca)|

− lim inf
T→∞

(−κ(|cr|, T ) + κ(|ca|, T )}

≤ 21/2 (ωξ(cr) + ωξ(ca)) +

− lim inf
T→∞

{
k(|ca|)− k(|cr|)(T 1/2mT /(lnlnT )1/2)

}
(60)

Using Assumptions 8 and 3, it follows from (60) that ĉT = cr for T sufficiently large a.s. if As-

sumption 6 holds with (i) and z = 21/2(ωξ(cr) + ωξ(ca))/k̄ where k̄ = minc∈CE,H
k(|c|)− k(|cr|) or

(ii).

Proof of Theorems 5 and 6: The proofs are as in Theorem 1.

Appendix C: Auxiliary Results for Simulation-Based Estimators

Theorem 7 (Asymptotic normality of simulation-based estimators) Under Assumption

9(a)–(m), θ̂SCN,T (c) is consistent and is asymptotically normally distributed:

√
T (θ̂SCN,T (c)− θ0) d→ N(0, Vθ,SCN (c)) (61)

where

Vθ,SCN (c) =
(

1 +
1
S

)
lim

pT→∞
(ΓT (θ0; c)′WT (c)ΓT (θ0; c))−1ΓT (θ0; c)′WT (c)Σg(θ0;c,pT )WT (c)ΓT (θ0; c)

×(ΓT (θ0; c)′WT (c)ΓT (θ0; c))−1.

and ΓT (θ; c) = ∂gT (θ; c)/∂θ and WT (c) is defined in Assumption (9).

Proof of Theorem 7: By Theorem 2.1 of Newey and McFadden (1994), for a given horizon h,

θ̂SCN,T (c) is consistent if: (i) Q(θ; c) ≡ limpT→∞QT (θ; c), where

QT (θ; c) ≡ (gT (θ0; c)− gT (θ; c))′WT (c)(gT (θ0; c)− gT (θ; c)),
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is uniquely minimized at θ0, and where gT (θ; c) is defined in Assumption 9(c); (ii) Θ is compact;

(iii) Q(θ; c) is continuous; and (iv) Q̂T (θ; c) (the objective function evaluated at the estimated

parameters and at the estimated weighting function) converges uniformly in probability to Q(θ; c).

By Assumptions 9(d,k), Q(θ; c) is uniquely minimized at θ0. By Assumption 9(b), Θ is compact.

By Assumptions 9(b,f,k),

|QT (θ1; c)−QT (θ2; c)|

= |(gT (θ1; c)− gT (θ2; c))′WT (c)gT (θ1; c) + gT (θ2; c)′WT (c)gT (θ1; c)− gT (θ2; c))|

≤
[
(gT (θ1; c)− gT (θ2; c))′WT (c)(gT (θ1; c)− gT (θ2; c))

] 1
2 (QT (θ1; c)

1
2 +QT (θ2; c)

1
2 )

≤ K‖gT (θ1; c)− gT (θ2; c)‖, (62)

where K is a constant that does not depend on T , the first inequality follows from Cauchy-Schwartz

and the last inequality follows by the continuity of the objective function, the compactness of the

parameter space and the fact that the eigenvalues of WT (c) are bounded. Since

|Q(θ1; c)−Q(θ2; c)| ≤ K lim
T→∞

‖gT (θ1; c)− gT (θ2; c)‖,

it follows from Assumption 9(f) that Q(θ; c) is continuous in θ. To show that

Q̂T (θ; c) ≡ (γ̂T (c)− g̃T (θ; c))′ŴT (c)(γ̂T (c)− g̃T (θ; c)),

uniformly converges in probability to Q(θ; c), we need to show pointwise convergence and stochastic

equicontinuity of Q̂T (θ; c). The pointwise convergence of Q̂T (θ; c) to Q(θ; c) follows from Assump-

tions 9(c,h,k). The stochastic equicontinuity of Q̂T (θ; c) follows from the Lipschitz condition in

Assumption 9(f). By the uniform law of large number (e.g., Theorem 21.9 of Davidson, 1994,

p.337), Q̂T (·; c) converges uniformly in probability to Q(·; c). Therefore, θ̂SCN,T (c) converges in

probability to θ0.

Since θ̂SCN,T (c)
p→ θ0, it follows from the first-order condition and the mean-value theorem that

√
T (θ̂SCN,T (c)− θ0) = (Γ(θ̂SCN,T (c); c)′ŴT (c)Γ(θ̄SCN,T (c); c))−1

×Γ(θ̂SCN,T (c); c)′ŴT (c)[
√
T (γ̂T (c)

−gT (θ0; c)−
√
T (g̃T (θ0; c)− gT (θ0; c))],
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where θ̄SCN,T (c) is a point between θ̂SCN,T (c) and θ0. Then, by Assumptions 9(c,f,g,h,k,l,m) and

the central limit theorem, we have

√
T (θ̂SCN,T (c)− θ0) d→ N(0, Vθ,SCN (c)),

where

Vθ,SCN (c) = lim
T→∞

(ΓT (θ0; c)′WT (c)ΓT (θ0; c))−1ΓT (θ0; c)′WT (c) (1 + 1/S) (63)

×ΣgT (θ0;c)WT (c)ΓT (θ0; c)(ΓT (θ0; c)′WT (c)ΓT (θ0; c))−1.

Theorem 8 (Estimation of asymptotic variance of simulation-based estimators) Let Σ(s)
gT (θ;c)

denote the estimated asymptotic covariance matrix of the simulated impulse responses g̃sT (θ; c), and

Σ̂bγT (c) denote the estimate of the asymptotic covariance matrix of the sample impulse responses.

Let

ŴT (c) =

(
Σ̂bγT (c) +

1
S2

S∑
s=1

Σ̃(s)

g(θ̃SCN,T (c);c)

)−1

,

where θ̃SCN,T (c) is an estimator of θ (e.g., the SCN estimator with ŴT (c) equal to the identity

matrix). Then,

V̂SCN,T (c) = (Γ̂T (θ̃SCN,T (c); c)′ŴT (c)Γ̂T (θ̃SCN,T (c); c))−1 (64)

×Γ̂T (θ̃SCN,T (c); c)′ŴT (c)

(
Σ̂bγT (c) +

1
S2

S∑
s=1

Σ̃(s)

g(θ̃SCN,T (c);c)

)
ŴT (c)Γ̂T (θ̃SCN,T (c); c)

×(gT (θ̃SCN,T (c) , c)′ŴT (c)Γ̂T (θ̃SCN,T (c); c))−1

where Γ̂T (θ; c) ≡ 1
S

∑S
s=1 Γ(s)

T (θ; c), for Γ(s)
T (θ; c) ≡ ∂g̃(s)

T (θ; c)/∂θ′. Under Assumption 9,

a. If θ̃SCN (c) is
√
T -consistent, with variance V̂SCN,T (c) = Vθ,SCN (c)+Op(p2

T /T ), where Vθ,SCN (c)

is defined in Theorem 7.

b. If c ∈ CNI,H , |V̂ −1(c)| p→∞.

When the weighting matrix ŴT (c) =
(

Σ̂bγT (c) + 1
S2

∑S
s=1 Σ̃(s)

g(bθSCN,T (c);c)

)−1

is used, the variance of

θ̂SCN,T (c) can be estimated by:

V̂SCN,T (c) = (Γ̂T (θ̂SCN,T (c); c)′ŴT (c)Γ̂T (θ̂SCN,T (c); c))−1 (65)

Proof of Theorem 8: (a). The consistency of the covariance matrix estimator follows from Assump-

tions 9(c)(e)(f)(g)(k) and Theorem (7). The convergence rate follows from Assumptions 9(a,h).
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(b). Since the rank of ΓT (θ̂SCN,T (c); c) is less than full for c ∈ CNI,H , |V̂ −1
SCN,T (c)| p→ 0, where is

defined in (64) or (65).
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9 Tables

Table 1(a). Empirical results (ACEL, 2005))

RIRSC (ĥT = 3) Fixed lags (h=20)
Parameter Standard Parameter Standard

Parameters Estimates Errors Estimates Errors
ρxM -0.097 0.247 -0.040 0.292
ρxz 0.588 1.257 0.329 0.948
cz 0.655 0.664 2.952 3.096
ρµz 0.237 0.703 0.894 0.159
ρxΥ 0.997 0.107 0.822 0.345
cΥ 0.307 0.435 0.247 0.440
ρµΥ 0.344 0.240 0.239 0.425
σM 0.334 0.113 0.333 0.110
σµz 0.203 0.168 0.069 0.068
σµΥ 0.287 0.084 0.304 0.093
ε 0.831 0.284 0.809 0.256
S′′ 6.907 9.842 3.350 3.477
ξw 0.832 0.225 0.713 0.261
b 0.779 0.124 0.706 0.135
σa 0.413 0.777 2.029 4.251
cpz 0.144 1.414 1.379 3.732
cpΥ 0.073 0.580 0.137 0.499
γ 0.207 0.434 0.039 0.069

Table 1(b). Implied Average Time Between Re-Optimization
(ACEL, 2005)

RIRSC (ĥT = 3) Fixed lags (h=20)
Firm-Specific Capital Model 1.294 1.515

(0.037) (0.007)
Homogeneous Capital Model 2.769 5.655

(0.167) (0.046)
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Table 2. Empirical results (CEE, 2005)

RIRSC (ĥT = 6) Fixed Lags (h=20)
Parameter Standard Parameter Standard

Parameters Estimates Errors Estimates Errors
ρM -0.020 0.300 -0.114 0.272
σM 0.348 0.108 0.352 0.108
ε 0.897 0.275 0.836 0.255
S′′ 3.732 3.695 4.324 4.566
ξw 0.624 0.194 0.645 0.261
b 0.762 0.127 0.717 0.144
λf 1.002 0.231 1.097 0.277
σa 0.001 0.152 0.041 0.557
γ 0.106 0.243 0.208 0.546

Note to Tables 1-2. The tables report parameter estimates and their standard errors for the

IRFME with 20 lags for each IRF, and the IRFME with h chosen according to the RIRSC (3),

which selects h=3 for ACEL and h=6 for CEE. The notation is the same as that in Tables 2 and 3

in ACEL, and λf is calibrated to be 1.01. See ACEL for a complete description. The CEE model

is a special case of ACEL when only monetary shocks are considered; for consistency, we maintain

the same notation as ACEL, Tables 2 and 3.
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Table 3. Monte Carlo results for the AR(1) case.

H IRFME IRFMERIRSC
bias rej. rate bias rej. rate

1 0.0010 0.0531 0.0010 0.0511
5 -0.0243 0.2265 -0.0045 0.0521
10 -0.0135 0.4090 -0.0036 0.0442
20 0.0026 0.6194 -0.0072 0.0473
50 -0.0768 0.6815 -0.0480 0.0506
100 -0.0819 0.6236 -0.0451 0.0577

Note to Tables 3. The tables reports bias (i.e. true parameter value minus estimated value) and

rejection rates of 95% nominal confidence intervals for examples AR(1).
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Table 4a. Bias, Variance, Coverage Probability (T = 100)
α γ1

h bias var prob bias var prob
1 0.058 0.007 0.925 0.049 0.006 0.928
2 0.056 0.008 0.887 0.042 0.005 0.904
3 0.040 0.004 0.781 0.051 0.006 0.815
4 0.033 0.003 0.655 0.044 0.005 0.709
5 0.044 0.005 0.607 0.052 0.007 0.677
6 0.035 0.003 0.586 0.045 0.005 0.626
7 0.048 0.005 0.539 0.051 0.007 0.584
8 0.041 0.004 0.496 0.045 0.005 0.535
9 0.048 0.005 0.455 0.053 0.007 0.510
10 0.040 0.004 0.429 0.047 0.005 0.481
11 0.048 0.006 0.376 0.054 0.008 0.436
12 0.041 0.004 0.354 0.046 0.006 0.408

Table 4b. Bias, Variance, Coverage Probability (T = 200)
α γ1

h bias var prob bias var prob
1 0.038 0.003 0.943 0.029 0.002 0.948
2 0.039 0.003 0.942 0.025 0.002 0.946
3 0.026 0.001 0.851 0.030 0.002 0.857
4 0.021 0.001 0.737 0.026 0.002 0.783
5 0.030 0.002 0.711 0.031 0.003 0.749
6 0.024 0.001 0.685 0.025 0.003 0.731
7 0.030 0.002 0.649 0.031 0.003 0.712
8 0.024 0.001 0.602 0.026 0.003 0.677
9 0.029 0.002 0.568 0.032 0.003 0.649
10 0.025 0.002 0.566 0.026 0.003 0.620
11 0.030 0.002 0.533 0.032 0.003 0.613
12 0.025 0.002 0.503 0.026 0.003 0.592

Table 4c. Bias, Variance, Coverage Probability (T = 400)
α γ1

h bias var prob bias var prob
1 0.026 0.001 0.952 0.021 0.001 0.951
2 0.025 0.002 0.951 0.017 0.001 0.950
3 0.018 0.001 0.871 0.021 0.001 0.886
4 0.015 0.001 0.784 0.017 0.001 0.829
5 0.020 0.001 0.761 0.021 0.001 0.804
6 0.015 0.001 0.740 0.017 0.001 0.778
7 0.020 0.001 0.709 0.022 0.001 0.771
8 0.016 0.001 0.682 0.017 0.001 0.745
9 0.020 0.001 0.658 0.022 0.001 0.723
10 0.016 0.001 0.634 0.017 0.001 0.720
11 0.020 0.001 0.607 0.022 0.001 0.705
12 0.016 0.001 0.571 0.017 0.001 0.691
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Table 5a. Median Absolute Bias, Variance, Coverage Probability (α)
All AIC SIC HQC

T H bias var prob bias var prob bias var prob bias var prob
100 12 0.041 0.004 0.354 0.047 0.006 0.679 0.046 0.005 0.714 0.044 0.005 0.738
200 12 0.025 0.002 0.503 0.031 0.002 0.728 0.030 0.002 0.778 0.030 0.002 0.775
400 12 0.016 0.001 0.571 0.020 0.001 0.759 0.020 0.001 0.804 0.020 0.001 0.795

Table 5b. Median Absolute Bias, Variance, Coverage Probability (γ1)
All AIC SIC HQC

T H bias var prob bias var prob bias var prob bias var prob
100 12 0.046 0.006 0.408 0.037 0.004 0.722 0.036 0.003 0.755 0.035 0.003 0.776
200 12 0.026 0.003 0.592 0.024 0.002 0.785 0.024 0.002 0.818 0.024 0.002 0.816
400 12 0.017 0.001 0.691 0.016 0.001 0.813 0.016 0.001 0.843 0.016 0.001 0.833

Notes to Tables 4 and 5. The tables report the median of absolute bias, variance and the

coverage probability of 95% nominal confidence intervals for (1).

Table 6. Selected Number of Impulse Responses

AIC SIC HQC
T H Mean Mode Var Mean Mode Var Mean Mode Var

100 12 3.477 3.000 4.514 3.033 2.000 2.833 2.838 2.000 2.186
200 12 3.618 4.000 3.363 2.982 2.000 1.803 3.012 2.000 1.888
400 12 3.972 4.000 3.537 3.069 2.000 1.706 3.278 3.000 2.091

Notes to Table 6. The table reports the mean, median and variance of selected horizons of

impulse responses for (1).




