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Abstract: In this paper we specify the basic set of economic criteria that any diffusion-driven interest rate
or FX rate process must satisfy. We also develop the methodology that is implementable to test the validity
of a proposed process insofar as it satisfies the basic criteria as well as the actual estimation of the
parameters of an acceptable candidate process. In this paper we focus on processes such as the overnight
repo rate process or the FX rate process, each of which is directly observable. We develop what we call
the marginal maximum-likelihood estimation (MMLE) technique to distinguish it from the joint maximum-
likelihood estimation (JMLE) technique, which we present in a separate paper. We also present some
prelimmary empirical results for both the interest rate process and the FX rate process.
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1. Introduction

Following the seminal work by Black, Scholes, and Merton, academics have developed increasingly
sophisticated models. for pricing bonds-or oreign-exchange (FX),-and their derivative -assets - Standard pricing
models rely on stochastic differential equations (SDE) to describe the dynamics of underlying sources of uncertainty
like interest or FX rates. Practical application of stochastic pricing models and forecasting require estimation of the
SDE’s parameters using daily sampling. The method of maximum likelihood (ML) provides a highly intuitive
solution to the estimation problem because the parameters defining the drift and diffusion functions of an SDE are
the only parameters appearing in the corresponding transition density.' Since the same parameters are the only
arguments in the likelihood function formed from the transition density, ML estimators represent viable coefficients
for valuation and forecasting equations and may be interpreted as the parameter values which make the observed data
sample most likely.

Unfortunately, many previous attempts to estimate parameters for rate-type processes (e.g. interest or FX rates)
have failed due to inadequate care in computational analysis. Proper and practical MLE analysis in the financial
markets for rate-type processes must deal with the following set of economic and mathematical restrictions.

i) Sampling should be daily.
i) Proposed dynamics must insure that economic processes are nonnegative, refurn immediately to
positive levels (or assume that the processes cease to exist) if zero is reached, and possess steady-state

distributions to prevent explosive growth of future values. Additional economic restrictions may also
be legitimately imposed. :

ii) Although it is tempting to describe asset or rate-process dynamics in terms of SDEs, maximum
likelihood estimation deals with transition densities. Unfortunately, SDEs do mot map uniquely to
transition densities: a single SDE can generate several transition densities depending upon the process’
behavior at its boundaries. This specification problem has profound implications for the form of the
likelihood equation and testing and interpreting statistical significance of parameter estimates.

iv) When the rate-process is a price (like FX), then ML estimators from a single transition density
function are the only necessary inputs for the partial differential equation (PDE) models academics
have developed to price derivative assets based on the underlying process. For convenience, we
designate this type of analysis as Marginal Maximum Likelihood Estimation (MMLE), On the other
hand, when the rate-process is 7ot a price (like interest rates), then ML estimators from a joint transition
density function are necessary to provide inputs for PDE models to price assets driven by the non-price
process. We call this type of analysis Joint Maximum Likelihood Estimation (JMLE).

The prior set of restrictions induces computational problems which fall into two general categories: technical
specification and computer algorithms. Both categories are relatively esoteric and imply problems which may never
be discovered, let alone resolved, by using canned computer algorithms. Fortunately, by implementing an active set
strategy to enforce constraints, providing analytic gradients and hessians, disdaining attractive asymptotic expansions,
and paying careful attention to machine overflow or underflow problems, it is possible to craft computational

' A diffusion SDE has the form dr(t) = u(r, )+ o(r, £ )dZ(t) where pi(r,t)is called the drift function and & (r,t)is called
the diffusion function. Both functions depend upon at least the current process’ level and time 1.



modules which provide statistically significant parameter estimates satisfying desired economic restrictions for
financial rates.

In the remainder of this paper we will discuss the impact of our restriction set on specifying appropriate
transition densities for rate processes; on computational adjustments necessary to-derive Mi-estimators- subject to- the-
restrictions; and on statistical significance and testing. We will report statistically-significant parameter estimates for
a number of different foreign-exchange and interest-rate processes using daily sampling and MMLE. We will
conclude by suggesting a similar methodology for joint maximum-likelihood estimation procedures. In a
companion paper [19], we provide the corresponding theory to implement JMLE for the interest-rate and preference
paramefers hecessary to price bonds and their derivative assets.

2. Using economic restrictions to specify likelihood functions

Academics have discovered that mean-reverting processes will generally insure the economic restrictions i
()®>. Consequently, the ensuing discussion will concentrate on computational implications of mean-reverting, square-
root (MRSR) dynamics for interest rates and mean-reverting logarithmic (MRL) processes for FX rates (insuring
that both x and 1/x follow the same distribution and are invariant to changes in the unit of accounting)’. However, the
same type of analysis is appropriate for other dynamics as well.

Nearly everyone is familiar with the mean-reverting SDE associated with Cox, Ingersoll, and Ross’[7] general
equilibrium description of interest-rate dynarnics:

1) dr(t)=x[B-r()]d + o’Jr(t) dZ(t)
where K represents the speed of adjustment, § the long-mn mean, and 6 the proportional volatility parameter. In (1),
the elastically pulled long-run mean prevents explosive growth and the nonconstant diffusion function (proportional

to the current process’ level) prevent negative values*

Unfortunately, an SDE like (1) does not completely describe MRSR dynamics. The same SDE can generate
two (or more) transition densities with radically different properties and even different state spaces! A pair of drift
and diffusion functions from an SDE does not define a unique transition density because the associated infinitesimal
parameters fail to govern the interest rate’s behavior near a boundary like r(t) = 0.° In one case, relationships among
the parameters may automatically restrict boundary behavior by insuring that the process will never reach zero; in
another case, the process will reach zero for certain and remain there forever; in still other cases, a boundary may be
arbitrarily defined as an absorbing or reflecting barrier; altemnative definitions will result in radically different trans-
ition densities.

? However, some mean-reverting processes like the Ornstein-Uhlenbeck do not preclude negative values.
3 See Dothan, Ramamurtie, and Ulman [12] for a description of the MRL process applied to FX rates.

*It is casy to show that the long-run conditional mean lim E(r,. |r, )and variance lim Var(rrlr,) of the process are
To= Tow

finite. Hence the process does not move inexorably toward either zero or infinity like the lognormal process.



Recall that the purpose of maximum-likelihood estimation is to determine the parameter values which are the
most likely to have generated an observed time series given a specification of the underlying transition density
function. Mathematically, a likelihood function is defined as the product of the hypothesized transition density
evaluated ate each observation in a time-series of rates viewed as independent drawings. Hence, for a sample of size
n+1 taken at time intervals of At from the process r(t) with the parameter set {x, 6, o} and the transition density p(e),
the likelihood function L may be written as

2) L, (x.6,0,At 15,7, ... r,) =[] Pl 171y i%.8,0,49).
=1

Note that the product of the transition density on the right-hand side of (2) is interpreted as a function of the process
conditional on values of the parameters x,0,6. Altematively, the likelihood function on the left-hand side of (2) is
defined in terms of the arguments &, 8, 6 conditional on the observed sample of interest rates. Since maximurn-like-
lihood esti mators (MLE) are the set of arguments {x,0,0)} which maximize the function in (2), they may be inter-
preted as the parameter values which make the observed time-series most likely to ocour (since the likelihood
function is conditioned on the observed sample). Regardless of interpretation, the first step in MLE is resolving the
specification problem (cited in the introduction as (jii) ; only then can we tum to computational issues implied by the
specification.

The SDE in (1) provides an especially nice framework to investigate the specification problem. To properly
specify a likelihood function for MLE estimation, we must answer four questions:

(Q1) When the SDE describing the process’ dynamics 1s consistent with multiple transition densities,

which densities are legitimate to use in the likelihood function if economic restrictions are to hold?

(Q2) Are analytic representations known for the legitimate densities?*

(Q3) What constraints on the parameters must apply to the resulting likelihood function?

(Q4) What do the constraints imply about hypothesis testing of the parameters?

For the SDE in (1), different relationships among parameters imply at least two possible transition densities,
To decide which results are economically feasible, examine the following cases.

Case 1. Suppose that x > 0; then the process will attain value r(t) = 0 at some time t with probability one and

remain there forever! Alternatively, if x,0 > 0 but 2x8 < o2, then r(t) = 0 may be defined as an absorbing
barrier and the same result will occur. The resulting transition density function is defeciive (i.e., it sums to
less than one due to the positive probability of absorption at the origin) and was first identified by Feller
[13].” This defective density (with its implicit parameter constraints) was first used in the finance literature
by Cox and Ross [8] to describe the price behavior of a dividend-paying stock.

*In other words, the parameters do not govern the behavior of the interest rate as the level gets close to zero. See Karlin
and Taylor [16] for technical details.

$ This is not a trivial question. The transition density for dr(t) = k{8 — r(t)}d! + 6 r(1)dZ() (the mean-reverting lognormal
process) is currently unknown. In general, mathematicians utilize Laplace transforms or continuous-time spectral
representation methods (as described in Karlin and Taylor [16], Chapter 15) to identify transition densities corresponding
to an SDE and its boundary conditions. See Prezas and Ulman [18] for the derivation of several such densities.

?Feller called his solutions norm-reducing. When the solutions are probability distributions, norm-reducing is
synonymous with defective, i.e. the distribution function sums to less than 1!




Case 2. Suppose that 2x0 2> 02; then the process will always be positive and cannot reach zero. Alterna-
tively, if k,0 >0 but 28 < 62, r(t) = O may also be arbitrarily described as a reflecting barrier causing the
rate to immediately become positive if it ever reaches zero.' In either case, the resulting transition density
...... (WithitSiﬂlpliCitpE 1 Eterconstl,a'llﬂts)insms&smmhavimfornominalmamwasusedinﬁe
finance literature by CIR [7]to describe interest rates.
Case 1 has the following economic interpretation for FX rates: at some finite time in the future, the exchange rate will
sink to 0 and stay there, ie., the currency will become worthless relative to the reciprocal cumrency. Its implication
for interest rates is equally startling: at some finite fumre date, investors will lend money with no recompense in
nominal terms for all future time! Fortunately, case 2 appears to satisfy economic criteria as long as the actual ML
computational process enforces the constraints K,0 > 0. Enforcing the constraints requires an active-set strategy
during optimization. In addition, the constraints have a significant impact on hypothesis testing: they imply
hypothesis tests like

HO:. x>0
Hi: x£0

should not be proposed since (H1) is inconsistent with the tested transition density.

3. Computational problems induced by proper economic specification

It is now possible to write the optimization problem using the properly restricted MRSR transition density and
then examine the computational difficulties. The appropriate specification (using the standard approach of
maximizing the log of the likelihood function) is:

max logL,=nlogc+(gq/ Z{IOg(r—") + nmt] - i‘, or; +rj_lew] + ilog(lq(z,- »
o j=l
3 4§60}

subjecttox >0, 2x8 2 c’
where

2¢ )
ol 1 - exp(—xAt)] '

ox,0.At)=

q(x,0,0)=28/ 0 -1

z; (6,048, ) =2c(rr, exp(—xar) )} 2;

BNote that k,8 > 0 but 2k8 < 62 is consistent with arbitrarily defining r(t)=0 as either a reflecting or absorbing
barrier. Different densities result from the choice. The ML parameters for the absorbing-barrier density must satisfy the

restrictions i) x,0 > 0 but 20 < 62; or ii) k < 0. On the other hand, ML estimators for a reflecting-barrier density need

merely satisfy k,8 > O since the same density is consistent with k0 > 02, The important point is that both densities
require a constrained optimization to obtain ML estimators.




I (#)is a modified Bessel function of the first kind of order q and At is the time interval between successive
observations in the sample time series of sizen + 1.

Equation (3) is a standard nonlinear optimization problem with respect to continuously differentiable functions.
Hence, a(n approximate) global solution can be obtained numerically via computer using a Newton method modi fied
with a backward line search to find the parameter set {,8,0} which makes the gradient vector zero and the Hessian
matrix negative definite subject to the constraints %8 >0.° Although the computer approach seems straightforward,
several technical details induced by daily sampling and the Bessel function in the objective equation seriously
complicate the solution algorithm.

The following four factors required major revamping of the traditional solution algorithm.

i) Constrained optimization required use of an active-set strategy. '*
i) No single asymptotic expansion for the bessel function was appropriate because the relative
magnitudes of the order and argument changed significantly with each Newton step. This
forced usage of an infinite series representation for the bessel function.
iii) The objective function exhibited radically different sensitivities to changes in the parameters
{x.6,0}. This required the use of analytic derivatives in place of numerical derivatives.
iv) Daily sampling ( Ar=1/252) coupled with interest rates or FX rates less than 1 in value
resulted in very large arguments for the bessel function. This cansed problems with machine
underflow/overflow in the convergence algorithms.

Since active-set strategies are well known, we will confine our discussion to factors (ii)-(iv) in the remainder of this

section.
Asymptotic expansions and the bessel function
With daily sampling, the argument z of the Bessel function in (3) becomes very large, making it tempting to
use Hankel's asymptotic expansion!!
e -1 =1 -9
o] - £
where = 4q2.

4)

Unfortunately, (4) is appropriate only for Bessel functions with fixed order q as the argument z becomes large.
When solving (3) the order q(k,9, s) is not fixed. Instead, each Newton ‘step induces a change in each of the
parameters. As the speed of adjustment parameter « rises, q also increases dramatically (while the argument z dec-
lines marginally). For large (but reasonable) values of « (c.g., values greater than 10), the altemnating series in (4)
contains a succession of terms with magnitudes greater than 1.0 and hence fails to converge. Consequently, the
asymptotic expansion can lead to nonsensical results for reasonable values of X derivatives of the bessel function

°See Dennis and Schnabel [10] for technical details.
' In active set strategies, when parameter estimates reach their constraint boundaries during the algorithm, their values
are fixed at the boundary and the rank of the gradient and hessian are reduced accordingly te calculate the next Newton

© step. At each new step, the algorithm checks whether the new gradient and Hessian values would create a new Newton

step moving the constrained variable away from its bound. If so the variable is reactivated: otherwise it is held at its
bound

U The argument becomes large since with daily sampling At = 1/252. See Abramowitz and Stegun [1], p.377, for
Hankel's expansion. ’




with respect to order q apparently become positive, causing the log-likelihood function in (3) to increase without
bound as x rises. "
Consequently, the bessel function should be evaluated as the infinite series

BT
& *(z’)’ér(qwﬂ)r(pﬂ)

Analytical versus numerical derivatives

Canned optimization packages generally cakculate the gradient and hessian by using numcncal derivatives
calculated at each Newton step using a uniform step size.” This ostensibly protects the user from making errors in
the calculations of complicated mathematical functions. Unfortunately, some objective functions like (3) exhibit
radically different sensitivities to changes in the parameters {x,0,0,} at different levels. This implies that at many
parameter levels, the uniform step size is too small to accurately measure change in the objective function for one or
more variables. In such cases, the relative change measured by the numerical derivative is merely noise.
Unfortunately, the algorithm then uses the noise to reflect a specious Newton step and the entire mechanism soon
becomes stuck.

Even near an optimum, numerical derivatives may be highly unreliable. The magnitude of discrepancies can be
clearly seen by comparing the (correct) analytic Hessian matrix to the (incorrect) numerical Hessian matrix near an
optimum for the loglikelihood function in (3):

-01143 5.0020 -14376 |
vi, = 50020 103699 - 533809 analytic Hessian
-14376 533809 3525.2856
_ 0.7418 101190 10518 | puumerical Hessian
HL, = | 86741 359514 —34.6556 ) 5
88423 — 957455 uggsosy | St sizeof BA3x 10

Note that analytical values deviate substantially from their numerical counterparts. Furthermore, pairs of numerical
cross-derivatives assume substantially different values. In fact, one pair of numerical cross-derivatives has values
with opposite signs! ** Such discrepancies are never unearthed by canned optimization packages. Instead, they result
in improper Newton steps and poor parameter estimates. In other words, a researcher may end up rejecting the
model on the basis of a poor fit because undiscovered finite-precision arithmetic errors resulted in improper calcula-
tions for derivatives. Our analysis avoids this problem by using analytic equations for the gradient and Hessian (see
Appendices A and B for the appropriate equations).
Algorithms for infinite-series solutions

27t can be proved that the Bessel function’s derivative with respect to order is negative for all g. The nonsensical
numerical results obtained from (4) occur because of the improper use of a nonconvergent series. (4) holds only for
small, fixed values of q.

' Generally, packages sct the step size as the square root of machine epsilon.

" The numerical derivative H13 is calculated by differentiating first with respect to parameter 1 and then with mpoct to
parameter 3 whereas H31 is merely calculated in the reverse order.



The objective function (3) and its analytic gradient and hessian all include infinite series. This representation
presents two significant computational problems: potential machine underflow/overflow' and excessive calculation
times. Fortunately, there is a simple and elegant solution to both."* Merely rewrite the summand of the infinite

series as an exponential function ¢%#+9. Then to avoid underflow or overflow, multiply by an exponential scaling
factor. To speed the calculations, solve for the index which (approximately) maximizes the summand and, beginning
with the optimal index (rather than at (), sum forward and backward until each term added is machine zero.

To illustrate the methodology, consider the bessel function in (5). Use Stirling’s formula for the gamma
functions to write

k] Gl(p.j2)
6a) 2me 1 (z,)= z
Y ame Miz) ,,E,:od(p+q+1>d(p+1)

where

z
6b) Gi(p. )j,2) =(2p+q)log-§-+(2p+q +2)—(p+q+ Mlog(p+g+D—(p+ Plog(p+1)-z;
and

60) dex) =14 Ay 1 139 571

12x 288 S1840%° 2488320%°
To avoid underflow and speed calculations, we must skip most of the negligible tarms at the start of the infinite series
in (6a)". To do this, we find the value p* which solves the subproblem
6d) max Gl(p.J.z)

and then actually compute the infinite series in (a) by beginning the summation at p* and summing forward and
backward until all additional terms are machine zero.'®

4) Empirical results

Assessment of any model's statistical accuracy generally requires a specification of the sampling distribution.
Unfortunately, exact sampling distributions for estimators obtained by nonlinear methods are generally intractable
and asymptotic distribution theory applies.” '

' In (5) any or all of the individual terms in the summand may overflow prior to convergence. In ANSI C 3.1.2.5, the
smallest double-precision exponential is 1.7¢7 and for long doubles ¢#*%2 ; otherwise, underflow occurs.

¢ Similar methods work for all gradient and Hessian functions presented in the appendices. We use this type of solution
whenever any Zj value exceeds 1400, When zj < 1400 for all j, we use slightly different algorithms. E.g. if q > 1000
and zj < 1400, we utilize asymptotic cxpansion 9.7.7 from Abramowitz and Stegun [1] but scale the terms to prevent
underflow.

"7 All computers have a smallest value, called machine zero. Any computation returning an absolute value less than

machine zero produces an underflow which must be avoided. Any such terms are negligible, i.e. they add nothing to the
sum.

** This method proves very efficacious since terms larger than machine epsilon frequently don’t occur until p is larger
than 5000. In some cases, we might also find zmax= m}u{ Z;}. and multiply both sides of (6a) by ¢”™* prior to

calculate the infinitc sum on the RHS of (6a). We would then scale the function down similarly when calculating the
log of the bessel function in (3).




Prezas and Ulman [18] have proved that estimators for the norm-preserving MRSR process (associated with
the loglikelihood function in (3)) are asymptotically normal with a covariance matrix equal to the inverse of the ex-
pected Hessian matrix calculated using the log likelihood function. Additionally, they have derived the Information
Matrix (inverse of the expected Hessian) to calculate exact asymptotic precision measures. However, to simplify
actual calculation of asymptotic standard errors for this paper, we employ a standard practice in nonlinear optim-
ization suggested by Bard [2]: we replace the inverse of the expected Hessian matrix with the inverse of the Hessian
matrix evaluated at the optimal parameter values.” In the attached panels, we display estimators and asymptotic
standurd errors for each parameter. We feel relatively comfortable with the old rule-of-thumb: an estimator is
statistically significant if it is at least twice its (asymptotic) standard error.”

Our algorithms run as a Windows NT program using ODBC database access. The algonthms are currently
single-threaded. Although time to oohvcrgence is a function of the sample time series, estimations generally take 10-
90 seconds on a single-processor DEC Alpha AXP or powerful Intel Pentiom.” Since many auxiliary functions
used to calculate the Hessian are double summations (see Appendix B), it appears highly likely that multithreading to
take advantage of multiple processors would provide significant performance gains. However, we leave
multithreading as a topic for future research.

Interest rate processes

The norm-preserving MRSR process is ideal for describing interest-rate movements. Panel 1 displays
overnight repo rates in the U.S. between 4/3/87 and 6/29/87 (60 observations). Note the (asymptotic) standard errors
are less than half the estimators for all parameters and the value of the loglikelihood function is relatively high. Panel
2 shows similar results for 7-day I.TBOR rates in a completely different time frame (6/22/92-9/15/92). By carefully
crafting optimization algorithms rather than relying on canned packages, it is possible to obtain significant ML
estimators for any interest-rate time series which displays mean-reverting behavior.

FX rate processes

If the only economic restrictions for FX rates are those described in the introduction (economic processes
which are nonnegative, return immediately to positive levels if zero is reached, and possess steady-state distributions
to prevent explosive growth of future values) then the norm-preserving MRSR density is adequate for rate dynamics.
Panel 3 presents ML estimators for the U.S. Dollar versus British Pound exchange rate between September 21, 1992
and June 22, 1993 (197 observations) under norm-preserving MRSR dynamics. Panel 4 presents similar results for

YA few processes (like those with normal or lognormal increments) can be factored as a member of an exponential
family. In such cases, joint sufficient statistics can be recognized in the argument of the exponential function and exact
standard errors may be reported, Such cases are exceptions rather than the rule.

®Rard (2] rationalizes such approximations to the asymptotic covariance matrix (which are utilized by all canned
computer packages) by claiming that "computation of the required expectation is very tedious, if not impossible”. Hence
we leave any discrepancy between the approximate and theoretical covariance matrices as a topic for future research.
Quite interestingly, Bard has run simulations which indicate that nonlinear estimation procedures can provide very good
data fits in small samples even if the resulting asymptotic standard errors are very large.

1 Quite interestingly, practitioners routinely utilize the ML estimator for volatility from a lognormal process even though
the mean estimate is poor. In fact, the asymptotic standard error for the mean from a lognormal process is proportional to
(1/nAt) and hence is always large relative to the estimator unless the sample size is gargantuan.

Z We have found some cases where convergence reguired 300 seconds.




the Deutschmark versus Pound. Note that in both cases, all parameter estimates are more than double the
corresponding asymptotic standard errors.
In recent work, Dothan, Rarsamuritie, and Ulman (DRU) [12] have suggested that additional economic
~restrictions (beyond (i)«(iv) listed in the-introduction)-should-be-applied toforeign exchange. - Specifically, they argue
that FX processes should satisfy two additional economic restrictions which we now add to our list:

v) (Symmetry) The distribution of any exchange rate and its inverse must be symmetric, ie.,
the distribution functions for the FX rate and its inverse will be identical but the parameters
may be different. In other words, it doesn't matter whether traders consider Deutschmarks to
Dollars or vice versa: the distributional characteristics will be the same.

vi) (Invariance) The distribution of any exchange rate must be invariant to changes in the unit
of curency. In other words, changing the domestic currency's name from dollars to ducats
and defining ten ducats per old dollar should not change the characteristics of the exchange
rate process. Mathematically, given the present rate (but subject to an adjustment of
parameters) the conditional distribution must be homogenous of degree zero in the present
and future rates of exchange.

The MRSR density fails to satisfy these properties: if Dollars vs. Pounds has MRSR dynamics, then
Pounds vs. Dollars does not. Such a result is highly unintuitive.

To resolve these additional economic issues, DRU [12] developed a four-parameter mean-revertin g logarithmic
(MRL) process as an FX analogue to the MRSR process; it satisfies all six economic restrictions. Denote the four
parameters as {n,.n,,n,,n, }where n is denoted the volatility parameter, n is a critical floor where the home
government intervenes to strengthen its currency, n,is a traditional speed-of-adjustment, and n, is a (logarithmic)
long-run mean. Let x represent the exchange rate and ket y = log(x/n,). Then the dynamics for both an exchange
rate and its reciprocal can be represented as
) dy=n,flogln,/n,)- y]de+ny* 2 dw.

If we substitute 6 = log(n,/n, ) then (7) is a precise analogue of (1).

If the critical floor n, is defined as an exogenous variable specifying the level where traders believe the Central
Bank will intervene to protect its currency, then the norm-preserving MRL process may be estimated using the same
algorithms as the MRSR process subject to the proper transformations™. Altematively, if n,is treated as an
endogenous variable, then (3) must be respecified as an optimization across four variables and modified algorithms
must be developed. For this paper, we have chosen to treat the critical floor as an exogenous variable. Panels 5-12

present results for the Dollar versus the British Pound and for the Deutschmark versus British Pound between
September 1992 and June 1993 using daily sampling.

Bt is easy to show that the MLE estimator of n, may then be calculated as nze"' where 9" is the MLE for  and
s )= u4ms(6') is the appropriate standard error.




Any optimizer occ asionally becomes stuck at a local optimum. Panel 5 depicts a wamning message displayed
when the optimizer became stuck using the original guesses for Dollar versus Pound. A quick change in the mitial
guess dialog box resulted in convergence to the values shown in Panel 6 with a critical floor specifiedat 1.1, Panels 7
and 8 show the results of increasing the critical floor to 1.2 and 1.3 ‘respectively. - Note—that-the -only -significant
difference is the sharp increase in the rate volatility parameter n, . Panel 9 shows the conditional mean and variance
for the Dollar versus Pound FX rate for the next three to seven weeks. Panels 10 and 11 show similar results for the
Deutschmark to Pound FX rate in the same time interval at critical floor values of 1.96 and 2.00. Once again, the
volatilty parameter , rose with the critical floor. Panel 12 depicts the paramoter estimates resulting from selecting a
subseries of approximately one-third the observations around the low point reached by the time series. These results
may be contrasted to those in Panel 10. Finally, Panel 13 shows the time series over the September 1992 through
June 1993 period for the Japenese Yen versus British Pound. Note that the graphed series moves inexorably lower, .
demonstrating no evidence of reversion toward any mean. The parameter estimate for the speed of adjustment is
relatively low compared to its standard error and the value of the loglikelihood function is abysmal compared to
results for the other two FX series. Hence the optimizer performs poorly (as expected) in the ahsence of mean-
reversion. This time series actually looks like a lognonmal process headed toward zero.

5) Implications for forecasting and pricing
Cox, Ingersoll, and Ross’ [9] seminal article on general equilibrium pricing showed that any asset can be vatued
as the risk-adjusted, discounted expectation of future payouts. The SDE approach to uncertainty has been widely
adopted because its continuous-time analogues of first-order autoregressive processes” with independent increments
allow good mathematicians to determine transition densities necessary to determine cormresponding pricing equations.
Unfortunately, forecasts from the transition densities contain only drift-related terms. For example, a forecast from
(1) could be written as
8) E,[r(N)=0+[r(1) -0)e™*C
which tends to the long-run mean 6 as s— e, Note , however, that forecasts using our ML estimators do not
answer questions like, if the previous day’s error was negative, will today s error be negative? Such queries might be
better answered by ARIMA models which require information only from the autocovariance function rather than the
entire transition density. Panel 9 depicts 3-7 week-ahead forecasts of the Dollar versus Pound FX rate estimated in
panel 8. Note the movement toward the long-run mean and the increasing variance of the forecasts farther out in
The ML estimators for the FX series depicted in Panels 3-8 and 10-12 are sufficient to calculate .prices of
options™ and futures’ options on FX. As in Black-Scholes, the drift-related parameters may be discarded. However,

% E.g. (1) can be described as an AR(1) process with a highly modified first-order moving-average component. Note that
the difference in successive noises (dZ(1)) is multiplied not by a constant coefficient as in ARTMA models but by a
function of the level of the process itself.

¥ See Dothan, Ramamurtie, and Ulman [12] for the appropriate pricing equations. In cases where one or morc parameter
estimates is not statistically significant, users may wish to try estimation for some alternative stochastic process.
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they may prove useful in forecasting and in reassuring users that the hypothesized density indeed provides a good fit
for the data.
Unfortunately, the ML estimators for the interest-rate in Panels 1-2 are not sufficient to price bonds or their
~derivative assets since the-estimated set does not include the preference parameter A~ It is convenient to describe the
type of analysis we have completed in this paper as Marginal MLE (MMLE) since the loglikelihood function (3)
contains information from a single time-series and uses a marginal transition density function. To jointly estimate
the preference parameter A and the interest-rate parameters { x,8,0}, we must include information from multiple time
series (the ovemnight Repo rate and the 200+ coupon Treasury prices (or Strips)). In a companion paper [19] we
develop a general theory to conduct Joint MLE (JMLE) using a joint transition density function across the ovemight
RP rate and coupon bond prices; this approach provides the ability to simultaneously measure asymptotic standard
errors for each parameter estimate (including the preference parameter). We make the general theory operational by
hypothesizing a joint uniform distribution for bond pricing errors; this seems reasonable since bond prices are
generallyy rounded to the nearest 1/32. Other error specifications (e.g., truncated normal) could also be used. We are
currently working on computer algorithms to implement JMLE.*®

6) Summary
In this paper, we have demonstrated that applying realistic economic restrictions to the dynamics for foreign- -
exchange and interest-rate processes leads to many relatively esoteric computational problems in marginal
maximum-likelihood estimation (MMLE). Our studies indicate that many of these problems will never be
uncovered if researchers use canned computer algorithms relying on uniform step sizes, numerical derivatives, and
standard asymptotic expansions. Instead, the researchers will invariably report statistically insignificant results or
nonconvergence because the canned algorithms end up by using noise to determine proper Newton steps.

The combination of daily sampling and complicated mathematical functions necessary for mean-reversion
forced us to utilize analytical derivatives for the gradient and hessian, to obtain series solutions for many of the
intermediary functions, and to guard religiously against underflow and overflow. By paying meticulous attention to
such computational detail, we were able to produce algorithms which provided statistically significant parameter
estimates for interest-rate series using a norm-preserving MRSR transition density and for FX rates using both
norm-preserving MRS and MRL transition functions. These MML estimators are sufficient to make simple
forecasts and to price FX options and futures,

However, in order to price bonds and their derivative assets, researchers must identify a preference parameter
in addition to the estimators for the interest-rate process. To elegantly resolve this problem, we cite our
contemporaneous work on joint maximum-likelihcod estimation (JMLE). We believe that sequential quadratic
programming can be successfully employed to solve the bond-pricing problem if the same meticulous care is used o

% An alternative procedure might rely on calculating the MMLE for the interest-rate process and then in a second stage
using least-squares to find the preference parameter which minimizes the sum of the squared pricing errors across the set
of coupon bonds conditional on the interest-rate estimators. In earlier work, Ulman [21] used this procedure to obtain a
phenomenal fit (with pricing errors of between $0.05 and $0.50 on $100 face-value bonds) in the short and intermediate
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insure computational integrity as was required for MMLE. Hence we rather blithely conclude that maximum-
likelihood estimation is indeed alive and well in the financial markets! ' '

term Treasury market (maturities less than 11 years). Unfortunately, this method provides no information about the joint
standard errors of the estimators.
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Appendix A: Analytic Gradient

Let VL= [%i—f-‘?—a;‘- ‘”‘1 e the gradicat of the log likelihood function L(e, n) in (3). Further, let (=), q(s),z{(+), n

and At be defined as in (3). Let y(e) represent the psi function and I'(s)the gamma function. Then the elements of
the gradient may be expressed as follows.

" L - P
Al) VL, =[nlogc+zlogr] —2 @ 127 z(zj /2) V(q+p+1)I_%§_]
- i L]

=i I, (z;) =0 PTl(g+p+D)

ac _ 1 & 1o A 1£(Z;)
v __v 1+g) ——e —ce ™ ..‘l:.‘.J_
A2) VL, Lz+[ +q) ;{rj ce zr,_{c o ] [c w3 j-l 142)

A3) VLS._— Z J—ﬁ?f)—-c{Zr +r e ]+n(1+q)+BVI.2:l.
;=| i =
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Appendix B: The analytic Hessian matrix

Let V2L represent the Hessian matrix corresponding to the loglikelihood function Z(e, n) in (3) and the gradiex VL
defined in (A1)-(A3). Further, let c(e), q(»),z J'(O), n and At be defined as in (3). Let y(e) represent the psi fincion

and I'(e) the gamma function. Then the elements of the Hessian may be expressed much more simply in terns of a
set of auxiliary functions and constants.

The auxiliary functions:

BI) n(z,q,n)=2ﬁ%*2£ff;l
CARS

I

d LazpY
 rican- S8
f gA&

§=l

I AN (zf/z)m['f”(f’+4+1)-vf(p+q+1)]
B3) T4(z,q,n)=§p§ R

L4 pT(p+q+D1,(z;)

2
)
B4) T5(z.q,n) = 2 [Z (szj V(P+q+1)]

phy
BS) T6(z qn) ZZEP(ZJPT W(P+q+1)

j= p=0 p'r(p+q+])1q(zj)

B6) T7(z n)=izflq+l(zj) i (ij)lpwl,v(p+q+l)
T I(z;) o3 pT(p+q+DI(z;)

B7) T8(z,q,n) = ZZ E(ZJP)I 'w(p+q+2)

o PT(p+a+2I,(z;)

The auxiliary constants:
B8) Cl= 1o
¢ 3

B9) o O M™Y.

Bl0) C3=Cl-At
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BI1) c4=a-%

B12) =Y r +r e
F=

The Hessian:

gy VL W oy KB it
B13) VL, _T+a'—2(1 C2) 39—3&_[15( )-T4()]- c455[r6(-)-17(-)]

2
Bl4) VL, =_(%J [rs(.)_m.)]

B15) VL, = V('f ‘;’3‘" g [T5(e)- r«-)]+—a?-[T6<-) ~TX»)]
o

Bi16) VL, = —[2055- VL, -28V2L, -~ hﬁ_ —[2qﬂ(c)+T2(0)]-2—~[T'8(o) m.)]]

B17) Vi, ——{ -ﬂ’caz i +-—2 r, -—-esz,z + C{2qT1(e) + T2(o)]+ %[TS(-)—T?(-)]}

3 n
VL =n9A:e“""a° a ):r+ ‘“’[w-ai-*:(ﬂf) ——]Zn-ﬁ—[”(') T8(+)]
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Dollar Versus British Pound

9/21/92-6/22/93 (critical floor=1.3)
Mean-Reverting, Logarithmic Process
poed of sdjustwent:NI = 7,769 Log heag-rem meas: N4 = 1.5012 Rate voladility: Ni= 034570
(N} = 1566 s{N4) = 0.00043 (Nl)= 0.01763

ritical Moers N2= 1300

ogliketibood function valee = 653.39520
i umple stzes 19T

11
LT®
L1158
LTS

1.1e

169
1678

LE30

nr vs Pound 1610
1

1598 §

.', 1578 '
1.554 -

]

1830 -

1519

1A% -

1

1470

1459 .

1
ta1e .I_ 3 P BITHIBIITNS DTS ATITINGN DT mlmm|:urmluslmnu'rmmtnmmmmmmmm|mm»:rr
19928921 19934423

duyy




Dollar Versus British Pound
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FX: Deutschmark versus British Pound
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