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1 Introduction

The college admissions process has lately been the object of much scrutiny, both from

academics and in the popular press. This interest owes in part to the strategic nature of

college admissions, as schools use the tools at their disposal to attract the best students.

Those students, in turn, respond most strategically in making their application decisions.

This paper examines the joint behavior of students and colleges in a matching framework.

We develop and flesh out an equilibrium model of the college admissions process,

with decentralized matching of students and two colleges — one better and one worse,

respectively, called 1 and 2. The model captures two previously unexplored aspects of the

‘real-world’ problem. First, each college application is costly, and second, colleges only

observe a noisy signals of each student’s caliber. We assume that colleges seek to fill their

capacity with the best students possible. Students meanwhile must solve a nontrivial

portfolio choice problem. This tandem of noisy caliber and costly applications feeds the

intriguing conflict at the heart of the student choice problem: Gamble on Harvard, settle

for Michigan, or apply to Harvard while insuring with Michigan. By the same token,

college standards are endogenous, reflecting student preferences and their capacities.

By analyzing how college and students interact in equilibrium, we make four main

contributions. First we determine when students sort by caliber into colleges. Second, we

provide a graphical framework for the analysis of the system. Third, we show how cost

and noise induce an indirect interdependency between the colleges, producing externali-

ties between their decisions. Finally, we apply the model to the topical issues race-based

and early admissions. We show that race-based affirmative action by one college pro-

duces an acceptance curse effect at the other. We also compare binding and non-binding

early admissions programs and explain why better colleges may desire neither.

A central question addressed in this paper is: Do the best students apply to the best

colleges, and does college 1 impose a higher admission standard than 2. Student sorting

requires that two forces cooperate. First, student applications must increase in their

caliber. Specifically, we argue that this means that: (i) the best students apply just to

college 1; (ii) the middling/strong students insure by applying to both colleges 1 and 2;

(iii) the middling/weak students apply just to college 2; and finally, (iv) the weakest

students apply nowhere. We show that this need not occur in equilibrium.

Next, it may be easier to gain admission to college 1 if its capacity is too large for
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its caliber niche — as with a large high quality state college. For in that case a curious

inversion may arise, as college 2 may screen applicants more tightly than college 1.

College standards reflect not only the quality of the college but also their capacity.

Our first contribution is an analysis of college-student sorting. If colleges are close

in quality, then sorting may be impossible in well-behaved signal distributions. Also,

college size and quality are substitutes, since a smaller worse college may set higher

admissions standards in equilibrium. We prove that only sorting equilibria exist if the

colleges differ sufficiently in quality, and the higher ranked school is not too small.

Our second contribution is methodological: We provide an intuitive graphical analysis

of the student choice problem that fully captures the application equilibrium. We hope

that this framework will prove a tractable workhorse for future work on this subject.

It embeds both the tradeoffs found in the search-theoretic problems analyzed by Chade

and Smith (2006), and the colleges’ choice of capacity-filling admission standards.

In our third contribution, we uncover some new externalities between the colleges.

Absent noise, the better college does not care about decisions made by the lesser. But

we show that admissions standards at both colleges fall if college 2 raises its capacity.

Harvard is thus affected by admissions policies at the University of Chicago. Moreover,

the better ranked college profits from higher application costs charged by either school.

Our fourth contribution are two applications of our framework. We show that when

the better college introduces affirmative action policies to increase diversity, the weaker

college should optimally discriminate against minority students unless it too has a pref-

erence for diversity. This result stems from an “acceptance curse” effect: A student’s

enrollment at the weaker college is bad news since it indicates that she was not admitted

at the better college, but is especially bad news if that student was advantaged by af-

firmative action at the better college. Moreover, greater student diversity at one college

necessarily comes at the expense of reduced diversity at its rival.

Next, our framework affords an analysis of early admissions programs. We show that

top colleges benefit little from them. Further, binding early admissions programs are

more effective for a college than non-binding programs, as any outcome a college may

achieve with a non-binding program can also be a achieved with a binding one.

The paper is related to several strands of literature. Gale and Shapley initiated

the college admissions problem in their classic 1962 work in the economics of matching.

As the prime example of many-to-one matching, it has long been in the province of
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cooperative game theory (e.g. Roth and Sotomayor (1989) and (1990)). Our model

differs by the assumption that matching is decentralized and subject to two frictions —

the application cost and the noisy evaluation process. To analyze these features in a

simple fashion, we posit homogeneous preferences and consider a model with only two

colleges. With these restrictions, we view our model as a tractable benchmark analysis

of what is otherwise a difficult equilibrium problem.

We focus on the sorting question. This has been an organizing question of the

two-sided matching literature since Becker (1973). Shimer and Smith (2000), Smith

(2006), Anderson and Smith (2007) and Chade (2006) have analyzed sorting in models

with search frictions under alternative informational assumptions. In these papers, both

sides play symmetric roles. But in this many-to-one college admissions setting, the sides

play different roles, as colleges control standards while students choose application sets.

Other recent papers have examined matching under in a decentralized or noisy world,

but have instead asked under which conditions stable matchings will emerge (Niederle

and Yariv (2007), Chakraborty, Citanna, and Ostrovsky (2007)).

The student portfolio problem embedded in the model is a special case of the simul-

taneous search problem solved in Chade and Smith (2006). Here, we use their solution to

characterize the optimal student application strategy. However, the acceptance chances

here are endogenous, since any one student’s acceptance probability depends on which

of her peers also applies to that school. Thus, this paper is also contributes to the litera-

ture on equilibrium models with nonsequential or directed search (e.g. Burdett and Judd

(1983), Burdett, Shi, and Wright (2001), and Albrecht, Gautier, and Vroman (2003)), as

well as Kircher and Galenianos (2006). Another related paper is that of Nagypál (2004),

who analyzes a model in which colleges know student types, but students themselves can

only learn their type through normal signals. Arguably, neither students nor colleges

know the true talent; however, we feel that students have the informational edge. And

finally, Chade (2006) introduced the acceptance curse notion with type uncertainty. Lee

(2007) recently shows that early admissions programs can mitigate such effects.

The paper is organized as follows. The model is found in Section 2. Section 3 presents

the equilibrium analysis, focusing on the question of whether sorting occurs. Section 4

presents comparative statics results. Section 5 applies our framework to race-based

admissions policies, while Section 6 takes up early admission. Section 7 concludes.
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2 An Overview of the Environment

We impose very little structure and concentrate on the essential features of the problem.

We ignore the important consideration of heterogeneity in preferences of students over

colleges or vice versa. Instead, we focus on two key frictions. First, student applications

to colleges are costly. In practice, such costs can be quite high, as attested by the

recent popularity of the “common application”, whose sole purpose is to lower the cost

of multiple applications.1 Without application costs, there is no role for student choice.

Second, signals of student calibers are noisy. This informational friction creates

uncertainty on the student side, and a filtering problem for colleges. It captures the

difficulty faced by market participants, with students choosing “insurance schools” and

“long shots”, and colleges trying to infer the best students from noisy signals. Without

noise, sorting would be trivial: Better students would apply and be admitted to better

colleges, for their caliber would be correctly inferred and they would be accepted. As

we will see, sorting is less easily achieved with both costs and noise. Indeed, there is a

richer role for student choice with both application costs and noisy outcomes.

We also make two other key modeling choices. First, we assume just two colleges.

This is done for the sake of tractability. The n-college problem is very important, but

will remain a challenging open problem in this literature for many years to come. We also

fix their capacity. This is most defensible in the short run, and so it is best to interpret

our model as focusing on the “short run” analysis of college admissions. We also assume

that students apply to all their colleges first, and then colleges decide simultaneously

whom to admit. However, we later briefly explore the possibility of “early admissions”.

The final important assumption is that signals of student calibers are conditionally

independent. This is justified if — before applying to college — students are apprised of

all variables common to their applications, such as any standardized achievement score

— ACT/SAT/GMAT, or their GPA. This allows them to determine their caliber. Then

based on this, they decide on specific schools to apply to, adding costly and idiosyncratic

elements to their applications such as college-specific essays and interviews. Students

are uncertain as to how these idiosyncratic elements will be evaluated. We treat the

resulting signal as conditionally independent across colleges.

1The “common application” is a general application form that is used by over 150 colleges in an
effort to simplify college applications.
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3 The Model

There are two colleges 1 and 2 with capacities κ1 and κ2, and a unit mass of students with

calibers t whose distribution has a density f(x) over [0,∞). We avoid trivialities, and

assume that college capacity is insufficient for all students, as κ1 + κ2 < 1. Each college

application costs a student c > 0. Preferences coincide, with all students preferring

college 1. Everyone receives payoff 1 for attending college 1, u ∈ (0, 1) for college 2, and

no payoff for not attending college. To avoid trivialities, we later bound application costs

above. Students maximize expected college payoff less application costs. College payoff

equals the average enrolled student caliber times the measure of students enrolled.

Students know their caliber, and colleges do not. Appendix A.1 shows how our results

can be at once re-interpreted if x is a student’s signal of his own caliber. Colleges 1 and 2

each just observes a noisy conditionally independent signal of each applicant’s caliber.

In particular, they do not know where else students have applied. Signals σ are drawn

from a conditional density function g(σ|x) on a subinterval of R, with cdf G(σ|x). We

assume that g(σ|x) is continuous and obeys the strict monotone likelihood ratio property

(MLRP). So g(τ |x)/g(σ|x) is increasing in the student’s type x for all signals τ >σ.

Students apply simultaneously to either, both, or neither college. This strategy se-

lects for each caliber x, a college application menu S(x) in {∅, {1}, {2}, {1, 2}}. Colleges

receive student applications, and having already decided upon the sets of student signals

to accept.2 They intuitively should use admission standards to achieve their objective

functions — college i admitting students above a threshold signal σ i. This follows if bet-

ter signals come from better expected students. Appendix A.2 proves this property, even

though college 2 faces an acceptance curse: it sometimes accepts a reject of college 1.

For a fixed admission standard, we want to ensure that very high quality students

are almost never rejected, and very poor students are almost always rejected. For this,

we assume that for a fixed signal σ, we have G(σ|x) → 0 as x→ ∞ and G(σ|x) → 1 as

x→ 0. For instance, exponential signals have this property G(σ|x) = 1− e−σ/x. A large

signal family is the location family, in which the conditional cdf of signals σ is given

by G((σ − x)/ρ), for any smooth cdf G and ρ > 0 — eg. normal, logistic, Cauchy, or

uniformly distributed signals. The strict MLRP then holds if logG′ is strictly concave.

2Alternatively, colleges could first commit to an admission standard. This yields the same equilibria
until we study affirmative action (proof omitted), and lends itself to some sharper analysis. In the
interests of a unified treatment throughout the paper, we proceed in the simultaneous move world.
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4 Equilibrium

An equilibrium is a triple (Se(·), σe
1, σ

e
2) such that

(a) Given (σe
1, σ

e
2), S

e(x) is an optimal college application portfolio for each x,

(b) Given (Se(·), σe
j), college i’s payoff is maximized by admissions standard σe

i.

In a sorting equilibrium, colleges’ and students’ strategies are monotone. This means

that the better college is more selective (σe
1 > σe

2) and higher caliber students are

increasingly aggressive in their portfolio choice — namely, Se(x) is increasing in x under

the “strong set order” ranking ∅ ≺ {2} ≺ {1, 2} ≺ {1}. This order captures an

intuitive increasing aggressiveness in student applications: The weakest apply nowhere;

better students apply to the “easier” college 2; even better ones “gamble” by applying

also to college 1; the top students dispense with a college 2 “insurance” application.

Alternatively, monotone strategies ensure the intuitive result that the distribution of

student calibers at college 1 first-order stochastically dominates that of college 2 (see

Lemma 3 in Appendix A.8), so that all top student quantiles are larger at college 1.

This is the most compelling notion of student sorting in our environment with noise.

Our concern with a sorting equilibrium may be motivated on efficiency grounds. If

there are complementarities between student caliber and college quality, so that welfare

is maximized by assigning the best students to the best colleges, any decentralized

matching system must necessarily satisfy sorting to be (constrained) efficient. Since

formalizing this idea would add notation and offer little additional insight, we have

abstracted from these normative issues and focus on the positive analysis of the model.

5 The Student Optimization Problem

We begin by examining the student application decision, taking the college thresholds as

known and fixed. The problem of selecting an optimal college application set for a given

set of acceptance probabilities is in general hard, but an algorithm has recently been

provided by Chade and Smith (2006). In our two college case, the solution is somewhat

straightforward, and may be depicted graphically. From the graph, we can easily deduce

sufficient conditions for monotone student behavior.
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Consider the portfolio choice problem for a student facing the admission chances

0 ≤ α1, α2 ≤ 1. The expected payoff of applying to both colleges is α1 + (1 − α1)α2u.

The marginal benefit MBij of adding college i to a portfolio of college j is then:

MB21 ≡ [α1 + (1 − α1)α2u] − α1 = (1 − α1)α2u (1)

MB12 ≡ [α1 + (1 − α1)α2u] − α2u = α1(1 − α2u) (2)

The optimal application strategy is then given by the following rule:

(a) Apply nowhere if costs are prohibitive: c > α1 and c > α2u.

(b) Apply just to college 1, if it beats applying just to college 2 (α1 ≥ α2u), and

nowhere (α1 ≥ c), and to both colleges (MB21 < c, i.e. adding college 2 is worse).

(c) Apply just to college 2, if it beats applying just to college 1 (α2u ≥ α1), and

nowhere (α2u ≥ c), and to both colleges (MB12 < c, i.e. adding college 1 is worse).

(d) Apply to both colleges if this beats applying just to college 1 (MB21 ≥ c), and

just to college 2 (MB12 ≥ c), for then, these solo application options respectively

beat applying to nowhere, as α1 > MB12 ≥ c and α2u > MB21 ≥ c by (1)–(2).

This optimization problem admits an illuminating and rigorous graphical analysis.

The left panel of Figure 1 depicts three critical curves: MB21 = c,MB12 = c, α1 = uα2.

From (1) and (2), we see that all three curves share a crossing point, sinceMB21 = MB12,

when α1 = uα2. Since MB12 = c(1 − c) < c, this crossing point lies above and right of

the point α1 = uα2 = c, below which applying anywhere is dominated.

Throughout the paper, we assume that c < u(1 − u). For if not, then the curves

MB21 = c and MB12 = c cross a second time inside the unit square.3 The analysis then

trivializes because multiple college applications need not occur.

Cases (a)–(d) partition the unit square into regions of (α1, α2) that correspond to

each portfolio choice, suggestively denoted Φ, C2, B, C1. These regions are shaded in

the right panel of Figure 1. This picture summarizes the optimal portfolio choice of a

student with arbitrary admissions chances (α1, α2).

3For if α2 = 1, then MB21 = c and MB12 = c respectively force α1 = 1− (c/u) and α1 = c/(1− u).
Now, 1 − (c/u) > c/(1 − u) exactly when c < u(1 − u).
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Figure 1: Optimal Decision Regions. The left panel depicts (i) a dashed box, inside
which applying anywhere is dominated; (ii) the indifference line for solo applications to col-
leges 1 and 2; and (iii) the marginal benefit curves MB12 = c and MB21 = c for adding
colleges 1 or 2. The right panel shows the optimal application regions. A student in the blank
region Φ does not apply to college. He applies to college 2 only in the vertical shaded region C2;
to both colleges in the hashed region B, and to college 1 only in the horizontal shaded region C1.

For an alternative insight into the student optimization, we could apply the marginal

improvement algorithm of Chade and Smith (2006). There, a student first decides

whether she should apply anywhere. If so, she asks which college is the best singleton.

In Figure 1 at the left, college 1 is best right of the line α1 = uα2, and college 2 is best

left of it. Next, she asks whether she should apply anywhere else. Intuitively, there

are two distinct reasons for applying to both colleges that we can now parse: Either

college 1 is a “stretch” (as a gamble) school — namely, added second as a lower-chance

higher payoff option — or college 2 is a “safety school”, added second for insurance. In

Figure 1, these are the parts of region B above and below the line α1 = uα2, respectively.

6 Admission Chances and Student Calibers

Let us now fix the thresholds σ 1 and σ 2 set by college 1 and college 2. Student x’s

acceptance chance at college i is now given by αi(x) ≡ 1−G(σ i|x). Since a higher caliber

student generates stochastically higher signals, αi(x) is increasing in x. In fact, it is a

smoothly monotone onto function — namely, it is strictly increasing and differentiable,

with 0 < α1(x) < 1, and the limit behavior limx→0 α1(x) = 0 and limx→∞ α1(x) = 1.
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Figure 2: The Acceptance Function with Exponential Signals. The figure depicts
the acceptance function ψ(α1) for the case of exponential signals. Students apply to nowhere
(Φ), college 2 only (C2), both colleges (B) and college 1 only (C1) as caliber x increases.
Student behavior is therefore monotone for the acceptance function depicted.

Taking the acceptance chances as given, each student of caliber x faces the portfolio

optimization problem of §5. She must choose a set Se(x) of colleges to apply to, and

accept the offer of the best school that admits her. We now translate the sets Φ, C2, B, C1

of acceptance chance vectors into corresponding sets of calibers. Let C1 be the set of

calibers that apply just to college 1. Likewise define C2 and B.

Key to our graphical analysis is a quantile-quantile function relating student admis-

sion chances at the colleges: Since αi(x) strictly rises in the student’s type x, a student’s

admission chance α2 to college 2 is strictly increasing in his admission chance α1 to

college 1. Inverting the admission chance in the type x, the inverse function ξ(α, σ)

is the student type accepted with chance α given the admission standard σ, namely

α≡1 −G(σ|ξ(α, σ)). This yields an implied differentiable acceptance function

α2 = ψ(α1|σ 1, σ 2) = 1 −G(σ2|ξ(α1, σ1)) (3)

Lemma 1 The acceptance function rises in college 1’s standard σ 1 and falls in col-

lege 2’s standard σ 2, and tends to 0 and 1 as the thresholds approach their extremes.

The proof of this and all results are in the appendix. To best characterize acceptance

functions, we now define a function h : [0, 1] → [0, 1] as (weakly) regular if h(α) is a

(weakly) increasing function on [0, 1] with h(0) = 0, h(1) = 1, and the secant slopes
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h(α)/α and (1 − h(α))/(1 − α) (weakly) fall in α. We find that this description fully

captures how our Bayesian acceptance chances relate to one another.

Theorem 1 (a) If σ 1 > σ 2, then the acceptance function α2 = ψ(α1) is regular.

(b) For any smoothly monotone onto function α1(x), and any regular function h, there

exists a continuous signal density g(σ|x) with the strict MLRP, and thresholds σ 1 > σ 2,

for which admission chances of student x to colleges 1 and 2 are α1(x) and h(α1(x)).

This result gives a complete characterization of how student admission chances at two

ranked universities should compare; the properties of this curve are testable implications.

It says that if a student is so good that he is guaranteed to get into college 2, then he

is likewise a sure bet at college 1; likewise, if he is so bad that college 1 surely rejects

him, then college 2 perforce rejects him too. More subtly, as a student’s caliber rises,

the ratio of his acceptance chances at college 1 to college 2 rises, as does the ratio of his

rejection chances at college 2 to college 1. And conversely, these are the only restrictions

placed on acceptance chances by an informative signalling structure.

For an application, suppose that caliber signals have the exponential density g(σ|x) =

(1/x)e−σ/x. The acceptance function is then given by the geometric function ψ(α1) =

α
σ

2
/σ

1

1 (see Figure 2). Lemma 1 follows. This is increasing and concave — and so regular

— when college 2 has a lower admission standard. In general, the acceptance relation

for the location family is easily seen to be ψ(α1) = 1 −G((σ 2 − σ 1)/ρ+G−1(1 − α1)).

Omitted from Lemma 1 is another intuitive but loose property of the acceptance

function. It is closer to the diagonal when signals are noisier, and farther from it with

more accurate signals. For an extreme case, as we approach the noiseless case, a student

is either acceptable to neither college, both colleges, or just college 2 (assuming that it

has a lower admission standard). In other words, the ψ function tends to a function

passing through (0, 0), (0, 1), and (1, 1).4 For the location family, this notion is precise:

The acceptance function ψ(α1) rises in the signal accuracy 1/ρ (see Persico (2000)).

Easily, the acceptance function tends to the top of the box ψ(α1) = 1 −G(−∞) = 1 as

ρ→ 0, and to the diagonal ψ(α1) = 1 −G(0 +G−1(1 − α1)) = α1 as ρ→ ∞. Near this

extreme case, the student behavior is surely monotone, since as the student caliber rises,

we proceed in sequence through the regions Φ, C2, B, and finally C2. We next explore

the intermediate cases with noise, and find when students use monotone strategies.

4The limit function is not well-defined: If a student’s type is known, just these three points remain.
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Figure 3: Non-Monotone Behavior. In the left panel, the signal structure induces a
piecewise linear acceptance function. Student behavior is non-monotone, since there are both
low and high caliber students who apply to college 2 only (C2), while intermediate ones insure
by applying to both. In the right panel, equal thresholds at both colleges induce an acceptance
function along the diagonal, α1 = α2. Student behavior is non-monotone, as both low and
high caliber students apply to college 1 only (C1), while middling caliber students apply to
both. Such an acceptance function also arises when caliber signals are very noisy.

7 Portfolio Changes Across Student Calibers

As a student’s caliber rises, his admission chance at college 1 rises proportionately faster

than at college 2. Indeed, the ratio α1(x)/α2(x) strictly rises in x by Lemma 1. This

intuitively skews the optimal portfolio in §5 towards college 1 as the student caliber

rises. This monotone behavior is depicted in Figure 2. We now explore this character.

In general, there are two reasons for non-sorting. First, the acceptance function may

multiply cross the MB12 = c curve, as in Figure 3. This defies sorting: some caliber x

gambles up by applying to both colleges, but a higher caliber y > x plays it safe by

applying to college 2 only. Figure 3 depicts a non-monotone sequence of application

sets Φ, {2}, {1, 2}, {2}, {1, 2}, {1} as caliber rises. This can happen since the marginal

benefit MB12 in (2) rises in the expected payoff α1 of college 1 and falls in the expected

payoff α2u of college 2. So if α2u rises faster than α1, then a better student may drop

college 1 from her portfolio. We show that if u ≤ 0.5, then this cannot happen. If a

student includes college 1 in his portfolio, then any higher caliber student also does.

The next problematic case for sorting applies when college 1 is insufficiently more

selective than college 2. For an intuition, assume that both colleges impose the same
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standards, thereby inducing an acceptance function along the diagonal α2 = α1 (as in

Figure 3). In this case, the worst students who apply anywhere will choose college 1, since

α1 > α2u. It is clearly impossible to preclude this behavior on the basis of primitives

of the student optimization alone. What is needed is that the (endogenous) admission

standard at college 1 be sufficiently higher than at college 2.

Lemma 2 (Monotone Applications) Student behavior is monotone in caliber if

(a) College 2 has payoff u ≤ 0.5, so that if a student applies to college 1, then any better

student will also apply to college 1, and

(b) College 2 imposes a low enough admissions standard relative to college 1 so that if a

student applies to college 2, then any worse student applies to college 2 or nowhere.

The proof in the appendix of (a) argues that the marginal benefit locus MB12 = c has a

rising secant slope if u ≤ 0.5, and thus it can only cross the acceptance function ψ once

— since ψ has the falling secant property. The proof of (b) shows that we need merely

insist that ψ cross high enough above a known acceptance point (ᾱ1, ᾱ2) in region B. A

sufficient condition for this awaits the analysis of the college behavior in §8.

8 Equilibrium via Supply and Demand Analysis

Each college i must choose an admission standard σ i as a best response to its rival’s

threshold σ j, accounting for optimal student behavior. With a continuum of students,

the resulting enrollment Ei at colleges i = 1, 2 is a non-stochastic number:

E1(σ 1, σ 2) =

∫

B∪C1

α1(x)f(x) dx (4)

E2(σ 1, σ 2) =

∫

C2

α2(x)f(x) dx+

∫

B

α2(x) (1 − α1(x)) f(x) dx, (5)

suppressing the dependence of the sets B, C1 and C2 on the student application strategy.

To understand (4) and (5), observe that caliber x student is admitted to college 1 with

chance α1(x), to college 2 with chance α2(x), and finally to college 2 but not college 1 with

chance α2(x)(1 − α1(x)). Also, anyone that college 1 admits will enroll automatically,

while college 2 only enrolls those who either did not apply or got rejected from college 1.

12



We now wish to explore enrollment functions (4)–(5) as demand curves, the admis-

sions standards as prices, and the supplies κ1 and κ1 as vertical supply curves. The

admission rate of any student obviously falls in its anticipated admission standard —

the standards effect. Theorem 2 below exploits a compounding portfolio effect — that

demand also falls due to an application portfolio shift, visible in Figures 2 and 3. Each

college’s applicant pool shrinks in its own admissions threshold, and expands in its

rival’s. Together, we deduce the natural property of demand curves:

Theorem 2 (The Falling Demand Curve) As a college raises its admission stan-

dard, its enrollment falls, and thus enrollment of its rival’s enrollment rises.

Assume monotone student behavior. Careful inspection of Figures 2 and 3 reveals that

college 1’s applicant pool not only shrinks but also improves when either admission

standard rises: Indeed, it just loses its worst applicants. By contrast, college 2 loses

both better and worse applicants — the top students who also applied to college 1 will

deem their college 2 insurance no longer worth it, while the worst students who simply

shot a solo application to college 2 will drop out altogether.

Since capacities act as vertical supply curves, we have now justified a supply and

demand analysis, in which the colleges are selling differentiated products:

κ1 = E1(σ 1, σ 2) and κ2 = E2(σ 1, σ 2)

For now, let us ignore the possibility that some college might not fill its capacity. Then

equilibrium without excess capacity requires that both markets clear κ1 = E1(σ 1, σ 2)

and κ2 = E2(σ 1, σ 2). Since each enrollment (demand) function is falling in its own

threshold, we may invert these equations. This yields for each school i the threshold

that responds to its rival’s admissions threshold σ j so as to fill their capacity κi:

σ 1 = Σ1(σ 2, κ1) σ 2 = Σ2(σ 1, κ2) (6)

Given the discussion of the enrollment functions, we can treat Σi as if it is a best response

function of college i. It rises in its rival’s admission standard and falls in its own capacity.

In other words, the admissions standards at the two colleges are strategic complements.

Figure 4 depicts an equilibrium as a crossing of these increasing best response functions.

By way of contrast, observe that without noise or without application costs, the better

13
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Figure 4: Best Responses and a Stable Equilibrium. The functions Σ1 (solid) and
Σ2 (dashed) give pairs of thresholds so that colleges 1 and 2 fill their capacities in equilibrium.

college is completely insulated from the actions of its lesser rival — Σ1 is vertical. The

equilibrium analysis is straightforward, and there is necessarily a unique equilibrium. In

either case, the applicant pool to college 1 is independent of what college 2 does. When

the application signal is perfectly noiseless, just the top students apply to college 1.

When applications are free, all students apply to college 1, and will enroll if accepted.

With application costs and noise, Σ1 is upward-sloping, and application pools de-

pends on both college thresholds. When college 2 adjusts its admission standards, the

student incentives to gamble on college 1 are affected. This feedback is critical in our

paper. It leads to richer interaction among the colleges, and perhaps multiple equilibria.

In Figure 4, the best response function Σ1 is steeper than Σ2 at the crossing point.

Let us call any such college equilibrium stable. It is robust in the following sense:

Suppose that whenever enrollment falls below capacity, the college relaxes its admission

standards, and vice versa. Then this dynamic pushes us back to the equilibrium. So

at this theoretical level, admission thresholds act as prices in a Walrasian tatonnement.

Unstable equilibria should be rare: They require that a college’s best response be more

affected by the other school’s admission standard than its own. But the reinforcing

standards effect is absent when one’s rival adjusts its admission standard.

Theorem 3 (Existence) A stable equilibrium exists. College 1 fills its capacity. Also,

there exists κ̄1(κ2, c) < 1 − κ2 satisfying limc→0 κ̄1(κ2, c) = 1 − κ2 such that if κ1 ≤

κ̄1(κ2, c), then college 2 also fills its capacity in any equilibrium. If κ1 > κ̄1(κ2, c), then

college 2 has excess capacity in some equilibrium.
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For some insight, we choose the capacity κ̄1 given κ2 so that when college 2 has no

standards, both colleges exactly fill their capacity. This borderline capacity is less than

1−κ2 since a positive mass of students — perversely, those with the highest calibers —

applies just to college 1, and some are rejected. (This happens whenever the admission

chance into college 1 is at least 1− c/u, by (1).) It may be surprising that some college

spaces can go unfilled in equilibrium despite insufficient capacity for the applicant pool.

Essentially, if college 1 is “too big” relative to college 2, then college 2 is left with excess

capacity. There is excess demand for college slots, and yet due to the informational

frictions, there is also excess supply of slots at college 2, even at “zero price”.

When college 2 has excess capacity, it optimally accepts all applicants. Since college 1

maintains an admissions standard, college behavior is monotone. But this forces α2 = 1

for all students, and so the acceptance function traverses the top side of the unit square

in Figure 2. In other words, as student caliber rises, they apply in order to colleges {2},

then {1, 2}, and finally {1}. Altogether, this is a sorting equilibrium. We next attack

the harder problem of finding conditions for sorting equilibria without excess capacity.

9 Do Colleges and Students Sort in Equilibrium?

We now wish to explore more thoroughly when sorting arises in equilibrium. In other

words, when is our portfolio effect monotone in the student caliber? In our new language,

when do “richer” students shift towards more expensive goods? Hearken back to the

sufficient conditions in Lemma 2, where we argued that a sufficiently dominant college 1

(u ≤ 0.5) and a low enough admission standard at college 2 were sufficient for monotone

student behavior. We now show that these conditions are also necessary fort sorting to

occur in equilibrium when the admission standards clear the market (6).

Theorem 4 (Non-Sorting in Equilibrium)

(a) [College 2 is Too Good] For any payoff u > 0.5 and any capacities κ1, κ2 > 0

with κ1 + κ2 < 1, a continuous signal density g(σ|x) with the MLRP exists for which an

equilibrium exists having σ 1 > σ 2 but non-monotone student behavior.

(b) [College 2 is Too Small] There exists κ̄2(κ1) > 0 so that college 2 sets a higher

admissions standard than college 1 in a stable equilibrium, for any capacity κ2 ≤ κ̄2(κ1).
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We tackle part (a) constructively in the appendix, starting with the acceptance

function depicted in the left panel of Figure 3 and then appealing to Theorem 1 to find

some signal distribution that generates it. The message of part (b) is that even a bad

college 2 may maintain higher standards if it is sufficiently small. Because college 2

has higher admissions standards and lower payoff, it is no applicant’s first choice. But

some students will still insure themselves with an application to college 2. If college 2 is

sufficiently small, it may fill its capacity with these insurance applicants.

Thus far, we have found conditions under which sorting fails in some equilibrium. We

next finish the picture and give sufficient conditions for the reverse conclusion that college

matching entails sorting. Towards this conventional wisdom, we complete Lemma 2,

providing a sufficient condition for its part (b). This is a partial converse of Theorem 4.

Theorem 5 (Sorting Equilibrium) There exists κ1(κ2) > 0 such that if κ1 ≤ κ1(κ2)

and u < 0.5 — namely, college 1 is not too big and college 2 is not too good — then

there are only sorting equilibria and neither college has excess capacity.

10 Changing College Sizes and Application Costs

We now continue to explore the supply and demand metaphor, and derive some basic

comparative statics. The potential multiplicity of equilibria renders a comparative statics

exercise difficult.5 The analysis of this section applies to all stable equilibria, and in

particular to any unique sorting equilibrium. In Figure 5, we present the equilibrium

effects of increases in the capacity of college 1 (left panel) and college 2 (right panel).

Theorem 6 (College Capacity) An increase in either college’s capacity lowers both

college admissions thresholds.

Indeed, let us consider what happens if college 2 raises its capacity κ2. For a given

admission standard σ 1, this pushes down σ 2. But the marginal student that was indif-

ferent between applying to college 2 only (C2) and both colleges (B) now strictly prefers

college 2 only, and the set of applicants to college 1 shrinks. This portfolio reallocation

is optimally met by a drop in the admission standards of college 1. The lesser-ranked

college thus imposed this “externality” upon the better college in equilibrium.

5It is not easy to ensure uniqueness of equilibrium. One case in which this holds is when c is
sufficiently small. This follows by continuity from the uniqueness of equilibrium in the costless case.
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Figure 5: Equilibrium Comparative Statics. The figure illustrates how the equilib-
rium is affected by changing capacities κ1, κ2. The best response functions Σ1 (solid) and Σ2

(dashed) are drawn. The left panel considers a rise in κ1, shifting Σ1 left, thereby lowering
both college thresholds. The right panel depicts the analogous rise in κ2, and shift Σ2.

Next, we turn to changes in application costs. Since we have assumed these are the

same across colleges, we simply consider small unilateral increases.

Theorem 7 (Application Costs) If the application costs at any college i slightly rise,

then both admissions standards fall. If equilibrium is also sorting, then the caliber dis-

tribution of students enrolled at college 1 stochastically improves.

The logic for the first part is straightforward. When applications costs at a college

rise, its applicant set shrinks, and it must in turn reduce its standards to compensate.

Once again, this affects rival colleges. For example, if applications costs at college 2 rise,

then it must lower its own standards. But now a student previously indifferent between

applying to college 2 only and to both colleges will choose college 2 only, and so college

1’s set of applicants also shrinks. College 1 is forced to lower its standards.

The corresponding result that increased costs at college 1 lower standards at college 2

is not true. On the one hand, given higher costs at college 1, fewer students “gamble

upwards”, and college 2 gains expected enrollment from these students. On the other

hand, since college 1’s admissions standards fall, college 2 loses top applicants who no

longer need to insure by applying there. The overall effect is ambiguous.

For some insight into the last part, we show that higher costs help the top college in

the special case of a sorting equilibrium. When the application cost at college 1 rises,

its weakest applicants — for whom at college 1 was a stretch school — will now pass
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on this gamble, and apply to college 2 only. The quality of the applicant pool and

thus the enrolled students at the better college rises. Put simply, higher applications

costs attenuates the effect of noise on the better college, since it benefits from a tougher

self-screening process undertaken by students.

More surprisingly, the better college also benefits from higher costs at the worse one.

Since college 2 attracts fewer applicants, it must drop its admissions threshold to fill its

capacity. It is now easier to gain admission into college 2, and the marginal benefit (2)

of a stretch application to college 1 falls. Its weakest applicants drop out, and thus the

caliber distribution of its applicant pool and enrolled student body rises. We cannot

make similar inferences about college 2. Higher applications costs there not only prunes

its worst students, but also those at the very top for whom it was insurance.

11 Affirmative Action and the Acceptance Curse

We now modify our model to address the topical issue of affirmative action in college ad-

missions. We flesh out the equilibrium implications of this new objective, and hopefully

illustrate the power and flexibility of our framework. We show how affirmative action

at either college affects both. Amending the model, posit that a fraction ρ of students

is minority, and 1 − ρ is majority, and that they share a common caliber distribution.

Assume that students honestly report their race on their applications. Colleges wish

to promote a more diverse student body, and so we adjust their payoffs to reflect this.

College i earns a bonus δi ≥ 0 for each enrolled minority student.

Since race is observable, the colleges may set different thresholds for the two groups.

Let these standards be (σ 1, σ 2) and (σ 1 − ∆1, σ 2 − ∆2) respectively for majority and

minority groups.6 At each college, the expected payoff of the marginal admits from the

two groups should be equal. This gives us two new equilibrium conditions:

E[X + δ1|σ = σ 1 − ∆1, minority] = E[X|σ 1, majority] (7)

E[X + δ2|σ = σ 2 − ∆2, minority, accepts] = E[X|σ 2, majority, accepts] (8)

where X is the random student caliber. So as with third degree price discrimination,

6Here, ∆i can be interpreted as bonus points given to minority applicants, as in the old undergraduate
admissions policy of the University of Michigan, struck down by the Supreme Court in Gratz v Bollinger.
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the colleges equate the shadow cost of capacity across groups.

Simply by examining equation (7) we see one common thread. College 1 always

sets ∆1 > 0, advantaging minority applicants, since the expected caliber of its marginal

minority admit must be δ1 smaller than its marginal majority admit — so ∆1 > 0.

Next, we suppose that college 2 is indifferent about affirmative action — so δ2 = 0.

Then it should penalize minority applicants, due to an acceptance curse (Chade 2006).

Since some students only enroll in college 2 upon rejection by college 1, this event is

informative about their caliber. Moreover, this is an even stronger negative signal of

a minority candidate, since he was rejected at college 1 despite its affirmative action

policy. Then by (8), it should penalize minority students, setting ∆2 < 0.7

Finally, assume that college 2 and not college 1 has a preference for diversity — so

δ1 = 0. College 2 gives a bonus ∆2 > 0 to minority students, and college 1 responds with

a bonus ∆1 > 0, even absent a preference for diversity or an acceptance curse. Rather, a

higher admission chance at college 2 lowers the marginal student’s benefit (1) of applying

to college 1. So college 1 loses its weakest minority applicants, and sets ∆1 > 0.

Theorem 8 (Feedback Effects of Affirmative Action)

(a) If some college has a preference for diversity, then college 1 favors minority students.

(b) If just college 1 has such a preference, then college 2 penalizes minority students.

(c) If just college 2 has such a preference, then college 2 favors minority students.

12 Early Admissions

In a final application of our model, we show how the possibility of early admissions affects

the behavior of students and colleges. We amend the game as follows. For simplicity, we

assume that just one college i can employ early admissions, setting an early standard

σE
i and a regular standard σR

i . The other college j only employs regular admissions

with standard σR
j . We assume a non-binding or early action admissions policy, so that

a student admitted at a college early may still apply to other colleges during the regular

7In this case, we can also unambiguously determine how student behavior adjusts. Since minority
students face a laxer admission standard at college 1 and a stiffer one at college 2, their acceptance
relation falls, by Lemma 1-(b). The opposite holds for majority students. So in a sorting equilibrium,
as seen in Figure 2, minority students apply more aggressively and majority students less so.
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period.8 We also assume that students may not re-apply to a college that has previously

rejected them.9 This automatically follows if early applicants are weakly favored.

The student strategy Se specifies both an early application decision, and conditional

on the outcome of that decision, a regular application decision.10

Student behavior is straightforward to analyze: there are seven undominated strate-

gies, and for given admissions standards, each caliber picks the one that gives the highest

expected payoff. We provide more details as needed below. Given this, colleges must

maximize their payoffs. College j best responds as before, choosing its regular admission

standard to fill its capacity. College i must also choose its pair of early and regular stan-

dards to meet the capacity condition, but in addition must equate the expected caliber

of early and regular admits:

E[X|σ = σE
i , applies early, accepts] = E[X|σ = σR

i , applies regular, accepts] (9)

This condition need not hold if there are no applicants in one of the groups (i.e. no early

or no regular) — this is a corner solution.

We now illustrate how early admissions may be used as a tool for attracting and

sorting students. First, we show that if the better college uses early admissions, in

equilibrium it will always penalize early applicants. To see this, fix college 2’s standards

σR
2 and consider two possible responses by college 1. On the one hand, college 1 could

set arbitrarily high standards for early applicants σE0

1 = ∞, so that no one applies early.

Then its regular threshold σR0

1 is determined by the capacity condition as usual, and its

marginal applicant is x0.

On the other hand, it could favor early applicants with σE1

1 ≤ σR1

1 . Then everyone

who applies to college 1 will do so early, so σR1

1 is payoff irrelevant and σE1

1 is set by the

capacity condition. Now, the sequential application {1 early, 2 if rejected} has higher

payoff than the simultaneous application {1, 2}, and so if σE1

1 = σR0

1 , more calibers

would gamble up and the marginal applicant to college 1 would be lower than before

8We have also analyzed the binding or early decision case. The results are similar.
9In practice, early applicants may be also be “deferred” to the regular admissions season. This is

primarily done for enrollment management purposes; and since this issue plays no part in our model,
we abstract away from it.

10In the model where we interpret x as the student’s noisy signal of his caliber, that student’s posterior
expected caliber will also drop upon rejection.
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(x1 < x0).11 In fact, this holds even though college 1 will set higher early standards

σE1

1 > σR0

1 to meet the capacity condition. But comparing these options, college 1

attracts a more selective application pool by shutting out early applicants than it does

by favoring them, and so it will never be a best response for college 1 to favor early

applicants.12 It follows that it will always penalize early applicants in equilibrium.

This is an example of a college using early admissions to sort students. Next, we

consider how college 2 can use early admissions to attract or poach students from

college 1. Suppose that college 2 introduces a non-binding early action program, with

lower early admissions standards (σE
2 ≤ σR

2). It is still strictly better to apply early and

so no-one will ever apply to college 2 in the regular period. Next, look at the contingent

behavior of early applicants. If accepted early at college 2, a student will apply to

college 1 regular only if its marginal gain α1(x)(1 − u) exceeds its marginal cost c, or

α1(x) > c/(1 − u). If rejected at college 2, he will apply to college 1 if α1(x) > c.

In light of this, consider the early application decision. There are three sets of

calibers to consider. First are the calibers with α1(x) < c. Since they will never apply to

college 1, they simply compare the costs and benefits of applying to college 2, applying

if αE
2 (x)u > c, and otherwise applying nowhere. Second are those with c ≤ α1(x) ≤

c/(1 − u). By the analysis in the paragraph above, students of these calibers choose

between applying to college 1 only, and the contingent plan of applying to college 2

early, and to college 1 only if rejected early at college 2. Marginal analysis shows they

apply early if αE
2 (x) ≥ c/(u−α1(x)+c). Last are the high calibers with α1(x) > c/(1−u).

They will apply to college 1 regardless, and so as usual they apply also to college 2 early

if the marginal benefit MB21 exceeds the cost c.

This partitions the space into four regions, depicted in the right panel of Figure 6.

For comparison, the left panel shows the corresponding regions in the regular admissions

game where a caliber x has admissions chances
(

α1(x), α2(x) = αE
2 (x)

)

in both cases.

Notice that the early action program discourages some successful early applicants from

applying to the better school. In particular, if we compare the left and right panels, we

see that students on the solid part of the acceptance function in the right panel of the

figure used to apply to both colleges, but now don’t bother sending an application to

college 1 if accepted early at college 2. These students have in some sense been “stolen”

11See also Theorem 3 of Chade and Smith (2006).
12The best response will satisfy equation (9), or have σE

1
high enough that no-one applies early.
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Figure 6: Capturing Students with Early Action. The left and right panels depict
the optimal student strategy regions under regular and early action programs respectively,
with exponential signals and equal admissions standards. Early action enlarges the set of
students who will attend college 2 if admitted from the set C2 in the left panel to the superset
of students who will apply early and accept their offer in the right panel. Relative to the
regular admissions process, college 2 is able to “capture” some of the students that college 1
would usually have had first option on. These students are shown here as the solid part of the
acceptance function.

from college 1’s application pool by college 2, through the use of early admissions.

College 2 can maximize its chances of stealing students from college 1 by favoring

early applicants. This will clearly only be worthwhile if they are high-caliber students.

To formalize this intuition, consider raising the early standard to ε above the regular

standard. Then only middle types with c ≤ α1(x) ≤ c/(1 − u) will continue to apply

early — these are the students who can be stolen. If at this point the LHS of (9) is

higher than the RHS, so that the early applicants are better conditional on enrollment

than the regular applicants, the corner solution where early applicants are favored may

be optimal (this is a necessary condition). Notice that early applicants are not subject

to an acceptance curse, which is one reason why this condition may hold.

This analysis of student behavior squares well with many aspects of real-world college

admissions. On the student side, many applicants do in fact “settle” if admitted early

to a fairly good school, rather than incurring the costs of sending off another batch of

applications to try and secure a marginal improvement. For the colleges, the student

stealing rationale has historically been cited as one motivation for early admissions

programs, as schools that employ them feel they enjoy a competitive advantage (Karabel
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2006). Early admissions have the added benefit of increasing the colleges’ matriculation

rate, as the “stolen” students will enroll with certainty. Finally, there is strong evidence

that early applicants are favored in practice, as our model suggests would be optimal

for the colleges (Avery, Fairbanks, and Zeckhauser 2003).13

A Appendix: Proofs

A.1 Students’ Uncertainty about their Own Calibers

We have assumed that students know their caliber. We now prove that all the results

obtain if they only see a noisy signal of their caliber. We assume a density p(t) of types

on [t, t̄]. A student does not observe t but only a signal X with density f(x|t). Similarly,

a college observes a signal σ (conditionally independent from the student’s signal) from

an applicant with density γ(σ|t). Both f(x|t) and γ(σ|t) satisfy MLRP, so that each is

log-supermodular. Thus, the associated cdf Γ(σ|t) is also log-supermodular.

Let p(t|x) be the posterior belief of a student who observed x, and suppose that each

college i = 1, 2 sets a threshold σ i. Then

αi(x) =

∫ t̄

t

[1 − Γ(σ i|t)]p(t|x)dt = 1 −

∫ t̄

t

Γ(σ i|t)p(t|x)dt.

Define G(σ|x) ≡ 1−
∫ t̄

t
Γ(σ|t)p(t|x)dt, so that αi(x) = 1−G(σ i|x). Then (i) G is a cdf

as a function of σ; (ii) G is decreasing in x; and (iii) 1−G(σ|x) is log-supermodular in

(σ, x) (as the integral of a product of log-supermodular functions). So results continue by

reinterpreting all statements made about calibers as referring to signals of their caliber.

Lemma 3 now states that the cdf of accepted students’ signals at college 1 dominates

that of college 2 in the sense of first-order stochastic dominance. Since (i) the set of

applicants (based on their signals) at college 1 is higher than that at college 2 in the

strong set order, and (ii) the cdf P (t|x) =
∫ t

t
p(s|x)ds is decreasing in x, the cdf of

accepted calibers at college 1 also dominates that of college 2.

13In addition to the empirical analysis in the cited paper, some schools, such as Duke, explicitly state
that they look favorably on early applicants on their websites.
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A.2 Colleges Optimally Employ Admissions Thresholds

Let χi(σ) be the expected value of the student’s caliber given that he applies to college i,

his signal is σ, and he accepts. College i optimally employs a threshold rule if, and only

if, χi(σ) increases in σ. For college 1 this is immediate, since g(σ|x) enjoys the MLRP

property. We prove this for college 2, since it faces an acceptance curse. We assume that

students of calibers in set Ci apply to college i only, and in B apply to both colleges.14

χ2(σ) =

∫

C2

xg(σ|x)f(x)dx+
∫

B
xG(σ 1|x)g(σ|x)f(x)dx

∫

C2

g(σ|x)f(x)dx+
∫

B
G(σ 1|x)g(σ|x)f(x)dx

(10)

It is easy to show that χ2(σ) is less that the expectation without the cdf’s G — because

being accepted by a student reduces college 2’s estimate of his caliber, as there is a

positive probability that the student was rejected by college 1; i.e., college 2 suffers an

acceptance curse effect. Write (10) as χ2(σ) =
∫

B∪C2

xh2(x|σ)dx using indicator function

notation:

h2(x|σ) =
(IC2

(x) + IBG(σ 1|x))g(σ|x)f(x)
∫

B∪C2

(IC2
(t) + IBG(σ 1|t))g(σ|t)f(t)dt

, (11)

Then the ‘density’ h2(x|σ) has the MLRP. Therefore, χ2(σ) increases in σ.

A.3 Acceptance Function and Signals: Proof of Lemma 1

Since G(σ 1|x) is continuously differentiable in x, the acceptance function is continuously

differentiable on (0, 1]. Given α ≡ 1 − G(σ|ξ(α, σ)), partial derivatives have positive

slopes ξα, ξσ > 0. Differentiating (3),

∂ψ

∂α1

= −Gx(σ 2|ξ(α1, σ 1))ξα(α1, σ 1) > 0

∂ψ

∂σ 1

= −Gx(σ 2|ξ(α1, σ 1))ξσ(α1, σ 1) > 0

∂ψ

∂σ 2

= −g(σ 2|ξ(α1, σ 1)) < 0

Properties of the cdf G imply ψ(0, σ 1, σ 2) ≥ 0 and ψ(1, σ 1, σ 2) = 1. The limits of ψ as

thresholds approach the supremum and infimum owe to limit properties of G.

14We assume that students employ pure strategies, which follows from our analysis of the student
optimization in §5. Measurability of sets B and C2 owe to the continuity of our functions αi(x) in §6.
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A.4 Acceptance Function Shape: Proof of Theorem 1

(⇒) The Acceptance Function is Regular. First, G(σ|x) and 1 − G(σ|x) are

strictly log-supermodular in (σ, x) since the density g(σ|x) obeys the strict MLRP.15

Since x = ξ(α1, σ 1) is strictly increasing, G(s|ξ(α1, σ 1)) and 1−G(s|ξ(α1, σ 1)) are then

strictly log-supermodular in (s, α1). Thus, the secant slopes

ψ(α1)

α1
=

1 −G(σ 2|ξ(α1))

1 −G(σ 1|ξ(α1))
and

1 − ψ(α1)

1 − α1
=
G(σ 2|ξ(α1))

G(σ 1|ξ(α1))

both strictly fall in α1, since σ 1 > σ 2.

(⇐) Deriving a Signal Distribution. Conversely, fix a regular function h

and a smoothly monotone onto function α1(x). Also, put α2(x) = h(α1(x)), so that

α2(x) > α1(x). We must find a continuous signal density g(σ|x) with the strict MLRP

and thresholds σ1 > σ2 that rationalizes the h as the acceptance function consistent

with these thresholds and signal distribution.

Step 1: A Discrete Signal Distribution. Consider a discrete distribution with

realizations in {−1, 0, 1}: g1(x) = α1(x), g0(x) = α2(x)−α1(x) and g−1(x) = 1−α2(x).

Indeed, for each caliber x, gi ≥ 0 and sum to 1. This obeys the strict MLRP because

g0(x)

g1(x)
=
α2(x) − α1(x)

α1(x)
=
h(α1(x))

α1(x)
− 1

is strictly decreasing by the first secant property of h, and

g0(x)

g−1(x)
=
α2(x) − α1(x)

1 − α2(x)
= −1 +

1 − α1(x)

1 − h(α1(x))

is strictly increasing in x by the second secant property of h.

Let the college thresholds be (σ 1, σ 2) = (0.5,−0.5). Then G(σ 1|x) = g−1(x) +

g0(x) = 1 − α1(x) and G(σ 2|x) = g−1(x) = 1 − α2(x). Rearranging yields α1(x) =

1 − G(σ 1|x) and α2(x) = 1 − G(σ 2|x). Inverting α1(x) and recalling that α2 = h(α1),

we obtain α2 = h(α1) = 1 −G(σ 2|ξ(σ 1, α1)), thereby showing that h is the acceptance

function consistent with this signal distribution and thresholds.

15A positive function f(a, b) is strictly log-supermodular if f(a′, b′)f(a, b) > f(a, b′)f(a′, b) for all
a′ > a and b′ > b. If f is twice differentiable, then this is equivalent to fabf > fafb. This is the strict
MLRP property for signal densities. It is well-known that this is preserved under partial integration.

25



Step 2: A Continuous Signal Density. To create an atomless signal distribu-

tion, we smooth this example using the triangular kernel k(s) = max{1 − s, 0}. Define

g(σ|x) = β
∑

i={−1,0,1} gi(x)k(β(σ − i)). The strict MLRP implies that gi(x) is strictly

log-supermodular in (i, x). Also, the function k(s) is concave in s, and thus log-concave in

s too. This implies that k(β(σ− i)) is log-supermodular in (i, σ) (§1.5 in Karlin (1968)).

Indeed, given twice differentiability, this follows from kσik−kσki > 0 iff −k′′k+k′k′ > 0,

which holds iff k is log concave. Thus, gi(x)k(β(σ − i)) is log-supermodular in (i, x, σ).

Finally, partially summing out over i = 1, 2, 3 yields a log-supermodular function of

(x, σ) (by Proposition 3.2 in Karlin and Rinott (1980)) — the MRLP property. Lastly,

for small enough bandwidth 1/β > 0, acceptance chances remain the same. �

A.5 The Law of Demand: Proof of Theorem 2

It suffices to prove that the applicant pool shrinks at college 1 and expands at college 2

when σ 1 rises. The other case is analogous and thus omitted.

Step 1: The applicant pool at college 1 Shrinks. When σ 1 increases, the

acceptance relation shifts up by Theorem 2, and thus the above type sets change as well.

Fix a caliber x ∈ C2 or x ∈ Φ, so that 1 /∈ S(x).16 We will show that x continues to

apply either to college 2 only or nowhere, and thus the pool of applicants at college 1

shrinks. If x ∈ C2, then α2(x)u − c ≥ 0 and α2(x)u ≥ α1(x), and this continues to hold

after the increase in σ 1, since α(x) falls while α2(x) is constant. And if x ∈ Φ, then

clearly caliber x will continue to apply nowhere when σ 1 increases.

Step 2: The applicant pool at college 2 expands. Fix a caliber x ∈ C2 or

x ∈ B, so that 2 ∈ S(x). It suffices to show that caliber x continues to apply to college 2

when the admission standard at college 1 increases. If x ∈ C2, then α2(x)u − c ≥ 0

and α2(x)u ≥ α1(x); these inequalities continue to hold after σ 1 rises, since α1(x) falls

while α2(x) remains constant. And if x ∈ B, then an increase in σ 1 raises MB21 =

(1 − α1(x))α2(x)u, thereby increasing the incentives of caliber x to apply to college 2.

Thus, x /∈ C1 ∪ Φ. Since x was arbitrary, it follows that the applicant pool at college 2,

B ∪ C2, expands when σ 1 increases. �

16With a slight abuse of notation, we let Φ denote the set of calibers that apply nowhere. The same
symbol was previously used to denote the analogous set in α-space.
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A.6 Monotone Student Strategies: Proof of Lemma 2

The proof proceeds as follows. First, we show that u ≤ 0.5 implies that if a caliber

applies to college 1, any higher caliber applies as well. Second, we produce a sufficient

condition that ensures that the admissions threshold at college 2 is sufficiently lower

than that of college 1, so that if a caliber applies to college 2, then any lower caliber

who applies to college sends an application to college 2, and calibers at the lower tail

apply nowhere. From these two results, monotone student behavior ensues.

Proof of Part (a), Step 1. We first show that the acceptance function α2 =

ψ(α1) crosses α2 = 1/u(1−c/α1) (i.e., MB12 ≡ α1(1−α2u) = c) only once when u ≤ 0.5.

Since (i) the acceptance function starts at α1 = 0 and ends at α1 = 1, (ii) MB12 = c

starts at α1 = c and ends at α1 = c/(1 − u), and (iii) both functions are continuous,

there exists a crossing point. Clearly, they intersect when α1(1 − ψ(α1)u) = c. Now,

[(1−ψ(α1)u)α1]
′ = 1−uψ(α1)−α1uψ

′(α1) > 1−uψ(α1)−uψ(α1) = 1−2uψ(α1) ≥ 1−2u > 0,

where the first inequality exploits ψ(α1)/α1 falling in α1 (Lemma 1), i.e. ψ′(α1) <

ψ(α1)/α1; the next two inequalities use ψ(α1) ≤ 1 and u ≤ 0.5. Since MB12 is rising in

α1 when the acceptance relation hits α2 = (1 − c/α1)/u, the intersection is unique.

Proof of Part (a), Step 2. We now show that Step 1 implies the following

single crossing property in terms of x: if caliber x applies to college 1 (i.e., if 1 ∈ S(x),

then any caliber y > x also applies to college 1 (i.e., 1 ∈ S(y)). Suppose not; i.e.,

assume that either S(y) = ∅ or S(y) = {2}. If S(y) = ∅, then S(x) = ∅ as well,

as α1(x) < α1(y) and α2(x) < α2(y), contradicting the hypothesis that 1 ∈ S(x). If

S(y) = {2}, then there are two cases: S(x) = {1} or S(x) = {1, 2}. The first cannot

occur, for by Lemma 1 α2(x)/α1(x) > α2(y)/α1(y), and thus α2(y)u ≥ α1(y) implies

α2(x)u > α1(x), contradicting S(x) = {1}. In turn, the second case is ruled out by the

monotonicity of MB12 derived above, as caliber y has greater incentives than x to add

college 1 to its portfolio, and thus S(y) = {2} cannot be optimal.

Proof of Part (b), Step 1. We first show that if the acceptance function passes

above the point (ᾱ1, ᾱ2) =
(

u(1 −
√

1 − 4c/u)/2, (1 −
√

1 − 4c/u)/2
)

— point P in the

right panel of Figure 3 — then there is a unique crossing of the acceptance function and
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α2 = c/u(1 − α1), i.e. MB21 = c. Now, the acceptance function passes above (ᾱ1, ᾱ2) if

ψ(ᾱ1, σ 1, σ 2) ≥ ᾱ2. (12)

This condition relates σ 1 and σ 2. Rewrite (12) using Lemma 1 as σ 2 ≤ η(σ 1) < σ 1,

requiring a large enough “wedge” between the standards of the two colleges.

To show that (12) implies a unique crossing, consider the secant of α2 = c/u(1−α1)

(the curve MB21 = c). It has an increasing secant if and only if α1 ≥ 1/2. To see this,

differentiate α2/α1 = c/uα1(1 − α1) in α1. Notice also that MB12 = c intersects the

diagonal α2 = α1 at the points (αℓ
1, α

ℓ
2) = (1/2 −

√

1 − c/4u/2, 1/2u−
√

1 − c/4u/2u)

and (αh
1 , α

h
2) = (1/2 +

√

1 − c/4u/2, 1/2u+
√

1 − c/4u/2u) > (1/2, 1/2u).

Condition (12) implies that ψ(αℓ
1, σ 1, σ 2) > αℓ

2. Since σ 2 < σ 1, we have ψ(α1, σ 1, σ 2) ≥

α2 for all α1. Thus, the acceptance function crosses MB21 = c at or above (αh
1 , α

h
2). And

since αh
1 > 1/2, the secant of MB21 = c must be increasing at any intersection with the

acceptance function. Hence, there must be a single crossing point.

Proof of Part (b), Step 2. We now show that this single crossing property in α

implies another in x: If caliber x applies to college 2 (i.e., if 2 ∈ S(x)), then any caliber

y < x that applies somewhere also applies to college 2 (i.e., 2 ∈ S(y) if S(y) 6= ∅).

Suppose not; i.e., assume that S(y) = {1}. Then there are two cases: S(x) = {2} or

S(x) = {1, 2}. The first cannot occur, for by Lemma 1 α2(x)/α1(x) < α2(y)/α1(y), and

thus α2(x)u ≥ α1(x) implies α2(y)u > α1(y), contradicting S(x) = {2}. The second case

is ruled out by the monotonicity of MB21 given condition (12), as caliber y has greater

incentives than x to apply to college 2, and thus S(y) = {1} cannot be optimal.

Finally, notice that condition (12) also implies that S(y) = ∅ if α2(y)u < c, which

happens for low calibers below a certain threshold. �

A.7 Equilibrium Existence: Proof of Theorem 3

For definiteness, we now denote the infimum signal by −∞, and the supremum signal

by ∞. Fix any κ2 ∈ (0, 1), and let σl
1(κ2) be the unique solution to κ2 = E2(σ 1,−∞),

i.e., when college 2 accepts everybody. (Existence and uniqueness of σl
1(κ2) follows from

E2(−∞,−∞) = 0, E2(∞,−∞) = 1, and E2(σ 1,−∞) increasing and continuous in σ 1.)

Define κ̄1(κ2) = E1(σ
l
1(κ2),−∞). Let κ1 ≥ κ̄1(κ2). We claim that there exists an
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Figure 7: Equilibrium Existence. In the left panel, since κ1 > κ̄1(κ2), the best response
functions Σ1 and Σ2 do not intersect, and equilibrium is at E with σ 2 = 0. The right panel
depicts the proof of Theorem 3 for the case κ1 < κ̄1(κ2).

equilibrium in which college 1 sets a threshold equal to σℓ
1(κ1), which is the unique solu-

tion to κ1 = E1(σ 1,−∞) and satisfies σℓ
1(κ1) ≤ σl

1(κ2), and college 2 accepts everybody.

For given the lack of standard at college 2, σℓ
1(κ1) fills college 1’s capacity exactly, and

given the standard of college 1, the enrollment at college 2 is E2(σ
ℓ
1(κ1),−∞) ≤ κ2 (as

σℓ
1(κ1) ≤ σl

1(κ2) and E2(σ 1, σ 2) is increasing in σ 1), so by accepting everybody college 2

fills as much capacity as it can. This equilibrium is trivially stable, as Σ2 is ‘flat’ at the

crossing point (see Figure 7, left panel). Moreover, if κ1 > κ̄1(κ2), then college 2 has

excess capacity in this equilibrium.

Assume now that κ1 < κ̄1(κ2). We will show that Σ1 and Σ2 must cross at least

once (i.e., an equilibrium exists), and that the slope condition is satisfied (i.e., it is

stable). First, note that in this case σl
1(κ2) < σℓ

1(κ1) or, equivalently, Σ−1
2 (−∞, κ2) <

Σ1(−∞, κ1). Second, as the standard of college 2 goes to infinity, college 1’s threshold

converges to σu
1(κ1) < ∞, the unique solution to κ1 = E1(σ 1,∞). This is the largest

threshold that college 1 can set given κ1. Similarly, as the standard of college 1 goes

to infinity, college 2’s threshold converges to σu
2(κ2) < ∞, the unique solution to κ2 =

E2(∞, σ 2), which is the largest threshold that college 2 can set given κ2. Third, for

ǫ > 0 small enough, the unique solution to κ1 = E1(σ 1, σ
u
2(κ2) − ǫ) is smaller than

the unique solution to κ2 = E2(σ 1, σ
u
2(κ2) − ǫ). Equivalently, Σ−1

2 (σu
2(κ2) − ǫ, κ2) >

Σ1(σ
u
2(κ2) − ǫ, κ1). Fourth, recall that Σ1 and Σ2 are continuous functions.

Since Σ−1
2 (−∞, κ2) < Σ1(−∞, κ1) and Σ−1

2 (σu
2(κ2) − ǫ, κ2) > Σ1(σ

u
2(κ2) − ǫ, κ1)

(graphically, point A is to the left of point B in Figure 7), and Σ1 and Σ2 are continuous,

it follows from the Intermediate Value Theorem that they must cross at least once with

the slope condition being satisfied (see Figure 7, right panel). Thus, a stable equilibrium
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exists when κ1 < κ̄1(κ2). Moreover, in any equilibrium there is no excess capacity at

either college, since Σ−1
2 (−∞, κ2) < Σ1(−∞, κ1).

Hence, a stable equilibrium exists for any κ2 ∈ (0, 1). Capacities are exactly filled

when κ1 ≤ κ̄1(κ2), while there can be excess capacity at college 2 whenever κ1 > κ̄1(κ2).

Using κ2 = E1(σ
l
1(κ2),−∞), one can show that κ̄1(κ2) is equal to 1 − κ2 plus the

mass of students who only applied to college 1 and were rejected by it. The latter goes

to zero as c vanishes, for everybody applies to both colleges in the limit. Therefore,

κ̄1(κ2) converges to 1 − κ2 as c goes to zero. �

A.8 Sorting Equilibrium Implies Stochastic Dominance of Types

To justify our focus on this ex-ante notion, we observe that this induces ex-post sorting

in enrollments: the best colleges stochastically get the best students.

Lemma 3 (Sorting and the Caliber Distribution) In a sorting equilibrium, the

caliber distribution at college 1 first-order stochastically dominates that at college 2.

Proof: A monotone student strategy can be represented by the following partition of

the set of types: Φ = [0, ξ2), C2 = [ξ2, ξB),B = [ξB, ξ1), C1 = [ξ1,∞), where ξ2 < ξB < ξ1

are implicitly defined by the intersection of the acceptance function with c/u, α2 =

(1 − c/α1)/u (i.e., MB12 = c), and α2 = c/[u(1 − α1)] (i.e., MB21 = c), respectively.

Let f1(x) and f2(x) be the densities of calibers accepted at colleges 1 and 2, respec-

tively, where we have omitted (σ 1, σ 2) to simplify the notation. Formally,

f1(x) =
α1(x)f(x)

∫ ∞

ξB

α1(t)f(t)dt
I[ξB ,∞)(x) (13)

f2(x) =
I[ξ2,ξB ](x)α2(x)f(x) + (1 − I[ξ2,ξB](x))α2(x)(1 − α1(x))f(x)

∫ ξB

ξ2
α2(s)f(s)ds+

∫ ξ1
ξB

α2(s)(1 − α1(s))f(s)ds
I[ξ2,ξ1](x), (14)

where IA is the indicator function of the set A.

We shall show that, if xL, xH ∈ [0,∞), with xH > xL, then f1(xH)f2(xL) ≥

f2(xH)f1(xL); i.e., fi(x) is log-supermodular in (−i, x), or it satisfies MLRP. The result

follows as MLRP implies that the cdfs are ordered by first-order stochastic dominance.
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Using (13) and (14), f1(xH)f2(xL) ≥ f2(xH)f1(xL) is equivalent to

α1HI[ξB,∞)(xH)
(

I[ξ2,ξB](xL)α2L + (1 − I[ξ2,ξB](xL))α2L(1 − α1L)
)

I[ξ2,ξ1](xL) ≥

α1LI[ξB,∞)(xL)
(

I[ξ2,ξB](xH)α2H + (1 − I[ξ2,ξB](xH))α2H(1 − α1H)
)

I[ξ2,ξ1](xH),
(15)

where αij = αi(xj), i = 1, 2, j = L,H . It is easy to show that the only nontrivial case is

when xL, xH ∈ [ξB, ξ1] (in all the other cases, either both sides are zero, or only the right

side is). If xL, xH ∈ [ξB, ξ1], then (15) becomes α1Hα2L(1− α1L) ≥ α1Lα2H(1− α1H), or

(1 −G(σ 1 | xH))(1 −G(σ 2 | xL))G(σ 1 | xL) ≥

(1 −G(σ 1 | xL))(1 −G(σ 2 | xH))G(σ 1 | xH).
(16)

Since g(σ | x) satisfies MLRP, it follows that G(σ | x) is decreasing in x, and hence

G(σ 1 | xL) ≥ G(σ 1 | xH). Next, 1 −G(σ | x) is log-supermodular in (x, σ), and hence

(1 −G(σ 1 | xH))(1 −G(σ 2 | xL)) ≥ (1 −G(σ 1 | xL))(1 −G(σ 2 | xH)),

as σ 1 > σ 2 in a sorting equilibrium. Thus, (16) is satisfied, thereby proving that fi(x)

is log-supermodular in (−i, x), and so F1 first-order stochastically dominates F2. �

A.9 Conditions for Sorting to Fail: Proof of Theorem 4

Part (a): College 2 is Too Good. Fix any κ1, κ2, such that κ1 + κ2 < 1. We

shall proceed in two steps. First, we show that since u > 0.5, we can use Theorem 1 to

construct a non-sorting equilibrium in which colleges’ behavior is monotone but students’

is not. Second, we show that all equilibria induce the same type of behavior.

Step 1: Towards an Acceptance Function. When u > 0.5, the secant from

the origin to MB12 = c falls as α1 tends to c/(1− u) — as in the left panel of Figure 3.

So for some z < c/(1 − u)s, a line from the origin to (z, 1) slices the MB12 curve twice.

This would imply non-monotone student behavior if that line belonged to the acceptance

function, such as: h : [0, 1]→ [0, 1] by h(α) = α/z and on [0, z), and h(α1) = 1 for α1 ≥ z.

Step 2: A piecewise-linear acceptance chance α1. Choose ξ and ξ̄ that

uniquely solve κ1 =
∫ ∞

ξ̄
f(x)dx and κ2 =

∫ ξ̄

ξ
f(x)dx. Set α1(x) = 0 for x < ξ. This

function then jumps up to the rising line segment α1(x) = ω(x)z + (1 − ω(x))c/(1 − u)

for x ∈ [ξ, ξ̄), where ω(x) ≡ (ξ̄ − x)/(ξ̄ − ξ). Lastly, α1 jumps up α1(x) = 1 for x > ξ.
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Figure 8: Existence of Sorting and Non-Sorting Equilibria In the left panel, we
depict the non-sorting equilibrium constructed in the proof of Themore 4. As κ2 decreases, Σ2

shifts up, leading to a non-sorting equilibrium at E1. The right panel illustrates the proof of
Theorem 5. As κ1 falls, the equilibrium standards at E1 are guaranteed to satisfy σ 2 < η(σ 1),
thereby obtaining a sorting equilibrium.

Step 3: Student Behavior. Observe that h(0) = 0 and h(1) = 1, and that h is

weakly increasing, with both h(α)/α and [1 − h(α)]/[1 − α] weakly decreasing. In this

sense, h is a weakly regular function. This suggests that we set α2(x) ≡ h(α1(x)).

In this case, students x ∈ [0, ξ) are accepted with zero chance at either college, and

so apply nowhere. Next, because h(z) = 1, any calibers x ∈ [ξ, ξ̄) are accepted with

chance one at college 2, and with chance between z and c/(1− u) at college 1. Further,

any student ξ̄ strictly prefers just to apply to college 2 (as in Figure 3). To see this,

observe that MB12 = (c/(1−u))(1−α2u) > (c/(1−u))(1−u) = c when α2 = c/(1−u)

and α1 = 1. Lastly, calibers x > ξ̄ are always accepted at college 1 and only apply there.

Step 4: Smoothing the Construction. By smoothly bending the function h

inside (0, 1), an arbitrarily close function h∗ is also regular. Next, we create a continuous

and smooth acceptance chance α̃. Any four small enough numbers, ε, ǫ, ε̄, ǭ > 0, yield a

unique Bezier approximation α̃ tangent to α at the four points ξ−ε, ξ+ǫ, ξ̄−ε̄, ξ̄+ǭ. Then

α̃1 — and so the enrollment at college 1 — falls in ǭ, and rises in ε̄. Also, α̃2 = h∗(α̃1)

falls in ǭ, and rises in ε̄, and it also falls in ǫ, and rises in ε. Enrollment at college 2

shares this monotonicity, but the enrollment at college 1 is unaffected by ǫ and ε.

Fix a small ǭ > 0. Choose ε̄ > 0 so that college 1 still fills its capacity. WLOG,

enrollment at college 2 has fallen. Then choose ε > 0 large enough so that college 2 is

over its capacity, then for some ǫ > 0, the former enrollment at college 2 is restored.

Theorem 1 now yields a signal density g(σ|x) and thresholds σ 1 > σ 2 such that h∗

is the acceptance function. We have thus constructed a nonsorting equilibrium. �
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Part (b): College 2 is Too Small. The proof is constructive, exploiting our

graphical analysis. To begin, consider the point (α1, α2) = (c, c/u) on the line α2 = α1/u.

Then the acceptance function evaluated at α1 = c is below c/u if and only if

ψ(c, σ 1, σ 2) < c/u. (17)

We will restrict attention to pairs (σ 1, σ 2) such that (17) holds. In this case, any student

who applies to college starts by adding college 1 to his portfolio, and this happens as

soon as α1(x) ≥ c, or when x ≥ ξ(c, σ 1). Then enrollment at college 1 is given by

E1(σ 1, σ 2) =

∫ ∞

ξ(c,σ
1
)

(1 −G(σ 1|x))f(x)dx,

which is independent of σ 2. Thus, for any capacity κ1 ∈ (0, 1), a unique threshold

σ 1(κ1) solves κ1 = E1(σ 1, σ 2). (Graphically, the Σ−1
1 function is “vertical” in the region

in which (17) holds, since the applicant’s pool at college 1 does not depend on the

admissions threshold set by college 2.)

The analysis above allows us to restrict attention to finding equilibria within the set

of thresholds (σ 1, σ 2) such that σ 1 = σ 1(κ1) and σ 2 satisfies ψ(c, σ 1(κ1), σ 2) < c/u.

Enrollment at college 2 is given by

E2(σ 1(κ1), σ 2) =

∫

B

G(σ 1(κ1)|x)(1 −G(σ 2|x))f(x)dx,

which is continuous, decreasing in σ 2, and increasing in σ 1 (see Theorem 2). Thus,

κ2 = E2(σ 1(κ1), σ 2) yields σ 2 = Σ2(σ 1(κ1), κ2), which is strictly decreasing in κ2.

Given κ1, let κ̄2(κ1) = E2(σ 1(κ1), σ 1(κ1)) be the level of college 2 capacity so that

equilibrium ensues if both colleges set the same threshold.17 Since Σ2 strictly falls in κ2,

for any κ2 < κ̄2(κ1), an equilibrium exists with σ 2 > σ 1(κ1). Then (a) for any κ1 ∈ (0, 1)

and κ2 ∈ (0, κ̄2(κ1)], there is a unique equilibrium with σ 1 = σ 1(κ1) and σ 2 ≥ σ 1(κ1),

having (b) non-monotone college and student behavior (Figure 8, left).18 �

17It is not difficult to show that ψ(c, σ 1, σ 2) < c/u is satisfied if σ 2 ≥ σ 1(κ1).
18We are not ruling out the existence of another equilibrium that does not satisfy (17).
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A.10 Conditions for Equilibrium Sorting: Proof of Theorem 5

Fix κ2 ∈ (0, 1). We first show that the stable equilibrium with no excess capacity

whose existence was proven in Theorem 3 is also sorting when the capacity of col-

lege 1 is sufficiently small. More precisely, we will show that there is a threshold

κ1(κ2), smaller than the bound κ̄1(κ2) defined in the proof of Theorem 3, such that

for all κ1 ∈ (0, κ1(κ2)), there is a pair of admissions thresholds (σ 1, σ 2) that satisfies

κ1 = E1(σ 1, σ 2), κ2 = E2(σ 1, σ 2), and σ 2 < η(σ 1) (i.e., a sorting equilibrium exists).

Moreover, at this pair ∂Σ1/∂σ 2∂Σ2/∂σ 1 < 1 (i.e., the equilibrium is also stable).

The proof uses the following properties of σ 2 = η(σ 1), which are not difficult to

verify: (a) it is strictly increasing in σ 1; (b) σ 2 goes to infinity as σ 1 goes to infinity;

(c) σ 1 goes to minus infinity as σ 2 goes to minus infinity (take the inverse of η(·)).

For any κ1 ∈ (0, κ̄1(κ2)), we know from Theorem 3 that there exists a pair (σ 1, σ 2)

that satisfies κ1 = E1(σ 1, σ 2) and κ2 = E2(σ 1, σ 2), with ∂Σ1/∂σ 2∂Σ2/∂σ 1 < 1. We

will show that this pair is a sorting equilibrium if κ1 is sufficiently small.

To prove it, let M(κ2) = {(σ 1, σ 2)|κ2 = E2(σ 1, σ 2) and σ 2 = η(σ 1)}. Graphically,

this is the set of all pairs at which σ 2 = Σ2(σ 1, κ2) crosses σ 2 = η(σ 1).

If M(κ2) = ∅ we are done, for this implies that σ 2 = Σ2(σ 1, κ2) < η(σ 1) for all

values of σ 1, including those at which κ1 = E1(σ 1, σ 2) and κ2 = E2(σ 1, σ 2). To see

this, note that (i) as σ 2 goes to minus infinity σ 1 = η−1(σ 2) goes to minus infinity,

while we proved in Theorem 3 that σ 1 = Σ−1
2 (σ 2, κ2) converges to σl

1(κ2) > −∞. Also,

(ii) σ 2 = η(σ 1) goes to infinity as σ 1 goes to infinity, while we proved in Theorem 3

that σ 2 = Σ2(σ 1, κ2) converges to σu
2(κ2) <∞. Properties (i) and (ii) reveal that if Σ2

and η do not intersect, then Σ2 is everywhere below η.

If M(κ2) 6= ∅, let (σs
1(κ2), σ

s
2(κ2)) = supM(κ2), which is finite by property (b) of

η(σ 1) and since σ 2 = Σ2(σ 1, κ2) converges to σu
2(κ2) <∞ as σ 1 goes to infinity (see the

proof of Theorem 3). Now, as κ1 goes to zero, σ 1 = Σ1(σ 2, κ1) goes to infinity for any

value of σ 2, for college 1 becomes increasingly more selective to fill its dwindling capacity.

Since σ 2 is bounded above by σu
2(κ2), there exists a threshold κ1(κ2) ≤ κ̄1(κ2) such that,

for all κ1 ∈ (0, κ1(κ2)), the aforementioned pair (σ 1, σ 2) that satisfies κ1 = E1(σ 1, σ 2)

and κ2 = E2(σ 1, σ 2) is strictly bigger than (σs
1(κ2), σ

s
2(κ2)), thereby showing that it

also satisfies σ 2 < η(σ 1). Hence, a sorting stable equilibrium exists for any κ2 and

κ1 ∈ (0, κ1(κ2)), with both colleges filling their capacities (see Figure 8, right panel).
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To finish the proof, notice that, if there are multiple equilibria, both colleges fill

their capacity in all of them (graphically, the conditions on capacities ensure that Σ2

starts above Σ1 for low values of σ 1 and eventually ends below it). Moreover, adjusting

the bound κ1(κ2) downward if needed, all equilibria are sorting (graphically, for κ1

sufficiently small, the set of pairs at which Σ1 and Σ2 intersect are all below η). �

A.11 Capacities and Standards: Proof of Theorem 6

Let (σe
1, σ

e
2) be stable equilibrium: i.e., κ1 = E1(σ

e
1, σ

e
2), κ2 = E2(σ

e
1, σ

e
2). By definition

of stable equilibrium, Λ ≡ ∂E1/∂σ
e
1×∂E2/∂σ

e
2−∂E2/∂σ

e
1×∂E1/∂σ

e
2 > 0. Differentiating

κ1 = E1(σ
e
1, σ

e
2) and κ2 = E2(σ

e
1, σ

e
2) with respect to κi yields

Λ
∂σe

i

∂κi
=
∂Ej

∂σe
j

< 0 and Λ
∂σe

j

∂κi
= −

∂Ej

∂σe
i

< 0.

Thus, both admissions thresholds fall when the capacity of college i = 1, 2 increases. �

A.12 Standards and Application Costs: Proof of Theorem 7

Let c = c1 = c2 be the initially equal applications costs. If ci increases, the applicant

pool at college i shrinks, and thus the Σi curve shifts down, while Σj , j 6= i, remains

unchanged. It follows immediately that the functions now cross at a lower threshold

pair, and consequently that (σ 1, σ 2) both fall.

In a sorting equilibrium, the applicant pool at college 1 consists of calibers x ∈

[ξB,∞). From the last part, any cost increase depresses σ 1 in equilibrium. It follows

that ξB rises in equilibrium — since college 1 has the same capacity as before, if it is

to have lower standards, it must also have fewer applicants. Let (ξ0
B, σ

0
1) be the old

equilibrium pair and (ξ1
B, σ

1
1) the new one, with ξ0

B < ξ1
B and σ0

1 > σ1
1. Then the

distribution function of enrolled students at college 1 under equilibrium i = 0, 1 is:

F i
1(x) =

∫ x

ξi

B

(1 −G(σi
1|t)) f(t)dt

∫ ∞

ξi

B

(1 −G(σi
1|t)) f(t)dt

We must show F 1
1 (x) ≤ F 0

1 (x) for all x ∈ [ξ1
B,∞). For any x the denominators on

both sides equal k1, so cancel them. Now notice that 0 = F 1
1 (ξ1

B) < F 0
1 (ξ1

B) and
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limx→∞ F 1
1 (x) = limx→∞ F 0

1 (x) = 1. Since both functions are continuous in x, it will suf-

fice to show that ∂F 1
1 /∂x > ∂F 0

1 /∂x for all x ∈ [ξ1
B,∞) to conclude that F 1

1 (x) < F 0
1 (x)

except in the limit. But this requires (1 −G(σ1
1|x)) f(x) > (1 −G(σ0

1|x)) f(x), which

is immediately true since σ1
1 < σ0

1. �
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