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1 Introduction

Our research is motivated by the fact that output volatility in the United States has declined

significantly since the mid 1980s, as first documented by Kim and Nelson (1999) and McConnell

and Perez-Quiros (2000). Stock and Watson (2002) also document the fall in volatility in other

important macro variables such as consumption, investment, and hours worked. This drop in

volatilities of output and most other macro variables is an artifact economists also call the “Great

Moderation.”1 In this paper we study the link between energy prices and total factor productivity

(TFP) and the role it plays in accounting for the great moderation.2

Why would the fluctuations in energy prices be important for the great moderation? Looking

at the energy price and its relationship with business cycles reveals that the deep recessions in

1973-74 and 1980-82 were preceded by large energy price spikes.3 However, the energy price drop

in 1986 did not spark a significant acceleration in GDP growth and, likewise, the sustained rise in

energy prices since 2002 has not yet led to a recession.4 Our hypothesis from these observations

is that a link between energy prices and business cycles existed in the early period, say, before

1982, but has since disappeared, potentially accounting for the lower volatility of macro variables.

This motivates the empirical analysis where we estimate a joint stochastic process for quarterly

energy prices and TFP using Bayesian estimation methods. We explicitly model a spill-over

effect from the energy price innovations to TFP and the magnitude of this spill-over varies over

time. Specifically, we allow for a breakpoint from one regime into another, and the timing of this

break itself is a parameter to be estimated. We find the second quarter of 1982 (1982:II) to be

the estimated breakpoint. Before 1982:II, innovations in the process for the energy price had a

significant and negative spill-over into TFP. This spill-over disappeared afterwards.

Next we use a dynamic stochastic general equilibrium (DSGE) modeling framework to eval-

uate the impact of the changing nature of the joint stochastic process for energy prices and

TFP on key macro volatilities. Specifically, we take the Kim and Loungani (1992) model, which

incorporates energy use as a complement to fixed capital on the production side, and simulate it

with the pre and post 1982:II specification for the joint stochastic process for the price of energy

and TFP. We show that the absence of the spill-over effect after 1982:II reduces output volatility

by about 34 percent.5 Given that the actual drop in output volatility after 1982 was about 55

percent, the changing nature of the stochastic process accounts for about 61 percent of the great

1Then-Federal Reserve Governor Ben Bernanke coined this phrase at the Eastern Economic Association Meet-
ings in 2004.

2See Owyang, Piger and Wall (2007) for a survey of competing explanations in the great moderation debate.
3See Hamilton (1983, 2003) and Hamilton and Herrera (2004) for evidence on the link between energy prices

and business cycles.
4The residential construction activity has dropped sharply from its peak in 2006 but the overall economy is

not in a recession according to the NBER definition at the time of writing this paper.
5Consumption and investment volatilities also declined by a similar magnitude.
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moderation in output volatility.

One can object that the significant drop in the share of energy use in GDP since the early

80’s can directly account for the reduced volatility, without the added link of energy prices on

productivity. Thus, we simulate the model without an energy-productivity spill-over but with

different energy shares calibrated to the observed energy to output ratios in the pre and post

1982:II time-periods. This experiment generates a drop in output volatility of only 5 percent,

compared to the 55 percent observed in the data. Thus, a drop in the energy share accounts for a

marginal proportion (less than 10 percent) of the great moderation. Of course, if we simulate the

model not only with different stochastic processes but also with different energy shares calibrated

to the early and late period, we enhance the drop in output volatility to 37 percent, bringing the

share of the great moderation accounted for by the model to 68 percent.

Our paper proceeds as follows. Section 2 details the specification and estimation of the joint

stochastic process for TFP and energy. Section 3 introduces the DSGE model and the calibration

of the remaining parameters. Section 4 presents the numerical results in the benchmark case

with fixed energy shares and also for the model with varying energy shares. Finally, section 5

concludes.

2 Econometric Setup

We model the energy price time series as an ARMA(1,1) process, which is the typical structure

in business cycle models with energy use6

pt = ρppt−1 + εpt + ξεpt−1 (1)

The εpt is a zero-mean innovation to the energy price shock assumed to be normally distributed

with a variance σ2
p.

We deviate from the usual AR(1) specification for the productivity process, as the innovation

in our study is to assume spill-over effects from energy prices into TFP. As a result, we specify

a process in which productivity z depends on past values of innovations to the energy prices,

zt = ρzzt−1 + εzt +
4∑

τ=1

γτt ε
p
t−τ (2)

The innovations to the productivity shock εzt will also be distributed Normal with a variance

σ2
z and the degree (and direction) of the spill-over will be given by the values of γτt . Note the

subscript t in the spill-over parameter γ: we assume that the degree of spill-over effects from

6See, for example, Kim and Loungani (1992) and Dhawan and Jeske (2006).

2



energy prices to productivity has changed in the last 50 years. Specifically, we model this as

a one-time change with an unknown date t∗, which we will treat as another parameter to be

estimated. As a consequence, the spill-over parameters will take on values γ1 = (γ1
1 , γ

2
1 , γ

3
1 , γ

4
1)

in the first part of the sample and γ2 = (γ1
2 , γ

2
2 , γ

3
2 , γ

4
2) in the second part. This means the

productivity process has the following form

zt = ρzzt−1 + εzt +
4∑

τ=1

γτt ε
p
t−τ , ε

z
t ∼ N(0, σ2

z), (3)

where

γt =
(
γ1
t , γ

2
t , γ

3
t , γ

4
t

)
=





γ1 if t ≤ t?

γ2 if t > t?

We use data for quarterly energy price and productivity {pt, zt}Tt=1 to estimate the parameters

of the two stochastic processes, where T is the sample size. Data cover the period from 1970

to 2005. Appendix A has the details on how we construct the quarterly series for TFP and the

energy price.

We model the one-time change in γ as the transition of a two-state Markov process into an

absorbing state. Assume that the value of γ is driven by a latent variable St, St ∈ {0, 1} for any

t, which follows a Markov chain with transition probability:

Πε =


 q 1− q

0 1


 (4)

We let the data inform us whether there has been a transition into a state in which St = 1.

If a transition occurs, we denote the date at which occurs as t∗. The goal of the procedure is to

estimate the vector of parameters and latent variables:
{
ρp, ξ, σ2

p, ρ
z, γ1, γ2, σ

2
z , {St}Tt=1, q, t

∗}.

The procedure can be split into two steps: the estimation of the energy price process and the

the estimation of the productivity process.

In the energy price process there is a total of three parameters to estimate. Denote the vector

of the three parameters θp = {ρp, ξ, σp} and fp(γp) the prior distribution over these parameters.

To construct the likelihood function we first cast the ARMA(1,1) as a state-space system:

ζt+1 =


 ρp 0

1 0


 ζt + wt+1 (5)

pt =
[

1 ξ
]
ζt + vt+1 (6)

The likelihood, L({pt}Tt=1|θp) is then constructed as described in Hamilton (1994), (Ch. 13, p.
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385) which makes use of the Kalman filter to integrate out the latent vector ζt. Once we compute

the likelihood, we find the posterior distribution, p(θp|{pt}Tt=1), by coupling the likelihood and

the prior: fp(θp|{pt}Tt=1) ∝ L({pt}Tt=1|θp)fp(θp). We obtain draws from this posterior using well-

known sampling methods. Specifically, we use a Metropolis-Hastings algorithm (see e.g. Robert

and Casella (1999)).

Next we estimate the productivity process using the a time series of {εpt}Tt=1 as data. Denote

by θz the vector of parameters {ρz, γ1, γ2, σz, q}. First, we endow θz with a prior distribution

fz (θz). To compute the likelihood for the TFP process, there is the obvious difficulty that the

vector {St}Tt=1 is not observed. If it were observed, the likelihood function would be:

L({zt}Tt=1|θz, {St}Tt=1) =
T∏
t=5

1√
2πσ2

z

exp{− 1

2σ2
z

e2
t} (7)

with et = zt − ρzzt−1 −
∑4

τ=1 γ
τ
1 ε
p
t−τ for St = 0 and et = zt − ρzzt−1 −

∑4
τ=1 γ

τ
2 ε
p
t−τ for St = 1.

Given that we do not know {St}Tt=1, we use a filtering (and smoothing) procedure similar to that

described in Kim and Nelson (1999, Chapters 4 and 9). The algorithm consists of the following

steps:

1. Denoting by g(St|zt, zt−1, θz) the mass function for St (i.e. the filtered probabilities), com-

pute the likelihood function using Hamilton’s (1989) filter. This gives {g(St|zt, zt−1, θz)}Tt=5.

2. Couple this likelihood with the prior for θz to obtain a draw from the posterior fz(θz|{zt}Tt=1).

3. For t = T − 1, T − 2 . . . , 5, compute the smoothed probabilities given by:

g(St|{zt}, St+1) ∝ g(St+1|St)g(St|{zt}) (8)

4. Repeating the above three steps M times, we obtain M draws from the posterior distribu-

tion for θz and {St}. We set M = 30, 000 for the estimation of both the energy price and

the TFP process and then discarded the first 5,000.

We report the prior distribution for the parameters in Table 1. We have used (truncated7

Normal distributions for ρp,ρz,ξ,γ1,and γ2; Gamma distributions for σ2
p and σ2

z ; and a Beta

distribution for q. These distributions are fairly uninformative except for the sign restriction

in the γ’s to be able to identify the two regimes. The prior distribution for q implies a mean

7We have used with indicator variables to determine the region of truncation. For example χ|ρp|<1 takes the
value of zero whenever the absolute value of ρp is greater than one.
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Table 1: Prior Distributions

Parameter Distribution
ρp N(0.9, 1.52)χ|ρp|<1

ξ N(0, 0.42)
σ2
p Gamma(0.0001, 1)
ρz N(0.9, 1.52)χ|ρz |<1

{γi1}4
i=1 N(0, 0.152)χγi1>0

{γi2}4
i=1 N(0, 0.152)χγi2<0

σ2
z Gamma(0.0001, 1)
q Beta(0.6, 0.4)

of 0.50 and a standard deviation of 0.48 and the prior distribution for the variances of the

shocks has a low mean (9.35× 10−5) but a large standard deviation (0.009). Table 2 shows our

estimation results. We date the time of the change at the second quarter of 1982, but this being

an estimate, there is some uncertainty around it as well. A 90% posterior region is bounded by

the third quarter of 1979 and the second quarter of 1985. In the first subperiod the spill-over

parameters γ are significantly less than zero. For the second subperiod, however, zero is well

within two posterior standard deviations of the mean, so we can conclude that the spill-over

effect is only significant during the first period (i.e. the period for which t < t∗), in which higher

energy prices due to positive innovations affect TFP negatively. As is expected the parameters

driving persistence in energy prices and TFP are large, while the variance of the innovations is

small for TFP and large for energy prices.

Table 2: Estimation Results

Parameter Posterior Mean Post. Std. Dev.
ρp 0.960 0.034
ξ 0.451 0.102
σ2
p 0.001 1.59×10−4

ρz 0.915 0.034
γ1 [−0.091,−0.020,−0.060,−0.051] [0.032, 0.016, 0.033, 0.031]
γ2 [0.016, 0.024, 0.029, 0.016] [0.011, 0.013, 0.015, 0.011]
σ2
z 3.25× 10−5 3.94× 10−6

q 0.978 0.019
t∗ 1982:II N/A
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3 DSGE Model Setup

In the previous section we showed that there is a statistically significant difference between the

parameters of the TFP process in the two subperiods. How significant are the two different

shock processes for TFP in an economic sense? To answer this question we feed the stochastic

process for the energy price and the two alternative specifications for the productivity process

into a Dynamic Stochastic General Equilibrium (DSGE) model. The model is identical to the

one described in Kim and Loungani (1992). Households have preferences over consumption c

and leisure equal to the normalized total hours less hours worked h,

U = E0

∞∑
t=0

βt [ϕ log ct + (1− ϕ) log (1− ht)] (9)

Output y is produced by a representative firm that combines hours, capital stock k and energy

e. Production is also subject to a stochastic total productivity shock z,

yt = zt
(
ηkνt−1 + (1− η) eνt

)α/ν
h1−α
t (10)

The elasticity of substitution between capital and energy is 1
1−ν . Consequently, the production

function displays complementarity between capital and energy when ν < 0. Energy has to be

imported at the relative price pt and capital depreciates at a rate δ, thus the economy’s resource

constraint is

ct + kt − (1− δ) kt−1 + ptet = yt (11)

and the capital stock evolves according to

kt = (1− δ) kt + it

The social planner thus solves the following optimization problem

maxE0

∞∑
t=0

βt [ϕ log ct + (1− ϕ) log (1− ht)] (SP)

subject to

ct + kt − (1− δ) kt−1 + ptet = zt
(
ηkνt−1 + (1− η) eνt

)α/ν
h1−α
t (12)
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and

pt = ρppt−1 + εpt + ξεpt−1 (13)

zt = ρzzt−1 + εzt +
4∑

τ=1

γτ εpt−τ (14)

We need to assign values for the following parameters: β, ϕ, α, ν, η, δ. Throughout the paper,

we set the parameters α, β and ν at 0.36, 0.99, and -0.70 as in Kim and Loungani (1992). We

calibrate the remaining parameters to match the targets k/y = 12, e/y = 0.0544 and h = 0.3.

To this end, we derive the first order conditions in Appendix section B.1 and set parameters to

ensure that in the model steady state generates the targets specified above. Appendix section B.2

provides the details of this calibration process. We report the parameters from this calibration

exercise in Table 3.

Table 3: Model Parameters

Parameter Value
β 0.9900
α 0.3600
ν -0.7000
ϕ 0.3376
η 0.9959
δ 0.0154

4 Results

4.1 Benchmark

Table 4: Volatility in the data versus model

Early period Late period Percentage drop
(1970:I-1982:I) (1982:II-2006:IV) in volatility
Data Model Data Model Data Model

Output 2.07 1.87 0.94 1.25 -54.89 -33.50
Consumption 1.67 0.37 0.73 0.24 -55.96 -34.40
Investment 6.73 9.21 3.55 6.00 -47.33 -34.82
Hours 1.86 1.15 1.20 0.76 -35.59 -34.12

Note: Volatilities refer to the standard deviation of log-deviations from HP-filtered series
(λ = 1600).
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We take first order necessary conditions in Appendix B.1 and compute a log-linear approxima-

tion around the deterministic steady state. We do so for the two alternative sets of γ parameters

in the stochastic process for TFP to simulate the economy under the two regimes.

In Table 4, we report the volatilities of output, consumption, investment and hours worked

in the data and in the model in the two different periods (pre and post 1982:II). Volatility in the

data dropped across the board, by about 55 percent for output and consumption, 47 percent for

fixed investment and 36 percent for hours worked. In the model we generate a drop in output

volatility of almost 34 percent. Thus, 61 percent of the moderation is explained by change in

the spill-over effect of energy price into TFP. Consumption, investment and hours volatility also

drops by about 33 to 35 percent.8

4.2 Different energy shares

As Dhawan and Jeske (2007) point out, the energy share in the production has diminished in

the last decades. We compute the energy shares in the two subperiods and recalibrate the model

to account for the two alternative calibration targets 9. This changes the values for both η and

δ, as detailed in Table 5.

Table 5: Different calibration targets for energy shares and corresponding parameter values

Early period Late period
(1970:I-1982:I) (1982:II-2006:IV)

e/y 0.0678 0.0436
η 0.9938 0.9973
δ 0.0142 0.0163

We first simulate the economy without a spill-over (γ1 = γ2 = [0, 0, 0, 0]) but with different

energy shares. Then we simulate the economy with the spill-over and different energy shares.

The first experiment determines whether the change in the energy share alone can account for

the great moderation. The second experiment determines by how much we enhance our results

in the benchmark economy when, in addition to the spill-over, we also allow for a change in the

energy share.

Changing only the shares but not the stochastic process between the two periods does not

generate a large drop in volatilities of macro variables as documented in Table 6. Output volatility

drops by less than 5 percent, consumption volatility by 3 percent, which is much less than what

8Notice that the consumption volatility in the model is much lower than in the data. As we know from Cooley
and Prescott (1995), DSGE models have a hard time generating enough consumption volatility.

9The exercise of changing the energy share and computing the volatilities for the two regimes was also performed
by Nakov and Pescatori (2007).
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is observed in the data. The investment volatility drops considerably more, though still not close

to the drop observed in the data. The reason why the investment volatility drops much more

than consumption is because of the complementarity of capital and energy in production.

As expected, the model with the spill-over effect and different energy shares explains an even

larger decline in the volatility than in the benchmark with fixed energy shares as we demonstrate

in Table 7. Output volatility drops by about 37 percent, which accounts for 68 percent of the

observed drop in the data, slightly higher than the 61 percent drop in the benchmark calibration.

It appears that the reduction in the energy share helps explain some of the great moderation but

compared to the spill-over mechanism its impact is of secondary importance.

Table 6: Volatility in the data versus model: Different energy shares, no spill-over

Early period Late period Percentage drop
(1970:I-1982:I) (1982:II-2006:IV) in volatility
Data Model Data Model Data Model

Output 2.07 1.28 0.94 1.22 -54.89 -4.89
Consumption 1.67 0.25 0.73 0.25 -55.96 -3.27
Investment 6.73 6.73 3.55 5.54 -47.33 -17.62
Hours 1.86 0.78 1.20 0.73 -35.59 -5.44

Note: Volatilities refer to the standard deviation of log-deviations from HP-filtered series
(λ = 1600).

Table 7: Volatility in the data versus model: Different energy shares and spill-over from the
energy price to productivity

Early period Late period Percentage drop
(1970:I-1982:I) (1982:II-2006:IV) in volatility
Data Model Data Model Data Model

Output 2.07 1.95 0.94 1.22 -54.89 -37.48
Consumption 1.67 0.39 0.73 0.24 -55.96 -37.77
Investment 6.73 10.34 3.55 5.53 -47.33 -46.46
Hours 1.86 1.20 1.20 0.74 -35.59 -38.14

Note: Volatilities refer to the standard deviation of log-deviations from HP-filtered series
(λ = 1600).

5 Concluding Remarks and Discussion

When simulating DSGE models, researchers normally assume that the shocks hitting the econ-

omy are orthogonal. In our paper we show that innovations to energy prices and total factor
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productivity (TFP) have not been orthogonal before 1982:II. In contrast, the two stochastic

processes have been close to independent since then. We demonstrate that the change in the

structure of the stochastic processes can account for more than 61 percent of the drop in output

volatility. Adding the reduced share of energy use to this framework increases the explanatory

power of the model to 68 percent.

There are two opposing views in the economics literature on the importance of energy shocks.

The empirical literature, for example in Hamilton (1983, 2003) and Hamilton and Herrera (2004),

finds a significant link between oil price shocks and business cycles. On the other hand, the DSGE

literature, as in Kim and Loungani (1992) and Dhawan and Jeske (2006), shows that total factor

productivity (TFP) is the main source of business cycle fluctuations, while energy prices play

almost no role. Our paper reconciles these findings from the econometric and DSGE literature

in the following sense. The recessions in the 1970s and 1980s occurred not because of the direct

effect of the energy price hikes but because of their spill-over effect on productivity as our model

simulation results demonstrate. After 1982:II, this spill-over effect disappears which then reduces

the volatility of TFP and thus that of macro variables. Thus, our results support Arias, Hansen

and Ohanian (2007) who demonstrate that the drop in TFP volatility within the framework of

a DSGE model is the main reason for the drop in output volatility.

This raises the question: what caused the moderation of TFP volatility? Arias, Hansen

and Ohanian are silent on what caused the decline in TFP volatility, though they show that

a previously conjectured channel, unmeasured factor utilization in the construction of the TFP

series, is likely not the cause. Furthermore they rule out government spending shocks and

preference shocks as the source of output volatility moderation.10 Hence, one can view our paper

as providing a new stylized fact in the great moderation debate in the sense that we demonstrate

that the drop in TFP volatility has to do with the reduced spill-over from energy price shocks.

Currently, we do not take a position on either the source of the spill-over in the early period

or the reason for its sudden disappearance in the 1980s. Rather, our aim is to establish this new

stylized fact and encourage researchers to theoretically account for our empirical findings. For

future research it will interesting to determine possible causes for the energy to TFP spill-over in

the early period as well as reasons for the sudden disappearance after 1982. One possible route

is to model the price controls during the Carter and Nixon years that were abolished in the early

1980s. Price controls and the resulting rationing prevent the factor energy from being used in

the most productive way. Without explicitly modeling this friction the rationing would show up

as lower TFP in response to an energy price shock.

10Leduc and Sill (2007) show that although a change in the monetary policy decision rule (Taylor Rule) can
indeed account for lower inflation volatility, the drop in output volatility comes chiefly from the drop in TFP
volatility.
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Appendix

A Data

We construct the data series as following. The real energy price is the natural logarithm of the
quarterly price index of gasoline, fuel energy, natural gas and electricity from the BEA, adjusted
by the GDP deflator.

To construct the TFP we use quarterly output data from the BEA and the hours series from
the Establishment survey. Notice that

zt = yt
(
ηkνt−1 + (1− η) eνt

)−α/ν
h−1+α
t (A-1)

As in Cooley and Prescott (1995) we assume that capital is fixed (kt−1 = k̄) at the quarterly
frequency when computing TFP. Firm energy use exists only at the annual frequency, so as a
first approximation we assume that et is fixed as well. Then, just as in Cooley and Prescott
(1995), we construct TFP as

z̃t = ỹt − (1− α) h̃t (A-1′)

where the tilde stand for log-deviations from the trend. Next, we also computed TFP by explicitly
taking into account firm energy use by a) converting the annual energy use into quarterly data by
interpolation and b) by using the quarterly household energy use as a proxy for firm energy use.
Since the resulting TFP time series were very similar to the one constructed by assuming fixed
energy use(correlation coefficient close to 0.98), and the estimation of the stochastic processes in
section 2 were essentially identical, we kept the same procedure as in Cooley and Prescott for
TFP calculation. Finally, as a sensitivity check we also generated artificial data from the model
and compared the series for z̃t with that of the z̃t constructed via equation (A-1′) and again
found the two series to be very similar, with a correlation coefficient of 0.95.

B First order conditions and calibration

B.1 First order necessary optimality conditions:

The following equations, together with the definition of the stochastic processes in equations (1)
and (2), define the dynamics of the model:

1. Consumption vs. leisure

(1− ϕ)
1

1− ht = ϕ
1

ct
wt (B-1)

2. Definition of the wage

wt = (1− α)
yt
ht

(B-2)

3. Definition of the rate of return on capital

rt = ytα
ηkν−1

t−1

ηkνt−1 + (1− η) eνt
(B-3)

4. Energy price equals marginal product of energy

pt = ytα
(1− η) eν−1

t

ηkνt−1 + (1− η) eνt
(B-4)
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5. Euler Equation

1 = βE

{
ct
ct+1

(1 + rt+1 − δ)
}

(B-5)

6. Definition of output

yt = zt
(
ηkνt−1 + (1− η) eνt

)α/ν
h1−α
t (B-6)

7. Evolution of capital
it = kt − (1− δ) kt−1 (B-7)

8. Resource constraint

ct + it + ptet = yt (B-8)

B.2 Calibration

We have to pin down the following six parameters: β, ϕ, α, ν, η, δ. We fix α, β and ν to the same
values as in Kim and Loungani (1992) and Dhawan and Jeske (2006) and calibrate the remaining
parameters ϕ, η and δ to match our targets for k/y, e/y and h. In steady state:

p = yα
(1− η) eν−1

ηkν + (1− η) eν

= ακ−1
k

(1− η) eν−1

ηkν−1 + (1− η) eνk−1

= ακ−1
k

1− η
η
(
κk
κe

)ν−1

+ (1− η)
(
κk
κe

)−1

= α
1− η

ηκ1−ν
e κνk + (1− η)κe

(B-9)

where κk = k/y, κe = e/y. Then

p
(
ηκ1−ν

e κνk + (1− η)κe
)

= α− αη (B-10)

Rearranging
η
(
pκ1−ν

e κνk + α− pκe
)

= α− pκe (B-11)

Thus,

η =
α− pκe

pκ1−ν
e κνk + α− pκe (B-12)

Next solve for r :

r =
k

y

kν−1

η + (1− η)
(
e
k

)ναη (B-13)

and from the Euler equation:

δ = r − 1

β
+ 1 (B-14)
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Finally, from the labor vs consumption equation, combined with the wage equation:

(1− ϕ)

ϕ
=

1− h
h

(1− α)
y

c

=
1− h
h

(1− α) (1− δκk − pκe)−1 (B-15)

Thus,

ϕ =

[
1 +

1− h
h

(1− α) (1− δκk − pκe)−1

]−1

(B-16)
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