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Abstract

In this paper we explore the ability of simple monetary models with
bounded rationality to account for the joint distribution of money and
prices. We impose restrictions on the size of the mistakes agents can make
in equilibrium and argue that countries with high inflation are likely to
satisfy these restrictions. Our computations show that the model with
bounded rationality does neither improve nor deteriorates the ability of
the model to match the data.
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1 Introduction

The purpose of this paper is to explore the empirical implications regarding
the behavior of the joint distribution of money and prices of departing from
rational expectations in very simple money demand models. There has long
been recognized that standard rational expectations monetary models imply a
correlation between money and prices that is way too high relative to the data.
The reason is that velocity (the inverse of real money demand) fluctuates too
little in the models relative to the data and so does the ratio of money to prices.
Attempts to reconcile this feature have explored models with price stickiness
or with segmented markets. Ours, is an attempt to explain the potential role
of sticky expectations in driving the high frequency movements of money and
prices.
Recent monetary models of bounded rationality specify processes that imply

more sluggish adjustment of inflation expectations than the rational expecta-
tions versions. Thus, as long as velocity depends on expected inflation, it will
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also exhibit more sluggish movements than the rational expectations version.
Therefore, the ratio of money and prices will also be more sluggish, so the im-
plications for the co-movement between money and prices may be different from
the rational expectations version and, hopefully, closer to the data. This paper
provides a quantitative exercise to clarify this issue.
The bounded rationality literature main obstacle is that there are too many

ways of being irrational, leaving room for too many degrees of freedom. A
common methodological device to face this ”free-parameters” problem has been
to allow only for expectation-formation mechanisms that depart from ratio-
nal expectations by a small distance, in some sense. In Marcet and Nicolini
(2002) (MN from now on), we propose three different bounds and show that
in a model similar to the one we use in this paper they become operative in
determining the equilibrium values of the model parameters, therefore solving
the free parameters problem. A key feature of the bounds, is that agents are
”almost” rational in the sense that the expected value of the difference between
expected or perceived inflation and the true value for inflation is very close to
zero1. In this paper, we follow that methodological assumption and impose
the bounds. This assumption, however, raises an important issue regarding the
ability to distinguish, from the data, the fully rational from the almost rational
hypothesis. Indeed, under some circumstances, the imposition of these bounds
make the model with learning observationally equivalent to the rational expec-
tations version. But this is not always the case as we show in our previous
paper, in which we solve a simple seiniorage-driven model of hyperinflations.
The learning mechanism we use combines tracking with least squares, two of
the most common mechanisms used in the literature. The advantage of our
combined mechanism is that it works well both in stable as well as in changing
environments, so it can be applied to countries with low and stable inflation
and countries with high average inflation that experience, from time to time,
recurrent burst of hyperinflations. We show in that paper that the equilibrium
outcome can be very different from the rational expectations equilibria only
when the government follows a high average money growth rate policy. If the
average money growth rate is low, the only equilibrium with bounded rational-
ity is the rational expectations equilibrium. So, the imposition of bounds on the
mistakes agents can make in equilibrium, implies, according to the model of our
previous paper, that the rational expectations and bounded rationality hypoth-
esis are observationally equivalent, except in countries where inflation is high
on average. The reason for this result is that countries with low inflation also
exhibit quite stable inflation. Thus, in these stable environments, the bounds
imply that agents learn fast the true structure of the model and the outcome
converges to the rational expectations outcome very quickly. However, coun-
tries with high average inflation also exhibit very unstable environments, as the
econometric estimates we provide in the appendix of this paper clearly testify.
In these changing environments, it is much harder - although not impossible,
since the equilibrium must satisfy the bounds -to learn the true structure of

1Rational expectations implies that difference to be exactly equal to zero.
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the model with simple backward looking schemes, and therefore the equilibrium
outcome can be very different from the rational expectations equilibrium for a
very long transition, characterized by recurrent bursts in inflation rates. We use
this property of the model with learning in changing environments to compare
the empirical implications of the bounded rationality hypothesis relative to the
rational expectations version.
Our paper contributes to the literature along two dimensions. First, it

contributes to the literature that analyzes high frequency movements between
money and prices. Ours, is an attempt to explain the potential role of sticky
expectations in driving the high frequency movements of money and prices in
high inflation countries. Second, we identify a case in which even though the
learning equilibria satisfies the bounds and is close to rational expectation, the
equilibrium outcomes are different, so the models are not observationally equiv-
alent. Thus, we can evaluate the empirical performance of the learning model
relative to the rational expectations version, while not being subject to the free
parameters criticism.
The model we discuss in this paper is a single real demand for money equa-

tion that is decreasing with expected inflation, and were the exogenous driving
force is the money supply. We then fit a Markov switching regime statistical
model for the money growth rate for five high inflation countries and solve both
the bounded rationality and rational expectations versions of the model. Fi-
nally, we compare moments of the joint distributions of money and prices from
both models and the data. We conclude that both versions of the model de-
liver the same quantitative implications and fit the data well. Thus, the high
frequency behavior of money and prices provides evidence neither in favor, nor
against the bounded rationality hypothesis.

2 The Model

The model consist in a demand for cash balances given by

Pt =
1

φ
Mt + γP

e
t+1, (1)

where φ, γ are positive parameters. Pt,Mt are the nominal price level and the
demand for money; and P et+1 is the forecast of the price level for next period.
The driving force of the model is given by the stochastic process followed by the
growth rate of money. This well known money demand equation is consistent
with utility maximization in general equilibrium in a context of overlapping
generations model.
To complete the model, one needs to specify the way agents forecast the fu-

ture price level. In what follows, we compare the rational expectations version
with a version in which agents use an ad-hoc algorithm that depends on past
information. There are several ways in which one can restrict the bounded ra-
tionality or learning, version of the model to be ”close” to rational expectations.

3



For example, it has been common to study the conditions under which the equi-
librium outcome of the learning model converges to the outcome of the rational
expectations model. To be more specific, consider, in the context of the money
demand equation above, two alternative expectations formation mechanisms

P et+1 = Et [Pt+1]

P et+1 = L (Pt−1, Pt−2, ...) .

We then obtain (possible many) solutions {PREt , PLt }∞t=0. For the sake of the
argument, assume that the rational expectations version has a unique solution.
Then, if one is concerned about outcomes, it is natural to use a notion of distance
that depends on the equilibrium values of the models

ρ({PREt }∞t=0, {PLt }∞t=0)

For example, if the model is deterministic, convergence to rational expectations
can be written as

lim
t→∞(P

RE
t − PLt ) = 0

Thus, the equilibrium outcome has to ”look like” a rational expectations equi-
librium in the limit. Then, in systems that settle down2, models with learning
that are restricted to satisfy this long run property are observationally equiva-
lent to rational expectations equilibria. Only the transition, if long enough, is
then potentially suitable to compare the relative performance of both models.
But the transition is not restricted by the bound, so we either have observational
equivalence or unrestricted learning outcomes.
Alternatively, one could impose restrictions on the size of the systematic mis-

takes the agents make in equilibrium (which are zero in the rational expectations
version). This amounts to define a metric

ρ({PLt − L (Pt−1, Pt−2, ...)}∞t=0)

For example, if we impose

Et−1[P
L
t+1 − L (yt−1, yt−2, ...)] = 0, for all t

then we have rational expectations. If instead, we impose that the mistakes
need not be zero, but very small, we impose no restriction on the relationship
between PREt and PLt . If, as it is sometimes the case, P

RE
t+1 can be written as

2Recall that in complex dynamic models where one only focuses on invariant distributions,
it is assumed that the system ”settled down”.
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a function L of past values, then the rational expectations equilibrium is also
a learning equilibrium. But there may be other learning equilibria that behave
differently. In this case, the empirical implications of the rational expectations
version and the ”small mistakes” version may be different, while the learning
equilibrium is till close to the rational, in the proper metric.
In MN, we impose three bounds, including versions of the two discussed

above. As we mentioned in the introduction, if inflation is low, then the only
learning equilibrium that satisfies the bounds is the rational expectations equi-
librium. However, when inflation is high, there are learning equilibrium out-
comes that look different from the rational expectations one. Thus, for our
empirical investigation, we focus the analysis on high inflation countries only.

2.1 The behavior of money and prices during hyperinfla-
tions

In order to fit into the two versions of the model a process for the nominal money
supply, we first look at the evidence for five Latin-American countries that
experienced high average inflation and very high volatility in the last decades:
Argentina, Bolivia, Brazil, Mexico and Peru. We use data for M1 and consumer
prices from the International Financial Statistics published by the International
Monetary Fund. To compute growth rates, we take the logarithm3 of the time
t+ 1 variable divided by the time t value of the same variable.
While the high inflation years are mostly concentrated between 1975 and

1995 for most countries, the periods do not match exactly. Thus, we chose, for
each country, a sub-period that roughly corresponds to its own unstable years.
Figures 1.e to 1.e plot quarterly data on nominal money growth and inflation
for the relevant periods in each case.
As it can be seen from the figures, for all those countries, average inflation

was high, but there are some relatively short periods of bursts - the shaded areas
- in both money growth and inflation rates, followed, again, by periods of stable
but high inflation rates4. Note also that the behavior of the money growth rate,
the driving force of the model, follows a very similar pattern. Thus, we propose
to fit a Markov switching process for the rate of money growth5.

3This measure underestimates growth rates when they becomes very high. With this scale,
it is easier to see the movements of inflation rates in the - relatively - traquile periods in all
the graphs. In what follows, we make the case that the data is best described as a two regime
process, so this measure biases the result against us.

4This feature of the data has long been recognized in case studies of hyperinflations (see
Bruno, Di Tella, Dornbusch and Fisher (1988) and Bruno, Fisher, Helpman and Liviatan
(1991)).

5Actually, the data suggest that during the periods of hyperinflations, both the inflation
rate and the rate of growth of the money supply are increasing over time, a fact that is
consistent with the model in MN. The statistical model we fit assumes, for simplicity, that
during the hyperinflations both have a constant mean. This assumption biases the results
against the rational expectations model, since in the learning version, agents do not take into
account the money supply rule, while we are providing the rational agents with a misspecified
process for the money supply.
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2.2 A Regime Switching Model for Money Growth

Our empirical analysis is based on quarterly data, since we are interested in high
frequency movements in money and prices. Our eyeball inspection of Figures 1.a
to 1.e suggests the existence of structural breaks. This is confirmed by the break-
point Chow Test that we present in the appendix for the five countries, so we
model log (Mt)− log(Mt−1) as a discrete time Markov switching regime. Thus,
∆ log(Mt) = log (Mt) − log(Mt−1) is assumed to be distributed N(αst

,σ2
st
);

where st ∈ {0, 1}. The state st is assumed to follow a first order homogeneous
Markov process with Pr(st = 1|st−1 = 1) = q and Pr(st = 0|st−1 = 0) = p.
The evolution of the first difference of the logarithm of the money supply can
therefore be written as

∆ log(Mt) = µo(1− st) + µ1st +
¡
σ2
o(1− st) + σ2

1st
¢
εt

where εt is assumed to be i.i.d. All empirical results regarding the modelling of
the money supply are also reported in Appendix 1.
For all the countries, one state is always characterized by higher mean and

higher volatility of ∆ log(Mt). Both pairs of µi and σi are statistically signifi-
cant, as well as the transition probabilities, p and q, and in all cases, both states
are highly persistent. The results represent very clear evidence of the existence
of two states. The rate of money growth in the high mean-high volatility state
ranges from three times the rate of money growth in the low mean-low volatil-
ity state for Argentina to nine times for Bolivia while the volatility of the high
mean-high volatility ranges from one and a half times the volatility of the low
mean-low volatility state for Mexico to eight times for Brazil. The differences
are gigantic. The high-mean and high-volatility state is always consistent with
the existence of high peaks of inflation in each of the countries. These periods
are represented as the shaded areas in Figures 1.a to 1.e.
These results clearly demonstrate that the economic environment can be

characterized by one in which there are changes in the monetary policy regime.
That is the reason why the learning mechanism we use produces reasonably low
prediction errors.

2.3 Rational Expectations Equilibria

With rational expectations (RE) we know that

P et+1 = E (Pt+1|It)

for all t, where It is the information set up to time t. Agents know the past obser-
vations of both Mt

Mt−1
and st where st characterize the state of

Mt

Mt−1
. Therefore

it must be true that

It =

(
st,

µ
Mj

Mj−1

¶t
j=1

)
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since, due to the Markov property of the driving force, all the past information
of {st} is contained in st.
Given the structure of the money growth process, E (Pt+1|It) ,will be linear

in Pt, i.e.,

E (Pt+1|It) = βsPt
with βs being state dependent, and must satisfy

βs = βo(1− st) + β1st.

To solve for an equilibrium, we must first find (βo,β1).

Let κj = E
³
Mt+1

Mt
|st+1 = j

´
, as we know that log

³
Mt+1

Mt

´
˜N

¡
µj ,σj

¢
, then

κj = E

µ
exp

µ
log

µ
Mt+1

Mt

¶¶
|st+1 = j

¶
= exp

µ
µj +

1

2
σ2
j

¶
.

Now

E (Pt+1|st = 0) = pE

µ
Mt+1

φ (1− γβ0)
|st+1 = 0, st = 0

¶
+ (1− p)E

µ
Mt+1

φ (1− γβ1)
|st+1 = 1, st = 0

¶
,

=
p

φ (1− γβ0)
E (Mt+1|st+1 = 0, st = 0) +

(1− p)
φ (1− γβ1)

E (Mt+1|st+1 = 1, st = 0) ,

=
pκ0

φ (1− γβ0)
Mt +

(1− p)κ1

φ (1− γβ1)
Mt,

= pκ0Pt + (1− p)κ1
(1− γβ0)

(1− γβ1)
Pt,

= Pt

µ
pκ0 + (1− p)κ1

(1− γβ0)

(1− γβ1)

¶
.

Where the first equality arise from equation (1) and the fact that P et+1 =
E (Pt+1|st = 0, ...) = βoPt. The third equality comes from the definition of κ,
and the fourth one comes from equation (1). Combining this expression with
P et+1 = E (Pt+1|st = 0, ...) = β0Pt we get

β0 =

µ
pκ0 + (1− p)κ1

(1− γβ0)

(1− γβ1)

¶
. (2)

For an analogous derivation for st = 1 we get

β1 =

µ
qκ1 + (1− q)κ0

(1− γβ1)

(1− γβ0)

¶
. (3)

We must solve this system of equations, for the unknowns (β0,β1) . The solution
of the system is given by

β1 =
κ0 (1− q) + κ1q + κ0κ1γ (1− q − p)

1 + γκ0 (1− p− q)
and plugging this expression into (2) we obtain the solution for β0.
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2.3.1 Money-Inflation relationship under RE

Under RE and from

Pt =
Mt

φ (1− γβst)
,

the inflation rate must satisfy

Pt
Pt−1

=
(1− γβs(t−1))

(1− γβst)
Mt

Mt−1
,

where βs(t−1) is known in t, and βst will be equal to βo if
Mt

Mt−1
˜N(µo,σo) and

equal to β1 if
Mt

Mt−1
˜N(µ1,σ1).

2.4 Learning Mechanism Equilibrium

The learning mechanism we use is the same one we used in MN. Let

P et+1 = βsPt

were

βt = βt−1 +
1

αt

µ
Pt−1

Pt−2
− βt−1

¶
, (4)

were αt is called the gain of the algorithm and affects the sensitivity of ex-
pectations to current information. Two of the most common specifications for
the gain sequence are tracking (αt = α for all t), which performs well in en-
vironments that change every period, and least squares (αt = αt−1 + 1) that
performs well in environments that settle down. As the money supply process,
the driving force of the model, is well approximated by a Markov Switching
Regime with substantial persistence, a scheme that combines both mechanisms
performs well, as we show in MN. The gain is assumed to follow

αt
= αt−1 + 1 if

¯̄̄̄
¯

Pt−1
Pt−2

−βt−1

βt−1

¯̄̄̄
¯ ≥ ν

= α otherwise

. (5)

Where α, ν are the learning parameters. Thus, if errors are small, the gain
follows a least squares rule, such that as long as the regime does not switch,
agents soon learn the parameters of the money supply rule. However, once a
big error is detected, the rule switches to a constant gain algorithm, so agents
can learn the new parameters of the money supply rule.

2.4.1 Money-Inflation Relationship under Learning
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The solution { Pt

Pt−1
,βt,αt} must satisfy (4), (5) and

Pt
Pt−1

=

¡
1− γβt−1

¢
(1− γβt)

Mt

Mt−1
.

For each t we solve this stochastic system, taking (βt−1,αt−1) as given (from
the t− 1 iteration).

2.5 Calibration

2.5.1 The rational expectations model

The money demand
We borrow the parameter values from our previous paper, in which we use

observations from empirical Laffer curves to calibrate them. This is a reasonable
choice, since as one empirical implication of the original model is that recur-
rent hyperinflations characterized by two regimes occur when average inflation -
driven by average seiniorage - is ”high”, we need to have a benchmark to discuss
what high means. We use quarterly data on inflation rates and seignorage as
a share of GNP for Argentina 6 from 1980 to 1990 from Ahumada, Canavese,
Sanguinetti and Sosa (1993) to fit an empirical Laffer curve. While there is a
lot of dispersion, the maximum feasible seignorage is around 5% of GNP, and
the inflation rate that maximizes seignorage is close to 60%. These figures are
roughly consistent with the findings in Kiguel and Neumeyer (1992) and other
studies. The parameters of the money demand γ and φ, are uniquely determined
by the two numbers above. Note that the money demand function implies a
stationary Laffer curve equal to

π

1 + π
m =

π

1 + π
φ (1− γ(1 + π)) (6)

where m is the real quantity of money and π is the inflation rate. Thus, the
inflation rate that maximizes seignorage is

π∗ =
r
1

γ
− 1

which, setting π∗ = 60%, implies γ = 0.4. Using this figure in (6), and making
the maximum revenue equal to 0.05, we obtain φ = 0.37. For simplicity, we use
these numbers for all the countries.

The money supply
For the money supply, we use the estimated Markov switching models we

discussed above. The results of the estimation are reported in Appendix 1.
While the money demand parameters are assumed the same for each country,
the money supply process is estimated using data from each country.

6The choice of country is arbitrary. We chose Argentina because we were more familiar
with the data.

9



2.5.2 The learning model

The parameters described above are sufficient to solve the rational expectations
model. However, we still need to be specific regarding our choice of the (still
free!) parameters of the learning process, α, ν.
In MN, we provide an operational definition of a bound of the type described

above. Intuitively, we search for values of the parameter α that satisfy a rational
expectations-like fixed point problem. We look for values of the parameter
such that in equilibrium, agents make almost zero systematic mistakes. Recall
that the learning mechanism we propose is well suited to deal with changing
environments, a result we show formally in MN. For our simulations, we use
the equilibrium values we obtained in MN (α between 2 and 4). For the value
of ν,we also follow MN, where we used a value that was roughly equal to two
standard deviations of the shock7.

3 Evaluating the models

As we already mentioned, the main goal of this paper is to investigate the
ability of the simple money demand equation to replicate the short run rela-
tionship between the inflation rate and the growth rate of money using both the
rational expectations model and the ”almost” rational version. Following the
RBC tradition, we characterize the data using empirical moments of the joint
distribution of money and prices. Table 1 presents moments of their partial
distributions. As one should expect, average inflation is very similar to average
money growth. There are slightly larger differences between the volatilities of
inflation and money growth rates, without a clear pattern emerging from the
table. For the analysis of the joint distribution of money and prices we will
focus on the cross-correlogram. If velocity were constant, then the contempo-
raneous correlation between money and prices ought to be one, and the leads
and lags should be equal to the auto-correlogram of the money growth process.
Figure 2.a and Figure 2.b present the leads and lags for money and prices for
the five countries. It is interesting to point out that, as it has been documented
before, money and prices are highly correlated contemporaneously, contrary to
the case of middle and low inflation countries8. In particular, the contempo-
raneous correlation for Mexico, the country in the sample with lower average
inflation, is substantially lower than for the other countries. The results of the
simulations are shown in Tables 2.a to 2.e. The columns show the moments
for the inflation generated by the model under rational expectations, and under
LM. Under LM we have two columns, one for each of the two possible values

7We also solved the learning model with an alternative specification for v, given the Markov
structure of the money growth process: we replace v for vst, given by vst = vl = v if st = low
state, while vst = vl = (σh/σl)v if st = high state. With this alternative specification we
introduce the switching regime information into the LM, but it did not make any difference
in the results, reported in the WP version.

8See Alvarez, Atkenson and Edmond (2001) and referneces therein for theoretical work
that aims at matching these correlations for low inflation countries.
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for α = {10/4, 10/3}.
As we can see, the three simulations (the one under RE and the two under

LM) give very similar results for each of the countries. In fact, for Argentina,
neither the mean nor the standard deviation of the RE model are statistically
different from the ones generated by the two different versions of LM. Most
importantly, none of these moments are statistically different from the actual
moments of inflation. The same is true for Peru, Bolivia and Mexico. Similar
results arise for Brazil, with the exception that the volatility of the inflation
rate under learning overestimates the true volatility . It is interesting to point
out that while the simulations for Argentina, Bolivia and Peru generate volatil-
ities that underestimate the actual ones; for Brazil and Mexico the generated
volatility overestimates the actual one.
Figures 3.a to 3.e and 4.a to 4.e present the leads and lags of the cross-

correlogram between log (Mt/Mt−1) and the inflation rates generated by RE,
LM and the actual one for each of the five countries. We also include an ap-
proximation for the confidence band, (±2/√T ) for the cross-correlogram of the
actual series (the dotted lines).
For each country, the leads and lags graphs generated with the three sim-

ulated series are very similar. Also, with the exception of Mexico, none of the
cross-correlograms generated by either model is significantly different from the
actual one. Both mechanism perform equally good in approximating the actual
cross-correlogram. A noticeable fact is that in every country the contemporane-
ous correlation is lower in the simulated series than in the actual ones, except in
Mexico, the country with the lowest average inflation. Furthermore, Mexico is
the only country which presents significant differences between the actual and
the simulated cross-correlogram. This is due to the fact that Mexico’s actual
inflation is not so correlated to log(Mt/Mt−1) as the other variables are (shown
in Figures 1.a and 1.b), and as the simulated inflation are highly correlated to
log(Mt/Mt−1) they perform worse for this particular case. But even in the case
of Mexico the prediction of the money demand model is not very sensitive to
the expectation formation mechanism.
The most important conclusion of the paper is that, although from the the-

oretical point of view, sticky expectations was a promising avenue to explain
the short run behavior of money and prices, quantitatively, the models are em-
pirically equivalent. Both models do imply different behavior for expected in-
flation. Indeed, Figure 5 plots expected inflation for both models for the case of
Argentina9. The definitions are the same as the ones stated previously in Tables
2.a-2.e, i.e., “BETA LMi”, for i = 0, 1 corresponds to the expected inflation,
β generated by the LM labeled as

¡
10
3 ,

10
4

¢
, respectively in Tables 2.a-2.e, while

“BETA RE” stands for the expected inflation generated by the RE model. As
it can be seen in the figure, expected inflation under learning exhibits more
high frequency movements. Thus implies that real money demand also moves
more under learning. However, the impact on the behavior of the cross correl-
ogram is quantitatively very small. This suggests that for the calibrated values

9The same happens in the other five countries.
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of the money demand elasticity, the role that high frequency fluctuations on
expectations have on the short run dynamics of money and prices is negligible.

4 Conclusion

The purpose of this paper is to explore the potential role of sluggish “almost-
rational“ expectations in explaining the high frequency movements between
money and prices. There is evidence that shows a sluggish response of prices
to money, so sluggish expectations imply movements on velocity that could
potentially explain the data better than the rationalexpectations alternative.
We impose the methodological restriction that the learning mechanism must
produce very good forecasts within the model in a way that resembles ratio-
nal expectations. We argue that the learning model we propose satisfies the
methodological restriction in countries in which monetary policy exhibits fre-
quent and substantial changes of regime and we argue that, form the point of
view of the theory, the models are not necessarily observationally equivalent in
that case. We fit a Markov switching process for the exogenous driving force
- the money growth rate - in five Latin-American countries. There is ample
evidence in favor of the regime switching structure. We quantitatively solve
a calibrated money demand equation under the assumptions of both rational
expectations and learning with the methodological restriction. The behavoir of
expected inflation is indeed different in both models. However, we find that for
the calibrated value of the elasticity of the money demand both models gen-
erate very similar empirical implications that match the facts in almost every
dimension. Thus, we conclude, the short run behavior of money and prices pro-
vides evidence neither in favor nor against the bounded rationality hypothesis
in expectations formation if agents are not allowed to make large mistakes in
equilibrium.
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A Appendix 1

A.1 Chow Test for Structural Breaks

The Chow Test for the corresponding sub-samples generates the following results

Argentina (1975:01 1992:04)
Sub-samples 1975:01-1988:04, 1989:01-1990:01, 1990:02-1992:04

Chow Breakpoint Test: 1989:1 1990:1 Probability

F-statistic 3.775243 0.002964
Log likelihood ratio 22.09987 0.001161

Bolivia (1975:01 1995:04)
Sub-samples 1975:01-1983:03, 1983:04-1986:04, 1987:01-1995:04

Chow Breakpoint Test: 1983:4 1986:4 Probability

F-statistic 4.205059 0.003498
Log likelihood ratio 16.47067 0.002448
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Brazil (1980:01 1995:04)
Sub-samples 1980:01-1987:04, 1988:01-1991:01, 1991:02-1995:04

Chow Breakpoint Test: 1988:1 1991:1 Probability

F-statistic 4.666468 0.001733
Log likelihood ratio 18.12746 0.001165

Mexico (1975:01 1995:04)
Sub-samples 1975:01-1989:04, 1990:01-1992:03, 1992:04-1995:04

Chow Breakpoint Test: 1990:1 1992:3 Probability

F-statistic 4.251409 0.003259
Log likelihood ratio 16.63831 0.002272

Peru (1975:01 1995:04)
Sub-samples 1975:01-1989:04, 1990:01-1991:01, 1991:02-1995:04

Chow Breakpoint Test: 1990:1 1991:1 Probability

F-statistic 16.67572 0.000000
Log likelihood ratio 53.90424 0.000000

A.2 Markov Switching Regime Estimation Results

In this sub-section we present the results of the Markov Switching Regimes
estimation. Let p = Pr(st = 0|st−1 = 0), q = Pr(st = 1|st−1 = 1), and let µi
and σi be the mean and the standard deviation of the growth rate of money in
state i. The following tables summarize the results of the estimation.

Argentina (1975:01 1992:04)
Coeff. Std Error. t-statistic

µ0 0.175533792 0.018297495 9.593323735
µ1 0.454399941 0.098682095 4.604684802
q 0.915099885 0.066209340 13.82131101
p 0.919361013 0.074032079 12.41841415
σ0 0.072853206 0.011943142 6.100003477
σ1 0.303486106 0.079758969 3.805040466

Bolivia (1975:01 1995:04)
Coeff. Std Error. t-statistic

µ0 0.059627604 0.009754163 6.113041314
µ1 0.536370837 0.420877046 1.274412187
q 0.935126471 0.066531539 14.05538607
p 0.986617102 0.070142749 14.06584602
σ0 0.050541181 0.003716448 13.59932350
σ1 0.373992612 0.159586583 2.343509119
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Brazil (1980:01 1995:04)
Coeff. Std Error. t-statistic

µ0 0.157931616 0.027645929 5.712653628
µ1 0.517317340 0.128746245 4.018115930
q 0.926016849 0.125106881 7.401805917
p 0.957205334 0.068582989 13.95689156
σ0 0.045445418 0.019317040 2.352607738
σ1 0.389689368 0.089648053 4.346880447

Mexico (1975:01 1995:04)
Coeff. Std Error. t-statistic

µ0 0.064677791 0.010181050 6.352762507
µ1 0.206343338 0.021967776 9.393000814
q 0.733328049 0.174816708 4.194839597
p 0.951845883 0.060318779 15.780257828
σ0 0.047614481 0.011171478 4.262147003
σ1 0.061059573 0.025394331 2.404456906
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Peru (1975:01 1995:04)
Coeff. Std Error. t-statistic

µ0 0.119329114 0.015084511 7.910632032
µ1 0.744060948 0.190436648 3.985303268
q 0.830803948 0.126355006 6.567003388
p 0.971727572 0.048361910 19.86071300
σ0 0.082091249 0.008656942 10.06842486
σ1 0.383326249 0.134969389 2.847524436

B Simulation Results

Table 1 shows the first and second moments of inflation and money growth
for every country. Tables 2.a to 2.e show the first and second moments of the
simulations.

Table 1

Inflation
(∆ logPt)

Money Growth
(∆ logMt)

Sample Country µ σ µ σ
1975:01-1992:04 Argentina 0.146870 0.132087 0.138898 0.117783
1975:01-1995:04 Bolivia 0.069557 0.138701 0.072275 0.117080
1980:01-1995:04 Brazil 0.177091 0.131648 0.174454 0.158965
1975:01-1995:04 Mexico 0.036109 0.029010 0.037837 0.031375
1975:01-1995:04 Peru 0.104011 0.140325 0.095859 0.123695

Table 2.a
Argentina

Sample: 1975:01-1992:04
µ σ

True 0.146870 0.132087
α = 10

3 0.142280 0.137145
α = 10

4 0.141884 0.152390
RE 0.144074 0.123287
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Table 2.b
Bolivia

Sample: 1975:01-1995:04
µ σ

True 0.069557 0.138701
α = 10

3 0.072237 0.146258
α = 10

4 0.072189 0.161556
RE 0.072755 0.127636

Table 2.c
Brazil

Sample: 1980:01-1995:04
µ σ

True 0.177091 0.131648
α = 10

3 0.164544 0.217368
α = 10

4 0.163226 0.295389
RE 0.180857 0.168293

Table 2.d
Mexico

Sample: 1975:01-1995:04
µ σ

True 0.036109 0.029010
α = 10

3 0.037844 0.032996
α = 10

4 0.037805 0.033354
RE 0.038116 0.033121

Table 2.e
Peru

Sample: 1975:01-1995:04
µ σ

True 0.104011 0.140325
α = 10

3 0.094706 0.146434
α = 10

4 0.094602 0.161485
RE 0.096507 0.174697
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