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Information Quality, Performance Measurement, and Security

Demand in Rational Expectations Economies

Performance Measurement is the first step in allocating investment funds and
determining compensation schemes for portfolio managers. As Admaiti, Bhattacharya,
Pfieiderer and Ross (1986) poinf out, the fundamental issue in performance measurement
is to assess, using observable variables, the quality of private information possessed by
portfolio managers. Portfolio returns relative to a benchmark return appear to be a natural
choice for the observable variable to be used in this assessment. However, as shown by
Dybvig and Ross (19853, 1985b) and Admati and Ross (1985), except in very special
cases, inferring the quality of private information from measured portfolio returns relative

to a benchmark may generally be difficult.

Our goal is to attack the problem of performance measurement in a rational
expectations setting from a different perspective. Instead of examining the relationship
between excess returns and information quality, we examine the relationship between the
structure of asset demand and information quality. Our analysis focuses on two issues: (i)
Demand analysis—how does the structure of an investor's information regarding asset
returns affect his demand for risky assets? (ii) Structural estimation—how can the quality
of an investor's information be estimated from the observed time series of realized

demands?

Demand analysis in a rational expectations economy, in essence, involves relating
information to asset demand. Each investor receives a private signal regarding the payoffs
from a subset (not necessarily proper) of the assets traded in the economy. The signals
received about the payoffs from different assets may be correlated with each other. An
investor's information structure is captured by the joint distribution of private signals.

When information structures are heterogeneous, the signals received by different



investors will be not be identically distributed. These differences in signal structures can
lead to differences in the trading patterns, determined not so much by the absolute
informational position of the investor but rather by the informational divergence between
the precision of the signals the investor receives and the average precision of the signals
received by all the investors in the economy. Absent informational divergence, investors
hold portfolios that are, on average, strictly proportional to asset supplies (that s, to the

market portfolio).

While informational divergence is necessary for investment styles that deviate, on
average, from holding the market portfolio, the exact relationship between investment
style and informational divergence is subtle. To explore this relationship, we first derive a
set of summary statistics that measure the characteristics of an investor's "investment
style,” such as the extent of asset selection and market timing activity and the degree of
portfolio specialization. Then we derive a number of conditions, some necessary and
others sufficient, for increases in informational divergence to result in increased

magnitudes for these characteristics.

Next, we turn to the problem of structural estimation. That is, we reverse the
process discussed above and ask the following question: how can informational
divergences, which are not directly observable, be estimated from observed portfolio
behavior? We show such estimation is possible. The estimation technique rests on the
exploitation of two salient features of our model-the linear structure of the rational-
expectations demand vector and implicit restrictions that the equilibrium demand
relationships place on the variance-covariance matrix of error terms from the demand
estimation equation. By identifying both the matrix of demand equation coefficients and
the variance-covariance matrix for the error terms, we are able to identify the

informational divergence of a given investor.!



The above results should be useful in addressing the problem of performance
measurement in a number of ways. First, the structural decomposition of demand may be
valuable as a summary statistical descriptor of the trading patterns followed by portfolio
managers. Second, the comparative statics derived in the paper should shed light on how
private information impacts the character of portfolio demand. Third, the estimates
derived in our analysis of the identification problem should prove useful in assessing the

quality of private information possessed by investors.2

The paper is organized as follows. In Section I, we derive the rational-
expectations demand vector. In Section II, we analyze the relationship between asset
demand and risk tolerance and informational differentials. In Section III, we attack the
demand identification problem. Section IV concludes our analysis. Some of the more

involved proofs are collected in the Appendix.
I. Rational Expectations Equilibrium in a Large Multi-Asset Economy

Our first task is to determine equilibrium-investor demand for risky assets in a
large, noisy, rational-expectations economy. In this economy, investors receive private
information signals about the payoff realizations of possibly different subsets of assets.
These investors, indexed by j, have negative exponential utility functions over their end-
of-period wealth levels, with risk aversion coefficients p;. Each investor seeks to
maximize the expected utility of his end-of-period wealth, which comes from the

payoffs to his optimal portfolio of assets created at the beginning of the period.

All the random vectors in this economy, namely the risky asset payoff vector, the
per capita supply vector of the risky assets, and the private signal error vectors, are joint-
normally distributed. The rational expectations equilibrium price vector is also a normally
distributed random vector. This distributional setup of the economy gives us investors’

equilibrium conditional demand vectors as linear functions of the conditioning vectors.



Presented below are the structures of the equilibrium price and the demand vectors for
investors. Our framework is the large-economy rational expectations model of Admati
(1985) slightly generalized, in a fashion explained below, to incorporate a greater degree

of informational heterogeneity between investors. For more detail see Admati (1985).

Rational Expectations Price Conjecture: Let P represent the per capita price vector of the
risky assets, F represent the per capita payoff vector of the risky assets, and Z represent
the per capita supply vector of risky assets. Let Ajand Az be n x n matrices of
coefficients and Ag an n x 1 vector of coefficients. As in Admati (1985), it is assumed

that investors have a rational expectations price conjecture of the form shown below:
P=Ag+ AIIE- Azz.

Asset Structure: There are n risky assets trading on the financial market. Asset portfolios

are created at the start of the period and all payoffs are realized at the end of the period.

The distribution of per capita payoffs and supplies is as follows:

F Fl[vo
- _ V and U are positive definite matrices.
' Z Z]lO0U

The assumption of positive definiteness of the variance-covariance matrix, V, of
the per capita payoff vector implies that, ex ante, there are no redundant assets. U
represents the variance-covariance matrix of the per capita asset supply vector. There is
also a risk-free asset in zero net supply, which has a current price set at one and a non -

stochastic, per capita payoff of R at the end of the period.

Private Signal Structure: The signal structure employed here is a slight generalization of

Admati (1985). We assume that each investor receives a signal regarding the payoffs of a
nonempty (but not necessarily proper) subset of the assets traded in the economy. In
Admati (1985) investors receive signals about all traded assets.> More specifically, we

assume that Yj = C;F + &, where Y is the private signal vector for investor j; Cj is the k;



X n transformation matrix with rank equal to kj < n; and Ej is investor j's private signal
error vector. Ej is a k;-dimensional, nondegenerate, normally disiributed, mean zero
random vector with a positive-definite variance-covariance matrix S; . Please note that S;
is kj x kj . We assume that for all j € T, the error vectors Ej are independent across
investors and that they are also independent of the per capita asset payoff (F) and supply

(Z) vectors.

Aggregation: For brevity, and comparability with the extant literature, we model a
continuum economy. We assume that 1/p; and Sj-! are uniformly bounded, and the
investor set is the interval J = [0, 1].# We use 1/p to represent the average risk tolerance

I
of investors, that is 1/p = J (1/p;)dj. Similarly, Q represents the average precision of the

private signals, weighted by the investors' risk tolerance coefficients, that is

1
-t yieTs e
Q= é‘ﬂj)[ci s; 14

Equilibrium Pricing Functional: A rational expectations equilibrium price functional is a

self-fulfilling price conjecture of the form P = A g + A;F - A 2Z, A; nonsingular. The
nonsingularity of Aj is part of Admati's definition of a large-economy, rational -
expectations-equilibrium price conjecture. She shows that, in any finite investor
economy, the equilibrium price conjecture must have this property and argues that the
limiting large economy should also have it. Admati demonstrates that, within the class of
price conjectures defined above, a unique rational expectations equilibrium price
conjecture exists. As shown in Admati (1985), the relevant coefficients of the equilibrium

price vector are given by
Agp=(1/R) [EQ + QTU'I Q + V-1 ]-1 [ y-1 "'15 + QTU‘I Z],

A= (IR)[pQ+QTU-1 Q+ V111 [pQ+QTU-1Q), and



Az = (I/R) [pQ + QTU- L Q + V-1 Tt [pI+QTU-1], Ag nonsingular.
11, Analysis of Investor Demand

We decompose an investor's informational demand into different components
representing different aspects of investment style and investigate the effect of information
quality on each of these components of demand. To initiate the formal analysis, we
require an explicit representation of an investor's risky asset demand. This is provided in

Proposition 1.

Proposition 1. The asset demand vector of the jth investor, D, is given by
D,[o 1Y), B} = ogj + BjAo+ loj G+ By Arl F + 01 € - Bj A2 Z, where
agj + iAo =-(8)/pj) [V +QT U1 Q+p QI [[V-1IF+QTUT 2,
atj G+ BjAr = (@/pp [V'! +QT U1 Q +p QI1V-E, (1)
ogj= Up; G Sy71,
BjAz=-1p;[pI+Q [V +QTU1Q+p QrllpI+QTU 1.

where G)j, which we henceforth refer to as the investor's informational difference matrix,

is defined as ©;=C;TS§71 Cj - p Q.
Proof. This result follows from direct manipulation of the demand and price equations.’ 1

To determine the effect of private information on security demand, we first define
the demand vector in the absence of any private information. When there is no private
information, then Sj*l = 0 for all investors and, hence, the demand equation for any

investor j, reduces to

Do = (plpj Z. (2)



Equation (2) shows that in the absence of private information, every agent's asset demand

is a linear function of the per capita asset supply (i.e., the standard CAPM result holds).

Thus, we can represent the jth agent's asset dermand, ﬁj, as the sum of two components,

D and D], where D lis the demand induced by private information and D¢ is the

demand in an otherwise identical economy in which no agent receives any private

information, i.e., D 1.1 = f)j - ﬁjo_ Using the basic properties of conditional expectations, it
is possible to decompose the private information induced demand vector, ﬁjl , into three

components as follows:

D19 BDI) + \ VARE[DIZ) {++ VARIDNZ] ¥, (3)

where { and y are independent, standard, normally distributed n-dimensional random

vectors.® The first component, E[ f)jI], is the mean demand: it measures the average, or

expected, demand. The second component represents the degree of variation in demand

that is proportional to the per capita asset supply vector, Z. Thus, VAR(E[ ]3jl b Z])

measures market timing. On the other hand, VAR[f)jI | Z] measures the variation that is

uncorrelated with asset supply and, thus, measures asset selection activity.
The expected information-driven demand, E[ D)1, is given by
Dl =E[D/]]= gjej Al Z, (4)
where A = [V-1 + QT U-1 Q +p Q). Equation (4) shows that the two key investor-

specific parameters of the demand function are the investor's risk aversion, p, and his

informational difference matrix, © (=CTS-! C-p Q).

The informational difference matrix, ©, measures the difference between the
precision of the investor's information and the precision of the information of the average
market participant. If the investor's information quality is equal to that of the market, that

is, ej = (), then the investor's expected informational demand is zero. In other words,



although a particular realized signal may lead such an investor to take an "unbalanced”
portfolio position, these positions average out in the long-run and, thus, the average asset
demand of the investor closely tracks the asset supply vector which in the standard
CAPM nomenclature is the benchmark market portfolio. The two key economy-wide
parameters of the model are A and Z. Of course, Z is the vector of expected asset
supplies. To better understand A, note that when ©;= 0, then VAR[F | ¥, P] = A. Thus, A
can be thought of as the variance-covariance matrix of asset payoffs as conjectured by
the "typical” or average investor. For this reason, we will call Athe average payoff

variance matrix.

Using the orthogonal projection theorem we can decompose the expected

information-driven demand, Di= E[D jl], into two components, one of which lies on the

market line and another which is perpendicular to the market line. This yields the

complete decomposition of the demand vector that we will utilize in the remainder of the
paper.

Proposition 2. Let S, (P,) represent the space of n X n symmetric (positive

semidefinite) matrices. Let j € J be an investor. Then there exists a scalar, X, an n-

dimensional demand vector, f)jl , tWo n X n positive semidefinite matrices, T(©;, pj) and

A(©j, pj), and two n-dimensional vectors, D (j) and DL(), such that

B, yT(@;.pp L+ VA®; pp) 1+ D) + DL, ©
where

T: S, X IR — P, is the function defined by

6A! [pI+QTU U [pI+U1 QA1 ©
p2

T(©,p) = (6)

and A: §;, X IR — Py, is the function defined by



-1 V-1 A1 @40
A®©,p) =28 p2 0+pQ+6 ;

(@ ZONZ ®

Finally, D(j) (DL(j)} is the component of ex ante demand that is collinear (orthogonal)

to Z, defined by

D) = (p/oj) k(©)) Z, ©)
DL(j) =§j ©G) a1 -x(©)1)Z, (10)

and { and y are independent, n-dimensional, standard, normally distributed random

vectors.

Proof: The first two terms follow by explicit computations of VAR(E[ﬁjIIZ]) and
E(VAR[ f)jl IZ]) (using expression (1) and equation (3)).7 The decomposition of E[f)jl]
follows by applying the Projection Theorem (see Luenberger 1969, Theorem 2, page 51)

to the subspace of IR" spanned by the mean per capita supply vector Z. [

The matrix algebra required to state the decomposition provided by Proposition 2
makes it appear somewhat complex. Unfortunately, this matrix algebra is required if we
are going to deal with the very high dimensional demand vectors that characterize real-
world asset demands. Though the simple intuition underlying the decomposition is
obscured by the algebraic treatment, it is transparent in the following diagramatic
presentation of the two-asset case in Figure 1. The investor's risk aversion coefficient p is

12 -16% _
given by 4; his informational differential © is given by |: 6 2 ]; p. the average risk

aversion is given by 2; Z, the expected per capita supply of risky assets is given by (2,
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4 -2

2)71: and the average payoff variance matrix, A, is given by |: } The scatter of the

-2 6
small hollow circles represents possible realized asset demands. These demands are a
function of the realized value of the investor's private signal. Some of the variations in the
investor's demand represent increases or decreases in holdings of the market portfolio;
these variations are parallel to the market line, and some of the variations are orthogonal
to the market line. The expected magnitude of parallel variations we call market timing
and represent by T(6, p). The expected magnitude of orthogonal variations we term asset

2.8125 —5.62501]

selection activity and represent by A(©, p). In the example, T(O, p} = [_ 62501 140625

3000 -4625

and A(©, p) = L 25 8000 } The large filled circle at the center of the scatter of realized

demands represents the expected demand for risky assets, D. In the example, D = (1, 3T,
In the figure, we see that the difference between demand in the absence of private
information, D°, and the expected demand given private information, D, ie., DI can be
decomposed into two components: agressiveness, the increase in the investor's expected
holdings in the market portfolio, measured by D, and specialization, the emergence of a

systematic deviation between the investor's demand and the market line, measured by DL

In Figure 1, D' = (1, T and Di= (-1, 1) T. Thus, the receipt of private
information leads the investor to hold a portfolio that exhibits higher systematic risk than
would have been the case in the absence of private information. Also, the receipt of
information leads the investor to hold a portfolio that is much more heavily weighted
toward asset 2 than is the market portfolio. Further, variability has been added to the
investor's demand vector by the market timing and asset selection activity in response to
the realized private signals. How can one account for these effects of information on

investment style? We address this question in the rest of this section.

To initiate the analysis, we define a measure of portfolio specialization based on

the distance between the ex ante demand vector and the market line. By the Projection
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theorem (see Luenberger 1969, Theorem 2. page 51), this distance is given by il DL, the
norm of the component of demand that is orthogonal to the mean asset supply vector Z.
The Euclidean distance of investor j's ex ante demand from the market line in turn is

given by

1 DLG) 1 = VDL D= %j 1 (©G) A1 - x(® ) DZM. (11)

I DLG) 1= VN{p;, 65, (12)
where

N, @):[%)ZZTM Pz oA Z (13)

and Z =1 -(Z Z¥/ Z T Z) is a projection matrix.

The above calculations clarify the relationship between investors' information
structures and diversification. Note that (11) and (13) imply that | DL(j) i =0 OrAl
Z= x(©)) Z. This equation holds if and only if there exists a scalar A such that ©(G)y1 Z =

A A-17Z, that is, Z is an eigenvector of ©(j) A-1; this result is recorded in Lemma 1.

Lemma 1. The jth investor's expected demand is proportional to expected asset supplies

if and only if there exists a scalar A such that OG)Z =LA Z.

When the conditions of Lemma 1 are satisfied, we will say that @) is
comparable with the average payoff variance matrix. To understand the intuition behind
this condition, note that for any two portfolios of assets x = (x1, X2, .... xn)T and y = (y1,
V2, o yn)T. yT A x is simply the covariance between the payoffs on portfolios x and y
conditioned on the information of the average investor. Also, yT © x can be thought of as

the differential between the investor's information and the average market information



12

regarding the "co-movement" between the payoffs on portfolio x and portfolio y. Note
also that, ©()Z = A A Z if and only if xT ©()Z = A xTAZ for every portfolio x. Thus, the
comparability condition, ©()Z = A A Z, holds if and only if, for all portfolios x, the
investor's informational differential regarding the co-movement in payoffs between x and
the market portfolio, Z, is proportional to the covariance (conditioned on the average

investor’s information set) between the payoffs on x and the market portfolio.

As the above lemma shows, comparability with the average payoff variance
matrix has important consequences. Diagrammatically, it corresponds to DI, the expected
information-driven demand, lying on the ex ante market line. When the comparability
condition is not satisfied, differences between an investor's information structure and the
average structure lead to the holding of specialized portfolios that do not, even on
average, lie on the market line. A natural question to ask is, how are these deviations
related to the quality of the investor's information? To analyze this question, we need to
measure the quality of the investor's information. Information in a multiple-asset
economy is not represented by a simple scalar, measuring signal precision, but rather by a
precision matrix determined both by the variances of private information signals about
different assets and their covariances with each other. Thus, there is no single, naturai
way of ordering information structures in a multi-asset economy. However, we require
some method of comparing the informativeness of different information structures. Two
types of orderings are considered. The first of these is the well-known positive definite

ordering of symmetric matrices. (See Dhrymes 1978, page 485.}

Definition 1. (Superior Information): Let ©; and & be two symmetric matrices. O is
superior to @, (B, < ©y) if ©) - O3 is positive definite. If 0 < ©; then we simply say

that ©1 is superior.

We also consider the impact of imposing another ordering on information

structures, which we term uniform superiority of information.
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Definition 2. (Uniformly Superior Information): For two symmetric matrices ©1 and
05, O is uniformly superior to B, (@, << ©)) if and only if Max 6(02) < Min o(8),

where o(0;) represents the set of eigenvalues of the matrix ©);.

Uniform superiority thus requires that even the smallest of the eigenvalues of the
matrix ©; be larger than the largest eigenvalue of the matrix ©7. Admittedly, this
ordering is not very “intuitive.” However, some insight can be gained by thinking of the
magnitudes of the eigenvalues of a matrix as measures of the size of the matrix. For a
variance-covariance matrix, this is apparent: the largest eigenvalue measures the
maximum variance attainable by a weighted combination of the random variables in
which the length of the weight vector is restricted to unity. The next largest eigenvalue
measures the maximum variance attainable by a weighted combination of the random
variables in which the length of the weight vector is restricted to unity and is
perpendicular to the maximizing weight vector, and so forth. Thus, uniform ordering
requires the size of the larger matrix to exceed the smaller one regardless of which pair of
eigenvalues is used to measure the size of each of the matrices. When the informational -
divergence matrices © are diagonal, the contrast between uniform superiority and
superiority is straightforward: uniform superiority requires that the smallest element
along the diagonal of the dominating matrix exceed the largest diagonal element of the
dominated matrix while superiority requires only componentwise dominance along the

diagonal.

Given these definitions of information quality, what predictions can we make,
independent of the particular asset payoff structure, about how the quality of an investor's
private information affects the extent of the “specialization" of his portfolio?
(Specialization is defined as the degree to which the portfolio differs on average from the
market portfolio.) The answer to this question is fairly subtle. For example, superior

information, i.e., dominance in the positive-definite ordering, need not lead in general to
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a greater degree of portfolio specialization. Consider, for example, the case of an investor
whose relative information matrix (@) is very large in the positive-definite ordering but
is comparable with the average variance matrix A, versus an investor whose relative
information matrix is very small in the positive-definite ordering but which is not
comparable with A. According to the above result, Lemma 1, the first investor holds a
completely nonspecialized portfolio, while the second investor, whose information is of
lower quality, holds a specialized portfolio. Thus, better information does not, in general,
translate into greater specialization and, thus, a general result linking information quality
and specialization is not possible. An additional condition is required:comparability
between the two information structures. This is a generalization of the idea of

comparability with A, the average payoff variance matrix, and is defined below.

Definition 3. Two invertible matrices, M and M», are comparable, which we write as

M —z My if there exists a scalar A such that M;-1 Z=AMy17Z.

In fact, if we impose this comparability condition, we can identify the nature of
the relationship between a measure of the absolute divergence of an investor's
information structure, namely, © ©, and the degree of portfolio specialization. Part (a) of
the next result shows that, for information structures with comparable relations to the
market portfolio, a larger informational divergence implies a greater degree of portfolio
specialization. Part (b} shows that the comparability condition is, in fact, necessary if we
want to be able to draw predictions about specialization that are invariant across different

parameterizations of the joint distribution of asset payoffs.

Proposition 3. (a) Let | and 2 be otherwise identical investors endowed with relative
information structures, © and ©», respectively, such that ©) ~; 6. If @1 ©; > @2 6,
investor 1's portfolio will exhibit more specialization than 2's, i.e., N(©y, p) 2N(B, p).
(b) Conversely, if the comparability condition fails, that is, ©1 +; ©2, then even if

investor 1 has superior information and ©1> 0 and ©, 61 > ©, ©» holds, there exist
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asset payoff variance-covariance matrices, A, under which N(®1, p) <N(O2, p ), that s,

investor 2 holds a more specialized portfolio.
Proof. See Appendix.

To illustrate these concepts, consider the following numerical example. Fix the

economy-wide parameters 7 and A, as well as the average risk aversion level p as in the

- 8 -2 12 24 -12
example developed in Figure 1. Let 01 =[ :\ 0, = [ ] , Or= [ ] and
2 8 2 3 -2 36

g —4
B4 = \;4 12]; pj = 4, for allj =1, 2, 3, 4. In this example, O; and O are comparable

with each other but not with the average payoff variance matrix A, while ©3 and ©4 are
comparable with the average payoff variance matrix. Further, it is easy to check that
0,0, -0,;0;and 0303 -0 4 @y are positive definite and, thus, O 0 » 6, O, and
036 + ©4 O4. As Proposition 3 asserts, investor 1 holds a more specialized portfolio
than investor 2, while as Lemma 1 asserts, the two investors, 3 and 4, with informational
differentials comparable with the average payoff variance matrix hold completely

nonspecialized portfolios.3

The quality of an investor's information structure affects the average amount of
aggressiveness exhibited by the investor, as well as affecting the specialization
component of his ex ante demand. This is measured naturaily by x(8). For, as can be
seen by inspecting Proposition 2, when x(©) > (< ) 0, the proportion of the market
portfolio purchased by the investor is larger (smaller) than the proportion implied by his
level of average information demand. The proof of the next result shows that superior
information leads to a more aggressive investment policy when an investor's information

structure is comparable with the average payoff variance matnx, A

Proposition 4. If an investor possesses superior (inferior) information and his

information structure is comparable with the average payoff variance matrix, then he will
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hold a portfolio with higher (lower) systematic risk than that held by an otherwise

identical investor with average quality information, i.e., if & -z A and © >~ (<) O, then,

x(@) > (<) 0.
Proof. See Appendix.

The quality of an investor's information also affects the extent to which his
portfolio allocations exhibit market timing and asset selectivity. The degree of market
timing is a function of the investor's ex ante informational differential alone. Some
characteristics of the timing activity are immediately apparent from the definitions of T
and A, provided in Proposition 2. Notably, market timing depends only on ©, the degree
to which an investor's information structure diverges from the market average. On the
other hand, asset selectivity depends on both the magnitude of the divergence of an
investor's informational structure and the direction of that divergence. Thus, a divergence
between an investor's information structure and the average information structure always
leads to increased market timing activity but does not necessarily lead to increased asset-
selection activity. To formalize these insights, we require some measure of the magnitude
of each of the matrices T(®, p) and A(©, p). We will use the spectral norm, il -, over
matrices, defined by I M IIl = Max {IMxIl: lixil = 1} to obtain a simple representation of
this magnitude. This measure associates with each matrix a number that measures the
"size" of the matrix by the extent to which the lengths of unit vectors transformed by the
matrix are expanded. Using this definition, the next Proposition formalizes the discussion

provided above.

Proposition 5. Consider two otherwise identical investors, 1 and 2, endowed with
information structures, ©; and ©,, respectively, such that 0 < ©1, 0 < 07 and Oy < <
©).Then, investor 1 will engage in strictly more market timing and asset selection than
investor 2, i.e., IT(®,p) N < NIT(Oy, p) W, and Il A(O7, p) lll < IHA(©, p) lll. Similarly, if

both investors possess inferior information, i.e., ©; <0, 6,<0and Oy < <0y, then
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investor 2 will engage in strictly more market timing than investor 1, 1., MT(O,p) Il <

T (@, p) IN.
Proof. See Appendix.
II1. Identification of Investor Characteristics From Data

In the previous section, we determined the effect of the structure of an investor's
informational differential, ©, on the pattern of his portfolio holdings. We show that fairly
strong comparative static relations can be establithed between asset demand and the
relative informational structure. This fairly strong relationship between asset demand and
information leads to an interesting question: is it possible to "back out” an investor's
informational structure from the pattern of his trades? An affirmative answer to this
question would show that the demand analysis can be used to answer the fundamental
question of performance measurement: the identification of traders with superior

information.

In this section, we show that, in the rational expectations setting, it is possible to
identify relative information structures from the time series of investor asset demand. The
required data for such an estimation are given as follows. First, asset demand data for the
given investor are collected. That is, the number of units of different assets held in the
portfolio at the end of each observation interval is recorded. Next, the price vector for the
economy for each observation period is also recorded. Finally, the payoff vector, that is,
the end-of-the-period price vector plus the vector of cash flows from the assets (e.g.,
dividends) that may have occurred during the observation interval is obtained. The
estimation procedure is based on the observation that the pricing equations imply the

existence of a vector 1, and matrices y7, ¥3 such that

f)j =1 + 152 F +%3 §_+ uf (RC)
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where ; is a zero-mean, normally distributed random N-vector, independent of both
Fand P. In fact, the pricing equations derived above imply the following structural

restrictions on the regression coefficients:
i1 = agj. Yi2 = a1; G, 13j= B , and fij = ou; &) (RE)

Note that VAR[E]] = S; and that v = (1/p; )CjT Sj‘l Cj and oy = (Upj)CjT Sj'l . These
results, combined with the definition of %, given above, imply that VAR[%;] = ay;
VAR[E] o1jT = (1/p;2) GT S5l Cj. Taken together, these results imply the crucial

identity
Y2 = pj VAR[#;].? (14)

When the investor's signal is not full dimensional, VAR[#;] is singular. Thus, in general,
we cannot invert VAR[;] to obtain an estimate of p;. However, the desired result follows
from applying any linear functional to both sides of (14), and a convenient choice for
such a functional is the Trace. Taking the Trace of both sides yields

- Trace(yi2)
Pi= Trace(VAR[F]) -

(15)

These results allow the consistent estimation of managerial risk aversion,
assuming that the single-period rational expectations equilibrium demand equations hold
at each point in time and that the signal realizations are uncorrelated across time. Given
that these assumptions hold, and, for notiopal simplicity, dropping the investor index
(which is in any case held constant throughout the analysis), we obtain, for each asset 1 =

I, 2, ... N, the following regression equation:

. N - N . .
D) =7, + X ¥ BB + D VP + R, t=12 T (16)
k=1 k=1

In this equation, the demand for the ith gsset (D) is regressed on the end-of-period

payoffs to each asset at time t, Fy(1), as well as start-of-period prices, Pi(t). Given that
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the data matrix in each of the N-regressions is the same, it is possible to efficiently
estimate each of the regressions en seriatim (see Zeilner 1962).10 These estimates then
yield consistent estimates of the matrices y; and vz, which we denote by fl and 3. The
variance-covariance matrix, VAR[T{], can be consistently estimated using the estimated
residuals from the N-regression equations. The estimated variance-covariance matrix is

denoted by $ . The continuity of the Trace operator and scalar division, combined with

{15), then implies that
p = Trace( y2)/T race(3) (17)
is a consistent estimator of p.1!

It is equally easy, in principle, to consistently estimate the investor's relative

informational differential ©. Note that equations (1), (RE), and (RC) imply that
O=pMm+mA)(I-RA) ! (18)

where A = COV[P, F] (VAR[F]y!. Aj can be consistently estimated from the data
matrix of asset payoffs and prices.!? Let A, represent any consistent estimator of Aj. 71
and y- are consistently estimatable by y1 and 1:2 Finally, p can be consistently estimated
using (17) and R, the per-period payoff on the risk-free asset, is observable in principle.

Thus, the joint continuity of the right-hand side expression in (18} in all of its arguments
implies that © can be consistently estimated. This result is formalized in the next

proposition.
Proposition 6. Define the statistic © by
d=pm+nA)I-R A)" (19)

where 5 , w}\z 93, A1 are as defined above. Then @ is a consistent estimator of ©.
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1V. Conclusion

In this paper we analyze the relationship between portfolio composition and
information quality. Summary statistics are derived representing basic aspects of
investment style, such as market timing, asset-selection activity, and specialization. The
effect on investor demand of the structure of his relative informational advantage over the
market is considered. Finally, we show that it is possible to consistently estimate an

investor's informational advantage from the time series of his asset demands.
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Appendix

The proofs in this appendix require some standard definitions: Let - - IR? x IRP — IR
represent the standard inner product on IR". If x and y € IR™ then we write x L y if and
only if x - y = 0. Also, let Il x il represent the Euclidean norm of x. Let M, represent the
space of n x n matrices. Let Sn (®,) represent the space of n X n symmetric (positive
semidefinite) matrices. For all M € #y, let AM) = {x € JR": Mx = 0}, A{M) is thus the
null space of the matrix M. For any vector x € IRD, let [x] represent the linear subspace

generated by the vector X
Proof of Proposition 3. Note that N(®1, p) - N(O3, p) has the same sign as
ZTAT{ O E01-02 &5 O, 1A 1 Z. (Al)

We first prove that the conditions of the Proposition imply that for all x € IR",
xT(©®; 0 - 0 7 E B2)x 20. This implies a fortiori that (A1) holds and, thus, establishes
part (a) of the proposition. To see this, first note that, because ©1 ~z 2, ©171 ([ ZD) =
@51 ([Z)). Let Vrepresent this subspace; i.c., Y= 1([Z) =9, (I Z}). Next, note
that any vector x € IR" can be written as X = o v+ w, where ¢ is a scalar, ve ¥, and we
@l Hence Ox = a@®; v+ O w,i=12 &i(v)e [Z] and thus, because Z is the
projection matrix of IR" onto the orthogonal complement of [Z], £ ©; v=10. On the
other hand, because ©;is a symmetric invertible matrix, Yy = GV ([ZD))L =
87! ([Z11), i = 1, 2 (Luenberger 1969, Theorem 1, page 158). Thus, G;w € [Z]L,

which implies that £ @jw = O;w. Together these facts imply that
EQ;x=0;w,i=1,2, (A2)

where w is the projection of x onto 7L But because = represents the projection of IR?

onto [Z]L, E is idempotent .We thus have 81 £ 01 =01 EE ©;. This fact combined
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with (A2) implies that xT®; Z @;x = wT0; E Ow, i= 1, 2, where w is the projection of x

onto 14 . This shows that, for all x € IR™,
xT(©)Z20,-0; Z20)x=wl(©) 0 -0; O)w, (A3)

where. again, w is the projection of x onto 7L The result then follows by the assumption

that ® O] - ©, O, is positive definite.

To prove (b), pick A so that ©] ~, A (this is possible by the assumption that O >~
0). Because ©) ~, A, ©1 AV (Z) is in the linear span of Z, Z ©1A"1 (Z) =0. Thus,

ZIAN [ ©, 20, JA1Z=0.
Because O, +, 0, 014, A, 2 GA} (Z) # 0. Thus,

ZTAV O, 2 O1)A 1 Z > 0.

The two equations above imply that ZTA1 { ©] 201 - ©, Z ©,}A! Z < 0 which, in turn,
implies that N(©1, p) - N(©2, p) < 0. [

Proof of Proposition 4. By the assumption of superior {inferior} information, © is
positive definite (negative definite). This implies that all of the eigenvalues of © are
positive (negative). Further, Al is a positive-definite matrix. It follows from a trivial
modification of a result in Horn and Johnson (1991, Theorem 7. 6. 3, page 465), that the
signs of the eigenvalues of © A-1 are the same as those of ©. Thus, all the eigenvalues of
OA-! are positive (negative). Z is an eigenvector of © A-1, which implies that 6 A1 Z=

A Z for some A > 0 (< 0). [

Proof of Proposition 5: We prove the result for T when 0 < ©, the proof of the other parts
of the theorem being entirely similar. For this proof only, define X = (1/p) (AllpT+

QTU-! JU[p I+ U-1 Q]JA-! }. Note that X is a positive semidefinite matrix and T(©, p) =
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© X ©. Expressed in this notation, the assertion of the theorem is that when 0<6&,0<
©, and €, < < By, then O3 X ©2 < O; X O;. To see that this is indeed the case, first note
that by Ostrowski's Theorem (see Horn and Johnson 1991, Theorem 4.5.9, page 224), for
allk=1,..n,

Ak(©2 X 02) < Max[o(82 €7 )] Ak(X). (Ad)

Where A (©;X ), j = 1 or 2, denotes the kth eigenvalue of matrix -©; X ©; where
eigenvalues are arranged in ascending order. By the assumption that & < < ©; , we have
that Max o(®9) < Min 6(8}). This implies, because both © and ©; are positive definite,
that Max 6{©7 ©,} < Min 6{©;6,}. This fact and (A4) imply that (B, X G2} < Min
o{0] O} M (X). By Ostrowski's Theorem, Min 6{001} A(X) < A(©) X 61 ). Thus,
A(©2 X O72) < A(©y X Oy ) forall k = 1, 2, ... n. This implies, a fortiori, that Max o(©2
X ©) < Max 6(© X ©y). Because ©; X 6;is positive definite for i = 1, 2, Max o(©; X
;) =l ©; X 6; lli. This implies that il ©; X O Il < NO; X O1lll. [
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Endnotes

We thank the referee for pointing out the practical importance of identification

issues and thereby motivating our analysis of the problem.

As a byproduct of the exercise of obtaining the estimates of information quality, the
investor's risk aversion coefficient is also identified. Admati and Ross (1985) also

show that risk aversion is identifiable from returns data.

More specifically, we generalize the model of section 6 of Admati (1985) slightly.
Our generaiization allows different investors to receive signals pertaining to
different subsets of assets. Admati, on the other hand, assumes that the subset of
assets over which investors receive private signals is common to all investors. Her
assumption implies that C; is the same for all investors. This common value of C; is

denoted in Admati (1985) by C.

To ensure that aggregation is possible, we also require some technical assumptions
which ensure that the integrals are well defined. Notably, we assume that [0, 1] is
endowed with the Borel G- Algebra. Further, the maps j — §j and ) - pj are

measurable.

The explicit algebraic manipulations required in this derivation are available from

the authors upon request.

\f_-represems the square root function which assigns a positive semidefinite square
root matrix to positive semidefinite matrices. The decomposition in (3) is based on

the standard variance decomposition VAR[D,J] = VAR(E[D/1I Z]) + E(VAR([D,1I

Z] ) (see Feller 1966, Problem 18, page 164), and the fact that, for normal random

variables, VAR[ D A Z) is a constant and, thus, equal to its expectation.
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Further details of the derivation of VAR(E[D,!I Z] and VAR[D I Z} from the basic

demand equation (1) are available from the authors upon request.

All of the numerical examples provided in the text are summarized in Table 1 for

the convenience of the reader.

The algebra required for deriving this equation is available from the authors upon

request.

The Seemingly Unrelated Regressions (SUR) technique of Zellner (1962) could, of
course, also be used to estimate the covariance matrix. However, the use of SUR
will not increase efficiency in this case (see Zellner 1962). Note also that estimating
Y from the en seriatim regressions is straightforward: let g; represent the vector of
estimated residuals from the ith regression. The '1jth term of X, Zjj , can be

consistently estimated by (& - éj)fl‘ .

In other words, the limit in probability, as the number of observations increases to

infinity, is p. See White (1984).

A is determined by variance and covariance matrices of multivariate normal
distributions. Many consistent estimators of such matrices exist. See Johnson and

Kotz (1972, Chapter 35, Section 7, pages 62-70).
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Figure 1. Decomposition of the Demand Vector
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Figure | schematically depicts the decomposition of security demand. D represents the
average demand for risky assets of a typical investor in an economy in which no agents
have private information. In this case, the vector of asset demands is proportional to the
vector of asset supplies: demand lies on the market line. The scatter of open circles
represents the realized demand vectors of a typical investor with the same risk preference
when endowed with private information. In this case, the investor's demand vector
depends on the particular realized signal he receives. Even if one considers only the
average (ex ante) demand across private signal realizations, D, it will not, in general,
equal demand in the absence of information. The effects of private information on
demand are manifold. First, private information affects the investor's willingness to hold
market risk (aggressiveness). The magnitude of this effect is measured by the length of
the vector DIl. Second, it induces a mean deviation of the demand vector from the ex ante
market line. We term this effect specialization and measure it by the length of the vector
DL.



Table 1. Summary of Numerical Examples Presented in Manuscript

Here we summarize the examples developed in the paper. The common parameters for all

th lesare:Z =[2,2]T; A 42 Q=|"" 052
e examples are: £ =|a, BEl L, 61'%T o ”2,[3— :

g anpu=- 2
p]‘- L] J, - 3 5 »

1 (72 20
V= .
101120 28

INVESTOR 1 INVESTOR 2 INVESTOR 3 INVESTOR 4
©; |:3.000 -2.000] [3‘000 —2‘000} [24.000 42.000] [8.000 —4.000]
-2.000 8.000 2000 3.000 -12.000 36.000 —4.000 12.000_
DL(j) [2.600, 1.600]T | [0.600,0.100 ]T | [ 6.000,6.000 JT | [2.000, 2.000 I
D) [ 2.100, 2.1001T | [0.350,0.350 1T | [ 6.000, 6.000 1T | [ 2.000, 2.000 1T
Dt () [ 0.500,-0.500]T | [ 0.250,-0.250 1T | [ 0.000, 0.000 1T | [ 0.000, 0.000 1T
D(j) [ 3.600, 2.600]T | {1.600,1.100 T | [7.000,7.000]T | [ 3.000,3.000 1T
KO 2.100 0.350 6.000 2.000
D () 0.707 0.353 0.000 0.000
A5, p3) [0.994 —0.166] [0.317 -0.133] T 5.500 +—3.563] [1.000 -0.563]
—0.166 1.074 —0.183 0324 | —3.563 12438 —0.563 1.938
T( 8y, pj) [4‘866 3.319] [0.260 0.014] [25.313 25.313} [2.813 2.813]
3319 3.178 0014 0.120 25313 50.625 2813 5.625

In Table 1 above, Z represents the expected supply of the risky assets. A is the conditional
variance-covariance matrix of asset payoffs for an investor whose signal precision equals
the average signal precision. Q represents the average precision of private signals, p is the
average coefficient of risk aversion. pj is the risk aversion coefficient of the investor j = 1,
2.3, and 4. U and V are the unconditional variance-covariance matrices for asset payoffs
and asset supplies, respectively. The characteristics of investor demand are computed
above. In the table presented above, O represents the divergence between investor j's
information structure and the market average. D! represents ex ante information-induced
demand. D! represents information-induced demand, which is proportional to the expected
supplies of risky assets (the market portfolio). It thus represents market timing activity. X
represents the proportional increase in demand for the market portfolio relative to demand
in the absence of private information. DL represents ex ante demand, which is orthogonai
to the ex ante market portfolio; it thus captures portfolio specialization. T represents
variation in asset demand that can be attributed to market timing, and A represents the
variation that can be attributed to asset selection.



