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Abstract

We consider ARCH processes with persistent covariates and provide asymp-
totic theories that explain how such covariates a¤ect various characteristics of
volatility. Speci�cally, we propose and study a volatility model that is an ARCH
process with a nonlinear function of a persistent, integrated or nearly integrated,
explanatory variable. Statistical properties of time series given by this model
are investigated for various volatility functions. It is shown that our model
generates time series that have two prominent characteristics: high degree of
volatility persistence and leptokurtosis. Due to nonstationary covariates, the
time series generated by our model has the long memory property in volatility
that is commonly observed in high frequency speculative returns. On the other
hand, the sample kurtosis of the time series generated by our model either di-
verges or has a well-de�ned limiting distribution with support truncated on the
left by the kurtosis of the innovation. We present two empirical applications of
our model. It is shown that the default premium (the yield spread between Baa
and Aaa corporate bonds) predicts stock return volatility, and the interest rate
di¤erential between two countries accounts for exchange rate return volatility.
The forecast evaluation shows that our model generally performs better than
GARCH(1,1) and FIGARCH at relatively lower frequencies.
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1 Introduction

ARCH type models have widely been used to model volatilities of economic and �nancial
time series since the seminal work by Engle (1982) and the extension made by Bollerslev
(1986). The processes generated by these models successfully show volatility clustering
and leptokurtosis, which are commonly observed for many economic and �nancial time
series. However, most of the volatility characteristics of these models have been univariate,
relating the volatility of time series to only information contained in its own past history.
Hence, they shed little light on a source of volatility and exclude important possibility that
conditional heteroskedasticity may be accounted for by some economic variables.

As an e¤ort to provide some structural or economic explanations for volatility, many pre-
vious works considered ARCH type models with exogenous variables. Typically, GARCH(1,1)
model with an exogenous variable (mostly in linear form) was used for this purpose. Engle
and Patton (2001) tested GARCH(1,1) model with three month U.S. Treasury bill rates
for stock return volatility, and Gray (1996) added the level of interest rates to explain
conditional variance in his generalized regime-switching model of short-term interest rate.
Likewise, forward-spot spreads and interest rate di¤erentials between countries were used
as covariates respectively by Hodrick (1989) and Hagiwara and Herce (1999) to model ex-
change rate return volatility. Moreover, Lamoureux and Lastrapes (1990) included trading
volume in their stock return volatility model.

The exogenous variables such as interest rates and interest rate di¤erentials between
countries used in these works are known to be highly persistent, and may well be modeled
as time series having an exact or near unit root. It is therefore natural to expect the non-
stationary covariates would a¤ect the degree of persistence in volatility. However, there has
been no theoretical study in the literature to rigorously investigate the e¤ects of the pres-
ence of nonstationary covariates on volatility persistence. They have been largely ignored,
and the researchers usually focus on the ARCH e¤ect to analyze the degree of volatility
persistence. The main motivation of our research is to �ll this gap, by providing some
important asymptotic theories for ARCH models with nonstationary covariates. In particu-
lar, our theories make it clear how nonstationary covariates a¤ect volatility persistence and
leptokurtosis.

Recently, Park (2002) introduced nonstationary nonlinear heteroskedasticity (NNH).
NNH models specify conditional variance of given time series as a nonlinear function of an
integrated process. The function generating conditional heterogeneity is called heterogene-
ity generating function (HGF). It is shown that volatility clustering and leptokurtosis are
manifest for NNH models and, in contrast, stationary nonlinear heteroskedasticity (SNH)2

does not produce volatility clustering.
We introduce a volatility model which combines ARCH(1) model with NNH model.

We call this model as ARCH-NNH. Unlike Park (2002), we allow the NNH part of our
models to be generated by a covariate which has a near unit root as well as the exact
unit root. Therefore, our models represent a wide class of time series with volatilities

2 In contrast to the NNH model, the conditional heterogeneity is generated by a stationary time series in
the SNH model.
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driven by the autoregression with persistent covariates. The statistical properties of ARCH-
NNH models depend crucially on the type of HGF. Two di¤erent classes of functions are
considered: integrable (f 2 I) and asymptotically homogeneous (f 2 H) functions, following
Park and Phillips (1999, 2001) who introduced them in their studies on nonlinear models
with integrated time series.

We investigate various statistical properties of time series driven by ARCH-NNH mod-
els. The asymptotic behavior of sample autocorrelation of squared process generated by
ARCH-NNH models shows that volatility clustering is expected for ARCH-NNH models
with various HGF�s; the autocorrelation is very persistent, i.e., they vanish very slowly or
do not even vanish for all lags.

Ding, Granger and Engle (1993) found that it is possible to characterize the power
transformation of stock return to be long memory. The sample autocorrelation function
of squared speculative returns (especially high frequency data) is known to have a typical
trend that it decreases fast at �rst and remains signi�cantly positive for larger lags. The
fractionally integrated models such as Long Memory ARCH model by Ding and Granger
(1996) and FIGARCH model by Baillie, Bollerslev and Mikkelsen (1996) are known to
capture this long memory property in volatility. Recently, several studies have shown that a
number of nonlinear short memory volatility models can also produce spurious long memory
characteristics in volatility. One example of such models is the volatility component model
by Engle and Lee (1999). And theoretical work in structural change (Mikosch and Starica
(2004)), switching regime (Diebold and Inoue (2001)) and occasional breaks (Granger and
Hyung (2004)) has shown that any of these events is capable of producing the long memory
property.

Our theory shows that ARCH-NNH can also generate the long memory property in
volatility. Asymptotically, the autocorrelation function of squared process of ARCH-NNH
model with f 2 I decreases to zero at a hyperbolic rate as the lag order increases. While
the autocorrelation function of squared process of GARCH (1,1) vanishes at an exponential
rate, that of ARCH-NNH model does at a hyperbolic rate like the fractionally integrated
models. On the other hand, the asymptotic autocorrelation function of squared process
of ARCH-NNH model with f 2 H decreases fast (exponentially) at �rst and converges to
some positive random limit. Regardless of the function class of HGF, ARCH-NNH models
generate the long memory property in volatility due to nonstationary covariates.

Similarly as those for the volatility component model by Engle and Lee (1999), the time
series generated by ARCH-NNH models can be decomposed into the permanent or long-run
component (NNH term) and the transitory or short-run (ARCH term) component. Only
a shock to the nonstationary covariates has a long-run e¤ect on volatility. Additionally,
we compare the autocorrelation functions of simulated ARCH-NNH, GARCH(1,1) and FI-
GARCH processes and this simulation study shows that ARCH-NNH process mimics the
movement of real data very well.

Time series generated by ARCH-NNH models with various HGF�s all unambiguously
predict the presence of leptokurtosis. The sample kurtosis of ARCH-NNH models with
f 2 I diverges at the rate of

p
n, which means it is expected to have large sample kurtosis

for any reasonably large samples. The sample kurtosis of ARCH-NNH models with f 2 H
has a random limit bigger than the kurtosis of innovation, which also implies leptokurtosis.
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We present two empirical applications of the ARCH-NNH model with the HGF given
by the simple power function. One is a stock return volatility model and the nonstationary
covariate used for the model is the default premium (the yield spread between Baa and
Aaa corporate bonds). It shows that stock return volatility is well explained by the default
premium, which con�rms the earlier work by Schwert (1989). The other application is
the model for exchange rate return volatility, where we use as a covariate the interest rate
di¤erentials between two countries. We could see the modulus of the interest rate di¤erential
is well explaining exchange rate return volatility, as observed by Hagiwara and Herce (1999).
In both cases, the ARCH-NNH model appears to be quite appropriate and this indicates
that the default premium is a proper source of stock return volatility and the interest rate
di¤erential is an adequate source of exchange rate return volatility.

Finally, we evaluate the forecasting ability of the ARCH-NNH model. We obtained out-
of-sample forecasts at the monthly, weekly and daily frequencies. Using �realized volatility�
as a proxy for actual volatility, we employ the regression-based method and the mean ab-
solute error with the forecast accuracy tests by Diebold and Mariano (1995). It is shown that
the ARCH-NNH model is not only practically useful, but also outperforms GARCH(1,1)
and FIGARCH at relatively lower frequencies.

The rest of the paper is organized as follows. Section 2 introduces the model with
some preliminary concepts. Various statistical properties for the samples from ARCH-NNH
models are investigated in Section 3. The asymptotic behavior of sample statistics such
as sample autocorrelation of squared process, as well as sample variance and kurtosis, is
derived. Section 4 presents empirical applications of ARCH-NNH model. The forecasting
ability of ARCH-NNH model is evaluated in Section 5. Section 6 concludes the paper, and
Appendices A and B contain mathematical proofs for the technical results in the paper.

2 The Model and Preliminaries

We write our volatility model as
yt = �t"t (1)

and let (Ft) be a �ltration, denoting information available at time t.

Assumption 1. Assume that
(a) ("t) is iid (0,1) and adapted to (Ft)
(b) (�t) is adapted to (Ft�1)

Under Assumption 1, we have

E(ytjFt�1) = 0 and E(y2t jFt�1) = �2t :

The time series (yt) has conditional mean zero with respect to the �ltration (Ft), and there-
fore, (yt;Ft) is a martingale di¤erence sequence. However, it is conditionally heteroskedastic
with conditional variance �2t :
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Assumption 2. Let

�2t = �y
2
t�1 + f(xt) (2)

for some nonnegative function f : R! R+ and

xt =
�
1� c

n

�
xt�1 + vt (3)

assuming that (xt) is adapted to (Ft�1) where c � 0:

Assumption 1 and 2 de�ne our volatility model. Under Assumption 1 and 2, (yt) is
an ARCH process with persistent covariates. The volatility model given by �2t = f(xt) is
referred to as NNH (Nonstationary Nonlinear Heteroskedasticity), which is introduced by
Park (2002). Park (2002) considered only the case in which (xt) has an exact unit root. We
add this NNH term in our volatility model with an extension that allows (xt) to have a near
unit root as well. The speci�cation in (3) allows that (xt) has not only an exact unit root
but also a near unit root. Since our volatility model is a combination of ARCH(1) and NNH
models, it will be referred to as ARCH-NNH in our subsequent discussions. Notice that
our model does not include �2t�1 term: Our theory will show that this term is not necessary
and instead nonstationary covariates mainly explain volatility persistence.

The function f : R! R+ will be referred to as heterogeneity generation function (HGF)
in what follows. Clearly, f must be a nonlinear function, since it has to be nonnegative.
More speci�cally, we consider two classes of functions: integrable and asymptotically homo-
geneous functions. These function classes were introduced by Park and Phillips (1999) in
their study on the asymptotics of nonlinear transformations of integrated time series. As
it was done by Park (2002), the functions that are integrable and asymptotically homoge-
neous will be called I and H-regular with added regularity conditions. They will be denoted
respectively by I and H.

To derive the asymptotics for the ARCH-NNH models with f 2 I, we assume that (vt)
in (3) is either iid sequence with E jvtjq < 1 for some q > 4 (as in Assumption 3S), or
a stationary linear process driven by an iid sequence (�t) such that E j�tjq < 1 for some
q > 4 (as in Assumption 4S). In the following de�nition, we let q be the number that will
be given later by such moment conditions.

De�nition 1. A transformation f on R is called I-regular (f 2 I) if f is bounded, inte-
grable and piecewise Lipschitz, i.e.,

jf(x)� f(y)j � cjx� yj`

on each piece of its support, for some constant c and ` > 6= (q � 2) :

To de�neH-regular functions, we introduce some classes of transformations on R:We denote
by zB the class of all bounded transformations on R; and denote by zLB the class of locally
bounded transformations on R De�ne z0B be the class of all bounded functions vanishing at
in�nity, and let z0LB be the subset of zLB consisting of T such that T (x) = O(exp(c jxj))
as jxj ! 1 for some constant c:
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De�nition 2. A transformation f on R is called H-regular (f 2 H) if f can be written
as

f(�x) = �(�)S(x) + r(x; �)

for large � uniformly in x over any compact interval, where S is locally Riemann integrable
and r satis�es

r(x; �) = a(�)p(x) or b(�)p(x)q(�x)

with a and b such that a(�)=�(�) ! 0 and b(�)=�(�) < 1 as � ! 1; and p and q such
that p 2 z0LB and q 2 z0B: For f 2 H, We call � and S; respectively, the asymptotic order
and limit homogeneous function of f:

The reader is referred to Park and Phillips (1999, 2001) for more details on these function
classes. The classes I and H include a wide class, if not all, of transformations de�ned on R.
The bounded functions with compact supports and more generally all bounded integrable
functions with fast enough decaying rates, for instance, belong to the class I . On the other
hand, power functions a jxjb with b � 0 belong to the class H having asymptotic order
a�b and jxtjb as limit homogeneous functions. Moreover, logistic function ex=(1 + ex) and
all the other distribution function-like functions are also the elements of the class H with
asymptotic order 1 and limit homogeneous function 1fx � 0g:

Standard terminologies and notations in probability and measure theory are used through-
out the paper. In particular, notations for various convergences such as !a:s:; !p and !d

frequently appear. The notation =d signi�es equality in distribution. Some theoretic tools
are introduced in the following. In the next section, we are going to introduce assumptions
for (vt); which make the time series (xt) in (3) become a general linear process with a near
unit root or an exact unit root. Throughout the paper, we set the long-run variance of (vt)
to be unity because it has only an unimportant scaling e¤ect on our analysis. Either As-
sumption 3 or Assumption 4 in the next section satis�es conditions of (vt) for the followings.
We de�ne

Vcn(r) = n
�1=2x[nr]

for r 2 [0; 1]; where [z] denotes the largest integer which does not exceed z: And we let

Vc(r) =

Z r

0
exp (�c(r � s)) dV0(s)

where r 2 [0; 1] and V0 is the standard Brownian Motion. Then, it is well known that

Vcn !d Vc

as n ! 1: Vc is an Ornstein-Uhlenbeck process, generated by the stochastic di¤erential
equation

dVc(r) = �cVc(r)dr + dV0(r)

with the initial condition Vc(0) = 0: See Phillips (1987) and Stock (1994).
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As in Park (2003), our subsequent theory for the case of integrable HGFs involves the
local time of Ornstein-Uhlenbeck process. The local time for Vc is then de�ned as

Lc(t; s) = lim
"!0

1

2"

Z t

0
1 fjVc(r)� sj < "g dr:

Roughly speaking, 2" times Lc(t; s)measures the actual time spent by Vc in the "-neighborhood
of s up to time t: The local time yields the occupation time formulaZ t

0
T (Vc(r))dr =

Z 1

�1
T (s)Lc(t; s)ds

for any T : R! R locally integrable. For each t; the occupation time formula allows us
to evaluate the time integral of a nonlinear function of an Ornstein-Uhlenbeck process by
means of the integral of the function itself weighted by the local time.

3 Statistical Properties of ARCH-NNH

We investigate the statistical properties of ARCH-NNH models. In particular, the asymp-
totic behavior of the sample autocorrelation function of squared process and other sample
moments such as sample variance and sample kurtosis of process generated by ARCH-NNH
models are derived.

3.1 Sample Autocorrelation of Squared Process

Ding, Granger and Engle (1993) investigated the long memory property of stock returns
and they found out that it is possible to characterize the power transformation of stock
returns to be long memory. This long memory property is known to be commonly observed
in high frequency data. Figure 1 shows the sample autocorrelation function of daily squared
returns on S&P 500 index and this con�rms the long memory property; the autocorrelation
function decreases fast at �rst and remains signi�cantly positive for larger lags. Hitherto the
fractionally integrated models such as Long Memory ARCH model by Ding and Granger
(1996) and FIGARCH model by Baillie, Bollerslev and Mikkelsen (1996) are known to
capture this property.

Recently, several studies have shown that a number of non-linear short memory volatility
models can also produce spurious long memory characteristic in volatility. One example of
such models is the volatility component model by Engle and Lee (1999). And, theoretical
work in structural change (Mikosch and Starica (2004)), switching regime (Diebold and
Inoue (2001)) and occasional breaks (Granger and Hyung (2004)) has shown that any of
these events is capable of producing the long memory property. See Hyung, Poon, and
Granger (2005). In this section, we are going to examine if ARCH-NNH models also produce
this long memory property in volatility.
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De�ne the sample autocorrelation of (y2t ) by

R2nk =

nP
t=k+1

�
y2t � �y2n

� �
y2t�k � �y2n

�
nP
t=1

�
y2t � �y2n

�2 ;

where �y2n denotes the sample mean of (y
2
t ): To precisely characterize the asymptotic behavior

of R2nk under ARCH-NNH models, we make the following additional assumptions.

Assumption 3S. Assume
(a) (vt) are iid.
(b) Ef2(x+ vkt) <1 for all x 2 R and k � 1, where vkt = vt+1 + :::+ vt+k:
(c) E j"tjp <1 for some p � 8:
(d) ("t) and (vt) are independent.
(e) (vt) has distribution absolutely continuous with respect to Lebesgue measure, charac-
teristic function �(t) such that tr�(t) ! 0 as t ! 1 for some r > 0, and E jvtjq < 1 for
some q > 4:

Assumption 3W. Assume (a)-(e) of Assumption 3S with q > 2:

Assumption 3W is weaker than Assumption 3S, where �W�and �S�stand for weak and
strong respectively. Whenever the distinction is unnecessary, we will just refer to Assump-
tion 3. Under Assumptions 3S, (vkt) has density with respect to Lebesgue measure on R,
and we signify the density by pk: Also, we denote the kurtosis of ("t) by �4" throughout the
paper.

Theorem 1 Let Assumptions 1 and 2 hold, and let k � 1: Assume that 0 < � < 1 and
�2�4" < 1:
(a) If f 2 I, then under Assumption 3S

R2nk !p

1Z
�1

1Z
�1

f(x)f(x+ y)
k�1P
j=0

1P
i=0
�i+jpk+i�j(y)dxdy

2�4"
1��2�4"

1Z
�1

1Z
�1

f(x)f(x+ y)
1P
i=1
�ipi(y)dxdy +

�4"
1��2�4"

1Z
�1

f2(s)ds

+ �k

as n!1:
(b) If f 2 H with limit homogeneous function S, then under Assumption 3W

R2nk !d

(1� �k)
�R 1
0 S

2(Vc(r))dr �
�R 1
0 S(Vc(r))dr

�2�
(1��2)
1��2�4"

�4"
R 1
0 S

2(Vc(r))dr �
�R 1
0 S(Vc(r))dr

�2 + �k

as n!1:
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Theorem 1 shows the asymptotic behavior of the sample autocorrelations of squared
process generated by ARCH-NNH models. Regardless of function classes, probability limits
of R2nk contain �

k: Considering that R2nk of ARCH(1) converges to �
k, we can tell that �k

term comes from the ARCH component and the other term of each case is originated from
the NNH component. (Recall that ARCH-NNH model is a combination of ARCH(1) and
NNH.) In the following context, we can see that nonstationary covariates mainly explain
volatility persistence and also generate the long memory property in volatility.

The part (a) of Theorem 1 shows that, for ARCH-NNH models with f 2 I, R2nk converges
in probability to a nonrandom limit, which as a function of k � 1 we may regard as the
asymptotic autocorrelation function of squared process and we denote R2k hereafter. The
actual value of R2k is determined by the distribution of (vt) as well as HGF. In order to
explain volatility persistence, R2k should at lease decrease at a slow rate as k ! 1: As
it was done by Park (2002), let us consider the case in which the distribution of (vt) is

Gaussian. Since we have vkt =d
p
kvt in the case, it follows that pk(x) = 1p

k
p
�
xp
k

�
where

p is the normal density. Since the normal density is continuous at the origin, we have

1Z
�1

1Z
�1

f(x)f(x+ y)pk(y)dxdy =
1p
k

1Z
�1

1Z
�1

f(x)f(x+ y)p(
yp
k
)dxdy

=
1p
k
p(0)

0@ 1Z
�1

f(x)dx

1A2 ! 0

as k !1:
Using this, we can show that R2k in part (a) of Theorem 1 decreases to zero as k !1:

When (vt) is Gaussian, we have

k�1X
j=0

1X
i=0

�i+jpk+i�j(y) =
k�1X
j=0

�j
1X
i=0

�i
1p

k + i� j
p(

yp
k + i� j

):

Let c be an arbitrary number such that 0 < c < k � 1: For j = c; as k !1

�j
1X
i=0

�i
1p

k + i� j
p(

yp
k + i� j

)! 0

because 1p
k+i�j will dominate and the rate of decay is k

�1=2. For j = k � c; then �j will
dominate and we have the same convergence with an exponential rate. Since c is arbitrary,

we can divide
k�1P
j=0

�j
1P
i=0
�i 1p

k+i�j p(
yp

k+i�j ) into two parts; one part decays at a hyperbolic

rate and the other part does at an exponential rate. So, we can deduce that

k�1X
j=0

�j
1X
i=0

�i
1p

k + i� j
p(

yp
k + i� j

)! 0
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as k !1 and its decay rate is hyperbolic.
The fact that R2k converges to zero is similar with the behavior of GARCH(1,1) model.

However, there is an important di¤erence in their respective decreasing patterns. Under
GARCH(1,1), R2k decreases at an exponential rate as k increases.

3 However, R2k of ARCH-
NNH models with f 2 I decreases at a hyperbolic rate. This means that ARCH-NNH
models with f 2 I produce the long memory property in volatility like the fractionally
integrated models. In other words, volatility persistence is well expected in ARCH-NNH
models with f 2 I.

On the other hand, the part (b) of Theorem 1 gives the asymptotic limit of R2nk for
ARCH-NNH models with f 2 H and it is very di¤erent from that of the previous f 2 I
case. Since an Ornstein-Uhlenbeck process is included, R2k is random and it is not a¤ected
by the distribution of (vt): R2k of ARCH-NNH models with f 2 H decreases as k !1 but
it does not converge to zero. Let

A =

1
(1��)

�R 1
0 S

2(V (r))dr �
�R 1
0 S(V (r))dr

�2�
(1+�)�4"
1��2�4"

R 1
0 S

2(V (r))dr � 1
(1��)

�R 1
0 S(V (r))dr

�2 :
Then

R2k = A+ �
k (1�A) :

As k !1; R2k decreases exponentially at �rst and �nally converges to A which is a random
constant clearly smaller than unity and positive unless limit homogeneous function S is
constant. This trend of R2k is compatible with the sample autocorrelation of the real data
in Figure 1. Like the previous f 2 I case, ARCH-NNH models with f 2 H also capture the
long memory property in volatility. Therefore, it is also expected that ARCH-NNH models
with f 2 H would properly explain volatility persistence.

When f 2 H, R2k of ARCH-NNH models behaves similarly as that of NNH models.
However, R2k of ARCH-NNH models with f 2 H is dependent on k and decreases as k !1;
which is di¤erent from R2k of NNH models. In case of NNH models with f 2 H, R2k is
independent of k and given by a random constant for all values of the lag order k � 1:

Additionally, the result in part (b) of Theorem 1 implies that if f has constant limit
homogeneous functions then the sample autocorrelations of squared process by ARCH-NNH
models converge in probability to �k: Suppose that f(xt) = c + g(xt) where c is constant
and g(xt) 2 I. Then f is asymptotically homogeneous and its limit homogeneous function
is constant. This means R2nk !p �

k just like ARCH(1). Note that if an ARCH-NNH
model has f(xt) = c then it is exactly the ARCH(1) model. Therefore, if f(xt) consists of
constant and g(xt) 2 I, the integrable function g(xt) does not a¤ect volatility persistence
asymptotically.

Theorem 1 shows that, due to nonstationary covariates, ARCH-NNH process explains
volatility persistence very well and, especially, produces the long memory property in volatil-

3The sample autocorrelation of the squared process of stationary GARCH(1,1) has probability limit given
by (�+ �)k�1 �(1�����

2)

1�2����2 for k � 1 if �2�4" + 2�� + �2 < 1:
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ity. The following text gives us better understanding about how nonstationary covariates
play a role in volatility persistence.

3.1.1 Decomposition of Volatility

In the volatility component model by Engle and Lee (1999), volatility is decomposed into a
permanent or long-run component and a transitory or short-run component. Similarly, an
ARCH-NNH model has two components and an NNH term represents a permanent/long-
run component and an ARCH term explains a transitory/short-run component. We follow
the way done by Ding and Granger (1996), who showed that, for the IARCH(1) process,
a shock may permanently a¤ect the �expectation�of a future conditional variance process,
but it does not permanently a¤ect the �true�conditional process itself.

According to assumption 2, xt is adapted to (Ft�1). To make it simple, let us consider
the case in which xt is adapted to (Ft), "t � N(0; 1) and @f(x)

@x 6= 0. Then we have

yt = �t"t; "t � N(0; 1) (4)

�2t = �y2t�1 + f(xt�1) (5)

xt =
�
1� c

n

�
xt�1 + vt (6)

In ARCH-NNH models, a shock to the system at time t comes from "t or vt; and this
shock will not a¤ect �2t because �

2
t depends only on the past information. Since

�2t+k =

k�1Y
i=1

"2t+k�i�
ky2t +

k�1X
j=0

jY
i=1

"2t+k�i�
jf(xt+k�1�j)

(we let
0Q
i=1
"2t+k�i = 1 here), we have

E(y2t+k) = E(�
2
t+k) = �

ky2t + �
k�1f(xt) +

k�2X
j=0

�jE(f(xt+k�1�j)):

A shock at time t to y2t ; from "t; and a shock to xt, from vt; will permanently change
E(y2t+k) and E(�

2
t+k); i.e., both shocks a¤ect the �expectation�of the future squared process

and the future conditional variance process. However, we have di¤erent situation in case of
the �true�y2t+k and �

2
t+k: The real impact of a shock from "t (a change in y2t ) to �

2
t+k is

@�2t+k
@y2t

=

k�1Y
i=1

"2t+k�i�
k (7)
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and the real impact of a shock from vt (a change in xt) to �2t+k is

@�2t+k
@xt

=

k�1X
j=0

jY
i=1

"2t+k�i�
j @f(xt+k�1�j)

@xt

=
k�1X
j=0

jY
i=1

"2t+k�i�
j
�
1� c

n

�k�1�j @f(xt+k�1�j)
@xt+k�1�j

because @f(xt+k�1�j)
@xt

=
@f(xt+k�1�j)
@xt+k�1�j

@xt+k�1�j
@xt

=
@f(xt+k�1�j)
@xt+k�1�j

�
1� c

n

�k�1�j
:

Corollary 2 Given (4)-(6), let k � 1, 0 < � � 1, "t � N(0; 1) and @f(x)
@x 6= 0: As k !1;

(a)
@�2t+k
@y2t

!a:s: 0.

(b)

����@�2t+k@xt

����!a:s: h for some h > 0 if c = 0:

(c)
@�2t+k
@xt

! 0 at a slower rate than
@�2t+k
@y2t

if c > 0 and �2�4" < 1:

Note in the part (a) of Corollary 2 that even if � = 1;
@�2t+k
@y2t

! 0 almost surely as

k ! 1. This is because, as shown in Nelson (1990),
k�1Q
i=1

"2t+k�i in (7) converges to zero

almost surely. Similarly, it should be noticed that the part (b) of Corollary 2 holds even
when � = 1: Since y2t+k = �2t+k"

2
t+k; we have the similar result for y

2
t+k. Therefore, the

part (a) and (b) of Corollary 2 indicate that while the real impact of a shock from "t will
converge to zero, a shock to vt will permanently a¤ect the �true�process of �2t+k and y

2
t+k if

xt is an I(1) process. A shock to "t is not persistent in �2t+k and y
2
t+k but a shock to vt is

persistent in �2t+k and y
2
t+k: If c > 0; then the real impact of a shock from vt will disappear

eventually. However, the part (c) of Corollary 2 shows that a shock from vt has a longer
e¤ect than a shock from "t. Hence, we can consider a shock from "t as a short-run shock
and a shock from vt as a long-run shock.

3.1.2 Simulated Autocorrelation Functions

Now we are going to look at the behavior of simulated ARCH-NNH processes and examine
how much it mimics the movement of real data. Figure 2�4 show the autocorrelation
functions of squared return series on S&P 500 index and some simulated series. The sample
sizes are 1014, 1079, and 3938 for the monthly, weekly, and daily frequencies respectively.
We use these data for our �rst empirical application in the next chapter and the sample
period for each frequency is given there. The solid curves indicate the autocorrelation
functions of the real data and the dotted curves are those of simulated series.
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We generated data using the estimates obtained from our �rst empirical application
in the next chapter and drew autocorrelation functions for the ARCH-NNH model with a
simple power function, GARCH (1,1) model and FIGARCH(1,d,q)4 model based on 5; 000
iteration. The upper and lower dotted curves indicate the 5%- and 95%-quantile of the
distribution of the autocorrelations at a �xed lag and the middle dotted curves correspond
to the mean of those distributions.

Overall, the simulations show that ARCH-NNH processes mimic the movements of real
data very well. For the monthly case, the simulated ARCH-NNH process performs very
well in following the movement of the real data and GARCH(1,1) and FIGARCH are also
doing �ne but their simulated processes are a little higher than the autocorrelation function
of the real data. For the weekly and daily cases, both our model and FIGARCH are doing
well but it is obvious that GARCH(1,1) is not proper in following the movement of real
data.

3.2 Sample Variance and Kurtosis

We now investigate the asymptotic behaviors of other sample moments such as sample
variance and kurtosis. The sample variance of (yt) is de�ned by

S2n =
1

n

nX
t=1

y2t :

We introduce additional assumptions for the asymptotics of the sample variance.

Assumption 4S. Assume
(a) E j"tjp <1 for some p � 4:
(b) (vt) is generated by

vt = �(L)�t =
1X
k=0

�k�t�k (8)

where �0 = 1; �(1) 6= 0 with
X1

k=0
k j�kj < 1, and (�t) are iid and has distribution

absolutely continuous with respect to Lebesgue measure, characteristic function '(t) such
that tr'(t)! 0 as t!1 for some r > 0, and E j�tjq <1 for some q > 4:

Assumption 4W. Assume (a) of Assumption 4S and (b) of Assumption 4S with q > 2:

4q = 1 for the monthly frequency and q = 0 for the weekly and daily frequencies. See the estimation part
in the next chapter.
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Theorem 3 Let Assumptions 1 and 2 hold. Assume that 0 < � < 1:
(a) If f 2 I, then under Assumption 4S

p
nS2n !d

1

1� �Lc(1; 0)
Z 1

�1
f(s)ds

as n!1:
(b) If f 2 H with limit homogeneous function S and asymptotic order �, then under As-
sumption 4W

1

�(
p
n)
S2n !d

1

1� �

Z 1

0
S(Vc(r))dr

as n!1:

The asymptotics for the sample variance are given in Theorem 3. The results are exactly
same as those of NNH models except that 1

1�� is multiplied. The sample variance of ARCH-
NNH processes with f 2 I converges in probability to zero as n!1: The behavior of the
sample variance of ARCH-NNH processes with f 2 H depends on the asymptotic order of
HGF. If the asymptotic order � is unity (for example, bounded f 2 H), the asymptotic
variance is �nite. If �(

p
n)!1 as n!1 (for example, power functions); the asymptotic

variance would be in�nite like IGARCH models.
It is well known that many �nancial series are leptokurtic. In order to see if the process

generated by ARCH-NNH models is leptokurtic, we investigate the asymptotic behavior of
sample kurtosis. We de�ne the sample kurtosis of (yt) by

K4
n =

1

n

nX
t=1

y4t

, 
1

n

nX
t=1

y2t

!2
:

We introduce additional assumptions for the asymptotics of the sample kurtosis.

Assumption 5S. Assume (a) E j"tjp <1 for some p � 8, and (b) of Assumption 4S.

Assumption 5W. Assume (a) of Assumption 5S and (b) of Assumption 4W.

Theorem 4 Let Assumptions 1 and 2 hold. Assume that 0 < � < 1 and �2�4" < 1:
(a) If f 2 I, then under Assumption 5S

1p
n
K4
n !d

2�4"
1��2�4"

1Z
�1

1Z
�1

f(x)f(x+ y)
1P
i=1
�ipi(y)dxdy +

�4"
1��2�4"

1Z
�1

f2(s)ds

Lc(1; 0)

0@ 1
1��

1Z
�1

f(s)ds

1A2

as n!1:
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(b) If f 2 H with limit homogeneous function S, then under Assumption 5W

K4
n !d

1��2
1��2�4"

�4"
R 1
0 S

2(Vc(r))dr�R 1
0 S(Vc(r))dr

�2
as n!1:

The asymptotics for the sample kurtosis of (yt) are given in Theorem 4. The result for
ARCH-NNH models with f 2 I shows that the sample kurtosis (yt) diverges at the rate ofp
n as n ! 1. Therefore, it is expected to have a larger sample kurtosis as sample size

increases and this explains leptokurtosis observed in many economic and �nancial data.
On the other hand, the sample kurtosis of ARCH-NNH models with f 2 H converges

to a random constant. However, the limit of the sample kurtosis is bigger than the kurtosis
of innovation ("t),

�4" <

1��2
1��2�4"

�4"
R 1
0 S

2(V (r))dr�R 1
0 S(V (r))dr

�2 ;

because
�R 1
0 S(V (r))dr

�2
�
R 1
0 S

2(V (r))dr by Cauchy-Schwarz inequality and 1 < 1��2
1��2�4"

:

Therefore, leptokurtosis is naturally expected for time series generated by ARCH-NNH
models with f 2 H. Note that the inequality is strict even if S is constant.5 In case of
ARCH(1), K4

n !d
1��2
1��2�4"

�4". Unless S is constant, ARCH-NNH models with f 2 H will
have bigger kurtosis than ARCH (1) asymptotically.

4 Empirical Applications

We investigate two empirical applications in this section. One is for stock return volatility
and the other is for exchange rate return volatility. We consider the ARCH-NNH model
with a simple HGF, f(x) = � jxj� ; in both cases.

4.1 Stock Return Volatility

Schwert (1989) found out that the di¤erence between yields on bonds of di¤erent quality
is directly related to subsequently observed stock return volatility. This leads us to expect
that a proper function of the yield spreads can predict stock return volatility. We selected to
work with the S&P 500 Index return series.6 The sample period for the monthly frequency

5This is another di¤erence between ARCH-NNH and NNH models. For the NNH model, K4
n !p �

4
" if S

is constant.
6We obtained the monthly indexes, average of daily indexes in the month, from Dr.Robert J. Shiller�s

website. The weekly indexes, from Yahoo.Finance, are sampled on every Friday. The daily indexes are from
the Center for Research in Security Prices (CRSP).
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is from January 1919 to June 2003 (1014 observations). It is from 23 October 1982 to 27
June 2003 at the weekly frequency (1079 observations) and from 2 November 1987 to 30
June 2003 at the daily frequency (3938 Observations).

The default premium (the spread between the Moody�s Baa and Aaa corporate bond
yields) is used for the ARCH-NNH model and Table 1 shows the results of unit root tests
for the series. We consider two alternative autoregressive speci�cations for the series: with
and without a linear deterministic trend. Let us consider the monthly and weekly cases
�rst. The estimated autoregressive coe¢ cients are between 0.974 and 0.982. Phillips-Perron
Zt rejects the null hypothesis of a unit root in most cases. However, the KPSS test rejects
the null hypothesis of stationarity at 1% signi�cance level in every case, which suggests
that there exists strong evidence in favor of the nonstationary alternative. Considering the
strong results of KPSS tests and that the estimated autoregressive coe¢ cients are close to
unity, we conclude that there exists at least a near unit root for the monthly and weekly
cases. For the daily case, unit root tests strongly support presence of a unit root. The
estimated autoregressive coe¢ cients are 0.996 and Phillips-Perron tests are unable to reject
the null hypothesis of a unit root while KPSS tests reject the null hypothesis of stationarity
at 1% signi�cance level.

We estimate the following model

yt = �+ �t"t

�2t = �(yt�1 � �)2 + � jxt�1j� ARCH-NNH

where yt denotes the stock return series and xt is the default premium (Baa � Aaa). We
also estimate GARCH(1,1) and FIGARCH models for comparison.

�2t = c+ �(yt�1 � �)2 + ��2t�1 GARCH(1; 1)

�2t = c+ ��2t�1 +
h
1� �L� (1� �L) (1� L)d

i
(yt � �)2

FIGARCH(1; d; 1)

�2t = c+ ��2t�1 +
h
1� �L� (1� L)d

i
(yt � �)2

FIGARCH(1; d; 0)

The quasi-maximum likelihood estimation procedure discussed by Bollerslev andWooldridge
(1992) is commonly used for ARCH type models. For the consistency and asymptotic
normality of ARCH estimators, see Weiss (1986) for ARCH(n), Lee and Hansen (1994)
and Lumsdaine (1996) for stationary GARCH(1,1) and IGARCH(1,1), Berkes, Horvath
and Kokoszka (2003) for GARCH(n;m) and Robinson and Za¤aroni (2005) for a class of
ARCH(1) : Han and Park (2005) established the consistency and asymptotic mixed nor-
mality of the quasi-maximum likelihood estimators of the ARCH-NNH model. Thus, we
use the quasi-maximum likelihood estimation method for the above three models. The
estimation results for the models are summarized and presented in Tables 2-4.

Table 2 shows the estimation results of the ARCH-NNH model with f(x) = � jxj� :7 For
each frequency, we report estimation results of the model without any constraint on � as well

7Notice that the coe¢ cient of the lag of the squared return; �; is compatible with the asymptotic theory
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as with constraint of � = 1. At �rst, we estimate the model without any constraint on � and
all coe¢ cients are tested to be signi�cant except for � of the weekly frequency. The estimates
of � for the monthly and daily frequencies are close to unity (1:05 and 1:10 respectively) and
we are not able to reject the null hypothesis of � = 1. The estimation results of the model
with constraint are quite similar to those of the model without constraint, and every estimate
of the model without constraint is statistically signi�cant. Hence, f(x) = � jxj appears to
be better in describing the volatility of the stock return series and we are going to use
this function for our simulation and forecasting evaluation. Not only is the ARCH-NNH
model statistically appropriate, but the model con�rms economic thoughts. As expected,
the default premium is positively related to stock return volatility, which is compatible with
Schwert (1989). It is not surprising that stock market is more volatile when default risk is
high.

The estimation results of GARCH(1,1) are reported in Table 3. Consistent with other
empirical �ndings, the estimated � + � (ARCH e¤ect) is very close to unity, suggestive
of the IGARCH behavior. FIGARCH 8 estimation results are given in Table 4. For each
frequency, we report both FIGARCH(1,d,1) and FIGARCH(1,d,0) estimation results. For
the monthly frequency, FIGARCH(1,d,1) is preferred because estimates of d and � are
tested to be insigni�cant in FIGARCH(1,d,0). On the other hand, FIGARCH(1,d,0) is
preferred for the weekly and daily frequencies because estimates of � are insigni�cant in
FIGARCH(1,d,1). Hence, we are going to use FIGARCH(1,d,1) for the monthly frequency
and FIGARCH(1,d,0) for the weekly and daily frequencies in our simulation and forecasting
evaluation. The long-run dynamics are modeled by the fractional di¤erencing parameter d
and it is estimated 0:67; 0:37 and 0:30 for the selected FIGARCH model at the monthly,
weekly and daily frequencies respectively. The null hypothesis of d = 0:5 is rejected in
the daily case, but it is not rejected in the monthly and weekly cases. While the null
hypothesis of d = 1 is clearly rejected in the weekly and daily cases, it is rejected only at
10% signi�cance level in the monthly case.

4.2 Exchange Rate Return Volatility

In their portfolio selection model of exchange rate determination, Hagiwara and Herce (1999)
showed that the interest rate di¤erential between countries (absolute value or squared) is
related to exchange rate return volatility. We apply this �nding to the ARCH-NNH model.
Based on the model of Hagiwara and Herce (1999), we estimate the following models;

yt = b0 + b1yy�1 + b2yt�2 + b3xt�1 + �t"t;

�2t = � (�t�1"t�1)
2 + � jxt�1j� ARCH-NNH

�2t = c+ � (�t�1"t�1)
2 + ��2t�1 GARCH(1; 1)

because � < 0:58: If we assume that ("t) is iid N(0,1), then �4" = 3 and we need 0 < � <
1p
3
(= 0:577:::) in

order to have 0 < �2�4" < 1: See Theorem 1.
8The G@RCH by Laurent and Peters is used for FIGARCH estimation and forecast. We �xed the trun-

cation lag at 1; 000 in estimation.
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where yt denotes the exchange rate return series in percentage form, yt = 100 � (lnPt �
lnPt�1) with Pt =UK pound=US dollar, and xt represents eurocurrency interest rate spreads
between US and UK (xt = rUS;t� rUK;t). The mean equation for yt is exactly same as that
of Hagiwara & Herce (1999). We obtained weekly observations of the exchange rate for UK
pound and one-month eurocurrency interest rate for US and UK.9 The sample period is
from 21 October 1983 to 31 December 2004 (1107 observations).

Table 5 shows that unit root tests for the interest rate di¤erential support the presence
of a unit root. The estimated autoregressive coe¢ cient is very close to unity in both cases.
Phillips-Perron tests are unable to reject the null hypothesis of a unit root. KPSS tests
reject the null hypothesis of stationarity at 1% signi�cance level.

The estimation results are summarized and presented in Table 6. The estimation result
of the ARCH-NNH model shows that it works well for the exchange rate return volatility.
Most estimates are tested to be signi�cant and the null hypothesis of � = 1 is also rejected,
which means a nonlinear function is clearly needed in this case. Roughly, the positivity of b̂3
supports the uncovered interest parity. The absolute values of the interest rate di¤erentials
are positively related to exchange rate return volatility, which is compatible with Hagiwara
& Herce (1999). On the other hand, GARCH(1,1) performs very poorly and most estimates
are insigni�cant.

5 Forecast Evaluation

We evaluate out-of-sample volatility forecasts of three models in the previous stock return
volatility application; ARCH-NNH, GARCH(1,1), and FIGARCH(1,d,q)10. A rolling fore-
cast procedure is adapted; i.e., each forecast is based on the estimated parameters from the
previous (970 monthly, 979 weekly and 3688 daily) observations. We obtained 44 monthly
forecasts for the November 1999 to June 2003 out-of-sample period. And, we obtained 100
weekly forecasts for the 3 August 2001 to 27 June 2003 out-of-sample period and 250 daily
forecasts for the 1 July 2002 to 30 June 2003 out-of-sample period.

To evaluate the accuracy of volatility forecasts they have to be compared with actual
volatility, which cannot be observed. It is common in practice to de�ne actual volatility as
squared observed returns, which for one-day ahead volatility is equal to

y2T+1 = �
2
T+1"

2
T+1:

However, the squared error term "2T+1 will vary widely and this implies that only a relatively
small part is attributable to �2T+1: An alternative approach which addresses this problem
has been suggested. Refer to Andersen, Bollerslev, Diebold and Labys (2003) for a theoret-
ical underpinning for the use of �realized volatility�. They employ the theory of quadratic

9>From the Datastream. The exchange rates are sampled on every Friday and the interest rates are
sampled on every Wednesday.
10Again, q = 1 for the monthly frequency and q = 0 for the weekly and daily frequencies following the

estimation results. We �xed the truncation lag at 900 in forecast.
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variation to show that realized volatility computed from high-frequency intraperiod returns
is an unbiased and e¤ectively error-free measure of return volatility.

As a proxy for actual volatility, we use �realized volatility�instead of squared returns.
The measure for monthly volatility is the sum of squared daily returns:

��2t =

NtX
i=1

(yit � �t)2 ;

where there are Nt daily returns yit in month t and �t is the average of daily returns yit
in the month. It turned out that subtracting the average has only negligible e¤ect in the
monthly case. Since the mean returns are smaller for higher frequencies, we assume that
� = 0 for the weekly and daily frequencies. Hence, the measure for weekly volatility is
the sum of squared daily returns. The daily realized volatility is de�ned as the sum of the
squared overnight, close-to-open, and the cumulative squared 30-minute intraday returns.

In order to assess predictive abilities of models, we use the regression-based method and
the mean absolute error (MAE). As the �rst method, we report on R2 as calculated from
the OLS regression

��2T+1 = a+ b�̂
2
T+1 + "; (9)

where �̂2T+1 denotes one-period ahead volatility forecasts. This appears to be the most
commonly used method in the literature when measures for volatility are computed with
�realized volatility� as the sum of squared intraperiod returns. If volatility forecasts are
unbiased, then a = 0 and b = 1. We test these hypotheses using the standard regression
method with adjustment followed by Andrews and Monahan (1992) to account for the error
covariance. The quadratic spectral kernel with automatic bandwidth selection is used to
obtain heteroskedasticity and autocorrelation consistent covariance estimates.

Table 7 presents forecasting performance results evaluated on the regression-based method.
It shows that the ARCH-NNH model outperforms GARCH (1,1) and FIGARCH at the
monthly and weekly frequencies. The null hypothesis of b = 1 is not rejected in every case.
The estimates for a are very small and close to zero, but the null hypothesis of a = 0 is
rejected in some cases. The comparison of forecasting ability between models is done by
the R2 statistic. For the monthly frequency, R2 of the ARCH-NNH model is 0:12, which
is higher than that of GARCH(1,1), 0.05, and FIGARCH, 0.07. The weekly case shows
the similar result that the ARCH-NNH model performs better than the other models. For
the daily frequency, the FIGARCH model has the highest R2; 0:27: The result that R2s
in the daily case are bigger than those of other frequencies seems to be originated from
the fact the daily realized volatility is constructed by intraday returns. Comparison be-
tween GARCH(1,1) and FIGARCH shows that FIGARCH performs slightly better than
GARCH(1,1) at every frequency.

We also evaluate the volatility forecasts on the basis of the mean absolute error (MAE)
and test the null hypotheses of equal MAE by the Diebold and Mariano (1995) test pro-
cedure. The null maintains that the predictive performance of the best performing model
relative to another model is not di¤erent. First, de�ne loss di¤erential between MAEs from
two forecasting models

dt =MAE1;t �MAE2;t:
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So, the null hypothesis is E (dt) = 0: This hypothesis is evaluated using the statistic

S1 =
�dq

2�f̂d(0)=N
(10)

where �d is the sample mean loss di¤erential
�
�d = 1

N

NP
t=1
dt

�
, f̂d(0) is a consistent estimate

of the spectral density function of the loss di¤erential at frequency 0, and N is the num-
ber of forecasts. To compute f̂d(0), Diebold and Mariano (1995) suggest the uniform, or
rectangular, lag window with bandwidth parameter k � 1 for forecast horizon k. Since we

only deal with one-step ahead forecasts, we have 2�f̂d(0) = 1
N

NP
t=1

�
dt � �d

�2
: Under the null

hypothesis, S1 � N(0; 1) asymptotically.
However, since N is relatively small for the monthly case (N = 44), we add another

statistic S2 for the exact �nite-sample test of the monthly case, which is also developed
by Diebold and Mariano (1995). The null hypothesis is a zero median loss di¤erential,
med(dt) = 0, and this hypothesis is evaluated using the statistic

S2 =
NX
t=1

I+(dt) (11)

where

I+(dt) = 1 if dt > 0

= 0 otherwise.

Signi�cance is assessed using a table of the cumulative binomial distribution with parameters
N and 1

2 under the null hypothesis.
Forecasting evaluation based on MAE is reported in table 8. The lowest MAEs come

from GARCH(1,1) for the monthly frequency, from the ARCH-NNH model for the weekly
frequency and from FIGARCH for the daily frequency. It is hard to select the best per-
forming model from the evaluation result based on MAE even after we consider the fore-
cast accuracy test. The forecast accuracy tests using S1 and S2 show the same result
in the monthly case. For the monthly frequency, the forecast accuracy tests show that
GARCH(1,1) performs signi�cantly better than the ARCH-NNH model, but its perfor-
mance is not signi�cantly di¤erent from that of FIGARCH. For the weekly frequency, the
ARCH-NNH model has the lowest MAE, but there is no signi�cant di¤erence in forecast
ability between models according to the forecast accuracy test. At the daily frequency, the
forecast of the FIGARCH model is signi�cantly better than that of GARCH(1,1), but it is
not signi�cantly di¤erent from that of the ARCH-NNH model.

While the forecast evaluation based on MAE does not give a certain rank on forecasting
ability, the regression-based method shows that the ARCH-NNH model performs better
than GARCH(1,1) and FIGARCH in the weekly and monthly frequencies. The fact that
our model outperforms GARCH(1,1) and FIGARCH at relatively lower frequencies may
come from the advantage that our model is structural.

19



6 Concluding Remarks

This paper has given theoretic understandings about ARCH processes with persistent co-
variates. Time series properties of ARCH-NNH processes satisfy various characteristics of
volatility in �nancial time series. Our theories show that persistent covariates generate
high degrees of volatility persistence and leptokurtosis. It is especially shown that ARCH-
NNH models generate the long memory property in volatility. We did not consider the
leverage e¤ect that is one of stylized facts about volatility in speculative returns. However,
ARCH-NNH models can easily deal with it in the same way as GJR-GARCH. Two empirical
applications and forecast evaluation show that ARCH-NNH model is not only practically
useful, but also outperforms other standard models at relatively lower frequencies. Hence,
if we apply an ARCH-NNH model in a price determination model, it could produce better
forecasts of price level such as exchange rate or stock price. We can use nonlinear functions
of persistent variables in both mean and volatility equations of asset returns. This task
awaits further research.
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Appendix A. Useful lemmas and their proofs

The proofs of the theorems in the paper rely on the results from the following lemmas.
For the lemmas and their proofs, we let Assumptions 1 and 2 hold.

Lemma A.1. Let T be a transformation on R. De�ne

M1n =
nX
t=1

T (xt) and M2n =
nX
t=1

T 2(xt):

(a) If T 2 I; we have under Assumption 4S(b)

n�1=2M1n ! d Lc(1; 0)

Z 1

�1
T (x)dx

n�1=2M2n ! d Lc(1; 0)

Z 1

�1
T 2(x)dx:

(b) If T 2 H with asymptotic order � and limit homogeneous function S and if we let
�n = �(

p
n); we have under Assumption 4W(b)

(n�n)
�1M1n ! d

Z 1

0
S(Vc(r))dr

(n�2n)
�1M2n ! d

Z 1

0
S2(Vc(r))dr:

The weak convergences in (a) and (b) hold jointly.

Proof of Lemma A.1. See Park (2002, 2003). The classes of I and H transformations
are closed under the product operation. If T 2 I, then T 2 2 I. And if T 2 H with limit
homogeneous function S, then T 2 2 H with limit homogeneous function S2: If T 2 2 I, then

n�1=2M2n =
p
n

Z 1

0
T 2(

p
nVcn(r))dr:

If T 2 2 H with limit homogeneous function S2 and asymptotic order �2n; then

(n�2n)
�1M2n =

1

n

nX
t=1

T 2(xt)

�2n
� 1

n

nX
t=1

S2(
1p
n
xt):

�

Lemma A.2. Let T be a transformation on R, and let ut be a martingale di¤erence se-
quence (MDS) with respect to Ft such that E(u2t jFt�1) = �2u a.s. for each t and supt E(jutj

2+� jFt�1) <
1 a.s. for some � > 0: De�ne

U1n =
nX
t=1

T (xt)ut and U2n =
nX
t=1

T 2(xt)ut:
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(a) If T 2 I; then U1n, U2n = Op(n1=4) respectively under Assumption 4S and 5S.
(b) If T 2 H with asymptotic order �; and if we let �n = �(

p
n); then U1n = Op(n1=2�n)

and U2n = Op(n1=2�2n) respectively under Assumption 4W and 5W.

Proof of Lemma A.2. See Park (2003). �

For example, let us consider asymptotic limits of
nP
t=1
T (xt)"

2
t and

nP
t=1
T (xt)"

4
t : Notice

that "2t � 1 and "4t � �4" are MDSs. If T 2 I, then

1p
n

nX
t=1

T (xt)"
2
t =

1p
n

nX
t=1

T (xt) +
1p
n

nX
t=1

T (xt)
�
"2t � 1

�
=

1p
n

nX
t=1

T (xt) +
1p
n
Op(n

1=4)!d Lc(1; 0)

Z 1

�1
T (x)dx

and

1p
n

nX
t=1

T (xt)"
4
t =

1p
n

nX
t=1

T (xt)�
4
" +

1p
n

nX
t=1

T (xt)
�
"4t � �4"

�
= �4"

1p
n

nX
t=1

T (xt) +
1p
n
Op(n

1=4)!d �
4
"Lc(1; 0)

Z 1

�1
T (x)dx:

Lemma A.3. Let T be a transformation on R and denote pk the density of (vkt) with
respect to measure m on R. De�ne

Bn =
nX

t=k+1

T (xt)T (xt�k):

(a) If T 2 I; we have under Assumption 3S

n�1=2Bn !d Lc(1; 0)

Z 1

�1
�kT (x)dx

where �k =
R1
�1 T (x+ y)pk(y)m(dy):

(b) If T 2 H with asymptotic order � and limit homogeneous function S and if we let
�n = �(

p
n); we have under Assumption 3W

(n�2n)
�1Bn !d

Z 1

0
S2(Vc(r))dr:

Proof of Lemma A.3.

xt =
�
1� c

n

�k
xt�k +

k�1X
i=0

�
1� c

n

�i
vt�i

= xt�k +
k�1X
i=0

vt�i + q1(
c

n
; xt�k) + q2

� c
n
; vt�1; vt�2; :::; vt�k+1

�
25



where

q1(
c

n
; xt�k) =

��
1� c

n

�k
� 1
�
xt�k

and

q2

� c
n
; vt�1; vt�2; :::; vt�k+1

�
=

k�1X
i=1

��
1� c

n

�i
� 1
�
vt�i:

Let vkt =
k�1P
i=0

vt�i. Notice that q1; q2 ! 0 as n!1: We have

nX
t=k+1

T (xt)T (xt�k) =

nX
t=k+1

T (xt�k + vkt + q1 + q2)T (xt�k)

=

nX
t=k+1

T (xt�k + vkt)T (xt�k) +
nX

t=k+1

DnT (xt�k)

where Dn = T (xt�k + vkt + q1 + q2)� T (xt�k + vkt):
If T 2 I, then Dn 2 I and.DnT 2 I. Since jDnT (x)j � jD1T (x)j for all x 2 R, we apply

Lebesgue�s Dominated Convergence Theorem and, slightly abusing notation, obtain

n�1=2
nX

t=k+1

DnT (xt�k) ! d lim
n!1

Lc(1; 0)

Z 1

�1
DnT (x)dx

= Lc(1; 0)

Z 1

�1
lim
n!1

DnT (x)dx = 0:

Thus, we have

n�1=2
nX

t=k+1

T (xt)T (xt�k)

= n�1=2
nX

t=k+1

T (xt�k + vkt)T (xt�k) + op(1)

! d Lc(1; 0)

Z 1

�1
�kT (x)dx:

See the proof of Theorem 1 of Park (2002) for the third line.
If T 2 H, then Dn 2 H with asymptotic order is � but its limit homogeneous function

is zero. Hence, DnT (x) 2 H with asymptotic order is � but its limit homogeneous function
is zero. Hence, we have

(n�n)
�1

nX
t=k+1

DnT (xt�k)!p 0:

Therefore,
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(n�2n)
�1

nX
t=k+1

T (xt)T (xt�k)

= (n�2n)
�1

nX
t=k+1

T (xt�k + vkt)T (xt�k) + op(1)

! d

Z 1

0
S2(Vc(r))dr:

See the proof of Theorem 1 of Park (2002) for the third line. �

Lemma A.4. Suppose that 0 < � < 1 and vn ! 1 monotonically as n ! 1: If
1
vn

nP
k=1

f(xt)!d Q; then, as n!1;

1

vn

n�1X
k=0

�k
n�kX
t=1

f(xt)!d
1

1� �Q:

Proof of Lemma A.4. Let Cn = 1
vn

nP
k=1

f(xt) � Q: Then Cn !d 0 and
nP
k=1

f(xt) =

vn(Q+ Cn):

1

vn

n�1X
k=0

�k
n�kX
t=1

f(xt) =
1

vn

n�1X
k=0

�k [vn�kQ+ vn�kCn�k]

= Q
1

vn
S +

1

vn
T

where S =
n�1P
k=0

�kvn�k and T =
n�1P
k=0

�kvn�kCn�k:

First, we are going to show that 1
vn
S ! 0: Since

�S � S = �vn +
n�2X
i=0

�1+i (vn�i � vn�1�i) + �nv1;

we have

1

vn
S =

1

1� � +
1

vn

1

�� 1

"
n�2X
i=0

�1+i (vn�i � vn�1�i) + �nv1

#

! 1

1� �:

The last line follows because

1

vn

"
n�2X
i=0

�1+i (vn�i � vn�1�i) + �nv1

#

� 1

vn
V �
�
�+ �2 + :::+ �n

�
=
1

vn
V �
�(1� �n)
1� � ! 0
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where V � = max
t
(vt � vt�1; v1) for 2 � t � n:

Now, We need to show that 1
vn
T !p 0: Recall that !d and !p are identical when the

convergence is to a nonrandom limit. Therefore, Cn !d 0 implies Cn !p 0: The stated
result follows because ���� 1vnT

���� �
n�1X
k=0

�k
vn�k
vn

jCn�kj

<

n�1X
k=0

�k jCn�kj !p 0:

Here, the convergence to zero follows because Cn !p 0 and 0 < � < 1. �

Appendix B. Proofs of the main results

Proof of Theorem 1. Suppose that vn =
p
n for f 2 I and vn = n�2(

p
n) for f 2 H.

At �rst, we need to obtain asymptotic limits for the following three sample moments:X
y2t ;

X
y4t ;

X
y2t y

2
t�k:

The �rst sample moment is

nX
t=1

y2t =
nX
t=1

�2t "
2
t =

nX
t=1

�
f(xt) + �y

2
t�1
�
"2t

=
nX
t=1

n�1X
j=0

�jf(xt�j)
jQ
h=0

"2t�h

=
n�1X
j=0

�j
nX
t=1

f(xt�j) +
n�1X
j=0

�j
nX
t=1

f(xt�j)

 
jQ
h=0

"2t�h � 1
!

Since

 
jQ
h=0

"2t�h � 1
!
for j = 0; 1; :::; n� 1 are MDSs,

1

vn

n�1X
j=0

�j
nX
t=1

f(xt�j)

 
jQ
h=0

"2t�h � 1
!
= op(1) (A1)

by lemma A.2 and Lemma A.4. Therefore,

1p
n

nX
t=1

y2t =
1p
n

n�1X
j=0

�j
nX
t=1

f(xt�j) + op(1)

=
1p
n

n�1X
j=0

�j
n�jX
t=1

f(xt) + op(1):
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Applying Lemmas A.1 and A.4 gives us

1p
n

nX
t=1

y2t !d
1

1� �Lc(1; 0)
Z 1

�1
f(s)ds.

Similarly, for f 2 H, we have

1

n�(
p
n)

nX
t=1

y2t =
1

n�(
p
n)

n�1X
j=0

�j
n�jX
t=1

f(xt) + op(1)

! d
1

1� �

Z 1

0
S(Vc(r))dr:

The second sample moment is

nX
t=1

y4t =
nX
t=1

f(xt)
2"4t + 2�

nX
t=1

f(xt)y
2
t�1"

4
t + �

2
nX
t=1

y4t�1"
4
t

=
nX
t=1

f(xt)
2"4t + 2

n�1X
i=1

�i
nX

t=1+i

f(xt)f(xt�i)"
4
t

iQ
h=1

"2t�h

+�2
nX
t=2

y4t�1"
4
t

=

"
�4"

nX
t=1

f(xt)
2 + 2�4"

n�1X
i=1

�i
nX

t=1+i

f(xt)f(xt�i)

#
+ �2

nX
t=2

y4t�1"
4
t

+

2664
nP
t=1
f(xt)

2("4t � �4")

+2
n�1P
i=1

�i
nP

t=1+i
f(xt)f(xt�i)

�
"4t

iQ
h=1

"2t�h � �4"
�
3775 :

Since "4t
iQ

h=1

"2t�h � �4" are MDSs, similarly as the equation (A1), we have

1

vn

"
nX
t=1

f(xt)
2("4t � �4") + 2

n�1X
i=1

�i
nX

t=1+i

f(xt)f(xt�i)

�
"4t

iQ
h=1

"2t�h � �4"
�#

= op(1)

Therefore, we have

1

vn

nX
t=1

y4t =
�4"
vn

"
nX
t=1

f(xt)
2 + 2

n�1X
i=1

�i
nX

t=1+i

f(xt)f(xt�i)

#
+
�2

vn

nX
t=2

y4t�1"
4
t + op(1)
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Expanding �2

vn

nP
t=2
y4t�1"

4
t similarly, we have

1

vn

nX
t=1

y4t =
�4"
vn

n�1X
j=0

(�2�4")
j
n�jX
t=1

f(xt)
2

+2
n�1X
i=1

�i
�4"
vn

n�i�1X
j=0

(�2�4")
j
n�jX
t=1+i

f(xt)f(xt�i) + op(1):

If f 2 I; applying Lemmas A.1, A.3 and A.4 gives us

1p
n

n�i�1X
j=0

(�2�4")
j
n�jX
t=1+i

f(xt)f(xt�i)!d
1

1� �2�4"
Lc(1; 0)

1Z
�1

�if(s)ds:

Thus,

1p
n

nX
t=1

y4t !d
2�4"

1� �2�4"
Lc(1; 0)

1X
i=1

�i
1Z

�1

�if(s)ds+
�4"

1� �2�4"
Lc(1; 0)

1Z
�1

f2(s)ds:

If f 2 H; then

1

n�2(
p
n)

n�i�1X
j=0

(�2�4")
j
n�jX
t=i+1

f(xt)f(xt�i)!d
1

1� �2�4"

Z 1

0
S2(Vc(r))dr

similarly by Lemmas A.1, A.3 and A.4. Then, applying Lemma A.4 again gives us

1

n�2(
p
n)

nX
t=1

y4t

! d
2a

1� �
�4"

1� �2�4"

Z 1

0
S2(Vc(r))dr +

�4"
1� �2�4"

Z 1

0
S2(Vc(r))dr

=
1 + �

1� �
�4"

1� �2�4"

Z 1

0
S2(Vc(r))dr:

The third sample moment is
nX

t=k+1

y2t y
2
t�k

=
nX

t=k+1

24 n�1X
i=0

�if(xt�i)
iQ

h=0

"2t�h

!
�

0@n�k�1X
j=0

�jf(xt�k�j)
jQ
h=0

"2t�k�h

1A35
=

nX
t=k+1

24 k�1X
i=0

�if(xt�i)
iQ

h=0

"2t�h

!
�

0@n�k�1X
j=0

�jf(xt�k�j)
jQ
h=0

"2t�k�h

1A35
+

nX
t=k+1

24 n�1X
i=k

�if(xt�i)
iQ

h=0

"2t�h

!
�

0@n�k�1X
j=0

�jf(xt�k�j)
jQ
h=0

"2t�k�h

1A35
30



because

y2t =

n�1X
i=0

�if(xt�i)
iQ

h=0

"2t�h and y
2
t�k =

n�k�1X
j=0

�jf(xt�k�j)
jQ
h=0

"2t�k�h:

We divide y2t into two parts,

k�1X
i=0

�if(xt�i)
iQ

h=0

"2t�h and
n�1X
i=k

�if(xt�i)
iQ

h=0

"2t�h;

because each term produces di¤erent types of MDSs if it is multiplied by

n�k�1X
j=0

�jf(xt�k�j)
jQ
h=0

"2t�k�h:

At �rst, since 0 � j � n� k � 1; if 0 � i � k � 1 then

E

 
iQ

h=0

"2t�h
jQ
h=0

"2t�k�h

!
= 1:

Hence, we have�
�if(xt�i)

iQ
h=0

"2t�h

�
�
 
�jf(xt�k�j)

jQ
h=0

"2t�k�h

!

= �i+jf(xt�i)f(xt�k�j) + �
i+jf(xt�i)f(xt�k�j)

"
iQ

h=0

"2t�h
jQ
h=0

"2t�k�h � 1
#

where
iQ

h=0

"2t�h

jQ
h=0

"2t�k�h � 1 is a MDS. Like the equation (A1),

1

vn

nX
t=k+1

�i+jf(xt�i)f(xt�k�j)

"
iQ

h=0

"2t�h
jQ
h=0

"2t�k�h � 1
#
= op(1):

Secondly, for k � i � n� 1,

E

 
iQ

h=0

"2t�h
jQ
h=0

"2t�k�h

!
=
�
�4"
�min(i�k+1;j+1)

:

Therefore,

�
�if(xt�i)

iQ
h=0

"2t�h

�
�
 
�jf(xt�k�j)

jQ
h=0

"2t�k�h

!
=

�
�4"
�min(i�k+1;j+1)

�i+jf(xt�i)f(xt�k�j)

+�i+jf(xt�i)f(xt�k�j)

"
iQ

h=0

"2t�h
jQ
h=0

"2t�k�h �
�
�4"
�min(i�k+1;j+1)#
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where
iQ

h=0

"2t�h

jQ
h=0

"2t�k�h �
�
�4"
�min(i�k+1;j+1) is a MDS. Like the equation (A1),

1

vn

nX
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and the second part is
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Combining these two terms, we obtain
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If f 2 H; then we have
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For the result for f 2 I in part (a), we �rst note that �y2n = 1
n

nP
t=1
y2t = Op(n

�1=2) which

follows easily from the proof for
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y2t : Therefore,
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from which the stated result in part (a) follows easily. Note that we apply Lebesgue�s
Increasing Convergence Theorem for
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In order to prove the result for f 2 H in part (b), notice that
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which we already proved in the beginning. One may easily deduce that
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The stated result in part (b) follows immediately. �

Proof of Corollary 2. See Theorem 2 and 5 in Nelson (1990) for (a). Since E
�
ln "2t

�
< 0

when "t � N(0; 1);
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Note that
@�2t+k
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consists of two parts; one part decays at a rate of
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other part does at a rate of
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Table 1. Unit root tests for the default premium

<Monthly>

with intercept with intercept and trend
autoregressive coe¢ cient 0:978 0:974
Phillips-Perron test

Zt statistic �3:21� �3:43�
KPSS test
statistic 1:12�� 0:37��

<Weekly>

with intercept with intercept and trend
autoregressive coe¢ cient 0:982 0:980
Phillips-Perron test

Zt statistic �4:50�� �4:14��
KPSS test
statistic 2:53�� 0:81��

<Daily>

with intercept with intercept and trend
autoregressive coe¢ cient 0:996 0:996
Phillips-Perron test

Zt statistic �2:56 �2:49
KPSS test
statistic 2:24�� 2:11��

The critical values for Phillips-Perron test are following; -2.57 (10%), -2.86 (5%),
-3.44 (1%) with intercept, and -3.13 (10%), -3.42 (5%), -3.97 (1%) with intercept
and trend. 1% critical values of KPSS statistic are 0:74 and 0:22 respectively:
� means that H0 is rejected by 5%, and �� means that H0 is rejected by 1%.
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Table 2. ARCH-NNH estimation results for returns on the S&P 500 index.

Monthly Weekly Daily
� = 1 � = 1 � = 1

� 0:007 0:007 0:002 0:002 0:0006 0:0006
(5:01) (5:05) (3:16) (3:06) (3:62) (3:53)

� 0:18 0:18 0:18 0:20 0:22 0:22
(2:30) (2:30) (3:55) (3:73) (4:30) (4:25)

� 1:3� 10�3 1:3� 10�3 3:9� 10�4 4:1� 10�4 1:1� 10�4 1:0� 10�4
(11:77) (11:72) (10:84) (9:52) (18:65) (21:55)

� 1:05 1:0 0:21 1:0 1:10 1:0
(6:75) � (0:97) � (6:45) �
[0:31] [�16:42] [0:57]

t�statistics are reported in parentheses. t�statistic for H0 : � = 1 is in [ ].

Table 3. GARCH(1,1) estimation results for returns on the S&P 500 index.

Monthly Weekly Daily
� 0:007 0:002 0:0006

(5:95) (4:45) (3:90)
c 0:7� 10�4 0:6� 10�5 0:1� 10�5

(2:54) (1:37) (2:02)
� 0:14 0:094 0:047

(3:27) (2:60) (3:78)
� 0:84 0:898 0:949

(21:85) (23:60) (69:66)

t�statistics are reported in parentheses.

Table 4. FIGARCH estimation results for returns on the S&P 500 index.

Monthly Weekly Daily
(1,d,1) (1,d,0) (1,d,1) (1,d,0) (1,d,1) (1,d,0)

� 0:007 0:007 0:002 0:003 0:001 0:001
(5:94) (6:12) (4:36) (4:63) (4:05) (4:43)

c 0:5� 10�4 1:2� 10�4 0:1� 10�4 0:3� 10�4 0:5� 10�5 0:1� 10�4
(1:97) (1:96) (1:05) (2:36) (1:97) (3:71)

d 0:67 0:43 0:46 0:37 0:35 0:30
(3:73) (1:42) (3:74) (3:86) (6:98) (8:83)

� 0:73 0:27 0:59 0:25 0:50 0:26
(8:25) (0:74) (2:40) (2:15) (3:87) (6:84)

� 0:25 � 0:26 � 0:20 �
(1:99) � (1:29) � (1:87) �

t�statistics are reported in parentheses.
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Table 5. Unit root tests for the interest rate di¤erential

with intercept with intercept and trend
autoregressive coe¢ cient 0:991 0:989
Phillips-Perron test

Zt statistic �2:31 �2:58
KPSS test
statistic 1:05�� 0:40��

The critical values for Phillips-Perron test are following; -2.57 (10%), -2.86 (5%),
-3.44 (1%) with intercept, and -3.13 (10%), -3.42 (5%), -3.97 (1%) with intercept
and trend. 1% critical values of KPSS statistic are 0:74 and 0:22 respectively:
� means that H0 is rejected by 5%, and �� means that H0 is rejected by 1%.

Table 6. Estimation results for the exchange rate return volatility

ARCH-NNH GARCH(1,1)
b0 0:07 b0 0:05

(1:30) (0:97)
b1 0:14 b1 0:03

(3:22) (0:94)
b2 0:04 b2 �0:03

(1:11) (�0:88)
b3 0:04 b3 0:04

(1:99) (1:71)

� 0:46 c 0:07
(4:59) (1:08)

� 1:19 � 0:09
(12:62) (1:50)

� 0:23 � 0:88
(3:76) (10:68)
[�12:67]

t�statistics are reported in parentheses. t�statistic for H0 : � = 1 is in [ ]:
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Table 7. Forecasting results evaluated on the OLS regression

ARCH-NNH GARCH(1,1) FIGARCH(1,d,q)
<Monthly>

a 0:002 0:002 0:002
(2:01) (1:86) (2:15)

b 1:23 0:78 0:82
(0:34) (�0:31) (�0:29)

R2 0:12 0:05 0:07

<Weekly>
a 0:0006 0:0006 0:0006

(1:81) (1:39) (1:56)
b 0:82 0:56 0:59

(�0:41) (�0:79) (�0:76)
R2 0:11 0:06 0:09

<Daily>
a 0:6� 10�4 0:2� 10�4 0:3� 10�5

(1:81) (0:77) (0:10)
b 0:93 0:77 0:98

(�0:35) (�1:54) (�0:14)
R2 0:18 0:21 0:27

Parameter estimates and goodness-of-�t R2 statistics for the OLS regressions as de�ned in equa-
tion (9). The t-statistics testing for the null hypotheses a = 0 and b = 1 are in parentheses, and
they are based on standard errors using the heteroskedasticity and autocorrelation consistent co-
variance estimates followed by Andrews and Monahan with quadratic spectral kernel and automatic
bandwidth selection. FIGARCH(1,d,q) : q=1 for monthly and q=0 for weekly and daily.

39



Table 8. Forecasting results evaluated on MAE

MAE S1 (S2)

<Monthly> ARCH-NNH 2:53� 10�3 2:39� (30�)
GARCH(1,1) 2:32� 10�3

FIGARCH(1,d,q) 2:36� 10�3 �1:20 (10)
<Weekly> ARCH-NNH 6:46� 10�4

GARCH(1,1) 6:93� 10�4 �1:04
FIGARCH(1,d,q) 6:74� 10�4 �0:60

<Daily> ARCH-NNH 1:34� 10�4 1:61
GARCH(1,1) 1:49� 10�4 5:99��

FIGARCH(1,d,q) 1:25� 10�4

S1 is de�ned in equation (10) and S1 � N(0; 1) asymptotically under the null hypothesis.
S2 is de�ned in equation (11) and has the binomial distribution with parameters N and 1

2 under
the null hypothesis. �� and � means rejecting the null hypothesis by 1% and 5% respectively.
FIGARCH(1,d,q) : q=1 for monthly and q=0 for weekly and daily.

Daily ACF

0.1

0

0.1

0.2

1 51 101 151 201 251 301

Fig. 1. Autocorrelation function of daily squared returns on S&P 500 index from November 2,
1987 to June 30, 2003 (3938 observations). The solid curve indicates the autocorrelation function
and the dotted lines show the 95% Bartlett (1946) con�dence bands (�1:96=

p
T ) for no serial

dependence.
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Fig. 2. Autocorrelation function of MONTHLY squared returns (S&P 500). The solid curve
indicates the sample ACF of the real data and the dotted curves are ACFs of simulated series. The
upper and lower dotted curves indicate the 5%- and 95%-quantile of the distribution of the autocor-
relations at a �xed lag and the middle dotted curves correspond to the mean of those distributions.
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Fig. 3. Autocorrelation function of WEEKLY squared returns (S&P 500). The solid curve indi-
cates the sample ACF of the real data and the dotted curves are ACFs of simulated series. The upper
and lower dotted curves indicate the 5%- and 95%-quantile of the distribution of the autocorrelations
at a �xed lag and the middle dotted curves correspond to the mean of those distributions.
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Fig. 4. Autocorrelation function of DAILY squared returns (S&P 500). The solid curve indicates
the sample ACF of the real data and the dotted curves are ACFs of simulated series. The upper and
lower dotted curves indicate the 5%- and 95%-quantile of the distribution of the autocorrelations at
a �xed lag and the middle dotted curves correspond to the mean of those distributions.
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