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The Long-Run Real Effects of Monetary Policy:

Keynesian Predictions from a Neoclassical Model

1 Introduction

A generation ago, the conventional wisdom among macroeconomists held that changes in
monetary policy that produced permanent changes in the rate of inflation could also produce
essentially permanent changes in the levels of real interest rates and real output. Within the
framework of the Keynesian models that were popular at the time this prediction could be
justified only by assuming that economic agents were victims of persistent money illusion.
This point was made forcefully by Friedman (1968) and Phelps (1972), who argued that
analyses of the effects of policy changes that were based on this assumption were unsound
and unconvincing. These arguments were extended by neoclassical economists such as Lucas
(1972) and Sargent and Wallace (1976), who developed rational expectations models in which
persistent money illusion was explicitly ruled out. In these models, permanent changes in
the inflation rate induced by monetary policy had limited real effects in the short run and no
real effects in the long run. As the rational expectations locomotive gained steam the notion
that money was long-run superneutral became the consensus view among macroeconomists.

In recent years the linear structural models that were once the most common vehicles
for the study of the monetary policy implications of rational expectations have been su-
perseded by general equilibrium optimizing models. The standard framework for monetary
policy analysis is now the infinite-horizon representative agent model augmented by placing
money in the utility function or imposing a cash-in-advance constraint. From a purely an-
alytical perspective money is not always long-run superneutral in this class of model. As
the models are usually specified, however, any departures from long-run superneutrality are

empirically inconsequential.!  Thus, the popularity of these models has done nothing to

1 See Sidrauski (1967), in which money is analytically superneutral, and Danthine, Donaldson and Smith
(1987). For additional discussion see Section 6.2 below.



shake macroeconomists’ belief in the long-run ineffectiveness of monetary policy.

While the empirical evidence in favor of long-run superneutrality has never been as over-
whelming as the balance of opinion on the subject might suggest, particularly strong reasons
for entertaining doubts have appeared during the last few years. Recent advances in methods
for econometric analysis of time series data have made it possible to conduct more defini-
tive tests of hypotheses involving long-run relationships.? When these methods have been
applied to the study of the real effects of monetary policy they have frequently turned up
evidence that [1] money is not long-run superneutral and [2] permanent increases in the
rates of money growth and/or inflation lead to permanent decreases in real interest rates
and permanent increases in the level of output. King and Watson (1992), for example, report
that for the U.S. during the postwar period “the data do not appear to be consistent with
the hypothesis that, over the long run, money is superneutral or that nominal interest rates
move one-for-one with inflation.” When they employ the common strategy of identifying
their models by assuming recursivity they find that permanent increases in the inflation rate
produce substantial increases in the level of output.® Similar results are reported by Weber
(1994), who uses the same methodology but looks at postwar data for the G-7 countries.
Bullard and Keating (1995), who look at postwar inflation-output relationships across a sam-
ple of almost 60 OECD countries, find that for countries with relatively low inflation rates
the long-run effect of inflation on the level of output is typically positive. Ahmed and Rogers
(1997) who look at U.S. data over a much longer sample period, conclude that “in the long
run, the effect of inflation on investment and output is positive ... and the investment rate,

and hence the real interest rate, are not independent of inflation.” [Their emphasis.|*

2 See King and Watson (1992) and Fisher and Seater (1993).

3 A revised version of this paper has recently been published in the Fconomic Quarterly of the Federal
Reserve Bank of Richmond. [King and Watson (1997).] King and Watson (1994) use similar methodology to
study the long-run relationship between inflation and unemployment in U.S. postwar data. They conclude
that a “traditional Keynesian identification” fits the data as well as the other identification schemes they
study and yields “large estimated long-run trade-offs between inflation and unemployment”.

4 The results reported in most of these papers are not unambiguous: there is evidence of significant departures
from superneutrality for some identification schemes but not others and/or for some countries but not
others, etc. However, we think these results indicate, at minimum, that [1] the evidence against long-run
superneutrality is far stronger than is widely believed and [2] the presumptive direction of departures from
superneutrality is consistent with our theoretical results, at least for countries with relatively low inflation



In this paper, we demonstrate that an alternative class of general equilibrium models
can allow permanent changes in the money growth and inflation rates to have effects on the
steady-state levels of real interest rates and output whose magnitudes are potentially large.
The directions of these effects are consistent with key aspects of the Keynesian conventional
wisdom: if the money growth and inflation rates increase, then the real interest rate falls
and the level of output rises. Thus, these models can account for the aforementioned em-
pirical evidence concerning the long-run real effects of changes in monetary policy. The
models to which we refer are extensions of the model studied by Diamond (1965) — a model
with overlapping generations of agents, neoclassical production and capital, and government
debt. The overlapping-generations structure of this model allows its parameters to be cho-
sen in a way that guarantees the existence of equilibria in which government debt can be
unbacked, in the sense of being unaccompanied by an equal-present-value stream of future
government surpluses. We take a simple specification of this model and augment it with a
source of demand for fiat money, a government budget constraint, and exogenous technologi-
cal progress. The combination of fiat money, unbacked government bonds and a government
budget constraint provides a mechanism that allows changes in the growth rate of the stock
of fiat money to have significant effects on the level of the real interest rate. In addition,
neoclassical production/capital and exogenous technological progress allow changes in the
level of real interest rate to be associated with changes in the growth rate of real output that
are persistent but not permanent. The steady-state real output growth path shifts to a new
level and the actual growth rate of real output must change temporarily, but persistently, in
order to produce the required change in the level. The long-run real output growth rate is

unaffected, however, since it is determined by the exogenous rates of population growth and

rates (see our concluding remarks). In addition, the results just described are quite consistent with the large
empirical-finance literature which finds that nominal interest rates tend to rise less than one-for-one with
inflation: see, for example, Fama and Gibbons (1982), Mishkin (1981, 1984, 1992) and Kandel, Ofer and
Sarig (1996). While most of these papers look at interest rates on bonds, there is similar evidence concerning
rates of return on other financial assets, Boyd, Levine and Smith (1997), for example, find that “for countries
with average annual inflation rates of less than 15 percent, there is no significant relationship between the
rate of inflation and the nominal return on equity.” They cite a number of earlier studies that reach similar
conclusions.



technological progress.

The ability of overlapping-generations models to allow changes in monetary policy to have
permanent effects on the real interest rate has been known for many years. Wallace (1984)
constructed a model in which the existence of a reserve requirement allows fiat money to
coexist with return-dominant government debt. He used the model to show that a permanent
open market purchase (a permanent decrease in the ratio of bonds to money) would cause
a permanent reduction in the real rate of interest.® In some respects, however, Wallace’s
results were quite inconsistent with the conventional wisdom: a permanent open market
purchase also causes a permanent decrease in the rate of inflation. Espinosa and Russell
(1998) use Wallace’s model to show that this perverse relationship between changes in the
inflation rate and changes in the real rate of interest is an artifact of the same assumption that
produced the closely related phenomenon of “unpleasant arithmetic” [Sargent and Wallace
(1981)]: the assumption that the initial steady-state real interest rate is higher than the

steady-state growth rate of real output.®

5 The notion that open market operations can have permanent real effects may disconcert some readers.
The most likely source of this discomfort is that one result of an open market operation is an immediate
change in the nominal stock of money, and in most general equilibrium models — including this one —
a strictly one-time change in the nominal money stock has no long-run effect on real variables. That is,
money is neutral in the long run. However, under the definition of an “open market operation” that used
in the literature on which this paper draws, such an operation represents a permanent change in the ratio
of the stock of government bonds to the stock of fiat money — a change which necessitates, through the
government’s deficit-finance constraint, both permanent changes in the real stocks of bonds and/or money
and a permanent change in growth rate of the fiat money stock. In fact, the models in this literature can
be reparameterized so that the exogenous policy change is a change in the growth rate of the nominal stock
of fiat money, in which case the changes in both the bonds/money ratio and the real stocks of money and
bonds become endogenous adjustments that are necessary to allow the government to continue to finance its
deficit. If money is not long-run superneutral then a policy change of this type should be expected to have
real effects. Parameterizing monetary policy in terms of the bonds/money ratio has the virtue of resolving
an indeterminacy that arises in these models. Typically, there are two equilibria associated with a given
inflation rate, but these equilibria involve very different bonds/money ratios.
6 For discussions of the role of this assumption see Darby (1984) and Miller and Sargent (1984). Miller and
Wallace (1985) and Miller and Todd (1995) study multi-country versions of the Wallace (1984) model under
the high-real-interest-rate assumption. These models also deliver forms of “unpleasant arithmetic.”
Bhattacharya, Guzman, Huybens and Smith (1997) study a model that is similar to ours except for
its assumptions about money demand and financial intermediation. These assumptions allow a given spec-
ification of open market policy to support multiple steady states involving different rates of inflation. In
steady states where the initial inflation rate is high a tightening of monetary policy can produce a lower rate
of inflation even when real interest rate exceeds the output growth rate. This is possible because in these
steady states lower rates of money growth and inflation increase government revenues from money creation.



In this paper, we extend the analysis conducted by Espinosa and Russell (1998) in a
number of different directions. We replace the pure-exchange model they borrowed from
Wallace (1984) with a Diamond-style model of neoclassical production and capital augmented
by exogenous technological progress. The new model has two important advantages. First
and foremost, it can be used to study the effects of changes in monetary policy on the level
and growth rate of real output, and also on the levels of the capital stock and investment.
In addition, the new model allows us to produce these real effects without introducing any
heterogeneity within generations. This simplifies certain aspects of the analysis, facilitates
welfare comparisons, and allows the model to be extended to less-stylized environments in
which the agents live and work for many periods.”

Both Wallace (1984) and Espinosa and Russell (1998) confine themselves to studying the
effects of changes in monetary policy conducted via open market operations. In this paper,
however, we also investigate the impact of changes in reserve requirements. In particular,
we show that while the effects of reserve ratio changes are generally similar to those of open
market operations, there are at least two major differences. First, the use of reserve ratio
changes as the instrument of policy broadens the range of policy parameter values over which
the conventional monetary-policy wisdom holds true — that is, the range over which policy
changes that increase the inflation rate also reduce the real interest rate. Second, the change
in the reserve ratio that is necessary to produce a given change in the real interest rate
always produces a larger change in the inflation rate than the open-market operation that
is needed to achieve the same real interest rate target. This finding may help explain the
Federal Reserve System’s historical preference for open market operations.

Our third innovation is that we are able to organize the bulk of our analysis of the model

Although the version of the model these authors employ can produce equilibria with low real interest rates,
their analysis of monetary policy focuses on high-real-rate equilibria and situations involving unpleasant
arithmetic. In addition, they cannot produce situations in which the interest rate on government bonds
is lower than the ouput growth rate but the real interest rate facing private borrowers exceeds the output
growth rate. Empirical evidence suggests that these are the situations that are empirically relevant (see
below).

7 An extension of this type is pursued by Bullard and Russell (1998b) using a model that must be analyzed
via computational methods.



around the behavior of the government’s seigniorage revenue function, which we refer to as
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the “seigniorage Laffer curve.” This allows us to provide both more complete descriptions
of the regions of the parameter space where the effects in which we are interested arise and
more satisfying intuitive explanations of the sources of these effects.

A fourth and final innovation involves our assumptions about the relationship between
the real interest rate on government debt and the marginal product of capital. Monetary
policy can have real effects of the type we describe only if the real interest rate on government
debt is lower than the output growth rate, and only if the government can issue and maintain
a stock of unbacked debt. (The former condition is necessary and sufficient for the latter
situation to be possible.) Both these assumptions seem eminently plausible. During the
postwar period, average real interest rates on U.S. Treasury bonds have been substantially
lower than the average U.S. output growth rate, and the federal government has maintained
a large debt while running an average primary surplus close to zero.®  However, in the
models of Wallace (1984) and Espinosa and Russell (1998) the real rate of return on private
liabilities is equal to the real interest rate on government bonds. This presents a problem,
because in U.S. data the average real return rates on many types of private liabilities —
notably, diversified portfolios of common stocks — exceed the average real output growth
rate by a substantial margin.

The analysis conducted in this paper follows that of our predecessors by assuming that all
credit arrangements are intermediated. However, we introduce a real cost of intermediating
private liabilities that drives a wedge between the real rate of return on these liabilities — the
marginal product of capital — and the real interest rate on government debt. Our results
indicate that under relatively weak assumptions, any specification of our model that has
equilibria in which the real interest rate on government debt is lower than the real output

growth rate also has equilibria from which a change in monetary policy has “conventional”

8 See Bullard and Russell (1998a) and Espinosa and Russell (1998). The average output growth rate has
been close to 3 percent, while the average real interest rate on short-term government debt has been less
than one percent before taxes and less than zero percent after taxes. The average primary (net of interest)
surplus has been approximately 0.1 percent of GDP.



effects — even if the equilibrium marginal product of capital begins and remains higher
than the output growth rate. (See the example presented in Section 7 below.) Thus, while
our intermediation-cost assumption does not represent any contribution to the theory of
financial intermediation, it does serve to make the point that the empirical observation that
the marginal product of capital is higher than the output growth rate is not inconsistent

with the existence of monetary-policy effects of the type we describe.

The next section of the paper lays out the model that provides the framework for our
analysis. In Sections 3 and 4 we use this model to study the effects of open market operations
and changes in reserve requirements, respectively; in Section 5, we compare the effects of
these two policy instruments. In Section 6 we discuss the implications of our results for
the effects of monetary policy on nominal interest rates and for the ability of policy to
produce relatively large changes in real interest rates and output. We also comment on the
relationship between our model and models that produce Tobin effects. In Section 7 we

present a parametric example that illustrates our basic findings. Section 8 concludes the

paper.

2 The model

2.1 The environment

At each discrete date t>1 a positive number of identical two-period-lived agents are born.
This number N; grows at a gross rate of n>1 per period, so that N; = n* Ny, where Ny > 0
(see below). These agents are endowed with a single unit of labor in the first period of their
lives and have no endowment of any kind in the second period. Young agents supply their
labor inelastically at any positive real wage, so the total supply of labor at any date is equal
to the total population of young agents at that date.

The preferences of the agents are assumed to have the property that the amount agents

save is invariant to the rate(s) of return on the assets available to them. In particular, each



young agent saves an amount s w;, where s represents the fraction of his income he devotes
to saving and w; represents the real wage rate at date t. We assume s € (0,1).°

At each date there are an indeterminate number of competitive, zero-profits firms that
produce the single consumption good and obtain loans from competitive financial interme-
diaries (see below) in order to finance the acquisition of physical capital. Physical capital
consists of consumption goods that were stored by agents during the previous period. The

firms use the Cobb-Douglas production technology
Y, = F(K;, L)) = \1mU-Dopl-—a

Here Y; represents date t output of the single good, which can be consumed at date t or
stored and used as capital at date t+1. In addition, K; represents the total stock of capital
used in production at date t, L; represents the total quantity of labor used at that date,
a € (0,1), and A > 1. If A > 1 then there is exogenous technical progress at a gross rate of
A per period.

The marginal product of capital r; is given by

re = )\(l_a)(t_l)&kta_l,

where k;, = K;/L;. In a competitive equilibrium, arbitrage requires the gross private real
lending rate R; to satisfy R; = 1 4 rq1 — 6, where 6 is the net rate of depreciation. We
assume that goods stored at date ¢ depreciate at net rate 6 from date ¢t to t+1 whether or
not they are used in production at the beginning of the latter date. For simplicity, however,
we shall set § = 1, so that R, = r;1.1 We then have

= A (Rt*)m

«

9 This assumption follows Wallace (1984) and Espinosa and Russell (1998). It is adopted primarily for
purposes of analytical tractability. There is, however, considerable empirical evidence that aggregate gross
saving is relatively insensitive to changes in the real rate of return. Given our endowment assumptions,

a utility function that will generate this behavior is u(ey,c2) = log ¢y + Flp log c2, where p > —1. This

function produces s = 2+_p .
10This assumption is not unreasonable in a two-period model: if we think of a period as thirty years, an
annual depreciation rate of 0.1 corresponds to a per-period rate of almost 0.96.



so aggregate demand for capital/loans at date t is given by

Kii(R) = (W) Ny (%) -

The real wage rate is given by
wy = N1 — a)ke,

Using the expression for k;, we have

Rt1>ﬁ
o .

w; = N1 - ) <

It follows that the aggregate savings function is

R 1\ o1
St<Rt—1) = ()\n)t_lNl S ( ;1> ' .
Note that Si(-) is a function of R;_;, which determines agents’ income at date ¢, but not of

R? which is the gross real rate of return they will receive on assets acquired at date t (see

below). In addition, since Y; = LA(=9=DE real output at each date ¢ can be written

Vi(Roa) = ()N (221)

At date 1, there are Ny “initial old” agents who are endowed with Hy nominal units of fiat
currency and By units of one-period nominal government bonds (payable in fiat currency)
which are due at that date. At each date t>1 the government must finance a fixed positive
real net-of-interest deficit G; > 0 by a combination of currency and bond seigniorage. The
value of (G is assumed to grow at gross rate ¥ = An per period. The government’s budget

constraint is

Gy =pf[(H, — Hi—1) + (Ptht —B:1)].

Here H; represents the nominal stock of fiat currency at date ¢ (so that M; = p,H; is the
real stock of currency) and B; represents the nominal face value of the stock of bonds (so that
B, = pB; is the real face value of the bond stock). The nominal price of a unit-face-value

nominal bond is P?, and R™ = 1/P? is the nominal interest rate on government bonds.

9



Of course, the government budget constraint can be met only if p, > 0 for all ¢. If bonds,
money and capital are to coexist, moreover, we must have

—R;n<1

b
Pf = <

Y

where R? is the gross real interest rate on government bonds (see below).

The assets available to young agents are fiat currency and deposits issued by a competitive
banking system. At each date, an indeterminate number of banks make real loans to the
firms and/or purchase one-period nominal bonds from the government. The intermediary
faces a nonnegative proportional cost ¢ on its loans to the firms; this cost is incurred at the
date the loans are repaid.!? Government bonds, in contrast, are intermediated costlessly.
As a result, we have

RI=R,—c=R..

where R; is the gross real interest rate on loans to the firms, R? is the gross real interest rate
on government bonds and R? is the gross real interest rate on bank deposits.

The government also requires the banking system to hold reserves of fiat currency against
its deposits. If the reserve requirement is binding, then the gross real deposit interest rate
R? is given by

R = (1-0)RC +OR",

where R} is the gross real rate of return on currency — R = p;.1/pr = 1/11;, where p; is
the goods price of a unit of fiat currency at date ¢t and II; is the gross inflation rate from
dates t to t+1 — and 6 is the required reserve ratio. A binding reserve requirement also
requires M; = 0 S;(R;_,) and P’ < 1; thus, when the reserve requirement is binding fiat
currency is held only by banks and only to satisfy reserve requirements.

Finally, credit-market clearing requires

St<Rt_1) - Kt+1<Rt) - Mt + RbBt .

11We think of ¢ as a proxy for intermediation costs of all types, including the information and diversification
costs associated with the existence of default risk on private liabilities. It can also be viewed, in part, as a
proxy for the equity premium.

10



In steady-state equilibria, which are the only type we will study, the rate-of-return vari-
ables R;_y, R?, R™, and P} will be date-invariant constants R, R, R™, and P’. In addition,
all nominal variables will grow at a gross rate of WII per period, where IT = 1/R™. All real
variables will grow at a gross rate of W per period, except for the real wage rate w; and the
capital-labor ratio k;, which will grow at a gross rate of \. The equilibrium conditions for a
steady state can be expressed in terms of the situation at date 1.

We begin by defining the steady-state capital-demand (or private asset-supply) function

Ky(R) = UN, <§>_ , (1)
with -
K}(R) = ﬁj\fl <§>_ <0 )
and o
K!(R) = [a(i_—_oi)]?wvl <§>_ > 0. (3)

Note that these functions have a 2-subscript because the capital goods that are employed

at date 2 must be acquired by households at date 1. In addition, we define the steady-state

saving (or asset demand) function

Si(R) = Ny s(1— a) <§>_ (@)
with )
SI(R) = —Ny s (g) <0 (5)
and -
Si(R) = 04(]1\[1—804) <§>_ =0 (6)

Lemma 1 For Re (0,9 + ¢, [1] S;(R) > K4(R) and [2] S{(R) < K}(R) .

11



2.2 Equilibria

We will confine our attention to steady state equilibria with a binding reserve requirement,

which we will call binding steady states. The equilibrium conditions for a binding steady

state are
0<6<1, (7)
Rr=R-c (8)
P’ = % <1, (9)
RY=(1-60)R" +6R™, (10)
M, =05 (R), (11)
Si(R) — Ky(R) = M, + P'By (12)
UG, = (V- R™) M, + (¥ — R") P'By , (13)
G1 = (M, + P’B,) — py,(Hy + By), (14)

Given a positive value of G; and nonnegative values of Hy, By and ¢, a binding steady state
consists of positive values of 8, R, R®, RY, R™, P’, M,, and p; and a nonnegative value of
B; that satisfy these conditions.

Note that we can define

= (£)

«

with

1

ViR = = (2)7 <o,

a—1\a
Thus, the steady-state output level is strictly decreasing in the steady-state real interest
rate. However, output grows at gross rate of ¥ in a steady state, along with most other real

variables (see above).

12



2.3 Supplementary assumptions

Henceforth we will drop the date subscripts on functions and variables. We will also make

three important supplementary assumptions:

I. There is a laissez faire steady state with a low real interest rate. The values of «a, s and ¢

are consistent with the existence of an R € (0, ¥ + ¢) such that S(R) — K(R) = 0.

I1. There is no nonbinding steady state. The equation [V — (R — ¢)] [S(R) — K(R)] = VG

has no real solutions on R € (R, ¥ + c).

I11. Intermediation costs are not too high. The values of o, s and c satisfy

LA
U o s(l—a)

The Lemma establishes that S’(R) > K'(R) for R € (0, V + ¢] — that is, the aggregate
outside-asset demand function S(R)— K (R) is strictly increasing on (0, U +c¢]. Consequently,
Assumption I holds if and only if there exists a laissez faire (§ = G = 0) steady state in
which unbacked government liabilities are valued, which is to say iff S(¥+c¢) — K(¥+c¢) > 0.
Equations (2) and (4) can be used to show that a necessary and sufficient condition for this

to be the case is

c o}
14+ = ; 1
S<+\If>>1—a’ (15)
they also imply
a U
= —. 1
& l—as (16)

Assumption I also implies that for at least some positive values of 6 the equation (1 —
0)S(R) — K(R) = 0, which characterizes a binding steady state in which there are no
government bonds, has a unique solution Ry € (R, ¥V + ¢). Equations (2) and (4) imply

R
Ry=—"—". 17
The least upper bound of the set of values of 8 consistent with Assumption I is
o 1
Onax =1 — . 18
s(l—a)l+g (18)

13



Assumption II implies that the government cannot finance its deficit without imposing a
binding reserve requirement.

Assumption III is a technical assumption that is used in the proof of Lemma 1 and holds
for virtually any plausible (which is to say, relatively low) values of ¢, given that Assumption
I holds. Assumptions I and III collectively imply

@ - <1+C>< L
— <5 — )
11—« g 11—«

3 Open market operations

Define 3 = P°B,/H,;. We will view 3, the ratio of the market value of the stock of government
bonds to the stock of fiat currency, as a monetary policy indicator that can be manipulated
through open market operations. Our assumptions regarding B; imply g > 0. We will refer
to an increase/decrease in ( as a tightening/easing of monetary policy; we will justify this
interpretation by demonstrating that when 6 is fixed, changes in 3 always change the real
12

interest rate in the same direction (see below).

Equation (11) and the definitions of 8 and P’ are readily seen to imply
P'B = 305(R); (19)
this equation, along with equation (11) itself, allows us to rewrite equations (12) and (13) as
1-0(1+p)]SR)—K(R)=0 (20)

and

UVG=0S(R){(Y-R")+4[¥Y—(R—-0)]}, (21)

respectively.

Equations (11) and (12) imply

BB =(1-6)S(R) - K(R), (22)

12Wallace (1984) and Espinosa and Russell (1998) use the ratio of the face value of the bond stock to the stock
of currency as their open-market-operations parameter; that is, they define § = B,/ H;. A brief explanation
of the pros and cons of these alternative parametrizations is presented in Appendix A.
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and equation (19) then implies that 80 S(R) = (1 — 0) S(R) — K(R). This equation can be

combined with equation (21) to produce the government revenue function
Gs(R,R™;0)= (Y —R™OSR)+ ¥ — (R—¢)] [(1-6)S(R) — K(R)]. (23)

Our analysis of the effects of open market operations is based on the properties of this func-
tion. When R,, and @ are fixed, we will refer to the function as the seigniorage Laffer curve.
The seigniorage Laffer curve describes the dependence of the level of government seignior-
age revenues on the value of the gross real interest rate R.'> The revenues from currency
seigniorage are (U — R™) 6 S(R), while [¥ — (R —¢)] [(1 — 0)S(R) — K(R)] represents the
revenues from bond seigniorage.

Given 0, a binding steady state can be characterized as values of R and R™ such that
Ry < R<VU—+c¢ 0<R"™<R, and Gg(R,R™;0) = VG. In what follows we will think of
the seigniorage Laffer curve primarily as a function of R, and we will think of its domain
as [Ry, ¥ + c|. However, in a binding steady state we must have R,, < R = R — ¢, and
if R™ > Ry then there are points on the seigniorage Laffer curve to the left of R™. These
points are not potential equilibrium points.

As is readily seen, the slope of the seigniorage Laffer curve is

D (= RM)OS(B) + ¥ (R—0)] [(1—0)S'(R) ~ K(R) ~ [(1 ~ 0)S(R) ~ K(R)].

(24)
Proposition 1 establishes three important facts about the seigniorage Laffer curve:
Proposition 1 The function Gg(R, R™;0) is [1] strictly concave in R on [Ry, V4], [2] pos-

itive and downward-sloping in R at R = V+c, [3] positive and upward-sloping in R at R =Ry
of

0 < 70, (25)
where 4 e
v = ~ . (26)
(1 + E) + 1.

13Note that our “government revenue function” actually returns the product of government revenue and the
gross real growth rate W.
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Henceforth we will add
IV. 0 < 4Bax-

to our list of supplementary assumptions. Note that 0 < v < 1 and that ~ is increasing in ¢
with a least upper bound of unity. Also, if ¢ = 0 then v = 1 —«. Assumption IV is sufficient,
but not necessary, for part [3] of Proposition 1 to hold.'

Assumption IV ensures that for given values of § and R™ the seigniorage Laffer curve is
upward-sloping at its left endpoint (see Figure 1). Under this assumption, the curve associ-
ated with each admissible vector (6, R™) is a positive-valued, downward-opening paraboloid
on (Ry, V], and thus has a unique peak on the interior of this domain.

Equations (11) and (22) and the definitions of 3, B and M allow us to write

(1-0)S(R) - K(R)

(27)

It follows that, for any given value of @, the relationship between # and R is monotone
increasing (see Theorem 1). Consequently, the seigniorage Laffer curve provides an indi-
rect description of the relationship between the value of 3 and the level of revenue from
seigniorage.

We can use the seigniorage Laffer curve to analyze the effects of an open market operation
(a permanent change in 3, with 6 held fixed) on the equilibrium value of R™. Given 6, the
value of 3 determines the steady-state value of R.}> There is then a unique value of R™ such
that Gz(R, R™;6) = WG. This value of R™ determines the identity of the initial seigniorage
Laffer curve. A change in 3 produces a change in R that causes government revenue to move
up or down along the curve. An adjustment in R, is then necessary to shift the curve in

the opposite direction far enough to restore revenues to their equilibrium level.®

14The sufficiency of Assumption IV for part [3] of Proposition 1 is established under the very conservative
assumption that R™ = 0. As R™ increases the required condition becomes weaker, and it can be shown that
if R,, > Ry then part [3] holds for all values of 6 consistent with Assumption I. (See the proof of Proposition
1.)

15This value can be obtained by inverting (g(R).

16As we noted in the introduction, characterizing monetary policy in terms of (# avoids a problem of
nonuniqueness that arises in models of this type. For given values of § and R™ (or equivalently 6 and
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Theorem 1 establishes that Assumptions I-IV are sufficient to ensure that if we start with
a binding steady state in which the initial value of 3 is relatively low, then a small increase
in 0 will always produce a new steady state with a higher real interest rate and a lower
inflation rate:
Theorem 1 Given 0 € (0,1), suppose there ezists at least one 5 > 0 that will support a
binding steady state. Call this value ', and call R' the associated value of R . Then there are
unique values G5™ € [0, 3] and RE™ € Ry, R'] which are the minimum values of 3 and R
that will support a binding steady state, and unique values B3** > 3 and Ry € (R, ¥ + (]
which are the maximum values of B and R that will support a binding steady state. Moreover,
any B € [B5™, B will support a unique binding steady state with R € [Ry, ¥+c|, where the
relationship between the value of B and the steady-state value of R is monotone increasing.
Finally, there exists By € (G5, B5") such that if § € [B5"™, By), then any increase in (3
that leaves B < By will support a unique binding steady with a higher value of R™, while if

g e (Bg, 02X, then any increase in [ that leaves B < G5 will support a binding steady
state with a lower value of R™.

The corollary to Theorem 1 establishes that the theorem is nonvacuous — that is, that
under Assumption I there are always reserve ratios and values of G that satisfy Assumptions
II-IV as well as the hypothesis of Theorem 1. These values of G can be financed with a

binding reserve requirement, but not without one.

Corollary 1 There exists G > 0 and 6 € (0, Opax) such that VG < [¥ — ( c
forall R € [R,V+c|, but VG = (V- R™)0S(R)+ [V — (R—¢)] [(1-0)S(R)— K(R)] for
some R € [R,V + ¢, and R™ € (0, R).

Figure 1 displays a situation consistent with Theorem 1. The initial steady state supports
a real interest rate of R* and is on the upward-sloping portion of the relevant Laffer curve.
The associated gross real return rate on money (the inverse of the gross inflation rate) is
R™*. The monetary authority tightens open market policy (increases [3) in order to increase
the steady-state real interest rate to R. At this interest rate the government has excess

seigniorage revenue, so the inflation rate adjusts downward (R™ adjusts upward to Em) to

Z, where Z represents the gross growth rate of the stock of fiat money) there are always two values of R that
succeed in financing G, but these two values involve very different values of 3. Note that the monotonicity
of the relationship between ( and R follows from the fact that S(R) — K (R) is strictly increasing on [Ry, ¥];
see the proof of Theorem 1.
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reduce flow of revenue. If the authority continues to tighten, however, the resulting increases
in R™ eventually shifts the seigniorage Laffer curve down to a level at which it is tangent
to the horizontal line that represents the government’s revenue needs. The real interest rate
associated with this tangency point is Ry and the corresponding real money return rate is
ﬁg"‘. Further decreases in the inflation rate will not produce enough revenues to finance
the real deficit.!” If the monetary authority wishes to tighten further it must allow the
inflation rate to rise, which will shift the seigniorage Laffer curve upward. The resulting
steady states will support real interest rates like R to the right of Ry and will occur on the

downward-sloping sides of the relevant Laffer curves.

4 Changes in the required reserve ratio

Equations (19) and (23) imply

S(R) - K(R)

K

(28)

which expresses the equilibrium relationship between 6 and R when the monetary authority
allows 6 to vary but holds 3 fixed. It is readily seen that 6(R) > 0 on [R, ¥ +c), so that an
increase in the reserve ratio always represents a tightening of policy in the sense of increasing
the real interest rate. Equations (13), (19) and (28) can be used to define

S(R) - K(R)

G9(R7 Rm;ﬁ) = 1 ‘f‘ﬁ

(W = Ry) + 8{¥ — (R = c)}], (29)

which is the fixed-g seigniorage Laffer curve. This curve is defined on [R, ¥ + ¢| and is

positive everywhere on this domain except at R, where it is zero. It slope is

0Gy 1 / /
S = (V= R+ 5 (W = (R O [S'(R) — K'(B)] - 5 [S(R) - K(R)). (30)

Proposition 2 establishes four important facts about this alternative seigniorage Laffer

curve:

17Thus IIy = 1/R}?, the steady-state gross inflation rate associated with }Nfg, is the lowest inflation rate that
will allow the government to finance its deficit without increasing the required reserve ratio.
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Proposition 2 The function Gy(R, R™;[3) is [1] strictly concave in R on [R,¥ + | and
[2] upward-sloping in R at R =R. In addition, [3] for any R™ € [0, ¥ +c), there exists 3 > 0

such that the function is upward-sloping in R at R =V if § < [ and downward-sloping in
Rat R=Y if B> 0, and [4] if B = 0, then Go(R, R™; 3) is upward-sloping on R,V + c)
for any R, € [0,V + ¢), but if 5 > 0 there exists an R™ € [0,V + ¢) such that the function
s downward-sloping in R at R=V if R > R,,.

Property [3] is associated with the fact that when § = 0 all seigniorage revenues come
from currency seigniorage — a source of revenue that always becomes more productive
as R rises — while as § — oo the fixed-3 seigniorage Laffer curve converges to the no-
reserve-requirements Laffer curve [¥ — (R — ¢)] [S(R) — K(R)], which is downward-sloping
at R = U+ c. An immediate implication of property [3] is that Gy(R, R™; 3) has an interior
peak in R — that is, a peak on R € (R, ¥ +¢) — iff 3 > 3. Similarly, an implication
of property [4] is that if 5 > 0, then it is always possible to choose R™ high enough so
that Gy(R, R™; 3) has an interior peak in R.!® Note that the fixed-3 seigniorage Laffer
curves are generally similar to the fixed-6 curves, except that they are zero-valued rather than
positive-valued at the endpoints of their domains and may not always have downward-sloping
regions.

Theorem 2 describes some of the implications of Proposition 2 for the effects of monetary
policy conducted by changing the required reserve ratio:

Theorem 2 Suppose that a given value of 8 supports a binding steady state for at least
one value of 8. Then there exist a minimum value Rg and a mazimum value Rs, with
R<Rs < Rz < VU, and an associated minimum value 0 and mazimum value g, with
0<bs < 05 < 1, that are consistent with the evistence of such a steady state; moreover,
any 0 € [05,05] will support a steady state involving R € [Rg, Rg|, where the relationship
between 0 and R is one-to-one and strictly increasing. In addition, unless conditions [1]
and [2] below hold for this value of 3, there exists an Rs € (Rg, Rg) and 0 € (05,05)
such that any increase in 6 starting from 6 € (Qﬁ,gg) that leaves 6 < 55 will produce an
increase in R™, while any increase in 0 starting from 6 € [55,5[3) will have the opposite
effect. Finally, if [1] Go(¥,0,0) > VG and [2] (0/OR)Gy(¥ + c, fz’g,ﬁ) > 0, where Eg”
solves Go(¥ + ¢, R™, 3) = VG, then Rg =V and any increase in 0 starting from 0 € [Qﬁ,?ﬂ)
will produce an increase in R™.

18Note that if R™ > R then the seigniorage Laffer curve crosses the no-reserve-requirement curve from below,
and the former curve may conceivably peak at a point where in lies below the latter curve. Such a peak
cannot be an equilibrium point, since we cannot have R™ > R in equilibrium.
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When conditions [1] and [2] do not hold, the implications of Theorem 2 are similar to
those of Theorem 1. In this case the interval of feasible values of the policy parameter (in
this case #) can be divided into two subintervals: an interval of relatively low values (and
associated real interest rates) from which tightening policy will reduce the inflation rate, and
an interval of higher values from which it will have the opposite effect. When conditions [1]
and [2] hold, however, tightening policy always reduces the inflation rate.

The corollary to Theorem 2 demonstrates that it is always possible for the monetary
authority to set @ = 0, and that conditions [1] and [2] always hold at § = 0 and for a range

of relatively low values of 3:

Corollary 2 Suppose there is at least one positive value of B that supports a binding steady
state. Then any lowerA(non—negative) value of B will also support a binding steady state. In
addition, there exists f > 0 such that conditions [1] and [2] hold for B € [0, ).

Thus, if the monetary authority wishes it can always set 3 at a level low enough to insure
that an increase in the required reserve ratio will always be disinflationary.

Figure 2 displays a situation in which conditions [1] and [2] hold. (Situations of the
opposite type produce diagrams closely analogous to Figure 1.) The initial equilibrium
occurs at a real interest rate of R* and a real fiat money return rate of R™*. The associated
Laffer curve is upward-sloping throughout its length. If the monetary authority tightens
policy by increasing the required reserve ratio, then the level of seigniorage revenues will
rise. A reduction in the inflation rate (an increase in R™ to Em) will be needed to reduce
the flow of revenues; this will produce a downward shift in the seigniorage Laffer curve and
an increase in the real interest rate (to ﬁ) In this case, however, moves to tighten policy
always increase the government’s seigniorage revenues. As a result, increases in the real
interest rate are invariably associated with declines in the inflation rate (increases in R™),

all the way out to R =W +c.
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5 Comparing the effects of the two policy instruments

While open market operations have been the principal tool of monetary policy in recent
years, the required reserve ratio has also been used, on occasion, as an instrument of policy.
The conventional wisdom holds that [1] the effects of an increase in the reserve ratio are
generally similar to those of an open market sale, but that [2] reserve ratio changes have
disadvantages that explain the Federal Reserve’s revealed preference for open market opera-
tions. As Kareken (1960) points out, however, the disadvantages of using the reserve ratio as
a policy tool that are typically cited by the Fed (and repeated in most money-and-banking
textbooks) are not very convincing.”

In Theorem 3 we provide an explanation for both of these two elements of the conventional
wisdom regarding the effects of changes in reserve requirements. We show that whenever
the initial values of # and R fall in the conventional-wisdom range for the current value
of A, then a marginal increase in # will definitely cause the inflation rate to fall. We also
show that when the monetary authority uses a change in the reserve ratio to change the
equilibrium real interest rate, the resulting change in the inflation rate is invariably larger
than it would have been if the authority had engineered the same change in the real rate
via open market operations. Thus, a monetary authority that desired to manipulate the real
interest rate (countercyclically, or for some other purpose) while minimizing the variability
of the inflation rate would have reason to prefer open market operations to reserve ratio
changes.

The analysis that leads to Theorem 3 begins by using the equilibrium conditions of the
model to express R, as a function of R and the policy parameter to be held fixed, so that

the policy parameter of interest is endogenized. In the case where 6 is fixed and policy is

19Kareken observes that “official reasons for making day-to-day adjustments in members banks’ reserve
positions by means of open market sales and purchases will not stand up under close scrutiny, and the same
can be said of the post-Accord record on reserve ratios.” He presents a direct assault on the most frequently-
cited reason for the Fed’s reluctance to conduct policy by changing the reserve ratio — the argument that
substantial changes in the ratio have large, discontinuous effects, while frequent small changes would unduly
complicate banks’ reserve-management problems.
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conducted via open market operations we have
VG =V —-R™OSR)+[¥—(R—0)][(1-6)S(R)— K(R)], (31)

which produces

<8Rj> _ (P —RMOS(R)+[¥— (R— )] [(1 - 0)S'(R) - K'(R)] - [(1-6) S(R) - K(R)]
OR 0 S(R) '
(32)

Notice that the numerator of this expression is equal to the slope of the fixed-( seigniorage
Laffer curve. In the case where (3 is fixed and policy is conducted via reserve ratio changes

we have
S(R) — K(R)

UG =
1+

(W= R™)+ 6 {V - (R-0)}], (33)

which produces

<%> _ (¥~ Rn) + B{¥ — (R~ )}] S (1~ 0) S(R) — K(R)] (34)

OR 6 S(R)
In constructing the last derivative we have used equations (23) and (28) to produce an

expression that that is readily compared with (OR™/0R)g .

Theorem 3 Suppose 6 and (3 support a binding steady state with R < W + c. Then
(OR™/OR)y > (OR™/OR)s. In addition, if 3 < By (or equivalently, R < Ry) in the ini-
tial steady state, so that OR™ /0 > 0, then OR™ /00 > 0.

6 The power of monetary policy
6.1 The effect of monetary policy on nominal interest rates

The gross nominal interest rate is R"™ = R/R™, so that we have

oR™m R - REEoR™™ RO - RO

08 (Rm) 00 ~ (Rm)?

It follows immediately that if OR™/05 = 0 then OR"™™/0F > 0, and similarly for 9/06

— that is, if a tightening of monetary policy does not change inflation rate, then it causes
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the nominal interest rate to rise. Moreover, Proposition 2 implies that for any value of 6
consistent with the existence of a steady state, there will always be a range of values of
([ at which an open market purchase increases the nominal interest rate, and Proposition
4 implies that for any binding steady state involving a sufficiently large value of (3, there
will always be a range of values of # at which an increase in the reserve ratio has the same
effect.?

In this model, there is a simple quantity-theoretic relationship between the steady-state
inflation rate and the steady-state money supply (stock of fiat currency) growth rate: if we
let Z represent the gross growth rate of the money supply, then Z = II¥, where Il = 1/R™ is
the gross inflation rate. Thus our results about the inflationary and real effects of monetary
policy conducted via open market operations or reserve ratio changes can be reformulated as
results about the real effects of policy conducted by means of changes in the money supply
growth rate. Suppose, for example, that we imagine that the government holds the reserve
ratio fixed and uses changes in the money supply growth rate to manipulate the real interest
rate. In this case, if the initial real interest rate lies in the relatively-low range [ﬁg,é@)
then a decrease in the money supply growth rate will cause the inflation rate to fall and
the real interest rate to rise. If R is sufficiently close to Ry, moreover, then the decline in
the inflation rate will be more than offset by the increase in the real interest rate and the
nominal interest rate will fall. Indeed, as R approaches Ry from below the elasticity of the
real interest rate with respect to a change in the money-supply growth rate (or inflation
rate) becomes arbitrarily large. Thus the range of values of R (and 3 or ) just to the left
of the peak of the relevant seigniorage Laffer curve is a range where monetary policy is very
powerful, in the sense that a small decrease in the money supply growth and inflation rates
rate can produce a large increase in the real interest rate.

The logic of this model gives us good reasons to expect that the monetary authority
might often find itself operating in the range of policy parameter values from which marginal

changes in policy have effects that are both conventional and powerful. First, steady states on

20As we have noted, however, some specifications may not support binding steady states involving values
this large.
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the left (relatively low real interest rate) side of the seigniorage Laffer curve are dynamically
stable, while steady states on the right side are not. [See Sargent (1987), pp. 261-262; his
analysis generalizes straightforwardly to this somewhat-more-complicated model.] Second,
agents’ welfare is strictly increasing in the real interest rate. As a result, given a choice of
stable steady states the monetary authority is likely to prefer steady states near the peak of
the seigniorage Laffer curve, since these are the ones that support the highest real interest

rates.?!

6.2 The Tobin effect

One well-known alternative mechanism that might allow changes in monetary policy to have
real effects that are generally consistent with the conventional wisdom is the Tobin (1965)
effect. Under this mechanism, an increase in the money supply growth rate produces an
increase in the inflation rate, which causes agents to substitute out of fiat money and into
physical capital. The resulting increase in the stock of physical capital drives down its
marginal rate of return, which is equal to the real interest rate.??

The trouble with Tobin effects is that they are inherently small. As we have just noted,
the Tobin effect mechanism relies on inflation-induced substitution out of fiat money and
into physical capital. However, the stock of fiat money is very small relative to the stock of
capital, and the empirical evidence suggests that it is not particularly sensitive to changes in
the rate of inflation. As a result, it is hard to imagine that the Tobin effect mechanism could
allow moderate changes in the money growth and inflation rates to produce real effects of

3

any significance.?? Attempts to produce Tobin effects in calibrated models seem to confirm

21Tt may be dangerous to make to much of this welfare result, since if there is heterogeneity among the
members of each generation there may be agents who do not benefit from higher interest rates. See Wallace
(1984).

220rphanides and Solow (1990) provide a survey of the literature on Tobin effects. See also Ahmed and
Rogers (1996) and Azariadis and Smith (1996).

23The U.S. monetary base makes up roughly two percent of total U.S. net assets, most of which consist of
physical capital. Hoffman and Raasche (1991) estimate the nominal-interest elasticity of the real monetary
base as -0.3 to -0.4. This estimate implies that a one percent increase in the nominal interest rate would
cause a decrease in desired real money balances, and thus an increase in the demand for other assets, equal
to roughly 0.2 percent of net asset demand. The decrease in the real interest rate required to accommodate
this asset demand increase would presumably be extremely small.
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this view.?*

In our model, changes in the inflation rate do not affect real activity by producing substi-
tution out of fiat money. Indeed, under our simplifying assumptions changes in the inflation
rate have no direct effect on the demand for fiat money, and decreases in the inflation rate
that have “conventional” real effects actually cause real money demand to fall rather than

rise.?®

Decreases in the inflation rate matter in our model because they produce declines in
currency seigniorage revenues that must be offset by increased revenues from bond seignior-
age. While currency seigniorage revenues are also small in absolute terms, the ratio of
currency seigniorage revenues to revenues from bond seigniorage is an order of magnitude
larger than the ratio of fiat money balances to the capital stock.? Moreover, as the the
real interest rate increases private credit demand falls and the stock of government bonds
rises; this “tax base effect” of the increase in the real rate tends to push bond seigniorage
revenues up rather down. As a result, it takes a relatively large increase in the real interest

rate to allow the “tax rate effect” [the decline in bond seigniorage revenues as R’ rises and

(U — RP) falls] to overwhelm the tax rate effect and produce a decline in revenues.

7 An example

In this section we provide an example that illustrates our basic results. The example spec-
ification is s = 044, a = 0.3, A = 1.02 and n = 1.01 = ¥ = 1.03, and ¢ = 0.05. The
initial monetary policy setting is § = 0.025 and g = 0.7877, and the initial deficit to be
financed is G; = 0.0004426 = UG, = 0.000456. The equilibrium (gross) rates of return are

R* = 1.0504 and II* = 1.05 = R™ = 0.9524, and the associated gross nominal interest

24See Danthine, Donaldson, and Smith (1987) and Romer (1986).
25This happens because a policy-induced decline in the real interest rate increases real labor income, and
money demand is proportional to real labor income.

26During the postwar period, currency seigniorage revenues have averaged approximately 0.4 percent of GDP
while bond seigniorage revenues have been roughly four times larger. These calculations are based on the
average values of M/Y and B/Y during the postwar period, as well as the average postwar values of ¥ — R™
and ¥ — R®. [See Bullard and Russell (1998b).] They are also based on the assumption that the entire
postwar debt has been unbacked by expected future surpluses. If a substantial portion of the debt has been
backed then the postwar ratio of currency to bond seigniorage revenues may have been much larger.
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rate is R = 1.1029. This equilibrium is on the left side, near the peak, of the initial
seigniorage Laffer curve Gz(R, R™*, ). Note that the gross real interest rate paid by private
borrowers (the gross marginal product of capital) exceeds the gross output growth rate by
more than 2 percentage points, while the gross real interest rate on government debt, which
is R = R* — ¢ = 1.0004, is almost 3 percentage points lower than the output growth rate.
If we let Ny =1 then Y;* = 0.5845.

Now suppose the monetary authority wishes to reduce the real interest rate using open
market operations, and is willing to accept a 50-basis-point increase in the steady-state rate
of inflation. It conducts open market purchases until 3 = 0.4892, which produces equilibrium
gross real rates of II = 1.055 = R™ = 0.9479 and R = 1.0423. The associated gross nominal
interest rate is R"™ = 1.0996. This equilibrium is on the left side of the new seigniorage
Laffer curve Gg(R, }?m,e). The inflation rate has increased by 50 basis points, but since
the real interest rate has fallen by approximately 81 basis points the nominal interest rate
has actually decreased (by approximately 33 basis points). The level of output rises to
Vi = 0.5864, which is approximately 0.33 percent above its initial level. The effects of this
experiment on the seigniorage Laffer curve and the equilibrium real interest rate are displayed
in Figure 3.

Next, suppose the monetary authority starts from the same initial equilibrium, but uses
a decrease in the reserve requirement (holding [ fixed) in order to reduce the equilibrium
real interest rate and increase the equilibrium level of output by exactly the same amounts
as in the experiment described above. These targets require it to reduce the required reserve
ratio to 6 = 0.02083. The equilibrium gross real rates are R =R = 10423 and II =
1.0651 = R™ = 0.9389, and the associated nominal interest rate is Rrem = 1.1101. In
this case the desired real-interest-rate reduction (81 basis points) requires an inflation-rate
increase of almost twice its size (151 basis points), so the nominal interest rate increases
(by 72 basis points). The effects of this experiment on the seigniorage Laffer curve and
the equilibrium real interest rate are displayed in Figure 4: note that the seigniorage Laffer

curves Gy(R, R™, 3) and Gy(R, R™, 3) are strictly increasing on [R, ¥ + .
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8 Concluding remarks

In this paper, we have integrated the model of monetary policy devised by Wallace (1984)
with Diamond’s (1965) neoclassical model of production and capital. The result is a general
equilibrium model in which monetary policy can have long-run real effects consistent with
the conventional wisdom: an “easing” of policy, engineered by open market sales or by
decreases in the required reserve ratio, increases the rate of inflation while decreasing the
real rate of interest. The decline in the real interest rate produces a permanent increase in
the level of output, and thus persistent but ultimately temporary increases in the growth
rate of output. We show that, under certain conditions, the decrease in the real interest
rate that is produced by a move to ease policy can be large enough to allow the nominal
interest rate to fall. Under these conditions the ratio of the increase in the real interest
rate to the associated decrease in the inflation rate can become quite large, which means
that monetary policy can have substantial real effects. We also show that changes in the
required reserve ratio are both similar to and different from open market operations as tools
of monetary policy. On one hand, whenever an open market sale affects inflation and real
interest rates in a manner qualitatively consistent with the conventional wisdom, an increase
in the required reserve ratio will also do so. On the other hand, if the reserve ratio is used as
a policy instrument, then the change in the inflation rate necessary to achieve a given change
in the real interest rate will be larger than the inflation-rate change needed to achieve the

same real-interest-rate change by means of an open market sale.

The empirical evidence on superneutrality that provides much of the motivation for our
analysis was collected principally from countries with relatively low inflation rates. Boyd,
Levine and Smith (1997) and a number of other researchers find that for countries with
relatively high inflation rates, increases in the inflation rate tend to reduce the level and/or
growth rate of output but have little effect on real interest rates. This evidence suggests

that the actual effect of inflation on real interest rates and output is a combination of
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an effect of the type we describe, which tends to weaken as the inflation rate rises (see
Section 6.1) and an adverse affect on output that becomes significant only at relatively high
inflation rates and may be caused by the tendency of high inflation to disrupt financial
markets.?”  Azariadis and Smith (1996) describe a model in which increases in inflation
have a Tobin effect on interest rates and output at low inflation rates that is overwhelmed at
higher inflation rates by a financial-intermediation-disruption effect. Integrating the financial
intermediation assumptions of their model with our alternative mechanism for delivering

Tobin-type effects would be a potentially interesting extension of our analysis.

27Boyd, Levine and Smith (1997) comment that “much of the relevant literature indicates that the negative
correlation between inflation and growth performance derives largely from the experiences of relatively high
inflation economies ... .” They go on to identify a number of papers of this type, emphasizing Bullard and
Keating (1995) and Bruno and Easterly (1998). As we have noted, their own results are consistent with
these findings. They also find that “at moderate rates of inflation, marginal increases in predictable inflation
are not matched by increases in nominal equity returns. ... However, in economies where inflation rates
are sufficiently high, nominal stock returns move essentially one-for-one with further increases in the rate of
inflation.” They also report evidence that for countries with high inflation rates, increases in inflation rates
tend to reduce the volume of activity in financial markets.
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Appendix A

A Parameterizing open market policy

As we point out in footnote 12, Wallace (1984) and Espinosa and Russell (1998) use the ratio
of the face value of the bond stock to the stock of currency as their open-market-operations
parameter. If we call the latter ratio [y, then we have § = §y (R/R™). There is a clear sense
in which the Wallace et al. procedure is more realistic. An open market sale unambiguously
increases (3, but does not unambiguously increase (3: it is conceivable that an increase in [,
might cause a decrease in the gross nominal interest rate R/R"™ large enough to cause 3 to
decline.

Using ( as the open market operations parameter has two closely related advantages.
First, it produces a dramatic simplification of the analysis. Second, while it is easy to
show that a marginal increase in  always increases the real interest rate (see below), a
marginal increase in Jy may not always do so: when # and 3y move in opposite directions, a
marginal increase in By will cause a marginal decline in R, and vice-versa. Thus, whichever
parametrization of policy we choose, it will always be possible for the monetary authority
to find that a “tightening” of policy (an increase in R) requires an open market purchase.
However, if the authority simply conducts whatever open market purchases or sales turn out
to be necessary to move 3 in the desired direction, it can be confident that R will change
in the same direction. It seems to us that this story is generally consistent with the Federal
Reserve’s operating procedures in recent years: the FOMC directs the trading desk at the
New York Fed to conduct the open market operations necessary to achieve a target interest
rate, without specifying the nature (purchases or sales) or amount of these operations.

One consequence of our parametrization is that if the monetary authority attempts to
change the required reserve ratio while holding 3 fixed — which is the way we model monetary
policy when the reserve ratio is used as the policy instrument — then it will typically also
have to conduct small open market purchases or sales, because the associated change in the

nominal interest rate will change the value of (.
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B Proofs:

Proof of Lemma 1: [1] Equations (1) and (4) imply
K'(R) 10

S'(R)  s(1—a) R’

as s € (0,1), « € (0,1), and 0 < ¢ < \IJ([S(l—a)]_l—1> by assumption, we have
K'(R)/S'"(R) > 1 on (0,¥ + ¢]. As both K'(R) and S'(R) are negative, we have K'(R) <
S'(R) on (0,V + .

[2] Equations (3) and (6) imply

K'(R)  2-a ¥

S(R) s1-a)R

Since o € (0, 1) implies 2 —a > 1 we have K”(R)/S"(R) > 1 on (0, V + ¢] (see above). This
time K”(R) and S”(R) are positive, so we have K”(R) > S"(R) on (0,¥ + ¢|.

Proof of Proposition 1: [1] We need to show that

o (0 m.
ﬁ <ﬁG/g(R,R ,9)) < 0.

Differentiation of equation (24) establishes that the expression in question is
(V= R™)0S"(R)+ [V — (R=0)] [(1-0)S"(R) - K"(R)] - 2[(1 - 0)S"(R) — K'(R)] .
Sufficient would be
vHS"(R)—2[(1-6)S"(R)— K'(R)] <0,

since WO S"(R) > (V—R™)0S"(R) for R™ € [0,¥) , and (V—R—c) [(1-0)S"(R)—K"(R)] <
0on R € (Ry,¥ + c). The latter inequality follows from the fact that K”(R) > S”(R) on
(Ry, ¥ + ¢), which was established in Lemma 1.

Now

W0S"(R) —2[(1—0)S'(R) — K'(R)] <0
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S'(R)  K'(R)
vo<2|(1 Q)S”(R) SR
Equations (1), (5), and (6) imply
S'(R) _ (R) _ V¥
(R (1-—a)R and SR s
which gives us
Vo <2 %—(1—0)(1—&)1?
1_9
= o S 2

1 — < s 2
LA TR Y R
Assumption I gives us
c 1
1+ =<
LAY
so sufficient would be
L . ik s120.1 &5 <2
-—=&s
s(l—a) (1-0)(1-«) s s

[2] Equation (24) implies that at R = W + ¢ the slope of the seigniorage Laffer curve is
(W —R™MOS' (V+c)— [(1-60)S(¥+c)— K(V+c).

We know that (1—6)S’(R) — K'(R) > 0 on (Ry, ¥V +¢) and that (1 —0)S(Ry) — K(Ry) =0,
where Ry < U. It follows that (1 — 0)S(¥ +¢) — K(¥ +¢) > 0.

[3] Equation (24) implies that at R = R, the slope of the seigniorage Laffer curve is

(U = R™) 65 (By) + [V — (By — )] [(1 - 0)S"(By) — K'(By)] -
We need to show that this is positive. Since S'(R) < 0 and R™ € [0, V), sufficient would be
O S' (By) + [V — (By — )] [(1—0)S"(By) — K'(By)] > 0,
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which is equivalent to

VO < ¥ - (B - o) g~ (1)

Using equations (2), (5), (16) and (17) we have

K'(R) 1 v a 7

SR si-ar M L= ATy

SO
K'(
S(

This leaves us with

Ry R
ﬁg): - and S,<ﬁ0)—(1—0):(1—0) -

VO < [V (By— )] (1-0)

Now

U—(Ry—c)=1 [1

producing the condition

which resolves to

(l—o)—erdn (1+3)-mm (1+§)-—un%y '

) _1-46 K'(Ry) -«

6< - = c o
14 dizal =t (I+g)+15
Now define
s (1+5) - w5
(1+3)+ 15
We have
_ 1+ <&
0 = <c >a gmax-E|
I+$)+3

Supplementary note: If R™ > 0, then the threshold value of # will be higher than 6. In

particular, if R™ > 0 then the appropriately revised version of inequality (B.2) is

«

(W= R™)6 < (¥—Ry—c)(1-90) ]

l—«
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or equivalently
7 _ (V—Ry—¢)1l —«
1-46 (I —R™)  «a
If R™ > R, then sufficient would be

0 1l -«
0<1-—
1_9< o =0 < o

and it is readily seen that this condition holds for any 6 € (0, Omay). Thus, in this case there

does not need to be any additional restriction on 6.

Proof of Theorem 1:
Equation (27) implies

(A~ 0)S'(R) - K'(R)|0S(R) — 05 (R)[(1 ~ 0) S(R) — K(R)]

i = 7S

Since S’(R) > 0, and (1—0) S(R)— K(R) > 0 on [Ry, ¥ +¢|, Lemma 1 implies that 3j(R) > 0

on [Ry, ¥ + ¢|: for fixed 6, the relationship between § and R is monotone increasing,.

By hypothesis, there exist some Ry € (Ry, ¥ +c¢) and R’ € (0, R), with 8y = By(Ry) > 0,
such that Gg(Ry, Ry*;8) = YG. Since Gg(R, R™;0) is strictly increasing in R™, we have
Gs(Ro,0;0) > UG.

Case A: Suppose 0 S(Ry) < G; we then have Gg(Ry,0;0) < ¥G. By Proposition 1,
Gs(R, R™;0) is upward-sloping at R, and strictly concave in R. It follows that there exists
a unique value Ry € (Ry, Ry) at which G3(R,0;0) = VG. We must have G(R,0;6) < VG
at each R < Rp; it follows that no such value of R can support a steady state, since this
would require R™ < 0. Since [y > Ry and 3 = 0 at Ry, the monotone-increasing relationship
between [ and R implies 8y > 0. Since S’(R) < 0, we have 0 S(V + ¢) < 6 S(R,) and thus
0S(V +c¢) < G;an argugent analogous to the one just presented implies that R™ = 0 is
associated with an ﬁg € (Ry,¥+c¢) and a Eo > [y which represent the maximum values of
R and [ that support a steady state.

Note that equation (23) can be rewritten

Ga(R, R™;0) = [(R—¢) = R"] 0.5(R) + [V — (R —¢)] [S(R) — K(R)] . (B.3)
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By Assumption II we know that there exists Rf* € (0, V) such that G(R, Rj*;0) < ¥G for all
R € [Ry, V+¢]. Let D(R™;0) represent the value of G(R, R™;6) — VG at the (unique) value
of R at which (0/0R) G(R, Rj*;0) = 0. We know D(0;6) > 0 and D(R{*;0) < 0. In addition,
D(R™;0) is continuous in R™, and it follows that if we decrease R™ by an arbitrarily small
amount then we shift G(R, R™; 0) upward by a range of positive but arbitrarily-small values.
This means that the maximum value of G(R, R™;0) will increase by an arbitrarily small
amount. It follows that there is a unique value Rj* € (0, R') at which D(R™;8) = 0.
Since G(R, R™;0) is strictly concave in R, the value Ry that solves G(Rg, ~f,?””;@) = VG
must be a tangency value. In addition, since G(EQ,Rm;H) > UG for R™ < JSLZL, and
since (¥ — R,,) 0S(Ry) < YO S(Ry) < VG and (¥ — R,,)0S(V +¢) < (¥ — R,,)0S(Ry) <
WHS(R,) < UG for any R™ > 0, it follows that for any R™ € [0, R™) there is a steady
state involving R € [Ry, R™) and another steady state involving R € (R™, ¥ + ¢). Moreover,
since G(R, R™;0) is continuous in both R and R™, as R™ increases the value of R in the
lower steady state declines continuously and the value of R in the high steady state rises
continuously. Finally, the monotone-increasing relationship between R and (8 implies that

there is a Bg > 0 such that the value of R™ increases as ( increases from [y to Bg and

decreases as (3 increases from [y to 3,.

Case B: Suppose 0 S(Ry) > G. Assumption Il implies [V — (Ry — ¢)] [S(Ry) — K(Ry)] <
UG, and equation (B.1) then implies that for R™ sufficiently close to Ry we also have
G(Ry, Ry, 0) < WG. Tt follows that there is a unique value Rp* € (0,R,) such that
G(Ry, Ry';0) = VGE. Equation (23) demonstrates that the associated steady state involves
B = 0. Since G(Ry, Ry";0) > G(Ry, R™;0) for R™ > Ry', we have existence of By > 0 and
Ry > Ry, and comparative statics on Ry, E@) and (3 € |0, Be) as above.

Case B1: If § S(¥+c) > G then there exists R™ € (0, ¥) such that (I —R™) 0 S(V+c¢) =
VU, and the maximum values of R and 3 that support binding steady states are ﬁe =U+c
and B, = [(1—0)S(¥ + ¢) — K(V + ¢)]/[#S(V)], respectively.

Case B2: If 6 S(¥ + ¢) < G then there are values Ry < U +cand B, = [(1— 60)S(Ry) —
K (ﬁg)] /[0S (ﬁg)] that support a steady state with R™ = 0; by analogy with Case A above
(but on the other side of the Laffer curve), these are the maximum values of R and ( that

support binding steady states.

In both these cases, comparative statics on (Rg, ﬁg) & (Bg, EQ) operate and are established
as in Case A. O
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Proof of Corollary 1: Define

[V — (B )] [S(R) - K(B)]

Grr(R) = T

Under Assumption 1, this function is positive on the interior of [R, ¥ + ¢|. It is also readily
seen to be strictly concave on this interval, equal to zero but strictly increasing at R = R, and
equal to zero but strictly decreasing at R = W. Let R € (R, U +c¢) solve (0/OR) Grr(R) = 0;
the preceding analysis implies that R exists and is unique. Let G=G LF(R) ; the preceding
analysis also implies that G is the maximum value of Gz on [R,¥], so that if G > G then
[V — (R—0)][S(R) — K(R)] < ¥G for all R € (R, V). Assumption I implies 0,.x > 0; it
also implies the existence of at least one 0 c (0, 0max) such that Ry € (R, fAi] Choose 6 and
R™ e (0,R). Let

~

G=(U—R™MOS(R)+ [¥ — (R—c)] [(1-0)S(R) - K(R)] .

»
)
)

We have G = G+ (R—R™0S(R) > G. In addition, Rj < R implies (1—0)S(R)— K (R) > 0;
o 0

Proof of Proposition 2: [1] We need to show that

o (0 m.
9B <ﬁG9(R7R 7ﬁ)> <0

for R € [R, ¥ + ¢|. Differentiation of equation (30) reveals that the expression in question is

1

5 ([(¥ = Rp) + B(¥ = R)|[S"(R) — K"(R)] - 26[5"(R) — K'(R)]).

The result then follows from Lemma 1.

[2] At R =R we have S(R) — K(R) = 0. Equation (30) then reduces to

0Gy 1 : /
o5~ 1o (V= Ba) + 800 = B [S'(B) - K'(B).

which is positive as above.
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[3] At R = ¥ + ¢ equation (30) becomes

0Gy  [(V—=R,)[S'(V+c)— K'(¥+c)]—F[S(V+c)— KT+ )] '

OR 1+

Assumption I and Lemma 1 imply that this derivative is positive at 8 = 0. As § — oo,
however, 0Gy/OR — —[S(¥ + ¢) — K(V + ¢)] < 0. Moreover, the numerator of 0Gy/0R
is strictly decreasing in 3, so it follows that there is a unique positive value of § at which
0Gy/OR = 0, with 0Gy/OR < 0 for smaller values of 5 and 0Gy/IR > 0 for larger values.

[4] When (3 = 0 equation (30) becomes

8G9 ! /
-5 = (V= Ry) [$'(R) - K'(R)],

which is positive on R € [R, ¥ + ¢] for any R™ < W. However, when § > 0 it is always
possible to find R™ below but sufficiently close to ¥ such that

(¥ = Rp)[S"(¥) = K'(W)] < BIS(¥) — K(V)],

which implies (0/0R) Go(¥, R™;0) < 0.

Proof of Theorem 2: Inspection of equation (29) reveals that Gy(R, R™; 3) is strictly
decreasing in R™ and is equal to zero at R = R. Proposition 2 then implies that if there are
any binding steady states then there must be a steady state with R™ = 0. As in Theorem
1, the minimum values of R and # must be the values associated with R™ = 0; in this case,

however, we must have R3 > R and g3 > 0.

Case A: Suppose 8 > 0 and Gy(R,0; /) is downward-sloping at R = ¥ + ¢. Then
by property 3 from Proposition 2, the function Gy(R, R™; ) must be a downward-opening
paraboloid for any value of R™.

Case A1: Suppose Gyo(¥ + ¢,0; 3) > WG. In this case, since Gy(¥ + ¢, ¥; 3) = 0, there
must be an R™ € (0, V) such that Gy(¥ + ¢, R™; 3) = VG, and it follows that ¥ + ¢ and
[S(T+¢) — K(¥ +¢)]/[(1+ 5)S(¥ + ¢)] are the maximum values of R and 6, respectively.
We may proceed as in Theorem 2 to demonstrate the existence of an Rg € (Rs, ¥ + ¢) and
gﬁ € ,Eﬂ) that separate the region where 9R™ /06 > 0 from the region where OR™ /06 > 0.
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Case A2: Suppose Gy(¥ + ¢,0;3) < ¥G. In this case the maximum values of R and
0 are the values associated with the steady state on the right side of the seigniorage Laffer

curve when R™ = 0, but the analysis is otherwise identical.

Case B: Suppose § > 0 and Gy(R,0; () is upward-sloping at R = ¥ + ¢. Case BI:
Suppose Gy(V+c, 0; 3) > ¥G. Let R™ represent the value of R™ at which Go(V+c, R™; ) >
U@, Case Bla: Suppose Gy(R, R™; 3) is upward-sloping or flat at R = ¥ +4c and R™ = R™.
(In this case conditions [1] and [2] hold.) Then we know by Property 3 that Gy(R, R™; 3) is
upward-sloping in R at R = ¥ + ¢ for any lower values of R™. It follows that there are no
steady states for higher values of R™, and that the maximum values of R and R™ are ¥ + ¢
and O = [S(V+c)— K(VU+c)]/[(1+8)S(¥+-c)]. It also follows that every seigniorage Laffer
curve that supports a steady state is upward-sloping throughout R € [R, V], and thus that
no seigniorage Laffer curve supports more than one steady state. Consequently, any increase
in 6 that leaves 6 < gﬁ must be accompanied by an increase in R™. Case B1b: Suppose
Go(R, R™; 3) is downward-sloping at R = ¥ + ¢ and R™ = f{m; this case is essentially
identical to Case A1l above. Case B2: Suppose Go(V¥ + ¢, 0; §) < ¥G. In this case we know
that Gy(R,0; 3) must be downward-sloping in R at R = ¥ + ¢, and the analysis proceeds as

in Case A2 above.

Case C: Suppose § = 0. Then we must have Gy(¥ + ¢,0;0) > UG, and we know that
Go(R, R™;0) is upward-sloping throughout R € [R, ¥ + ¢ for every R™ € (0,V + ¢). (It

follows that conditions [1] and [2] hold.) This case is essentially identical to case Bla.

Proof of Corollary 2: By hypothesis, we have a 3, > 0 such that Gy(Ry, R"; 5y) = VG
for some Ry € (R, V + ¢) and some RJ' € (0, Ry). Differentiation of equation (29) reveals
that 5 B (R

%GQ(R R™; ) = #
so Gy is decreasing in 3 whenever R € (R, V + ¢] and R™ € (0, R — ¢). Consequently, we
have Go(Ro, R{'; ) > WG for any 5 € [0,5y). And since Gy(R, R™; 3) = 0 for any relevant
values of R™ and (3, we know that there is a steady state involving R € (R, Ry) for any such
value of 3. [Note that if Gy(R, R{';3) = VG involves Rj* > R — ¢, we can always replace

R{" with some R™ € [0,R — ¢).]

[S(R) — K(R)],
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It follows from Proposition 2 that if we choose # above but sufficiently close to zero, we
can ensure that there are steady states for some values of R™, and also that the seigniorage
Laffer curve is upward-sloping at R = ¥ + ¢ except for R™ sufficiently close to W. These
two properties imply that for J sufficiently close to zero, the curve is upward-sloping at the
value of R™ such that Gy(¥ + ¢, R™; 5) = VG.

We know that for § sufficiently close to zero, the value of R™ that supports a steady
state when R = W + ¢ is discretely smaller than ¥. And since 0Gy/93 < 0 at R = ¥ + ¢,
we also know that as (3 increases this value of R™ falls continuously. We know that for 8
sufficiently close to zero, the value of R, at which 0Gy/OR = 0 at R = ¥ + ¢ can be driven
arbitrarily close to ¥. We can also show that as 3 increases this value falls continuously: if
0Gy/OR =0 at R = VU + ¢, we must have

(U —R™M[S"(¥+c)— K'(V+c)]=0[S(¥+c)— K(U+0);

total differentiation with respect to R™ and (3 then produces
dR™ S' (U +c¢)— K'(¥ +¢)
A3~ S(U+c)— KW +c)
The analysis presented above establishes that there are two possibilities as 3 increases
from zero: Case 1: At the value of 3 at which the steady state with R = ¥ + ¢ involves
R™ =0, the value of R™ at which 0Gy/0R = 0 is greater than zero. In this case, conditions

[1] and [2] hold for any values of  consistent with a steady state. Case 2: There is some

positive value of 3 at which the value of R™ that supports a steady state involving R = ¥ +c¢
also involves 0Gy/OR = 0. For lower values of 3, conditions [1] and [2] hold; for higher values,
they do not. O

Proof of Theorem 3: We have
S T
OR 1+8

The expression in parentheses can be rewritten

¥ — Ry) + 80 = (R=o)]][S'(R) = K'(R)] = 8 [S(R) — K(R)]).

(0 = Ra) + 810 — (R = )] [08'(R)+(1-6)S'(R)~ K'(R)| 3 [0S (R)+ (1-0)S (R)~ K (R)]
which can be further rewritten
B (¥ = Ry)0S'(R) + [V — (R—0)] [(1 -0)S(R) — K'(R)] - [(1 - 0)S(R) — K(R)]) +
(1=B)(Y = Rpy)0S' (R) + B[¥ — (R— )] 05" (R) + (¥ — R,,)[(1 - 0)S"(R) — K'(R)] — BOS(R).
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We know that when g < Bg the term multiplying 3 in the first expression is non-negative —
it is 0G3(R, R™;0) — so this term can be rewritten

(A=B) (V=R )05 (R)+6 [ — (R — )] 05" (R)+(¥—Rn)[(1-0)5"(R)—K'(R)|— 805 (R) +9,
where €2 > 0. This expression can be rewritten
(U= [(1 = B)Ru + B(R = c)]) 05" (R)+(V—R,)[(1-0) 5" (R) - K'(R)] - [(1-0) S (R)— K (R)]+5%,

using the fact that P,B = (1 — 0)S(R) — K(R) = $0S(R), or equivalently

(V= Rp)0S'(R) + [V = (R = )] [(1 = 0)5"(R) — K'(R)] — [(1 - 0)S(R) — K(R)]+
BRm — (R =) 05'(R) + [(R = ¢) = Ru] [(1 - 0)S"(R) — K'(R)] + 59,
which is
[(R—c¢) = Rn][(1=0)S'(R) = K'(R)] = B[(R—¢) = Rp] 0.5'(R) + (1 + 5) 2> 0.

Thus we have 0Gy/OR > 0 at any values of 6 and 3 that support a steady state at which
B < By.
We want to show that (OR™/OR)y > (OR™/OR)s, which is equivalent to

(V= R) +B[Y = (R—¢)]
1+

[S'(R)=K'(R)] > (Y—=Rp) 0 S"(R)+[¥ — (R —¢)] [(1 - 0)S'(R) — K'(R)].
Multiplying both sides by 1 4+ 3 and cancelling a number of common terms produces

BlBm = (R=0)] 05 (R) > [Rp — (R— )] [(1 - 0) S'(R) — K'(R)]

(1—6)S'(R)— K'(R) — 30 S'(R) >0

which is true for any R € (R, ¥ +¢). O
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