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We analyze optimality properties of the maximum likelihood and other esti-
mators when the problem is not asymptotically normal (like e.g. in the analysis
of non stationary time series. We show that the expectation of certain monotone
functions of the squared estimation error are minimized by the ML estimator in
locally asymptotically quadratic situations (which often occur in non stationary
time series analysis). Moreover, we demonstrate a direct connection between
the (Bayesian property of) asymptotic normality of the posterior and classical
optimality properties of ML estimators.

1 Introduction
When estimating parameters, one is interested to minimize the distance between
the true parameter θ and an estimated value bθ.
It would be very tempting to construct estimators which minimize the expec-

tation of the euclidean distance between the estimator and the ”true” parameter.
This approach would, however. seriously hinder asymptotic analysis. For many
popular estimators - like e.g. the maximum likelihood estimator - we can only
be sure that the asymptotic distribution is well behaved. Usually we do not
have any information about the existence of moments of the estimator in finite
samples. Hence it seems advisable to consider other loss functions than the
quadratic one. A plausible candidate for measuring the estimation error would
be to consider the expectations of

f(Cn

³
θ − bθ´ , (1)

where the Cn are suitable normalization matrices, which will be determined
later on and f is a loss function.
One obvious candidate for such an estimator is the maximum likelihood

estimator. The maximum likelihood estimator is one of the most popular pro-
cedures for the estimation of parameters. The asymptotic properties of this

1



estimator are well understood, and it is shown to be optimal in many cases
of interest. Nevertheless, there are important examples where it is possible to
construct estimators which are asymptotically ”better” than the maximum like-
lihood estimator. In this paper, we will prove an asymptotic optimality property
of the maximum likelihood estimator in nonstandard conditions.
To understand optimality properties, let us first analyze the ”traditional”

asymptotic optimality properties of the ML estimator. Despite its popularity
in many econometric textbooks, we do not want to work with the inequality of
Frechet-Rao-Cramer here. In many cases, the ML estimator will only asymptot-
ically have a ”nice” distribution, so it would be hard to guarantee the existence
of second moments for the estimation error for finite samples.
There is, however, an asymptotic theory of optimality, originally developed

by Hajek. A comprehensive treatment can be found in Van der Vaart(2000),p.108ff.
Usually one assumes that the parametric models have a property called ”locally
asymptotically normal” (which will be discussed later on). This assumption
implies that the properly normalized (by

√
n, where n is the sample size) es-

timation error is asymptotically normal. Let us assume that the parameter
θ ∈ Rk and let cθn be the ML estimator based on a sample of size n. Hence we
have √

n
³
θ −cθn´→D G (0, J(θ)) , (2)

where →D should denote convergence in distribution and G (0, J) the Gaussian
distribution with expectation 0 and covariance J (θ) .
Then it was shown that for every bounded, ”bowl-shaped” loss function f

and every other sequence of estimators fθn the following inequality holds: For
almost all θ (i.e. for all θ with the exception of a set of Lesbesgue measure 0)

lim inf Eθf
³√
n
³
θ −fθn´´ ≥ limEθf ³√n³θ −cθn´´ = Z f (h) dG (0, J(θ)) ,

(3)
where Eθ denotes the expectation with respect to the probability measure cor-
responding to the parameter θ. Hence we can conclude that symptomatically
for all parameters (with the possible exception of a Lesbesgue null set) the ML
estimator minimizes the (asymptomatic) expected loss of the estimation error.
The critical assumption here is (2). If it is violated, (3) is not necessarily

true. There are various ways to generalize (3). Properly transformed ML es-
timators are used in Hirano-Porter(2003, 2003), and in a sequence of papers
Jeganathan(1991,1995) investigates a generalization of the (2).
However, here we want to cover the general case where the likelihood lo-

cally can be approximated by a quadratic function. Here we show optimality
of the ML estimator. One of the cases covered by our theory e.g. the estima-
tion in integrated when the innovations are GARCH processes (cf. Ling-Lee-
McAleer(2003)), Ling-McAleer(2001).
In McAleer-Ling(2001) an optimality property of the ML-estimator was de-

rived. The ML estimator was shown to be ”optimal” in the above sense among
a class of estimators: So the optimality of the ML estimator is only relative to
a restricted class of ”competitors”.
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We will derive another type of optimality property. We allow for even more
general statistical models (we only postulate that - around the true value - the
logarithms of the densities can locally be approximated by quadratic functions
).
The most general model we will consider are models where the posterior

distribution is approximately Gaussian - a very general class of models. One
interesting feature of our method is that we are able to use this property of the
model to derive optimality properties of estimators.
Another limitation of the traditional theory is the assumption that the pa-

rameter space is finite dimensional. In some circumstances, minimax properties
for nonparametric estimators have been established. In Poetscher(..), however,
shows that without the restrictions we will maintain optimality results in the
time series context are impossible.
We will show that a certain class of penalized maximum likelihood estima-

tors is optimal in the sense mentioned above. We will analyze the example of
θ consisting of sequences of real numbers (like e.g. infinite AR-coefficients, or
Fourier coefficients of a regression functions). Although in this case we work
within te stationary setting, we show that some functionals of the parameter
(like e.g. the sum of all the coefficients - in the time series context represent-
ing ”long term effects”) can only be estimated with rates differing from the
traditional 1/

√
n.

2 The basic optimality property
We want to maintain the following basic assumptions on the probability mea-
sures of our model. We assume that we have given a parameter space Θ,which
we assume to be a Polish space (i.e. a metric space which is separable and
complete). Here we will analyze examples where the sets Θ are subsets of the
finite dimensional spaces Rn or the space of all sequences of real numbers,
RN = {(θ0, θ1, ...)} .
For each θ ∈ Θ we have a probability measure Pθ, defined on some space Ω

with some σ-algebras Fn, representing the information up to time n. We also
assume that the space Ω is a Polish space.
Also we assume that we have given a sequence of priors Πn (a ”prior” (dis-

tribution) is a measure on Θ). Then let us define the measures Pn on Θ × Ω
by

Pn(A×B) =
Z
A

Pθ(B)dΠn(θ).

Then we can easily see that the ”posterior” distributions are simply the condi-
tional distributions of Pn on Θ given Fn.
Let us denote the corresponding conditional probability distribution by μn

(cf. Billingsley(1995), p. 439) μn is a function of two variables: Its first
argument is a measurable subset of Θ, and its second argument is an element
of ω. Then μn is characterized by the following two properties:
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1. For fixed subset A ⊂ Θ, μn(A, .) is a version of the conditional probability
P (A/Fn).

2. For fixed ω ∈ Ω, μn(.,ω) is a measure, which we also denote by μn

We want to estimate the parameter θ. Since we did not make any specific
assumptions regarding the parameter space, we will have to define the objects
we want to estimate. Quite analogous to traditional statistics, we will assume
that we are not only interested in the parameter itself, but also on functions
depending on the parameter. So we assume that we have given a set V of real-
valued functions defined on Θ,which is of interest to u.. For reasons of simplicity
we assume that V is a vector space. Then let us denote by V ∗ its dual space, i.e.
the space of all linear, real - valued functions of V into the real numbers. Let
us now choose arbitrary elements v1, ...vK ∈ V . Then it should be of interest
to estimate the vector

v(θ) = (v1 (θ) , ...vK (θ))0 . (4)

In the situation we will analyze below, we will show that there exists one statistic
into V ∗ (call it cmn) so that the optimal estimator for v(θ) is given by

bv = (cmn (v1) , ...cmn (vK ))
0 ,

So our optimal estimator is of the ”plug-in” type. In some of the special cases
analyzed here we have even more specific results: The statistic cmn can even be
represented by an estimator cθn (i.e. a statistic in Θ): We then have cmn (v) =

v
³cθn´.
We will maintain the following assumption:

Definition 1 Let us assume that there exist statistics (i.e. Fn-measurable map-
pings) bmn in V ∗ and cSn in the set of nnd bilinear forms on V so that the
following properties hold: Let v1, ...vK ∈ V . Let An be Fn-measurable matrices
so that

AnA
0
n =

³cSn (vi, vj)´−1
1≤i,j≤k

. (5)

Then let Assumption AGP be fulfilled if for all t uniformly on all compact setsZ
exp(it0An

³
(vi(θ))1≤i≤k − (bmn (vi))1≤i≤k

´
)dμn − exp(−t0t/2)→ 0, (6)

where we understand this convergence to be in probability (with respect to Pn)).

μn is a random probability measure on Θ. Hence (6) means that that the

distributions of An
³
θ − bθn´ (which is a measurable function defined on Θ×Ω

converges stochastically to a standard normal. Hence we have the following
corollary:
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Corollary 2 Suppose AGP is fulfilled. Then for any set C bounded, equicon-
tinuous functions defined on Rk we have

sup
g∈C

¯̄̄̄Z
g
³
An

³
(vi(θ))1≤i≤k − (bmn (vi))1≤i≤k

´´
dμn −

Z
gdG(0, I)

¯̄̄̄
→ 0,

where G(0, I) should denote the k-dimensional standard normal distribution.

As mentioned above we will evaluate the estimation error with the help of a
loss function f . We have to put on some restrictions on the loss function:

Definition 3 A loss function f is called a ”good” loss function if
f is ”bowl-shaped”: it has convex level sets (i.e. for all c, the sets{x : f(x) ≤ c}
are convex) and the function is symmetric in the sense that f(x) = f(−x).
f is continuous
f is bounded
f is level-compact: for every M < sup f(x) the set {x : f(x) ≤M} is compact.
f is separating in the following sense: f(0) = 0 and 0 is an inner point of
{x : f(x) < M} with M < sup f(x).

It may be possible that or results can be generalized to a larger class of loss
functions. Nevertheless, we think that our class is sufficient for all practical
purposes.
Typical examples of our class are bounded, continuous functions of vector

norms (i.e. f(x) = g(kxk), where g is bounded and continuous.
Then we have the following theorem. We will show that the class of estima-

tors which is asymptotically equivalent to (bmn (vi)) by some optimality property
of the estimation error.
So let us consider the vector v (θ) defined by (4), and let cvn be an estimator

for it.

Theorem 4 Let assumption AGP be fulfilled, let v1, ...vK ∈ V and let fvn be an
arbitrary estimator for v(θ).
Let us assume that Bn is a sequence of Fn-measurable matrices so that withcΣn = ³cSn (vi, vj)´

1≤i,j≤k

BndLcΣn−1 ≤ Bn ≤ BndUcΣn−1, (7)

where BndL, BndU are fixed positive numbers. Furthermore let us assume we
have a sequence Cn with

Bn = CnC
0
n (8)

Then the following three propositions are equivalent:
1.

(bvn −fvn)0Bn (bvn −fvn)→ 0 (9)
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in probability with respect to Pn.
2. For any ”good” loss function f we have

lim inf

Z
f (Cn (v(θ)−fvn)) dPn − (10)Z

f (Cn (v(θ)−cvn)) dPn
≤ 0

3. For all ”good” loss functions f we have

lim inf

Z
f (Cn (v(θ)−fvn)) dPn −Z

f (Cn (v(θ)−cvn)) dPn
≤ 0. (11)

The proof of the theorem is a bit technical. Hence we put it in the appendix.
We have two immediate corollaries:

Corollary 5 If
Bn = OP (cΣn−1) (12)

and cΣn−1 = OP (Bn) , (13)

then the conclusions of the theorem hold as well

Corollary 6 Suppose P is a projection of the Rk to a lower dimensional sub-
space, and Bn a sequence of matrices which satisfies (12) and (13). Then the
conclusions of the theorem hold as well.

The proof of the corollaries is straightforward: assume they were wrong,
and we had an estimator violating the conclusions of the theorem. We would,
however, be able to approximate the Bn and the estimators with ones which
satisfy the assumptions of the theorem to an arbitrary degree of accuracy. Then
the approximations fulfill the assumptions of the theorems, and it is quite easy,
but tedious, to show that our original estimators and Bn fulfill the assumption,
too. Hence we have a contradiction, which proves our corollaries.

3 Applications: Finite Dimensional Parameter
Space

In the previous section, we characterized certain estimators by optimality prop-
erties. We did show that exactly the estimators asymptotically equivalent to a
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certain sequence of estimators minimizes the average loss (where we take the
average with respect to the prior distribution).
We now want to apply this theorem. First of all let us analyze the maximum

likelihood estimator for a finite dimensional parameter.
So let us assume that our parameter set Θ is an open subset of a finite

dimensional space, Θ ⊂ R`. Since our parameter space is finite dimensional, it
seems sensible to define V as the space of all linear functions from the R` to
R. Moreover, the dual space V ∗ can be identified with the original space, too.
Hence our statistic cμn can be identified with a statistic in the R`, which we
denote by bθn (whose nature will be discussed below). The finite dimensional
context also simplifies the concept of bilinear form: These are represented by
`× ` matrices.
Then it is easily seen that we only need to consider one function v of the

parameters, namely
v(θ) = θ.

Our ”competing” estimator therefore will be a statistic in the same space as bθn,
so we will slightly change the notation and use the symbol fθn.
Typically, our estimator will be asymptotically equivalent to the maximum

likelihood estimator. This is relatively plausible: In general the posterior density
is proportional to the likelihood. Since we did assume that the posterior is
approximately Gaussian, it is plausible that the mode of the posterior (which
equals the maximum likelihood estimator) will be approximately the same as it
mean.
We still have to discuss our choice of the prior distribution. The first idea

would be to fix one prior distribution to be a smooth function on Θ. The as-
ymptotic normality of the posterior distribution was established in many situa-
tions(cf. Ghosal, Ghosh and Samanta(1995), Kim(1998), Phillips-Ploberger(1996),
Kleibergen-Paap(2002)). With the help of our theorem, we can show that in all
these situations the mean of the conditional distribution (let us call it bθn)(which
in most of the cases will be the maximum likelihood estimator) is admissible in
the following sense:

Theorem 7 Assume that we have to estimate a parameter θ, and that our
estimation problem has the AGP property (definition 1) when we fix all the prior
measures Πn = Π, where Π has a continuous, nonzero density π with respect
to the Lesbesgue measures. Then the estimator bθn has the following optimality
property: Let f be a completely monotone function, and let Bn be a sequence of
non negative definite ,Fn-measurable matrices satisfying (7). Then there does
not exist another estimator fθn so that the following two properties hold true:
1. For all ε > 0 the Lesbegue measure of the setsn

θ : Eθf
³
Cn

³
θ −fθn´´−Eθf ³Cn ³θ − bθn´´ < ε

o
(14)

converges to 0.
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2. There exists a δ > 0 so that the Lesbegue measure of the sets of the setsn
θ : Eθf

³
Cn

³
θ −fθn´´−Eθf ³Cn ³θ − bθn´´ > δ

o
(15)

does not converge to zero.

Let us first give an interpretation of the theorem. We could think of the
properties (14),(15) as definition of an estimator which is ”almost uniformly
better” than bθn. Suppose we would have an estimator fθn which satisfies both
(14),(15). Then this estimator would be preferable to bθn. (14) guarantees that
- with the possible exception of some parameters in a set whose Lesbesgue mea-
sure (and therefore its prior probability) would converge to zero - the expected
estimation error of fθn is - up to an arbitrarily small ε - better or equal to the
expected estimation error of bθn: So by using fθn instead of of bθn we cannot loose
very much.
The second property, (15), guarantees that we would gain at least δ on a

set of parameters with positive Lesbesgue measure (and hence positive prior
probability!
Fortunately, the theorem states that such an estimator fθn does not exist. If

an estimator satisfies our first condition, it cannot satisfy the second one.
Suppose such an estimator fθn existed. As f is continuous and bounded, we

can show - by choosing an ε small enough - that there exists an α > 0 so that
for n large enough Z

Eθf
³
Cn

³
θ −fθn´´π (θ) dθ

>

Z
Eθf

³
Cn

³
θ − bθn´´π (θ) dθ + α. (16)

According to our theorem, this would imply that³bθn −fθn´0Bn ³bθn −fθn´→ 0

in probability with respect to Pn =
R
PθdΠ (θ) . So for all ε > 0

Pn

µ∙³bθn −fθn´0Bn ³bθn −fθn´ > ε

¸¶
converges to zero, henceZ

Pθ

µ∙³bθn −fθn´0Bn ³bθn −fθn´ > ε

¸¶
dΠ (θ)

converges to zero, too. One can easily see, however, that (since f is bounded
and uniformly continuous) this would imply that
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Z
Eθf

³
Cn

³
θ −fθn´´π (θ) dθ

−
Z
Eθf

³
Cn

³
θ − bθn´´π (θ) dθ

→ 0, .

which would contradict (16).
So suppose we have given our estimator cθn and a competing one, fθn. Iffθn is approximately equal to cθn, then Theorem 7 guarantees us that the set of

parameters where fθn is better has Lesbesgue measure zero. We might want to
try to get even better characterizations of the set of parameters. Suppose we
choose for every sample size different priors, and let them ”shrink” to one point.
We will show that this is possible, and that we will be able to
Indeed, we will show that under reasonable circumstances this is the case. So

let us assume that θ0 ∈ Θ, and it is fixed. One reasonably general assumption
on the likelihood is that it is locally asymptotically quadratic (or LAQ). We
assume that there is a sequence of scaling matrices Dn ↑ ∞ so that restricted
on Fn

log
dPθ0+D−1n h

dPθ0
= h0Wn −

1

2
h0Jnh+ rn (h) , (17)

where Wn, Jn are Fn-measurable statistics which converge in distribution to
some nontrivial (W,J) (and we assume that J is nonsingular almost surely: to
simplify the proof, let us assume that the same holds true for Jn). Let us make
a stronger assumption, namely
Assumption 1
Let us assume that rn (h) converges to zero uniformly on all compact sets of

h ∈ Rk.
Furthermore let us maintain
Assumption 2
For all bounded sequences hn the probability measures

Pθ0+D−1n hn

and Pθ0 remain contiguous: For every sequence of events An ∈ Fn so that
Pθ0 (An)→ 0 Pθ0+D−1n hn

(An)→ 0, too. An equivalent definition would be that
it is impossible to construct consistent tests of Pθ0 against Pθ0+D−1n hn

. This
assumption is quite standard in asymptomatic statistic( cv van der Vaart(2000),
p. 87). Many textbooks discuss this concept and give criteria which are easy to
verify.
Our next assumption allows us to use the approximation (17) to approximate

the maximum-likelihood estimator cθnML
:

Assumption 3

Dn(cθnML
− θ0)− J−1n Wn)→ 0. (18)
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(where we understand this convergence to be in distribution with respect to
Pθ0). Again, we think this assumption is quite plausible. In most cases, the
likelihoods will be differentiable. In this type of cases, Wn,Jn will be the prop-
erly normalized first and second order derivatives of the likelihood. The stan-
dard asymptotic theory of the ML-estimator approximates the estimator by the
product of the inverse of the second derivative with the scores. Assumption
2 (contiguity) allows us to conclude that the limiting relation (18) holds true
under Pθ0+D−1n h, too
Assumption 3 allows us to link the ML-estimator to Wn and Jn. Let us now

define our priors Πn to be normal distributions with mean θ0 and covariance
matrices

Cov(θ) = C−1n = (DnDn)
−1
/α.

Then we have the following theorem:

Theorem 8 Assume assumptions 1-3 hold true. Then the posterior is asymp-
totically normal with ”mean” cθncθn = (Jn + αI)−1 Jn(cθnML

) + (Jn + αI)−1 αθ0 (19)

and ”variance”
D−1n (Jn + αI)−1D−1n .

The proof is straight forward and the result is not very surprising. Nev-
ertheless, it gives us an idea how to establish local optimality results for the
ML-estimator. Heuristically, the ML-estimator is the limit of the above estima-
tors for α → 0. In order to express use this fact as a characterization of the
ML-estimator, we need to make a few more assumptions.
Assumption 4

The distributions of (cθnML
− θ)0DnJnDn(cθnML

− θ) , where θ = θ0+D
−1
n h

under Pθ remain uniformly tight for h from any compact set.
Assumption 5
There exists a monotone function ψ > 0 with ψ (x) = o

¡
x2
¢
for x → ∞ so

that for all C

inf
θ=θ0+D

−1
n h,khk≤K

Pθ ([λmin (Jn)ψ (khk) > C])→ 1.

Assumption 5 guarantees that the distribution of Jn under the local alternatives
does not become too small. The matrices Jn are the analoga to the classical
information matrices. In cases like e.g. unit roots this ”information matrix” is
a random variable itself. The distribution of this random variable may depend
on the local alternative. In the case of an AR(1) model near the unit root this
effect is rather dramatic. For stationary alternatives, the distribution of the Jn
decreases proportional to the (normed) difference of the AR coefficient and one.
We have to make sure that this behavior does not ”get out of hand”: Otherwise,
we would not be able to use (19).
Then we have the following theorem
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Theorem 9 Let us assume that assumptions 1-5 are fulfilled, f (.) is a ”good”
loss function, Cn (possibly stochastic) matrices so that with BndL, BndU > 0

BndLCnC
0
n ≤ DnD0

n ≤ BndUCnC0n

and let fθn be an arbitrary estimator. Then we have
lim
α→0

lim
n→∞Z
Eθ0+D−1n hf

³
Cn

³
θ −fθn´´ dG(0, I/α) (h)−Z

Eθ0+D−1n hf
³
Cn

³
θ −cθnML´´

dG(0, I/α) (h)

≥ 0.

The proof of the theorem is relatively straightforward. With the help of
assumptions 4 and 5, we can approximate the optimal estimators with respect
to Gaussian priors with the ML-estimator.
Heuristically, the theorem shows that we cannot find an estimator with better

”average” power, where we take the average with respect to normal distributions
with ”large” variances. So this seems to be a nice optimality property of the
ML-estimator. However, the above theorem does not guarantee that the ML
estimator is the only one with this property. We think that this is an important
point for future research.
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Proof of Theorem 4
Proof. One can easily see that (11) of the theorem implies (10). Next we

will show that (10) implies (9): So let us choose a loss function f .

We can easily see from our assumption (7) that

M = sup
°°CnA−1n °° <∞,

where An, Cn are defined by (5) and (8). Let us define the set of functions
G = {gH,d(.) : kHk < M,d ∈ Rn} where

gH,d(x) = f(Hx+ d).

Then one can easily see that our assumptions on f imply that G is bounded
and equicontinuous.
Since Cn, bvn,fvn are Fn - measurable, the conditional expectation of f (Cn (v(θ)− bvn + bvn −fvn))

with respect to Fn equals
R
f (Cn (v(θ)− bvn + bvn −fvn)))dμn (θ). Then we haveZ

f (Cn (v(θ)−fvn)) dPn = Z f (Cn (v(θ)− bvn + bvn −fvn)) dPn = Z µZ
f (Cn (v(θ)− bvn + bvn −fvn)))dμn (θ)¶

Moreover,

f (Cn (v(θ)− bvn + bvn −fvn)) = gHn,dn(An (v(θ)− bvn)), (20)

where
Hn = CnA

−1
n

and
dn = Cn (bvn −fvn) .

According to our assumptions, Hn and dn are Fn-measurable. Then we have¯̄̄̄Z
gHn,dn(An (v(θ)− bvn))dμn (θ)− Z gHn,dn(.)dG(0, I)

¯̄̄̄
≤ sup

g∈G

¯̄̄̄Z
g (An (v(θ)− bvn))− Z gdG(0, I)

¯̄̄̄
→ 0.

Hence, with the help of (20) we can conclude that¯̄̄̄Z µZ
f (Cn (v(θ)− bvn + bvn −fvn)))dμn (θ)¶ dPn

−
Z µZ

gHn,dn (.) dG(0, I)

¶¯̄̄̄
→ 0.
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Anderson’s lemma (cf Strasser(1985), lemma 38.21 (p. 194) and the discus-
sion in Strasser (1985) (discussion 38.24 (p. 196) ) immediately yield our re-
sult. For each Hn,

¡R
gHn,dn (.) dG(0, I)

¢
≥
¡R
gHn,0 (.) dG(0, I)

¢
. From the

above mentioned discussion in Strasser (1986) we can easily conclude that¡R
gHn,dn (.) dG(0, I)

¢
−
¡R
gHn,0 (.) dG(0, I)

¢
→ 0 if and only if dn → 0
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