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ABSTRACT 
 
 
Rather than allowing water prices to reflect scarcity rents during periods of drought-induced 
excess demand, policy makers have mandated command-and-control approaches, like the 
curtailment of certain uses, primarily outdoor watering. Using unique panel data on residential 
end-uses of water, we examine the welfare implications of typical drought policies. Using price 
variation across and within markets, we identify end-use specific price elasticities. Our results 
suggest that current policies target water uses that households, themselves, are most willing to 
forgo. Nevertheless, we find that use restrictions have costly welfare implications, primarily due 
to household heterogeneity in willingness-to-pay for scarce water. 
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1. Introduction 

Where markets are not employed to allocate scarce resources, the potential welfare gains from a 

market-based approach can be estimated.  We assess the potential welfare gains and possible 

distributional outcomes from using prices rather than rationing to reduce urban water 

consumption during a drought. Between January 1997 and June 2007, moderate to extreme 

drought conditions affected, on average, 20 percent of the contiguous United States (National 

Climatic Data Center 2007).1 During droughts, municipal water restrictions focus almost 

exclusively on the residential sector (which comprises one-half to two-thirds of urban 

consumption). Rather than allowing prices to reflect scarcity rents during periods of excess 

demand, policy makers have mandated the curtailment of certain uses, primarily outdoor 

watering, requiring the same limitations on consumption of all households. If indoor demand is 

not perfectly inelastic, or households have heterogeneous willingness-to-pay for scarce water, a 

price-based approach to drought policy has a theoretical welfare advantage over water rationing.  

Using unique panel data on residential end-uses of water for 1,082 households in 11 

urban areas in the United States and Canada, we examine the implications of the current 

approach to urban drought. Using price variation across and within markets, we identify price 

elasticities specific to indoor and outdoor water demand. We find that outdoor watering 

restrictions do mimic household reactions to price increases, on average, as outdoor demand is 

much more price elastic than indoor use. However, the real advantage of market-based 

approaches lies in their accommodation of heterogeneous marginal benefits. When regulators 

impose identical frequency of outdoor watering, shadow prices for the marginal unit of water 

may vary greatly among households.  Our estimates of separate end-use elasticities for four 

                                                 
1 This 10-year average masks much variation; in June 2007, 41 percent of the contiguous United States was 
experiencing moderate to extreme drought (National Climatic Data Center 2007).   
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heterogeneous household groups, based on income and lot size, suggest that households are 

heterogeneous in these markets. We estimate shadow prices for each consumer and utility-level 

market-clearing prices under four drought policy scenarios of increasing stringency.  We then 

simulate the effects of moving to a market based approach, in comparison to a two-day-per-week 

outdoor watering restriction. 

Our results have important implications for municipal policies. Allowing substitution 

across households, as well as within, welfare gains from a price-based approach are 

approximately $92 per household during a summer drought, about 28 percent of average annual 

household expenditures on water in our sample.  These direct welfare gains would also come 

with potential savings in enforcement and monitoring costs – volumetric metering and billing 

systems are already in place for water consumption in most North American cities, while 

command-and-control approaches currently require direct observation of individual households’ 

outdoor consumption.  

Switching to a price-based policy would have allocative consequences. Drought prices 

enable those customers who are the least price sensitive, wealthy consumers with large lots, to 

reduce consumption much less than low-income households with small lots. The distributional 

consequences of these changes depend on the assignment of water rights. If utilities retain these 

rights, their profits would rise by an estimated $136 per customer. Households would be worse 

off by $44, on average. Rebates from water suppliers to consumers could make everyone better 

off. 

This paper provides the first estimates of end-use water demand elasticities in the peer-

reviewed literature, and the most comprehensive estimates to date of the welfare loss from 

rationing water during droughts.  Rationing approaches are ubiquitous in the water sector, 
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especially in arid regions.  For example, during a 1987-1992 drought in California, 65-80 percent 

of urban water utilities implemented outdoor watering restrictions (Dixon et al. 1996).  In 2008, 

75 percent of Australians lived in communities with some form of mandatory water use 

restrictions (Grafton and Ward 2008).  Our results suggest that the economic losses from such 

approaches may be quite substantial.  Note that the analysis does not consider whether water 

prices, in general, are set at efficient levels – only whether the policy instruments used to 

constrain use during a drought minimize the costs of achieving consumption reductions. 

The paper proceeds as follows. In Section 2, we discuss the theory and related literature. 

Section 3 presents the econometric models, and Section 4 describes the data. In Section 5, we 

present our price elasticity estimates for end uses and consumer groups. Section 6 discusses the 

economic consequences of current regulatory policies and distributional impacts of switching to 

a price-based allocation mechanism. In Section 7, we conclude. 

2. Theory and Related Literature 

2.1. Markets and Social Welfare in General 

The questions addressed in this paper arise from the general theoretical literature on the 

conditions under which gains in social welfare are possible through the introduction of markets 

for managing scarcity (Weitzman 1977, Suen 1990, Newell and Stavins 2003). There are 

theoretical and empirical estimates of the gains from increasing the influence of markets on 

traffic congestion on roadways (Small and Yan 2001, Parry and Bento 2002) and at airports 

(Daniel 2001, Pels and Verhof 2004); electricity generation (De Vany and Walls 1999, Kleit and 

Terrell 2001); and water supply across sectors (Howe et al. 1986, Hearne and Easter 1997). The 

gains from price-based approaches to allocation in these cases derive largely from heterogeneity 

in consumers’ marginal benefits. 
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A related literature has compared market-based and command-and-control approaches to 

pollution control (Pigou 1920, Crocker 1966, Dales 1968, Montgomery 1972, Baumol and Oates 

1988, Tietenberg 1995). The advantage of market-based  pollution control policies, which 

derives from abatement cost heterogeneity among regulated firms, has been demonstrated 

empirically for the regulation of lead in gasoline (Kerr and Maré 1997), sulfur dioxide in power 

plant emissions (Burtraw et al. 1998), and many other applications. 

In the literature on the economics of pollution control, analysts have focused on 

distributional outcomes where pollutants are non-uniformly mixed, creating variation in the 

marginal social benefits to different parties of market-based policies (i.e., some get more “clean 

air” than others). In the general resource allocation literature, distributional concerns arise from a 

related issue – the fact that high-value consumers of the good or service will purchase more, and 

low-value consumers less, if allocation occurs through prices. This is the advantage of a market; 

it is the source of welfare gains. But under certain conditions, like rationing during wartime, or in 

the aftermath of a natural disaster, willingness-to-pay may be an unjust allocation criterion.   

Some may consider allocation of scarce water to be such a case.  A small portion of 

household water is consumed to meet basic needs (drinking, bathing, cooking), but the rest is not 

(swimming pools, large lawns). The standard approach to allocating water under conditions of 

scarcity, wisely, restricts these less necessary uses, not basic needs. Yet, the standard approach 

does not recognize heterogeneity in willingness-to-pay for these uses, and thus is likely to result 

in welfare losses when compared with management through prices. 

2.2. Theoretical Gains from Drought Pricing 

The current approach to drought management achieves a citywide required demand 

reduction by uniformly restricting outdoor uses. The theoretical welfare gains from price-based 
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municipal water regulation come from possible substitution within and across households. First, 

prices allow households to choose end-use consumption as they see fit, given their preferences  

(i.e., households could substitute some indoor for outdoor reductions). Thus, if indoor demand is 

anything but perfectly inelastic, the current approach creates a deadweight loss (DWL).  Figure 1 

maps stylistic linear demand curves for indoor and outdoor water use against a required demand 

reduction (on the horizontal axis).2 The outdoor reduction mandated under the current approach 

( regQΔ ) creates a shadow price for outdoor consumption (λ ) that is higher than the current 

marginal price of water ( wp ). Under a market-clearing price ( *
wp ), some of the citywide required 

reduction would take place indoors, and the shaded DWL from rationing water outdoors would 

disappear. 

Additional welfare losses from the current approach come from disallowing substitution 

across households. Figure 2 describes households with the same indoor demand curve, but 

different preferences with respect to outdoor demand. Here we assume that indoor demand is the 

least elastic portion of demand (C), and that for outdoor demand, there is a group of relatively 

elastic households (A), and a group of somewhat less elastic households (B). If households are 

heterogeneous, outdoor regulations not only drive a wedge between outdoor shadow prices and 

current marginal prices, but, since they are the same for all households, they also create variation 

in outdoor shadow prices across households. A market-clearing price would realize all potential 

gains from trade, eliminating the shaded DWL triangles.   

 The implications for economic theory of rationing outdoor water during a drought are 

straightforward.  Consider a market with two goods, water (w) and a numeraire good (x).  Water 

consumption has two components, indoor use (win) and outdoor use (wout), and for all households 

                                                 
2 We assume that supply, in the short-run situation of drought, is perfectly inelastic. 
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(i), 
i iin out iw w w+ = .  Households maximize utility, subject to a budget constraint and a constraint 

on outdoor water consumption imposed by a rationing policy during a summer drought in 

consumer i’s market (1), where iφ  is the Lagrange multiplier on the budget constraint and iψ  is 

the Lagrange multiplier on the outdoor water consumption constraint. The rationing policy we 

model is a uniform constraint on the number of days households may legally water outdoors each 

week. However, the constraint on the amount of outdoor water consumed (
ioutw ) varies by 

household since, conditional on watering, each household may use a different quantity of water. 
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Under the typical assumptions for an interior solution, the first-order conditions from the 

maximization problem are given in (2) – (4): 
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Let i w ipλ ψ= + , so that λ is the shadow price of outdoor water consumption (as in Figure 2).  

The utility maximization problem gives rise to an indirect utility function, ( , , )i w i iV p yλ , which 

by Roy’s identity gives the Marshallian demand functions ( , , )
i iin in w i iw w p yλ=  and 

( , , )
i iout out w i iw w p yλ= .3 
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The DWL from the rationing of outdoor water is a function of the market clearing water 

price, pw
*, needed to achieve each market’s required aggregate demand reduction (5):   

* *

1 1
( ) ( ) ( ) ( )

i i i i

N N

in w out i in w out w
i i

w p w w p w pλ
= =

+ = +∑ ∑ , (5) 

where N is the number of households in the market. We approximate the DWL as the loss in 

Marshallian consumer surplus from imposing 
ioutw , rather than charging pw

* . In Figure 2, this is 

depicted as the sum of the DWL triangles for each household.  We sum DWL over all consumers 

in a market (6).  A technically correct estimate of DWL requires the calculation of compensating 

or equivalent variation.  Our Marshallian consumer surplus estimates should be considered an 

approximation of DWL.4  

* *

* *

1
{( ) ( ) ( ) ( ) ( ) ( ) }

w w

i i i i

w i

p pN

w w in w w i out i in out
i p

DWL p p w p p w w z dz w z dz
λ

λ λ
=

= − + − − −∑ ∫ ∫  (6) 

2.3. Price and Non-price Water Regulation 

To date, few studies have addressed municipal drought policies in this framework. Collinge 

(1994) proposes a theoretical water entitlement transfer system similar to the municipal-level 

price-based approach we analyze empirically. An experimental study simulates water 

consumption from a common pool and predicts that customer heterogeneity will generate welfare 

losses from command-and-control water conservation policies (Krause et al. 2003). Neither of 

these analyses estimates the magnitude of potential welfare gains, nor do they explore 

distributional implications in any depth. Renwick and Archibald (1998) estimate water demand 

elasticities by income quartile in Santa Barbara, California, and use these estimates to compare 

                                                 
4 In some of our empirical models, we use constant-elasticity demand functions. In these cases, the difference 
between our Marshallian consumer surplus estimate and Hicksian equivalent variation is likely to be small (West 
and Williams 2004).   
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the distributional implications of price and non-price water conservation policies, but do not 

consider welfare impacts. 

Two empirical studies have estimated the welfare losses from rationing outdoor water 

during a drought in a single city. The economic costs of a two-day-per-week sprinkling 

restriction in Perth, Australia are just under $100 per household per season (Brennan et al. 2007).  

Mandatory water restrictions in Sydney in 2004-2005 resulted in welfare losses of about $150 

per household (Grafton and Ward 2008).5   

3. Econometric Models 

 In part, the dearth of studies analyzing the welfare impacts of type-of-use restrictions in 

the residential sector is attributable to methodological challenges. The data we use here are the 

first to reliably disaggregate residential water consumption into its component uses. In addition, 

the presence of non-linear prices and the censoring of outdoor demand at zero complicate 

econometric analyses of this type. In our choice of econometric models, we draw on a well-

developed literature on the price elasticity of residential water demand to meet these challenges. 

Of the hundreds of water price elasticity studies published since 1960, a few are related 

closely to our current work.6 Mayer et al. (1998) separate household water consumption into its 

component end uses and estimate price elasticity for specific uses of water. We use their data, 

but ask different questions and use different methods.  We also rely on data from a structural 

model of water demand under increasing block prices for our empirical strategy (Olmstead et al. 

2007). 

                                                 
5 In a related paper, Timmins (2003) compares a mandatory low-flow appliance regulation (a technology standard) 
with a modest water tax, using aggregate consumption data from 13 groundwater-dependent California cities. He 
finds the tax to be more cost-effective than the technology standard in reducing groundwater aquifer lift-height in 
the long run. 
6 Meta-analysis suggests that the central tendency of short-run elasticity estimates over the past four decades is about 
-0.3, and of long-run estimates about -0.6 (Dalhuisen et al. 2003).  
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Many U.S. water utilities charge increasing-block prices to residential customers, 

creating piecewise linear budget constraints, under which marginal price and the quantity 

consumed are positively correlated. Structural models and instrumental variables (IV) models are 

two methods used to estimate demand under increasing-block prices, accounting for price 

endogeneity.  Structural econometric techniques that treat piecewise-linear budget constraints in 

a manner consistent with utility theory derive from studies of the wage elasticity of labor supply 

under progressive income taxation (Burtless and Hausman 1978), and have benefited greatly 

from the generalizations of Hanemann (1984) and Moffitt (1986, 1990). Several structural 

models of water demand under non-linear prices have been estimated (Hewitt and Hanemann 

1995, Rietveld et al. 1997, Pint 1999, Olmstead 2009, Olmstead et al. 2007).  

For the estimation of end-use demand, in our case a pair of partial demand equations for 

indoor and outdoor consumption, the likelihood function in a structural approach would be 

complicated. The likelihood function for such models is constructed in part by using the block 

“cutoffs” (the quantities at which marginal price increases), based on total billing period water 

consumption, to determine the probabilities of consumption at all possible locations along the 

household’s budget constraint (linear segments and kink points). The likelihood function, in our 

case, would include a total demand equation, which would determine marginal price, and 

separate end-use demand equations for indoor and outdoor consumption. 

We develop an alternative approach here. From a structural model using the same data 

estimated in another paper, we obtain the probability for each household of consuming at each 

possible marginal price on each day (Olmstead et al. 2007). Probabilities are functions of the 

structural parameter estimates, the data, and characteristics of each household’s water price 

structure (number and magnitude of marginal and infra-marginal prices, as well as block 
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cutoffs). We use these probabilities from earlier work to estimate an expected marginal price, the 

sum of the products of marginal prices, times the probabilities of facing those prices.7 We then 

impute price instruments as the seasonal average, by household, of these daily probability-

weighted prices, and implement a two-stage least squares (2SLS) model. Appendix A in the 

supplementary material describes these price instruments in greater detail. 

We begin with a test of the validity of our identification strategy by examining a model of 

total daily water demand, using probability-weighted marginal prices as instruments. We 

replicate the results in Olmstead et al. (2007) for total water demand, using our 2SLS model.8 

The equation for this total demand function is (7), in which totalw  is total daily water demand for 

household i on day t, p  is the marginal water price for which we instrument, y  is virtual 

income, Z  is a vector of daily and seasonal weather variables, and H  is a vector of household 

characteristics.9 The error structure comprises θ , a household heterogeneity parameter, and ν , 

the residual. 

 ln ln ln
ittotal it i it i i itw p y Z Hα μ δ β θ ν= + + + + + . (7) 

Or, in matrix notation: 

 ln 'total total total= +w X γ ν  (8) 
 

We then proceed with the estimation of end-use models. We adopt different models for 

indoor and outdoor demand, due to the fact that about half of outdoor demand observations are 

                                                 
7 Kink point probabilities are, on average, 5 percent for two-block price structures, and they range from 1 to 3 
percent, on average, for four-block price structures. We divide the kink probabilities evenly (for each household 
day) between the marginal prices on either side of the kink.  Our results are robust to two other assumptions: placing 
all of the kink probabilities on the prices below the kinks, and placing them all on the prices above the kinks. 
8 Identification is possible because the estimated probabilities used to create the price instruments incorporate 
variation in price structures (number and magnitude of prices and block cutoffs), characteristics not incorporated in 
the second stage of our demand estimation. 
9 Virtual income is annual household income, plus the difference between total water expenditures if the household 
had purchased all units at the marginal price, and actual total expenditures. This standard technique treats the 
implicit “subsidy” of the infra-marginal prices as lump-sum income transfers, and is originally due to Hall (1973).  
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equal to zero (and we observe no such censoring of indoor demand). The indoor demand 

equation, identical to (8), except for the different dependent variable, is represented in (9). 

 ln 'in in in= +w X γ ν  (9) 

For outdoor demand, censored at zero, we estimate a Tobit model, described in (10). 

 

*

* *

 '

if 0
                 

0 otherwise
it it

it

out out out

out out
out

w w
w

= +

⎧ >⎪= ⎨
⎪⎩

w X γ ν

 (10) 

Dealing with endogenous prices in the Tobit framework involves one extra step to obtain 

unbiased estimates (Newey 1987). In the first stage, we estimate fitted prices as functions of the 

price instruments and all of the exogenous covariates. In the second stage, we include both the 

fitted prices and the residuals from the fitted price equation as independent variables. 

4. Data 

The data used in this study were collected by Mayer et al. (1998) for a study funded by the 

American Water Works Association Research Foundation.  The data comprise 1,082 households 

in 11 urban areas in the United States and Canada, served by 16 water utilities.  The water 

utilities in the sample are: Denver Water Department (CO); Eugene Water and Electric Board 

(OR); Seattle Public Utilities (WA) (and three other Seattle-area utilities: City of Bellevue 

Utilities, Northshore Utility District, Highline Water District); San Diego Water Department 

(CA); City of Lompoc (CA); Walnut Valley Water District (CA); Las Virgenes Municipal Water 

District (CA); Tampa Water Department (FL); City of Phoenix (AZ); Tempe Public Works 

Department (AZ); City of Scottsdale Water Department (AZ); and two utilities in the Regional 

Municipality of Waterloo Water Services Division (Waterloo and Cambridge) (ONT).  None of 

these utility service areas were experiencing drought or outdoor watering restrictions during the 

data collection period. 
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The study conducted a one-time household survey, mailed to a random sample of 1,000 

single-family residences in each city.  (Cities served by multiple utilities still had only 1,000 

households surveyed, divided among the multiple utilities).  The survey achieved an average 

45% response rate across cities, and in all cases but the city of Tempe, AZ, the resulting sample 

had water use characteristics that were not statistically different from the utility’s population of 

single-family water use accounts.  The researchers then drew a random sample of 125-150 

households from among the returned surveys for end-use water demand data collection; they 

drew 100 households in each city, plus additional households in case some refused to participate.  

Out of the 1,100 households originally chosen, 40 refused to participate.  Some were replaced 

with households randomly selected from the extra accounts, leaving a total sample of 1,084 

households, from which we drop two that did not report household characteristics used as 

independent variables in our analysis.  Sampling procedures, response rates, and statistical tests 

for differences between respondents and single-family customers as a whole are described in 

further detail in Mayer et al. (1998).   

The sample is appealing in that it is representative of U.S. urban and suburban single-

family homes.  The type of drought restriction we simulate, an outdoor watering restriction, is 

targeted at precisely this consumer group (as opposed to apartment buildings, for example), since 

this is where most outdoor consumption takes place. Due to the nature of the sample and the 

policy question we analyze, our estimates and conclusions would not be readily transferable to 

settings in which multi-family housing predominates (for example, drought pricing would not be 

a viable policy mechanism where apartment-dwellers did not typically pay a water bill).  The 

sample is also appealing in its broad geographic scope, across variable climates.  However, these 
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16 water utilities represent a small fraction of U.S. residential water consumption, and results 

should be interpreted in this light. 

 Daily household water demand is observed over two periods of two weeks each, once in 

an arid season and once in a wet season.  The data were collected between 1996 and 1998, but 

for each household, the two seasons of observation occurred within the same year.  Daily 

demand data were gathered by automatic data loggers, attached to magnetic household water 

meters by utility staff and, thus, out of sight during water use.  Total demand was disaggregated 

into its end uses using magnetic sensors attached to water meters. These sensors recorded water 

pulses through the meter, converting flow data into a flow trace, which detects the “flow 

signatures” of individual residential appliances and fixtures (Mayer et al. 1998). We add together 

consumption from all indoor fixtures (primarily toilets, clothes washers, showers, and faucets) to 

obtain indoor demand, and consumption from all outdoor uses (irrigation and pools) to obtain 

outdoor demand.10 Leaks and unknown uses are included in total demand, but are not modeled 

explicitly as either indoor or outdoor consumption.11 

Water demand is a function of prices, income, household preferences, and local weather 

(which may influence preferences).  We use the Mayer et al. (1998) survey data to obtain gross 

annual household income, as well as household characteristics that proxy for consumer 

preferences (the vector H from eq. (7)), including family size, home age and size, lot size, the 

number of bathrooms, and the presence of evaporative cooling.12  Home age enters quadratically 

                                                 
10 The listed indoor uses comprise 94 percent of indoor consumption, on average. Remaining indoor uses include 
evaporative cooling, dishwashers, bathtubs, water treatment, hot tubs, and humidifiers. In outdoor use, we can 
distinguish between water consumption for swimming pools from that for all other outdoor uses. We cannot 
distinguish among irrigation, car-washing, and washing of sidewalks and driveways, but these uses are all typically 
regulated or prohibited by drought policies. 
11 Leaks comprise approximately 6 percent of total consumption, and unknown uses approximately 1 percent.  
12 Evaporative cooling, common in arid climates, substitutes water for electricity in the provision of air conditioning. 
Less than 10 percent of sample households have evaporative coolers, but 43 percent of sample households in 
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because we expect that old and new homes may use less water than “middle aged” homes.  Old 

homes are likely to have smaller connections to water systems, and also fewer water-using 

appliances, such as dishwashers and hot tubs, than newer homes. The newest homes in the 

sample may have been constructed with water-conserving toilets and showerheads.   

In Z from equation (7), we include season (arid vs. wet), maximum daily temperature, 

and daily evapotranspiration less effective rainfall (0.6 times total rainfall), with daily weather 

observations from local weather stations.  Finally, regional fixed effects control for long-run 

climate variation not absorbed by daily and seasonal weather variables.13  The set of independent 

variables we choose have been shown to influence total household water demand in many other 

studies.  From the Mayer et al. (1998) survey, we might have included many other possible 

explanatory variables, such as whether a household has a pool or a flower garden, but such 

variables are likely endogenous. The exogenous variables, vectors H and Z, reflect households’ 

tastes for water consumption. Outdoor demand depends not only on weather, lot size, income, 

and family size, but also on unobservable tastes for a certain style of living: other variables like 

number of bathrooms and house size proxy for these tastes. Similarly, indoor demand may be a 

function not only of the number of bathrooms and other housing characteristics, but potentially 

lot size, again reflecting households’ tastes. For these reasons, we include the full set of 

exogenous variables in estimating (9) and (10). 

Table 1 provides descriptive statistics.  Water demand varies by season, but only for 

outdoor use. Outdoor water demand in an arid season is, on average, five times outdoor demand 

                                                                                                                                                             
Phoenix have them, and about one-third of households in Tempe and Scottsdale. Households with evaporative 
cooling use, on average, 35 percent more water than households without. 
13 Regions are: (1) Southern California (Las Virgenes MWD, City of San Diego, Walnut Valley Water District, City 
of Lompoc); (2) Arizona and Colorado (Phoenix, Tempe, Scottsdale, Denver); (3) Northern (City of Seattle Public 
Utilities, Highline Water District, City of Bellevue Utilities, Northshore Utility District, Eugene Water and Electric 
Board, Regional Municipality of Waterloo, Ontario); (4) Florida (City of Tampa Utilities). 
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during a wet season. In addition, the fraction of observations using any water outdoors, at all, is 

0.42 – the reason for choosing a censored regression model.   

The households in the sample face either uniform marginal prices (39 percent); or two-

tier (44 percent) or four-tier (17 percent) increasing block prices.14 Each household faces one 

price structure throughout each season of observation, but six sample utilities changed prices or 

price structures between the two periods.15 Given cross-sectional and time series variation, there 

are 26 price structures in the data; eight two-tier increasing block structures, ten four-tier 

increasing block structures, and eight uniform marginal prices. Price variation in the sample is 

primarily in the cross-section. Regressing prices on city fixed effects results in an R-squared of 

0.75, on household fixed effects, 0.94, and on our price instruments, 0.88.  This suggests our 

price elasticity estimates will be closer to long-run than short-run estimates.  To estimate the 

welfare effects of policies restricting water consumption during periodic droughts, ideally we 

would use short-run demand curves.  Unfortunately, the within-household price variation over 

time in our sample is insufficient to estimate true short-run demand curves.  We know of no 

other data that disaggregate consumption into its indoor and outdoor components that could be 

used for such a study. 

Marginal prices range from $0.00 per thousand gallons (kgal) for the first 4,490 gallons 

per month in Phoenix, to $4.96 per kgal in the most expensive block in the Las Virgenes 

Municipal Water District, with an average marginal price of $1.71/kgal.16  The mean of our price 

                                                 
14 About one-third of households in the United States face increasing-block prices. Thus, these price structures are 
over-sampled in the data. This matters for elasticity estimates only if elasticity varies across price structures – an 
unresolved empirical question (Olmstead et al. 2007). 
15 The utilities with price changes across the two seasons were: San Diego, Scottsdale, and all four utilities in the 
Seattle area (City of Seattle, Bellevue, Highline, and Northshore). 
16 For some sample utilities, marginal wastewater charges are assessed on current water consumption. In addition, 
some sample utilities benchmark water use during the wet season as a basis for volumetric wastewater charges 
assessed the following year. For households observed during these periods (and there are some in the data), effective 
marginal water prices would include some function of the present value of expected future wastewater charges 
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instrument, p , is equal to the mean of observed marginal water prices, and the standard deviation 

is slightly smaller. Average total expenditures on water in the sample, including fixed charges, 

are $326 per year, or about 0.47 percent of average annual household income. 

In our tests of consumer heterogeneity, we divide the sample into four subgroups, based 

on income and lot size. Income is our best available proxy for ability to pay, and lot size is our 

best available proxy for preferences for the services that households derive from outdoor water 

consumption (such as lawns, gardens, pools, and looking better than the neighbors). We expect 

that wealthier consumers and those with larger lots will be less price sensitive. Those with both 

incomes and lot sizes above the sample medians ($55,000 per year, and 9,000 ft2, respectively) 

are categorized as “rich, big lot” households; those with both incomes and lot sizes below the 

medians are categorized as “poor, small lot” households; and so on for the two groups in 

between. In the absence of any drought policy, households in these groups consume, on average: 

785 gallons/day for rich, big lot; 417 gallons/day for rich, small lot; 488 gallons/day for poor, big 

lot; and 360 gallons/day for poor, small lot.  Households may also be heterogeneous within 

groups; in this sense, we will underestimate the true DWL from rationing.17 

5. Results 

5.1. End-Use Price Elasticity 

We begin by estimating a total water demand model as in (8), using our 2SLS approach. Table 2 

reports coefficient estimates and standard errors from two such models. The first column 

contains estimates from Olmstead et al. (2007), for the purpose of comparison. The second 

column reports estimates from a 2SLS, random-effects model for panel data, in which the 

                                                                                                                                                             
associated with current use. We do not do this here; marginal wastewater charges are excluded from the present 
analysis.  
17 Below, we check the robustness of our results to defining heterogeneity by treciles of income and lot size, creating 
nine heterogeneous groups. 
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independent variables in the demand function are identical to those in Olmstead et al. (2007). 

This model generates parameter estimates that are similar to those from the structural model, 

with an important exception – the price elasticity estimate is not significantly different from zero. 

In the third column of Table 2, we group the city-level fixed effects from “test model 1” 

into regional fixed effects. This model captures exogenous sources of geographic and climatic 

variation, leaving enough price variation to identify a price elasticity. With regional fixed effects, 

we obtain estimates that are very close to those from the structural model, with less precision.  

The price elasticity estimate is -0.36, and strongly significant. We use test model 2, a 2SLS 

random-effects model with regional fixed effects, as our point of departure for the rest of the 

analysis. 

We separate total demand into indoor and outdoor consumption and estimate the models 

given in (9) and (10). Table 3 reports the full set of parameter estimates and standard errors (with 

the exception of regional fixed effects) for indoor and outdoor demand models, both annually 

and by season.  Indoor use is influenced by income, family size, and evaporative cooling.18 

Outdoor demand parameters are all significant, with the exception of home age. Some significant 

outdoor demand parameters would seem to be drivers of indoor, rather than outdoor consumption 

(for example, the number of bathrooms). These variables may be correlated with omitted 

variables that represent preferences for outdoor water consumption.19 

                                                 
18 The income elasticity for total demand, 0.14, is somewhat low compared with previous studies; the median of 162 
estimates from 1960-1998 is 0.24 (Dalhuisen et al. 2003). This may be explained by the fact that few previous 
studies have included household-level housing characteristics, which are strongly correlated with income.  There are 
no income elasticities in the literature for individual end-uses of water, so we cannot compare our income elasticity 
estimates in Table 3 with those in the literature.   
19 If we drop bthrm, sqft, age, age2, and evap from the outdoor demand equation, our outdoor elasticity is -0.40, 
statistically different from the annual elasticity we report in Table 3 (-0.45) according to a Hausman test, though the 
magnitude of the difference is very small.  Not surprisingly, the income elasticity doubles since these variables are 
strongly correlated with income.  
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Table 4 summarizes the results of these models with respect to price, the parameter of 

interest, and reports elasticities, rather than price coefficient estimates, for the outdoor models.20 

The partial demand models reveal striking variation in elasticity across uses and, for outdoor use, 

across seasons. None of the indoor elasticity estimates are significantly different from zero (the 

estimates are small in magnitude, as well). Outdoor demand in the wet season is the most price 

elastic (-1.18), and is still quite responsive to price in the arid season (-0.74). Essentially all of 

the strong seasonal variation in total water consumption is attributable to outdoor use.21  

Does targeting outdoor consumption, as command-and-control water conservation 

policies do, provide a good first approximation to a price-based approach? Indeed, outdoor uses 

are the uses that households, themselves, would choose to cut back the most in response to a 

price increase. But an important cost of the prescriptive approach derives from household 

heterogeneity.   

5.2. Household Heterogeneity  

To test whether households are, in fact, heterogeneous in their preferences for water 

consumption, we divide the sample into four sub-groups, based on income and lot size.22 We 

estimate separate elasticities for the four groups. Results are reported in Table 5. For all customer 

groups, the price elasticity of indoor demand is insignificantly different from zero. Households 

presumed to have the strongest preferences for outdoor water consumption, the “rich, big lot” 

group, exhibit the least elastic outdoor demand (-0.48). Those presumed to have the weakest 

                                                 
20 The Tobit price coefficients are not elasticities – see the notes to Table 4 for the calculation of Tobit elasticities. 
For these estimates, we calculate the Tobit model allowing different coefficients on price for the arid and wet 
seasons. 
21 We have no information on available substitutes for municipal tap water in outdoor uses, which might include 
groundwater wells or public surface water sources. To the extent that these substitutes are available in the sample, 
our outdoor elasticity estimates are greater in magnitude than they would be in the absence of substitutes. 
22 We define these heterogeneous groups based on sample median income and lot size, and test an alternative 
definition of city-specific median lot size as a robustness check (see Appendix B in the supplementary material). 
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preferences for outdoor consumption, the “poor, small lot” group, exhibit the most elastic 

outdoor demand (-0.87). The two middle groups appear to be about equally price elastic.23 

5.3. Robustness of Elasticity Estimates 

We test the robustness of our elasticity estimates by exploring a number of other specifications. 

These include demand functions with household fixed effects and functions with city fixed 

effects (rather than regional fixed effects). We also examine a model that collapses the daily 

variation in household demand, obtaining parameter estimates from regressions of aggregate 

seasonal household demand on the covariates of interest. Our results are qualitatively robust to 

these alternative models and others. See Appendix B in the supplementary material for details. 

6. Simulations and Discussion 

Traditional regulations typically limit the number of days in a week that households may use 

water outdoors (watering lawns, washing cars, or filling swimming pools). The stringency and 

enforcement of these type-of-use restrictions vary greatly (Dixon et al. 1996). A common policy 

is to limit outdoor watering to two days a week. We examine the implications of this policy, as 

well as limits of three, one, and zero days per week. 

Households’ willingness to pay for the marginal unit of water should increase with 

drought policy stringency. To calculate shadow prices, we estimate the constrained level of 

expected consumption for each household under each policy, and then “back up” along that 

household’s demand curve – using equation (10) – to obtain their willingness-to-pay for the 

marginal unit of water.24 Some households are unconstrained by the policies; their probability of 

watering on a given day is less than or equal to the probability imposed by the watering 
                                                 
23 F-tests find “rich, big lot” to differ significantly from “rich small,” “poor big,” and “poor small” (p-values are 
0.01, 0.02, and 0.01, respectively). The other categories do not differ significantly from each other. 
24 We compute shadow prices using the 2SLS random-effects Tobit model estimates underlying the results in Table 
5.  This model provides predictions of the probability of watering, conditional usage, and the price sensitivity of 

demand,α . 
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restrictions. For constrained households, we calculate the difference in their expected quantity 

demanded in the unrestricted and restricted scenarios. 

For example, for a twice-per-week watering policy, the restricted probability of watering 

is 2/7 (assuming full compliance). A household with a probability of watering greater than 2/7 is 

constrained, and will have a resulting decrease in expected quantity demanded, ( )
itoutE wΔ , as in 

(11).  Let: 

 
 Pr( ' 0)

( ' | ' 0)
outout

cond
out out outout outE

= + >
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We estimate ( )
itoutE wΔ  for the arid season only, for the four drought policies described above. 

 We assume full compliance with the simulated drought policies, since there are no 

watering restrictions in effect our data, and no estimates are available from the literature on the 

typical water savings achieved with such policies. Adding a probability of compliance that is less 

than one to the analysis would be equivalent to simulating different drought policies than those 

we select.25 It is likely that compliance will be higher under a price-based policy than under the 

current approach.26  

Second, we assume conditional outdoor demand is unchanged under the simulated 

drought policies – households water less frequently, but the same amount per watering as they 

                                                 
25 If non-compliance is punished with a fine, some of the benefits of drought pricing may be realized under the 
rationing policy, depending on the magnitude of the fine. 
26 “Cheating” in the market context would require that households figure out how to consume piped water outdoors 
off-meter, and in the current context can be accomplished by watering at night, or in some other way that avoids 
observation by utility staff or vengeful neighbors. 
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did in the absence of regulation. Most municipal drought ordinances forbid allowing water to run 

off of residential properties onto sidewalks and streets, making it unlikely that households would 

over-water in response to reduced allowable watering frequency. Nonetheless, if conditional 

demand were to increase under the drought policies we simulate, it would decrease the aggregate 

demand reduction achieved. Thus, like full compliance, our assumption regarding conditional 

demand could be altered simply by simulating different drought policies than those we choose. 

Were we to deal with both of these issues by simulating a set of percentage aggregate demand 

reductions, rather than allowable frequency of watering, we would lose an important benefit of 

our current approach. The apportionment of aggregate reductions across households would be 

arbitrary, whereas now it is based upon a household’s probability of watering, calculated using 

the data and parameter estimates. 

Finally, note that we do not simulate the impact on demand and welfare of an actual 

drought – we make no changes to evapotranspiration, rainfall, or maximum daily temperature. 

Simulating an actual drought would increase the welfare impact of moving to a price-based 

approach, due to the reduced availability of a substitute (rain), but not by much. Even a 25 

percent increase in our weather variable that describes outdoor watering needs (weath) would 

increase consumption by less than one percent.27 In addition, the characteristics of a drought vary 

significantly across sample cities, depending not on weather variables, alone, but also reservoir 

capacity and other characteristics. Simulating drought, and not just drought policy, in this wide 

cross-section of North American cities would be arbitrary. 

                                                 
27 Our calculation is based on the sample average and coefficient estimate for weath reported in Tables 1 and 2, 
respectively. Note the substantial variation in weath; a 25 percent increase is not out-of-sample. 
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6.1. Shadow Prices  

The evidence of heterogeneity among households from Section 5.2 suggests that, when outdoor 

water consumption is restricted by drought policy, shadow prices for the marginal unit of water 

will vary significantly. Variation in shadow prices would indicate potential gains from trade. 

Based on the separate elasticity estimates for our household sub-groups, we calculate shadow 

prices (by household-day) and market-clearing prices (by utility) under drought policies of 

varying stringency. 

Table 6 reports shadow prices for the arid season. In the most extreme policy, when no 

watering is allowed, our nonlinear functional form implies an infinite shadow price for all 

customers. We assume that willingness-to-pay is at most $50 per thousand gallons.28 The most 

common policy (of allowing outdoor watering two days per week) has an average shadow price 

of $4.98 per thousand gallons. Note that this is almost three times the average marginal price 

consumers actually pay ($1.71). 

As we would expect, shadow prices increase with the stringency of the drought policy. 

Furthermore, the standard deviation of shadow prices across all customers is increasing in 

drought policy stringency. These standard deviations reflect the potential benefits from 

establishing a price-based policy. For example, Figure 3 shows the distribution of shadow prices 

in two cities given a policy limiting outdoor watering to two days a week.29 Even in cities with 

relatively small standard deviations in shadow prices (like Eugene, Oregon), there is a lot of 

variation, and shadow prices tend to be right-skewed.  

                                                 
28 Results are robust to assuming a higher maximum WTP of $100/kgal. 
29 We chose two cities (Eugene, Oregon, and San Diego, California) that provide examples with low and average 
amounts of variation in shadow prices, respectively. 
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6.2. Market-clearing Prices 

We then construct market-clearing prices under drought policies of varying stringency. Here we 

assume that each utility’s goal is simply to conserve the aggregate quantity of water it would 

save by implementing each type of drought policy, no matter how that aggregate water 

consumption reduction is achieved. The aggregate water savings implied by each drought policy 

is the sum over the ( )
itoutE wΔ  in (11), for all household-days within a utility. From the 

households’ perspective, these savings could be achieved indoors, outdoors, or by purchasing 

“credits” from another household.30,31 We then identify the market-clearing price for that 

aggregate reduction, constraining households to non-negative consumption.32  

The last column of Table 6 reports market-clearing prices by utility. Like the shadow 

prices, market-clearing prices increase monotonically with the stringency of watering 

restrictions. Within a utility, there is a common price. Market-clearing prices vary substantially, 

though not as much as shadow prices, across utilities. For the most common drought policy, the 

average market-clearing price is $3.90 per thousand gallons, or slightly more than twice the 

current mean marginal price. 

6.3. Welfare Implications 

The management of water scarcity through residential outdoor watering restrictions results in 

substantial welfare losses, given the observed heterogeneity in willingness-to-pay. Welfare losses 

                                                 
30 An actual tradable credit system would likely be infeasible due to large transactions costs. However, with no 
uncertainty, a regulator could equivalently set a higher price so as to clear the market. 
31 While indoor elasticity estimates in our models are not significantly different from zero, not all indoor uses are 
perfectly inelastic. In separate demand equations for indoor uses, we find that showers and clothes-washing each 
have elasticities of about –0.22 (significant at .05), using Tobit models for both due to censoring. The other indoor 
uses have demand curves that are approximately vertical. Given evidence of some price-responsiveness indoors, and 
the small likelihood that utilities would or could regulate specific indoor uses, we use our overall indoor elasticity 
estimates in the welfare analysis. 
32 Market-clearing prices are estimated for the irrigation season, assuming that drought regulations are implemented 
primarily during arid months.  



 

 24 
 
 

calculated in this context (with a reduced-form model, and Marshallian demand curves) should 

be considered very rough estimates.33 

For each utility, we simulate the welfare losses from a two-day per week watering policy 

over a 180-day irrigation season, relative to the introduction of a market-clearing price. Table 7 

reports the median estimate of average per-household DWL by utility, with 5th and 95th 

percentiles in parentheses, from 1500 replications of a nonparametric bootstrap. For the bootstrap 

sampling, we cluster by household, utility and season to account for the fact that observations for 

a household across seasons are not independent, and to preserve the price variation across 

utilities and seasons from the original sample.  We re-estimate indoor and outdoor demand 

elasticities by household group, as well as shadow prices, market-clearing prices, and DWL by 

utility.  The median of bootstrapped DWL estimates ranges from $2.30 per household in the 

service area of Seattle Public Utilities, to $407.50 per household in the service area of the Las 

Virgenes Municipal Water District.34 The variation in DWL from the current regulations is 

attributable, in part, to the standard deviation of shadow prices, a strong indicator of potential 

gains from trade. In our sample, society would be better off by an average of $92 per household 

per summer through the introduction of drought pricing.35  If households are modeled as having a 

single parameter on price, variation in other observables still results in substantial heterogeneity 

of shadow prices, accounting for about 61 percent of the DWL: $56 [37, 89].  We have defined 

heterogenous household preferences in terms of four groups of households; in reality, 

preferences and elasticities likely vary by household, though our data are insufficient to estimate 

                                                 
33 We estimate deadweight loss by integrating demand curves, as discussed in Table 7.  
34 Presumably, if we included multi-family homes in a market-based policy, gains from trade would be somewhat 
larger. Their inclusion would add their (currently unregulated) indoor use to the “common pool” which, if sensitive 
to price increases, would be an additional source of reductions to support increases in higher-valued uses. 
35 Without bootstrapping, the average per-household DWL for the sample is about $98 per household; a small 
upward bias would be introduced from attributing some variation in shadow prices that is actually sampling error to 
household heterogeneity. 
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elasticities at this fine level.   Our DWL estimates would increase with a more complete picture 

of heterogeneity in the sample.36 

The discussion of price-based approaches is largely hypothetical under the current 

regulatory structure. Estimated market-clearing prices are greater than current average marginal 

prices in all of these markets, in some cases by a lot. If they are also higher than average costs, 

prices this high would be impossible to implement without significant rebates of some form, as 

we discuss in Section 6.4. 

In addition, we face the standard worry about the welfare effects of a theoretical first-best 

policy in a second-best setting (Lipsey and Lancaster 1956, Harberger 1974). Ours is a partial 

equilibrium analysis, thus spillovers (no pun intended) to other markets from changes in water 

expenditures as a result of a policy change may be a concern, as it is in the well-known 

theoretical and empirical studies of environmental taxation in a second-best setting (Sandmo 

1975, Goulder et al. 1999, Goulder and Williams 2003).  

In our case, the distortions of greatest concern are within water markets, themselves. In 

most cases, marginal water prices are well below the marginal social cost of water supply 

(Hanemann 1997, Timmins 2003).  Drought pricing will result in higher marginal prices for all 

households (even if total expenditures fall for some households through lump-sum transfers). To 

the extent that drought pricing results in more households paying something closer to marginal 

social cost, the pre-existing distortion does not change the basic nature of our results.37 However, 

if marginal prices in the sample are well below marginal social cost, the welfare impacts of 

                                                 
36 For example, if we divide households by treciles of income and lot size, creating nine heterogeneous groups, we 
estimate an average per-household DWL (and 90% confidence interval) across the sample of $118 [71, 218]. 
37 An increase in the marginal price of municipal water supply will generate an increase in the consumption of 
substitutes. Where groundwater is a viable substitute for municipal tap water, spatial and intertemporal externalities 
may result (or increase, where they are already present).  
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moving to drought pricing may pale in comparison to the impacts of moving to marginal social 

cost pricing, period. This is an important issue, but it is beyond the scope of this analysis. 

6.4. Distributional Implications 

While the shift from outdoor watering restrictions to a price-based municipal drought 

policy would be welfare-improving in all markets, the distributional implications depend on the 

allocation of property rights. Prices would re-distribute scarce water so that those with high 

willingness-to-pay for water consumption outdoors would consume more than they do under 

outdoor use restrictions, and those with low willingness-to-pay would consume less. Hence, 

drought pricing would result in a water allocation that would “soak the rich.” 

Under drought pricing, relative to the traditional approach, the consumption share of the 

least elastic group (at least for outdoor uses), the rich, big lot households, would rise from 34 to 

47 percent; the consumption share for the most elastic group, the poor, small lot households, 

would fall from 23 to 16 percent, with smaller reductions in consumption shares by the 

remaining two groups. Absolute consumption falls quite drastically among all groups under both 

types of drought policies. 

Given these changes in consumption shares, the largest DWL under the current approach 

is experienced by the rich, big lot households (Table 8). But a more meaningful number to 

households is the change in surplus. We calculate the average changes in producers’ surplus (PS) 

and consumers’ surplus (CS), as well as the average change in CS by group that would result 

from the adoption of a price-based approach. On average, consumers in each group are worse off 

under drought pricing, primarily because current average marginal prices do not reflect scarcity, 

and are thus below current shadow prices. Thus, consumers would not support this change 

without a rebate. The average PS, $136 per household, could be used for this purpose, as utilities 
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in the United States are usually restricted to zero (or very small) profits.38 Households’ minimum 

rebate to support the policy may equal their average change in CS. The ordering of DWL by 

household group follows the ordering of consumption shares; those groups who use the most 

water experience the greatest losses from rationing.  The change in CS includes the transfer to 

producers from introducing the higher market-clearing price, as well as the DWL.  The ordering 

of CS changes by household group mirrors that of the DWL by group, except that poor 

households with large lots have a greater loss in CS than poor households with small lots.  These 

two groups have essentially the same DWL, so the difference in CS is due to the fact that 

average per capita consumption under water rationing among the “poor, big lot” group is larger 

than among the “poor, small lot” group.  

Conditional on lot size, drought pricing without a rebate would be regressive (column 3 

in Table 8).  A progressive price-based approach can always be designed through the use of 

transfers. In the present case, this could occur through the utility billing process. Should utilities 

seek to address distributional concerns through the water supply system, rebates could be 

delivered based on income. Low-income households could receive sums greater than their loss in 

CS, since the average PS exceeds the average CS by the size of the average re-captured DWL. 

Market-based policies need not be regressive. 

7. Conclusions 

Using unique panel data on residential end-uses of water, we examine the welfare implications of 

outdoor water rationing as a demand reduction policy. Using price variation across and within 

markets, we identify price elasticities for indoor and outdoor consumption. Outdoor uses are 

more elastic than indoor uses, suggesting that current policies target those water uses households, 

themselves, are most willing to forgo. Nevertheless, we find that use restrictions have substantial 
                                                 
38 Note that the sum of changes in average CS and PS equal the average DWL, by definition. 



 

 28 
 
 

welfare implications, primarily due to household heterogeneity in willingness-to-pay for scarce 

water. 

Heterogeneity is often ignored in economic analyses, which proceed from the viewpoint 

of the “representative consumer.” For heavily regulated goods, estimating the welfare gains from 

introducing markets requires the opposite starting point—it is precisely the variation in marginal 

benefits that opens up potential gains from trade within non-market allocations. We find some 

potential for substitution within households across end-uses, and some from substitution across 

households. 

Of all the currently regulated markets in which alternative price-based policies have been 

proposed, municipal water markets may be the easiest in which to imagine actually introducing a 

price-based approach, even one that involves lump sum transfers to achieve equity goals. 

Household water use is metered, and monitored by utility staff for the purpose of billing and 

collection.39 Were such a system to be implemented, a municipality would have the rare 

opportunity to affect an actual Pareto improvement, in which gains not only exceed losses, but 

no household is made worse off. 

If concern about “everyone doing their part” during a drought is the reason for the current 

predominance of command-and-control, rather than market-based approaches to the management 

of scarce water resources, economists’ discussion of potential lump sum transfers and Pareto 

improvements may fall on deaf ears. There is irony in this. In the long run, command-and-control 

regulations provide no incentive for the invention, innovation, and diffusion of water conserving 

technologies (outdoors or indoors). Water priced below marginal social cost also results in 

inefficient land-use patterns, like the establishment of large, lawn-covered lots and thirsty non-

                                                 
39 This is quite unlike the case of market-based pollution regulation, which requires the installation of continuous 
emissions monitoring infrastructure (for tradable permits), or the case of congestion pricing, which requires a new 
system with which regulators can track consumers’ use of priced roadways.  
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native plant species where water is scarce. Further investigation of the welfare gains from water 

marketing within and across sectors is an important area for further research. 
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Table 1. Descriptive Statistics 
 
 
 
Variable 

 
 

Description 

 
 

Units 

 
 

Mean 

 
Std. 
Dev. 

 
 

Min. 

 
 

Max. 
 
w 

 

 

wout 

   

 

win 

 

 

P(wout>0) 

P(win>0) 

price 

phat 

income 

arid season 

weath 

maxtemp 

famsize 

bathrooms 

sqft 

lotsize 

home age 

evap cooling 

region 1 

region 2 

region 3 

region 4 

 
Daily household water demand 

  arid season 

  wet season  

Daily water demand outdoors 

  arid season 

  wet season 

Daily water demand indoors 

  arid season 

  wet season 

Fraction obs. for which outdoor>0 

Fraction obs. for which indoor>0 

Observed marginal water price 

Marginal water price instrument 

Gross annual household income 

Irrigation season=1 / not=0 

Evapotransp. less effective rainfall 

Maximum daily temperature 

Number of residents in household 

Number of bathrooms in household 

Area of home 

Area of lot 

Age of home 

Evaporative cooling=1 / not=0 

Southern California 

Arizona/Colorado 

Northern 

Florida 

 
kgal/day 

kgal/day 

kgal/day 

kgal/day 

kgal/day 

kgal/day 

kgal/day 

kgal/day 

kgal/day 

 

 

$/kgal/mo 

$/kgal/mo 

$000/yr 

 

mm/day 

°C 

 

 

000 ft2 

000 ft2  

yrs/10 

 
.40 

.54 

.25 

.22 

.36 

.07 

.17 

.17 

.17 

.42 

>.99 

1.71 

1.71 

69.72 

.51 

5.06 

24.12 

2.78 

2.58 

2.02 

10.87 

2.89 

.09 

.37 

.28 

.26 

.09 

 
.58 

.71 

.34 

.55 

.69 

.30 

.13 

.13 

.13 

.49 

.02 

.57 

.53 

67.66 

.50 

8.42 

8.78 

1.34 

1.30 

.82 

9.22 

1.62 

.28 

.48 

.45 

.44 

.29 

 
0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

.5 

.76 

5.00 

0 

-46.15 

0 

1 

1 

.40 

1.00 

.07 

0 

0 

0 

0 

0 

 
9.78 

9.78 

7.16 

9.50 

9.50 

6.79 

1.91 

1.04 

1.91 

1 

1 

4.96 

4.73 

388.64 

1 

19.37 

42.78 

9 

7 

4.37 

45.77 

5 

1 

1 

1 

1 

1 

Notes: kgal is thousands of gallons. 
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Table 2. Model Testing Probability-Weighted Prices as Instruments 
 

  
DCC Estimates 
(OHS Paper) 

 
 

Test Model 1 

 
 

Test Model 2 
 
Variable 

 
Estimate 

 
SE 

 
Estimate 

 
SE 

 
Estimate 

 
SE 

 
lnprice 
 
lnincome 
 
arid season 
 
weath 
 
maxtemp 
 
famsize 
 
bathrooms 
 
sqft 
 
lotsize 
 
home age 
 
home age2 

 
evap cooling 
 

 
-0.3408* 

 
0.1305* 
 

0.3070* 
 

0.0079* 
 

0.0196* 
 

0.1961* 
 

0.0585* 
 

0.1257* 
 

0.0065* 
 

0.0867* 
 

-0.0137* 
 

0.2277* 
 

 
0.0298 
 

0.0118 
 

0.0247 
 

0.0013 
 

0.0018 
 

0.0056 
 

0.0093 
 

0.0140 
 

0.0009 
 

0.0219 
 

0.0036 
 

0.0300 
 

 
-0.1751 

 
0.1421* 
 

0.3111* 
 

0.0081* 
 

0.0193* 
 

0.1915* 
 

0.0481# 
 

0.1234* 
 

0.0061* 
 

0.0826 
 

-0.0145 
 

0.2329* 
 

 
0.1084 
 

0.0319 
 

0.0211 
 

0.0011 
 

0.0015 
 

0.0152 
 

0.0250 
 

0.0379 
 

0.0025 
 

0.0592 
 

0.0098 
 

0.0823 
 

 
 -0.3575* 

 
0.1433* 
 

0.3156* 
 

0.0078* 
 

0.0201* 
 

0.1949* 
 

0.0557* 
 

0.1349* 
 

0.0077* 
 

0.0990 
 

-0.0171# 
 

0.2340* 
 

 
 0.0694 

 
0.0327 
 

0.0209 
 

0.0010 
 

0.0015 
 

0.0156 
 

0.0259 
 

0.0393 
 

0.0025 
 

0.0613 
 

0.0102 
 

0.0827 
 

 
Fixed Effects 

 
City-level 

 
City-level 

 
Region-level 

 
R2  overall 
      within 
      between 

   
0.20 
0.10 
0.36 
 

  
0.19 
0.10 
0.32 

 

 
Notes:  * significant at 5% (# at 10%). Dependent variable is natural log of daily household water demand (kgal). Model in 
column 1 is discrete-continuous choice model from Olmstead et al. (2007). Test models 1 and 2 are 2SLS random effects model 
for panel data, in which we instrument for marginal water prices. Estimates for city-level and region-level fixed effects are not 
reported. In all cases, N=25,668, with 1,082 households. 
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Table 3. Models of Indoor and Outdoor Water Demand 
 

 
 

Variable 

 
Indoor 

(annual) 

 
Indoor 

(by season) 

 
Outdoor 
(annual) 

 
Outdoor 

(by season) 
 
lnphat 
 
 
lnphat wet season  
 
 
perr 
 
 
perr wet season 
 
 
lnincome 
 
 
arid season 
 
 
weath 
 
 
maxtemp 
 
 
famsize 
 
 
bathrooms 
 
 
sqft 
 
 
lotsize 
 
 
home age 
 
 
home age2 

 
 
evap cooling 
 

 
-0.0727 
(0.0577) 

 
 
 
 
 
 
 
 
 
 

0.0669* 
(0.0279) 

 
-0.0168 
(0.0164) 

 
0.0005 

(0.0008) 
 

-0.0012 
(0.0012) 

 
0.2391* 

(0.0132) 
 

0.0025 
(0.0220) 

 
0.0145 

(0.0335) 
 

0.0031 
(0.0022) 

 
0.0641 

(0.0522) 
 

-0.0132 
(0.0087) 

 
0.1456* 

(0.0704) 

 
-0.0642 
(0.0575) 

 
-0.0349 
(0.0286) 

 
 
 
 
 
 
 

0.0671* 
(0.0278) 

 
-0.0341 
(0.0215) 

 
0.0006 

(0.0008) 
 

-0.0012 
(0.0012) 

 
0.2394* 

(0.0132) 
 

0.0026 
(0.0220) 

 
0.0150 

(0.0334) 
 

0.0031 
(0.0021) 

 
0.0639 

(0.0521) 
 

-0.0131 
(0.0086) 

 
0.1454* 

(0.0703) 

 
-0.4457* 
(0.0452) 

 
 
 
 

1.9777* 
(0.0720) 

 
 
 
 

0.0939* 
(0.0196) 

 
0.4267* 

(0.0211) 
 

0.0083* 
(0.0012) 

 
0.0300* 

(0.0016) 
 

0.0378* 
(0.0092) 

 
0.0511* 

(0.0158) 
 

0.1457* 
(0.0246) 

 
0.0104* 

(0.0015) 
 

0.0502 
(0.0360) 

 
-0.0057 
(0.0060) 

 
0.0829# 

(0.0504) 

 
-0.4116* 
(0.0459) 

 
-0.1606* 
(0.0381) 

 
2.2680* 

(0.0963) 
 

-0.6109* 
(0.1202) 

 
0.0950* 

(0.0196) 
 

0.3388* 
(0.0282) 

 
0.0085* 

(0.0012) 
 

0.0303* 
(0.0016) 

 
0.0401* 

(0.0094) 
 

0.0504* 
(0.0155) 

 
0.1486* 

(0.0247) 
 

0.0104* 
(0.0015) 

 
0.0530 

(0.0360) 
 

-0.0061 
(0.0060) 

 
0.0840# 

(0.0501) 
 
Notes: * significant at 5% (# at 10%). For indoor models, dependent variable is natural log of daily household indoor demand and 
model is 2SLS random effects, with 25,136 observations. For outdoor models, dependent variable is daily household outdoor 
demand and model is 2SLS Tobit random effects, with 25,707 observations. About half of the observations fall in each season. 
Results for regional fixed effects not reported. The variable perr is the residual from the first stage (fitted price) equation. 
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Table 4. Summary of Elasticity Estimates 
 

 Indoor Demand 
Elasticities 

Outdoor Demand 
Elasticities 

   

Overall -0.0727 
(0.0577) 

-0.6836* 
(0.0693) 

   

Arid Season -0.0642 
(0.0575) 

-0.7365* 
(0.0893) 

   

Wet Season -0.0991 
(0.0633) 

-1.1750* 
(0.1073) 

   
 
Notes: * significant at 5% (# at 10%). Elasticities are calculated for models reported in Table 3. Indoor elasticities are constant-
elasticity demand model coefficients. Outdoor elasticities are estimated as follows, where Tobitα is the Tobit price coefficient, 

and P and w are sample averages: 
 

* ( 0)Tobit out
out

out

P w
w

αε >
=  

 
 
 
 

 
Table 5. Price Elasticities of Demand, by Income/Lot Size Group 

 
 

Household 
Group 

 
Indoor Demand 

Elasticities 

 
Outdoor Demand 

Elasticities 
 
     Rich, big lot 

 
 
     Rich, small lot 
 
 
     Poor, big lot 
 
 
     Poor, small lot 

 

 
-0.1186 
(0.0804) 

 
-0.0663 
(0.0731) 

 
-0.0861 
(0.1010) 

 
-0.0423 
(0.0785) 

 
-0.4837* 
(0.1028) 

 
-0.7758* 
(0.0946) 

 
-0.8017* 
(0.1233) 

 
-0.8690* 
(0.0938) 

 
Notes: * significant at 5% (# at 10%). The number of observations is 7,188 for rich, big lot; 7,386 for rich, small lot; 4,016 for 
poor, big lot; and 7,117 for poor, small lot. 
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Table 6. Shadow Prices, Market-clearing Prices Under Various Drought Policies 
 

 
 
Drought Policy 

Current Price 
Mean ($/kgal) 

[Std. Dev.] 

Shadow Price 
Mean ($/kgal) 

[Std. Dev.] 

Market-clearing Price 
Mean ($/kgal) 

[Std. Dev.] 
 
Status quo (no drought policy) 

 
1.71 

[0.57] 

  

 
No outdoor watering 

    
50.00 
[0.00] 

 
17.21 

[14.50] 
 
Outdoor watering once/week 

    
6.92 

[10.50] 

 
6.86 

[7.81] 
 
Outdoor watering twice/week 

  
4.98 

[7.49] 

 
3.90 

[3.20] 
 
Outdoor watering 3 times/week 

   
3.55 

[5.06] 

 
2.77 

[1.61] 
 
Notes: All prices are for arid season only. We assume willingness-to-pay is at most $50 per thousand gallons. 
 
 

Table 7. Estimated Welfare Impacts by Utility 
 

  
Shadow Price ($/kgal) 

  
 

 
Utility 

 
Mean 

 
Std. Dev. 

Market Price 
($/kgal) 

DWL ($/household/summer) 
median and (90% C.I.) 

 
Seattle, WA 
Eugene, OR 
Waterloo, ONT 
Cambridge, ONT 
Lompoc, CA 
Tampa, FL 
Highline, WA 
San Diego, CA 
Tempe, AZ 
Denver, CO 
Bellevue, WA 
Walnut Valley, CA 
Phoenix, AZ 
Scottsdale, AZ 
Northshore, WA 
Las Virgenes, CA 
 

 
2.91 
1.16 
2.25 
1.94 
3.09 
2.04 
3.74 
3.80 
3.05 
3.16 
3.83 
7.08 
5.02 
7.43 
5.66 

16.39 

 
0.41 
0.48 
0.68 
0.91 
1.05 
1.19 
1.79 
2.79 
2.45 
3.15 
5.45 
7.40 
5.87 
7.10 

11.87 
15.14 

 
2.92 
1.06 
2.10 
1.80 
2.86 
1.96 
3.30 
3.01 
2.25 
2.34 
2.94 
4.71 
3.85 
5.07 
3.61 

12.95 

 
2.3 [1.5, 3.9] 
8.9 [5.5, 12.7] 
7.3 [3.1, 16.1] 
6.1 [2.1, 16.5] 
20.8 [12.7, 33.1] 
16.5 [10.3, 28] 
21.5 [6.9, 57.4] 
45.4 [26.7, 89.3] 
48.8 [26.9, 111.5] 
50.4 [29, 101.6] 
57.1 [12, 175.7] 
143.7 [74.5, 271.9] 
110.5 [61.5, 222.1] 
152.1 [79, 364.8] 
143.5 [8.3, 418.3] 
407.5 [221.6, 1018.3] 

Sample-weighted 
Average 

 
4.98 

 
4.35 

 
3.90 

 
92.2 [53.7, 196.6] 

 
Notes:  Shadow prices and deadweight losses (DWL) are calculated for a two-day per week outdoor watering policy. Estimates 
and averages are for arid season only. DWL is estimated as the area under demand curves from 1500 nonparametric bootstrap 
replications. For indoor demand, Z H

inw e e p yδ β α μ= . Let Z H
inC e e yδ β μ= . Then, in inw C pα= and the integral is: 

( )
( 1) 1

in
in

p w pC p
α

α α
=

+ +
. For outdoor demand, ln lnoutw p y Z Hα μ δ β= + + + . Let lnoutC y Z Hμ δ β= + + . Then, 

lnout outw C pα= + , and the integral is: ln ( )outoutC p p p p p wα α α− + = − . 
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Table 8. Average Deadweight Loss and Change in Surplus by Group 
 

 
Group 

Average DWL 
($/arid season) 

Average Change 
in Surplus 

Average Change in Surplus/ 
Average Annual Income (1000s) 

Rich, big lot $199 [112, 394] -57 [-233, -11] -0.5 [-1.9, -0.1] 
Rich, small lot 64 [35, 171] -48 [-75, -31] -0.6 [-1, -0.4] 
Poor, big lot 37 [22, 68] -39 [-59, -27] -1.4 [-2, -0.9] 
Poor, small lot 41 [23, 84] -26 [-40, -16] -0.8 [-1.3, -0.5] 
Average household 92 [54, 197] -44 [-99, -27] -0.6 [-1.4, -0.4] 
Suppliers (per household) - 136 [87, 290]  

 
Notes: Table reports medians and 90% confidence intervals from 1500 nonparametric bootstrap replications. DWL is welfare loss 
from the absence of a market. Average change in consumer and producer surplus results from introducing a constant, market-
clearing price. 
 
 

Figure 1. Welfare loss from outdoor consumption restrictions  
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Figure 2. Welfare losses from outdoor consumption restrictions with heterogeneous outdoor demand 
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Figure 3. Distribution of Shadow Prices 
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Notes:  The figure graphs a kernel density estimate of shadow prices for Eugene, Oregon and San Diego, California, 
for a two day/week watering policy, assuming an epanechnikov kernel with Stata’s optimal bandwidth. Numbers at 
the top of the figure identify average shadow prices for each city, and vertical lines represent the alternative policy 
of a market-clearing price, in dollars per thousand gallons. 
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Supplementary Material 

 

Appendix A. Estimation of Price Instruments 

The water demand function (A.1) is in exponential form, where w  is total daily water demand, 

Z  is a matrix of seasonal and daily weather conditions, X  is a matrix of household 

characteristics, p is the marginal water price, y  is virtual income, η is a measure of household 

heterogeneity, ε  is optimization or perception error; and δ , β ,α , and μ are parameters.40  

 Z Xw e e p y e eδ β α μ η ε=  (A.1) 

Let * (.) Z X
k k kw e e p yδ β α μ= , or optimal consumption in block k . Then, unconditional 

demand under a two-tier increasing-block price structure, in which 1w  is the kink point, can be 

represented as (A.2), and unconditional price as (A.3). 

 

* 1
1 *

1

1 1
1 * *

1 2

* 1
2 *

2

(.) 0
(.)

(.) (.)

(.)
(.)

ww e e if e
w

w ww w e if e
w w

ww e e if e
w

η ε η

ε η

η ε η

⎧
< ≤⎪

⎪
⎪⎪= < ≤⎨
⎪
⎪

<⎪
⎪⎩

 (A.2) 

 

1
1 *

1

1 1
* *
1 2

1
2 *

2

0
(.)

indet.
(.) (.)

(.)

wp if e
w

w wp if e
w w

wp if e
w

η

η

η

⎧
< ≤⎪

⎪
⎪⎪= < ≤⎨
⎪
⎪

<⎪
⎪⎩

 (A.3) 

                                                 
40 The structural model includes two additional parameters, ησ  and εσ . Our 2SLS approach does not allow 

separate identification of  the two error variances. We use the structural estimate of ησ to calculate block and kink 
probabilities in (A.5). 
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Consumption only occurs at the kink point if the consumer maximizes utility for choices that are 

unavailable at all (pk,yk), so for kink observations, * *
1 21 1(.)  and (.)w w w w> < . 

From the conditional price equation, we derive a daily probability-weighted price (A.4). 

Our price instrument is the seasonal average, by household, of p . Errors are assumed to be 

independent and normally distributed. Thus, ( , )
e e

e LN η η
η μ σ∼ , and integrations in (A.5) are 

over the probability density function of this lognormal distribution. 

 1 1 2 2Pr Pr (.5 .5 ) Prp A p B p p C p= ∗ + ∗ + + ∗  (A.4) 

   

 

1
*
1

1
*
2

(.)

0

(.)

Where:

Pr ( )

Pr ( )

  Pr 1 Pr Pr

w
w

w
w

A f e de

C f e de

and B A C

η η

η η
∞

=

=

= − −

∫

∫
 (A.5) 

 

 

Appendix B. Robustness of Estimation  

The ideal data for this analysis would include a longer time-series component. Essentially, we 

have two price observations per household. For this reason, we cannot estimate a model with 

household fixed effects (FEs), or even city FEs, without reducing price variation so substantially 

as to prevent reasonable interpretation of parameter estimates, provided we are able to estimate 

effects, at all, that are significantly different from zero. 
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 The best way we can control for household heterogeneity in this context without losing 

too many degrees of freedom is to include a household random effect in the models. Hausman 

tests in most cases reject the null hypothesis that the random effects model is consistent and 

efficient. However, where we reject random effects, we do so largely because the estimates are 

more precise than they are in models in which the Hausman test does not reject the null. 

As tests of robustness, we estimate models with household and city FEs, as well as those 

using aggregate data. For the latter, we collapse daily observations to seasonal observations, 

creating two demand observations per household, and obtain estimates from regressions of 

aggregate seasonal household demand on the covariates. 

The household fixed effects (FE) model generates an upward-sloping indoor demand 

function, though the price coefficient is insignificant; this is likely an artifact of the small amount 

of price variation available to estimate the indoor elasticity. This is true both for the 

homogeneous demand functions, and for those allowing household heterogeneity. The incidental 

parameters problem prevents us from estimating Tobit outdoor demand models with household 

FEs. 

Table B.1. reports results of the city FE and aggregate demand models for homogeneous 

households. With city FEs, indoor demand is upward-sloping (though the elasticity is 

insignificant), and the magnitude of the outdoor elasticity is smaller than the magnitude of the 

outdoor elasticity with regional FEs. For this sample, the inclusion of city FEs substantially 

reduces price variation and results in noisy estimates of price elasticities. Fixed effects of an even 

finer level, that of utilities, might control for residential water conservation programs—and other 

utility policies—unlike either the regional or city FEs. The inclusion of regional fixed effects 

does control for long-run climate variation but cannot capture utility-specific heterogeneity. 
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The aggregate demand models of indoor and outdoor consumption provide estimates that 

are very similar to the daily models. That our models are robust to this seasonal specification is 

encouraging. However, the daily water demand models are preferable in that they provide more 

detailed information regarding the impact of daily weather conditions on water consumption. 

We run this same set of robustness checks (household FEs, city FEs, and aggregate data) 

on our estimates of elasticity across heterogeneous consumer groups, reported in Table B.2. The 

city FE models are able to identify outdoor demand elasticities for each consumer group based 

on within-city variation over time – they are approximately equal, in statistical terms. Results by 

group using aggregate data differ slightly from our daily models. Using aggregate data, the 

difference between the “rich, big lot” households and the other groups is more pronounced. The 

estimates for the remaining three groups are not significantly different from each other. 

Finally, we also test an alternative definition of household heterogeneity. The logic of the 

sample-level definition of heterogeneity is that wealthy households in one city are more like 

households of similar income elsewhere than those of lower income within a city, and that lot 

size primarily reflects preferences for outdoor water-intensive activities and services. However, 

differences in land values across cities suggest that an alternative model would consider lot size 

heterogeneity relative to city medians, rather than the sample median. We estimate elasticities for 

household groups using city median lot size and sample median income, and report results in the 

last column of Table B.2. Elasticities are somewhat less different across groups under this 

specification. The average DWL in this case is about $77 per household. In general, we find the 

demand models, in aggregate and by group, to be robust to the alternative specifications tested. 
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Table B.1. Robustness of Elasticity Estimates 
 

 Indoor Demand 
Elasticities 

Outdoor Demand 
Elasticities 

City FEs 0.0881 
(0.0883) 

-0.3922* 
(0.1277) 

   

Aggregate consumption -0.0689 
(0.0627) 

-0.5959* 
(0.1029) 

   
 
Notes: * significant at 5% (# at 10%). Results in Table B.1. should be considered relative to the estimates reported in 
Table 4. 
 
 
 
 

Table B.2. Robustness of Heterogeneity Estimates 
 

  
City FE  

 
Aggregate Data  

City-specific 
Lot Size 

Household 
Sub-group 

 
Indoor 

 
Outdoor 

 
Indoor 

 
Outdoor 

 
Indoor 

 
Outdoor 

 
Rich, big lot 
 
 
Poor, big lot 
 
 
Rich, small lot 
 
 
Poor, small lot 
 

 
0.0494 

(0.1016) 
 

0.0819 
(0.1250) 

 
0.0898 

(0.0961) 
 

0.1296 
(0.1079) 

 

 
-0.5183* 
(0.1573) 

 
-0.6725* 
(0.1773) 

 
-0.6727* 
(0.1559) 

 
-0.6739* 
(0.1604) 

 
-0.0816 
(0.0861) 

 
-0.0512 
(0.1023) 

 
-0.0503 
(0.0802) 

 
-0.0836 
(0.0802) 

 
-0.2943# 
(0.1483) 

 
-0.8992* 
(0.1768) 

 
-0.7085* 
(0.1391) 

 
-0.7474* 
(0.1383) 

 
-0.1467 
(0.0805) 

 
-0.0234 
(0.0915) 

 
-0.0449 
(0.0721) 

 
-0.0809 
(0.0825) 

 
-0.6883* 
(0.0988) 

 
-0.7833* 
(0.1087) 

 
-0.5979* 
(0.0930) 

 
-0.8473* 
(0.0948) 

 
Notes:  * significant at 5% (# at 10%). Results in Table B.2. should be considered relative to the estimates reported 
in Table 5. In the city FE model for outdoor demand (column 2), the “rich, big lot” elasticity is weakly different 
from the others (p=.10). 


