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Abstract: 
 
A variety of models explain why new technologies such as hybrid corn, agricultural fertilizer, 
and new medical treatments diffuse so slowly. A common characteristic of these models is that 
agents (or countries) quickest to diffuse do so optimally because of relative gains from the new 
technology; the debate is around why others are so slow. In this paper, we develop a nested 
Bayesian model of diffusion and learning with heterogeneous agents that allows for 
overconfidence, which can cause early innovators to exhibit below-average productivity. We 
apply the model to the case of implantable cardiac defibrillators (ICDs), a medical device 
approved in 2005 to help prevent cardiac death in patients with weakened hearts (congestive 
heart failure). Using a unique clinical registry of every ICD implanted during 2006-13 linked to 
Medicare claims data, we find remarkable variations in the speed of diffusion across hospitals 
and regions. The structural model matches both aggregate moments, and individual hospital-
level trajectories, of mortality and utilization.  We find that overconfidence raises mortality by 
8% on average (and more among those most overconfident), and can explain roughly three-
quarters of variation in diffusion rates and risk-adjusted mortality.  In addition, the model 
predicts, correctly, that the most overconfident hospitals are the ones that scale back quickest. 
These results suggest caution in equating rapid diffusion to productivity gains, particularly in 
health care. 
 
We are grateful for financial support from the National Institute on Aging (P01-AG19783 and 
U01-AG046830). In addition, we are indebted to Greg Roth, Peter Groeneveld, Kimon Bekelis, 
and to seminar participants at the World Bank, the University of Chicago, Princeton University, 
the University of Virginia, Emory University, NBER, and the Federal Reserve Bank of Chicago 
for very helpful comments and suggestions. Weiping Zhou provided essential programming and 
analysis.  

mailto:diego.comin@dartmouth.edu
mailto:jon.skinner@dartmouth.edu
mailto:douglas.staiger@dartmouth.edu


1 
 

I. Introduction 

The productivity literature in economics has traditionally focused on understanding why 

there are such large differences in the diffusion rates of new innovations (Comin and Hobijn, 

2004, 2009; Skinner and Staiger, 2015). For example, Grilliches (1958) emphasized differences 

in the profitability of hybrid-corn adoption, while Comin and Hobijn (2007) and Caselli and 

Coleman (2006) rely on heterogeneity across agents in the value of the new technology. Non-

adopters may also optimally hold back because they are waiting for the price to decline or are 

better at the old technology (Jovanovic and Nyarko, 1996), or because they face higher costs 

from suppliers (Suri, 2011).  

A related literature seeking to explain slow diffusion instead as the consequence of 

poorly informed agents who lack appropriate education or information about potentially 

profitable innovations (e.g., Foster and Rosenzweig, 1995; Conley and Udry, 2010; Rogers, 

2010; Skinner and Staiger, 2007) or time-inconsistency and a lack of commitment devices 

(Duflo, Kremer, and Robinson, 2008). All of these papers seek to explain why diffusion is so 

slow despite the clear economic benefits of doing so, and the implications of this slow diffusion 

for productivity growth (Comin and Hobijn, 2010). 

In this paper, we address a closely related question: Why are some so quick to adopt and 

diffuse a new technology across a wide swath of applications? Nearly all of the previous studies 

assume that rapid diffusers effect change more rapidly because of greater profitability, better 

information, and superior relative advantage in the new technology.  But the rapid diffusers 

could be overly optimistic either about the value of the new technology, or about their own skill 

in using the new technology. Overconfidence as a cause for rapid diffusion has received some 

attention in the finance and management literature (e.g., Malmendier and Tate, 2005; Barber and 

Odean, 2001, Glaser and Weber, 2007; O’Neill, Pouder; and Buchholtz, 1998), and in industrial 

organization (Camerer and Lovallo, 1999), but to our knowledge overconfidence has received 

little attention in the productivity literature.  

We first present empirical patterns of diffusion using as an example implantable 

cardioverter defibrillators (ICDs), an expensive medical device that has been used for many 

years to treat patients who had experienced, but survived, a sudden cardiac arrest.  In 2005, 

following several large randomized clinical trials (RCTs), ICDs were allowed by Medicare in the 

U.S. to be used as a preventive device for patients with weakened hearts (congestive heart 
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failure, or CHF) who had not yet experienced a cardiac arrest, thus expanding the population of 

those eligible for ICDs dramatically. We use the Medicare claims data linked to a Centers for 

Medicare and Medicaid Services (CMS) clinical registry of every ICD implanted during 2006-13 

with detailed information on key clinical variables such as the severity of their CHF, ejection 

fraction, family history of heart failure, and ventricular fibrillation. Using the Medicare claims 

data, we find that between 2002 and 2006, rates of ICD use doubled nationally, but with 

considerable variation in the speed of diffusion.  Rates in some regions such as Terre Haute IN 

and McAllen TX exhibiting very rapid rates of growth, while rates in other areas, such as Seattle 

and Minneapolis, exhibited only modest growth.  By 2006, age-sex-race-adjusted rates of ICD 

use varied by a factor of ten. Since that time rates have steadily declined, so that by 2013, the 

national rate of ICD use had dropped by a fifth relative to 2006.  Indeed, hospitals with the most 

rapid increase in utilization rates for 2002-05 were quickest to “exnovate” (Bekelis et al. 2017) 

or scale back on utilization, during 2006-13.  

We also found wide differences in hospital-level risk-adjusted mortality rates, which we 

report at the regional level.  They ranged from 2-year risk-adjusted rates of 18 percent in 

Minneapolis to 26 percent in Munster, IN.  The reduced-form correlation between utilization of 

ICDs and risk-adjusted mortality was 0.22 (p < .001), suggesting that patients seeing most rapid 

diffusers of the new technology experienced, on average, worse outcomes.  

To explain these empirical puzzles, we developed a model in which potential innovators 

face uncertainty about the value of the technology for specific scenarios (e.g., whether to use 

fertilizer for a given plot of land, or whether to implant a medical device in an actual patient). In 

a rational model, Bayesian agents who are early diffusers do so because they are more skilled in 

applying the technology, and thus optimally can the technology more quickly and more 

intensively with higher returns (Currie and MacLeod, 2013; Currie, MacLeod, and Van Parys, 

2015). Not surprisingly, those with lower skill levels are predicted to be slower in diffusing into 

the new technology because there are fewer potential uses of the technology with positive net 

returns.  

Nested within this model, however, is the possibility of overconfidence; that some agents 

believe their skill is better than it really is. We show that with overconfidence in skill, agents go 

“deeper” into the distribution of potential applications, such that the (objective) net benefit could 

be negative at the margin. Yet innovators may still learn; it’s possible that initially overconfident 
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diffusers realize that they are not yielding such favorable results, and subsequently scale back. 

The model therefore captures Bayesian learning in a dynamic framework; innovators may realize 

that they have been overly confident rather than skilled, so our model has implications as well 

for the dynamic pathways of new innovations. 

We estimate the model parameters by fitting to the aggregate moments of the ICD data, 

and find strong statistical support for the overconfidence model. Differences in the extent of 

overconfidence across hospitals explained roughly three-quarters of the variation in utilization, 

and nearly three-quarters of the variation in risk-adjusted mortality. The higher rates of mortality 

in the most rapidly diffusing regions are, surprisingly, not as much about low skill, but more 

about reaching into less appropriate patients. In sum, both the model and the reduced form 

estimates suggest that the hospitals exhibiting the most rapid diffusion of ICDs were also those 

with the lowest productivity.  

The empirical patterns of ICD use exhibited rapid scaling back in utilization rates after 

2006, which is consistent with the out-of-sample prediction of our Bayesian learning model.   

Using hospital-level longitudinal data, the model predicts all of the subsequent decline in ICD 

rates between 2006-13, and captures nearly half of the variance in the hospital-specific declines. 

Unlike other studies of clinical learning-by-doing (e.g., Jovanovic and Nyarko, 1995; Gong, 

2017), however, we find no empirical evidence that physicians improved outcomes over the 

period of 2006-13; risk-adjusted mortality rates barely budged.   

Our results differ from earlier analyses of diffusion, in which early adopters were the 

“innovators” and slow diffusers “laggards” (Rogers, 2004).   Why? One reason may be that we 

are studying health care markets, where patients cannot always determine quality and financial 

incentives to do more are often present.  Supportive of this view is the investigation and multiple 

malpractice cases now pending in Munster, Indiana, an area with among the most rapid diffusion 

rates in the country, and with the highest risk-adjusted mortality (Creswell, 2015).  Yet even in 

health care, hospitals with the greatest productivity in treating heart attacks are more likely to 

attract a growth in patients (Chandra et al., 2016). Furthermore, Currie, MacLeod and Van Parys 

(2015) find that the most aggressive physicians in treating heart attacks (according to then-

current standards) gained the best results.  Our finding can be reconciled with theirs by noting 

that for heart attacks, the new and then unproven technology turned out ex post to have been far 
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more advantageous than expected, while the medical consensus appears to be that ICDs are less 

successful in practice than first envisioned (McMurray, 2016). 

While the model is developed in the framework of overconfidence, we note that there are 

a variety of other types of behavior that are observationally equivalent with overconfidence.  For 

example, supplier-induced demand models (see Chandra et al., 2011) predict physicians provide 

less appropriate treatments in pursuit of profit, generating equivalent correlations between 

utilization and health outcomes.  Even insistent patients could generate a similar pattern. Yet 

such models require that physicians understand that they are harming patients. By contrast, there 

is growing clinical evidence pointing to overconfidence, rather than pure supplier-induced 

demand, as a primary factor in misdiagnosis and poorer health outcomes (Berner and Graber, 

2008; Cutler et al. 2017).  

Can our results be generalized to diffusion across non-health sectors of the economy? 

Like other studies in the non-medical sector, we find substantial heterogeneity in productivity 

across institutions, as in (e.g.)  Pavcnik (2002).  But many studies of diffusion focus on 

successful innovations, where overconfidence ex ante could look like prescience ex post. In 

practice, the association among overconfidence, rapid diffusion rates, and below-average 

productivity may be more common than previously thought. 

In the next section, we consider both clinical aspects of ICD use and expansion, as well 

as documenting the empirical patterns of ICD diffusion and mortality from 2002 to 2013.  

Section 3 develops a model that can potentially explain these patterns, while Section 4 presents 

model estimates and simulation; Section 5 concludes.  

 

2. Implantable Cardioverter Defibrillators (ICDs) 
Congestive heart failure (CHF) is a very common illness especially among elderly people 

(Rogers, 2013), with a prevalence of 5.8 million people in the U.S. It is thus more common than 

heart attacks (or acute myocardial infarctions), of which there are approximately 715,000 

annually. While heart attacks are sudden medical emergencies treated (often successfully) with a 

variety of medical interventions, CHF is a chronic illness whose progression can only be slowed 

by appropriate medical management.  The typical progress of CHF is from the New York Heart 

Association Class I (the least severe) through to Class IV (the most severe), at which point the 

annual mortality rate ranges between 20-50%. (Ahmed et al., 2006) 
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An important risk facing CHF patients is a sudden cardiac arrest, which occurs when the 

heart suddenly stops functioning, typically because of arrhythmia, or irregular heart rhythm.  

This causes rapid and unsynchronized heartbeat, leading to little or no blood being pumped from 

the heart, and a complete absence of a heartbeat (van Reys, 2014). Implantable cardioverter 

defibrillators (ICDs) are small electronic devices that are surgiccally implanted in the pectoral 

region of the chest and connected with wire “leads” to key locations of the heart.  These leads 

serve two functions.  The first is to monitor the rhythm and detect tachycardia (irregular or weak 

heart beats), and the second is, when necessary, to shock the heart with a strong electrical 

current, effectively “rebooting” the conduction system. (Popular entertainment shows often show 

physicians using paddles to administer electrical shocks; ICDs are internal automated versions.) 

Over time ICDs have become more effective and entailed fewer complications as the size of the 

ICD shrunk, and the sophistication of the computer programs designed to detect arrhythmias 

improved.  

Initially, ICDs were developed in the 1980s and 1990s for people who had already 

experienced and survived a cardiac arrest, and were at risk of experiencing another one. As ICDs 

became more compact and reliable, attention turned to the larger group of people with congestive 

heart failure (CHF) at risk of cardiac arrest but who had not yet experienced the life-threatening 

event; for these patients the ICD is deemed “preventive.” A large 2005 randomized trial, SCD-

HeFT, found substantial mortality benefits of up to 7 percentage point increases in survival 5 

years after the procedure. It is important to note that ICDs provide no other benefit to patients 

other than a “reboot” in the case of sudden cardiac arrest; thus mortality as a measure of health 

outcomes is a particularly apposite measure. As well, ICDs carry with them risks of broken leads 

or infection during the initial procedure.   

It is important to note that the SCD-HeFT trial included only the intermediate Class II 

and Class III CHF patients with low “ejection fractions” or the heart’s ability to pump blood to 

the rest of the body.1 The reason why the trial was limited to only these two groups was the 

consensus that for Class I (the least serious) CHF patients, the risks outweighed potential 

benefits given the rarity of sudden cardiac arrest in this group, while for the more severe Class 

                                                           
1 As well, the ejection fraction should be 35% or less in patients with Class II or III Heart Failure.  Despite the rarity 
of older patients in the randomized trials, there are no guidelines that recommend against the use of ICDs on the 
basis of age. 
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IV patients, the heart is so weakened that it can no longer sustain pumping, no matter how many 

times it reboots. For these patients, ICDs can lead to a series of successive and painful shocks, 

sometimes delaying an otherwise peaceful demise as the ICD continues to go off until the 

batteries are drained (Friedrich and Bohm, 2007). Despite these guidelines, a sizeable fraction of 

ICD procedures were done for those with either Class I or Class IV heart failure, and for 

considerably older patients where the treatment value is unknown.   

 

2.1 Patterns of ICD Diffusion in the Medicare Population 

We use the 100% Medicare claims data for the fee-for-service over-65 Medicare 

population to derive rates of utilization by age population-based rates of ICD use from the claims 

data, and assign rates to patients and then to hospitals (as described below).  Because of possible 

changes over time in coding standards, we develop measures for all ICD use during 2002-13, and 

not simply those for preventive purposes.2 To measure utilization, we use population-based rates 

at the hospital referral region (HRR) level, of which there are 306 in the U.S.3 These utilization 

measures are based on the residence of the patient; if a resident of the Jackson Tennessee HRR 

received their ICD in Atlanta, the ICD would be assigned to the Jackson HRR rather than 

Atlanta. Rates are adjusted by age, sex, and race. 

Rates of ICD diffusion between 2002-13 for the U.S., and for selected regions, are shown 

in Figure 1. We first focus on the temporal diffusion between 2002 and 2005-6; we discuss the 

scaling back (or “exnovation,” as in Bekelis et al., 2017) of ICD use below.  Note first that U.S. 

rates in 2002, while low (0.12 per 100 Medicare enrollees), is still consequential; the near 

doubling of ICD rates through 2005 therefore represents the diffusion of procedure use to a new 

population – those with CHF but who have not yet experienced sudden cardiac arrest – rather 

than the innovation of a new treatment protocol or device. For this reason, we might not expect 

as much “learning-by-doing” in the skill of the already-experienced physician, although we do 

                                                           
2 We begin the analysis using the claims data in 2002, when the sample of Part B claims data relevant for analysis is 
20% of all fee-for-service enrollees; the sample rises to 40% in 2003-05, and becomes 100% thereafter. 
 
3  HRRs were first developed by the Dartmouth Atlas project in the 1990s to create regions based on the migration 
patterns of individuals to their hospitals.  Thus HRR boundaries will often follow (e.g.) interstate highways and 
cross state lines.  Each HRR includes a major tertiary hospital that performs neurosurgery and cardiac surgery. We 
use HRRs rather than the smaller hospital service areas (HSAs) for better sample precision.  
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expect that physicians may learn over time about which of these newly eligible patients benefit 

from ICDs, and which don’t.  

As shown in Figure 1, Miami exhibited a high use of ICDs even in 2002, with a rate of 

0.19 per 100 patients in 2002, rising to 0.34 in 2006 before gradually declining to 0.18. The three 

most rapid adopters in the graph were McAllen TX (from 0.14 in 2002 to 0.37 in 2006), Munster 

IN (from 0.19 in 2003 to 0.45 in 2006) and Terre Haute IN (from 0.13 in 2003 to 0.54 in 2006); 

these all scaled back quickly, but still ended up with rates more than double those in Seattle and 

(e.g.) Savannah GA, which never expanded their use of ICDs by much.  

Figure 2 provides a map for the entire U.S. of 2006 ICD utilization rates by HRR.  There 

is even more geographic disparity in the use of ICDs across the entire U.S., with rates ranging as 

low as 0.04 in Lynchburg, VA.4  There is a “patchwork quilt” pattern of treatment rates, 

suggesting that it’s not just (e.g.) higher cardiovascular rates in the South that accounts for the 

variations. While we are currently preparing fully adjusted rates to control for health behaviors 

of individuals (e.g., smoking, obesity), we note that these rates do not show an overly strong 

association with underlying health status: the Medicare age-sex-race-adjusted mortality rate in 

Munster is almost identical to Lynchburg’s, despite the nearly 10-fold difference in utilization 

rates.5  

Why did rates decline between 2006-13? If the population of eligible patients suddenly 

expanded in 2006, then why the gradual decline of ICDs, as shown by the US average in Figure 

1? One explanation is a “stock-flow” imbalance; there were a large stock of people deemed 

appropriate for treatment, and once physicians worked through this stock, they then relied only 

on new flows of patients. However, this does not explain the continued decline after 2010, when 

presumably the stock of potential patients had been exhausted.  

Another possibility is that during this period, alternative treatments were developed that 

could substitute for ICDs, for example a new drug regimen for CHF.  While during this time, 

there was greater emphasis on adherence to guideline-directed drug prescriptions, we know of  

                                                           
4 One might be concerned with small-sample bias in these relatively small HRRs, but the patterns show a strong 
temporal trend; high rates in 2006 are matched (or even exceeded) by high rates in 2005 and 2007.  
 
5 Mortality data are drawn from the 2006 mortality data in www.dartmouthdiffusion.org 
 

http://www.dartmouthdiffusion.org/
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no new alternative treatments based on literature and discussion with cardiologists and 

electrophysiologists.   

The best explanation of the decline was that physicians had learned from experience that 

ICDs were not so helpful to many of their patients.  Matchett et al. (2009) for example, referred 

to the ICD expansion as a “Hype Cycle” with one phase reflecting “inflation expectations ... 

through media endorsements and clinical trial data...” followed by “the trough of 

disillusionment...consistent with device recalls and increased concern regarding cost.”  When 

ICDs discharge and reboot (which patients say is like a bomb going off in the chest6) multiple 

times, patients become anxious, with one estimate of nearly half of ICD recipients depressed in 

part because of worry about the next “kick” (Matchett et al., 2009).   

As shown in Figure 3, which shows the HRR-level rate of growth in ICDs between 2002-

05 correlated with the change between 2006-13, the regions with the most rapid growth also 

experienced the most rapid decline.  Despite this overall decline, however, the coefficient of 

variation (the standard deviation divided by the mean) declined only slightly, from 0.29 in 2006 

to 0.27 in 2013. This general pattern is consistent with a model in which there is learning-by-

doing with regard to the choice of patient most appropriate for the device, so that those with the 

greatest degree of overconfidence would scale back most quickly.  

 

2.2. Diffusion and Variation in Health Outcome Following ICD Implantation 

When CMS approved the use of ICDs for preventive purposes, it was done with the 

understanding that hospitals would send detailed clinical information about the patient to CMS. 

We use this 100% registry, linked to the Medicare denominator file for people age 65+, during 

2006-13, which allows us to mortality rates based on Medicare denominator files available 

through 2015. The registry includes detailed information on the registry that includes whether the 

ICD was for patients with CHF (e.g., preventive), their risk class (I through IV) as well as 

ejection fraction and many other clinically relevant factors such as having ventricular 

tachycardia, family history of cardiac arrest, the exact ejection fraction, and other measures, 

along with the identity of the hospital performing the procedure.7 These data are far more 

                                                           
6 https://www.everydayhealth.com/atrial-fibrillation/living-with/shocking-truths-about-heart-defibrillators/ 
 
7 One complexity associated with identifying hospitals is that in some cases, the hospital was not identified; only 
the NPI for the provider who performed the procedure.  We are grateful to Andrea Austin for providing a cross-

https://www.everydayhealth.com/atrial-fibrillation/living-with/shocking-truths-about-heart-defibrillators/


9 
 

detailed than what could ever be recovered from Medicare billing claims. To estimate outcomes, 

we focus on a relatively homogenous group of CHF patients who have never had an ICD 

implanted; we implicitly assume that the hospital-specific mortality effect estimated using these 

patients is similar to the effect for other patients receiving an ICD.  

Ideally, we would be able to measure true treatment effects; the benefit of an ICD relative 

to the status quo of medical management for CHF.  However, our estimates and modeling are 

specific to mortality rates only among those treated.  We discuss this concern, and how we 

address it, in the modeling section in Section 4.    

Table 1 provides summary statistics of the ICD sample (N = 253,613).  The average age 

among the Medicare enrollees (all of whom are 65+) is 74.5, and just 28 percent are female. Note 

that the mortality rate barely budged between 2006 and 2013. We also include summary statistics 

for additional covariates from the registry, including the ejection fraction, prior cardiac arrest, 

family history, prior heart attack, and other variables.  

Hospital-level risk-adjusted mortality is modeled using the following structure:  

ijt it ijt ijtM X β ζ= Ψ + +        

where it it itZ νΨ = Γ + .   

Mortality ijtM  is a binary variable that depends on characteristic of patient ijtX , and the 

physician/hospital itΨ , which in turn is a function of observable provider-level characteristics 

itZ such as patient volume, the utilization rate for ICDs, and the use of guideline-consistent 

medical treatment for CHF patients. We are particularly interested in the variance of itΨ , which 

depends both on the predictable characteristics of the hospital, Var( itZ Γ ),  as well as the 

provider-specific error term Var( itν ). Our preferred specification is a random-effects model 

clustered at the level of the provider, which allows us to “shrink” the estimate of the provider 

residual towards the fitted value 

itZ Γ depending on the sample size of the provider.  To preserve 

linear variance additivity, we use linear probability models; we begin with a least-squares 

                                                           
walk from ICD-capable providers to the hospital where they performed the plurality of procedures, which we used 
to create our dataset. 
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regression, consider the random-effects model, and then briefly consider a fixed-effect model at 

the provider level.  

The benefits inherent in ICD implantation arise only after several years (Bardy et al., 

2005) so we focus on both 1-year and 2-year mortality. For the random-effects model, we 

estimate the distribution of itΨ  in Figure 4, which shows the risk-adjusted two-year variation in 

hospital quality, expressed in hospital-specific mortality rates. The standard deviation is 3.2 

percentage points, and a low-quality hospital exhibits a mortality rate nearly double that of a 

high-quality hospital.8 These (large) variations arise both from differences in physician and more 

generally hospital staff skill, and the choice of patients based on factors unobservable even in the 

clinical registry data.  

 

2.3 The Reduced-Form Correlation Between ICD Diffusion and Mortality  

For the model specification, we will need to know a variety of reduced-form parameters 

such as the variance in mortality across hospitals, the variance in utilization, and diffusion 

patterns for individual hospitals.  As well, a critical reduced-form parameter is the correlation 

between the rate of diffusion and risk-adjusted mortality by hospital.  We therefore combine the 

utilization data (Section 2.1) and the outcome estimates (Section 2.2) to estimate a generalized 

model of mortality and utilization. In Table 2, we report summary estimates of the OLS, random 

effect, and fixed-effect models, limited to just two-year mortality; regression results are reported 

in the Appendix for OLS in Table A.1, random effects in Table A.2, and hospital fixed-effects in 

Table A.3 that also include one-year mortality.   

As shown in Table 2, there is a consistent positive correlation and significant correlation 

between the rate of use of ICDs in a given year, and risk-adjusted mortality rates, in both the 

OLS and random-effects model, suggesting in the reduced form that patients of the most rapid 

diffusers experience worse outcomes. The point estimates are much smaller and not significant in 

the fixed-effect model; this is because most of the identification is from cross-sectional variation; 

within a hospital there is relatively little improvement in skill, leading to almost no temporal 

variation.    

                                                           
8 Recall that these estimates are derived from the random-effects model, and are therefore already shrunken 
towards the mean; a fixed-effects model would have exhibited even more variability. 
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While one can argue that volume is itself a key component of quality, we also include the 

log of annual volume of all ICDs for the over-65 population (including non-CHF patients) as a 

control.  The coefficients on these variables are as expected; an increase in log-volume of 1 leads 

to a 1.3 percentage-point decline in 2-year mortality in the random-effects model (Column 4 of 

Table 2).  In addition, we also include the HRR-level rate of guideline-appropriate medical 

treatments for ICD candidates (Roth et al., 2016) to adjust for our concern that the correlation 

between utilization and mortality is driven by poor medical management – that high utilization of 

ICDs is because health systems are so poor at medical management, and the poor medical 

management in turn adversely affects mortality (e.g. Chandra and Staiger, 2007). And while low 

rates of medical management are clearly bad for mortality, including them as controls does not 

significantly attenuate the coefficient on utilization. 

Another concern is to derive appropriate measures of utilization rates.  It is 

straightforward to measure the number of ICDs performed at a given hospital, but measuring the 

denominator, the population of potential recipients of the treatment for a hospital in a city with 

multiple hospitals, is more difficult.  To assign utilization rates to each hospital, we used the 

utilization rate for the patient’s HRR of origin to create a measure that reflected the population of 

people in that hospital receiving care. Typically, hospitals will draw the plurality of patients from 

their local HRR, but patients do travel for ICDs.  

Figure 5 shows the correlation between the average (2006-13) ICD utilization rate, and 

the fully risk-adjusted relevant hospital-level mortality.  There is a strong positive correlation (as 

shown above and in Table 2), but this graph labels several of the more interesting regions.  In 

particular, some regions exhibit both low mortality rates and low use of ICDs (the Minneapolis-

St. Paul HRR); others are in-between, while others exhibit very high rates of ICD use, coupled 

with relatively high rates of mortality.   

 Munster, IN is an interesting case, because it is among the most rapid diffuser of ICDs, 

yet as Figure 5 shows, it also has among the handful of regions with the highest two-year (and 1-

year) risk-adjusted mortality rates.  An obvious question is why Munster is so different from 

other nearby regions. (Even Terre Haute, which is 120 miles away, exhibited far lower mortality 

rates.)  One explanation could have been an unusually entrepreneurial cardiologist practicing in 

Munster during this time.  A 2015 New York Times article (Creswell, 2015) described how the 

cardiologist, Dr. Gandhi, was under investigation for inappropriate cardiac procedures:  
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When Dr. Mark Dixon, then the medical director of Community Hospital’s 
electrophysiology lab, where defibrillators were implanted, raised concerns to a 
hospital executive in 2005 about whether Dr. Gandhi and other physicians were 
qualified to implant the devices, he said he was shut down. 
 
While anecdotal, it is at least suggestive that the variations we observe in the data are not 

an artifact, but instead represent real differences in provider skills and patient choice.  By 

contrast, many regions in the U.S. exhibited very slow diffusion, and with much lower risk-

adjusted mortality. 

To sum up, we find wide variation in rates of diffusion across the U.S. with regard to ICD 

use; reversion to the mean with regard to utilization, in the sense that regions with the most rapid 

growth were most likely to “exnovate” or scale back on their use; wide variability in ICD 

mortality rates across hospitals, and a positive correlation between diffusion and mortality.  We 

turn next to developing a model that can potentially explain these empirical patterns.   

 

3. The Model  
Our goal is to develop a model of technology diffusion to better understand the empirical 

patterns of ICD diffusion (and exnovation) and mortality. It builds on an optimizing Bayesian 

framework where both doctors and patients are heterogeneous and health outcomes are 

uncertain. Patients differ in the potential benefits from an ICD implant while doctors differ in 

their ability in implanting ICDs. Additionally, we allow doctors to have a biased perception of 

their true ability. We first focus on the decision to implant an ICD taking as fixed the doctor’s 

perceived skill. In section 2.2, we study the model dynamics by making endogenous the doctor’s 

prior distribution of skill through learning.  

3.1 Static setting  

We begin with the decision problem from the perspective of the doctor. There is a 

continuum of patient types j that differ in their potential net value of the treatment. Let µ𝑗𝑗 denote 

the difference between the patient's potential value of being treated v𝑗𝑗  or not treated w𝑗𝑗 . The 

patient’s type (µ𝑗𝑗) is not directly observed by doctors. We assume that the distribution of 

patient's net value from treatment, µ𝑗𝑗, is normal with mean 𝜇̅𝜇, and variance 𝜎𝜎𝜇𝜇2. The precision of 
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the prior of µ𝑗𝑗 is denoted by 𝜌𝜌𝜇𝜇 = 1
𝜎𝜎𝜇𝜇2

. The two components of the net value from treatment, v𝑗𝑗  

and w𝑗𝑗 , are normally distributed and, for the time being, we assume that they are independent.9  

In addition to the patient’s type, the value of the ICD depends on the doctor’ skill, 𝑎𝑎𝑖𝑖. In 

particular the net value of implanting an ICD to a patient of type µ𝑗𝑗 by a doctor with skill 𝑎𝑎𝑖𝑖 is 

µ𝑗𝑗 + 𝑎𝑎𝑖𝑖.10  

Doctors do not know 𝑎𝑎𝑖𝑖; 𝑎𝑎𝑖𝑖
𝑝𝑝 denotes the mean of the doctor’s prior distribution of 𝑎𝑎𝑖𝑖. We 

refer to 𝑎𝑎𝑖𝑖
𝑝𝑝 as perceived skill. The gap between the perceived and true skill is the overconfidence 

bias, oi. If 𝑎𝑎𝑖𝑖
𝑝𝑝 > 𝑎𝑎𝑖𝑖 the patient is overconfident on his skill, while if  𝑎𝑎𝑖𝑖

𝑝𝑝 < 𝑎𝑎𝑖𝑖 he is under-

confident. If  𝑎𝑎𝑖𝑖
𝑝𝑝 = 𝑎𝑎𝑖𝑖 the doctor is unbiased.   

Information structure.  Before deciding the treatment, doctors observe an imperfect 

signal on the patient’s type. Specifically, we assume that the distribution of patient's value from 

treatment, µ𝑗𝑗, is normal with mean 𝜇̅𝜇, and variance 𝜎𝜎𝜇𝜇2. The precision of the prior of µ𝑗𝑗 is denoted 

by 𝜌𝜌𝜇𝜇 = 1
𝜎𝜎𝜇𝜇2

. 

The noisy signal, s𝑗𝑗, is related to the patient's true type, µ𝑗𝑗, as follows: 

 s𝑗𝑗 = µ𝑗𝑗 + 𝜀𝜀        (1) 

where ε is normal with mean 0 and variance 𝜎𝜎ε2.   

Treatment decision. Given this information structure, the posterior distribution of the 

patient’s type is distributed as 

µ𝑗𝑗|𝑠𝑠𝑗𝑗~𝑁𝑁(𝜇̅𝜇𝑗𝑗
𝑝𝑝, 𝜎𝜎𝜇𝜇2𝜎𝜎𝜀𝜀2

𝜎𝜎𝜇𝜇2+𝜎𝜎𝜀𝜀2
)       (2) 

The posterior mean is  

  𝜇̅𝜇𝑗𝑗
𝑝𝑝 = (1 − 𝛼𝛼)𝜇̅𝜇 + 𝛼𝛼𝑠𝑠𝑗𝑗,       (3) 

with 𝛼𝛼 = 𝜎𝜎𝜇𝜇2

𝜎𝜎𝜇𝜇2+𝜎𝜎𝜀𝜀2
. 

                                                           
9 We explore the effects of relaxing this assumption in the robustness checks section. 
10 Without loss of generality, we normalize the costs of implanting an ICD to 0. 
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The doctor’s perceived skill is the only relevant statistic of the prior distribution of 𝑎𝑎𝑖𝑖 for 

the treatment decision. A doctor with perceived skill 𝑎𝑎𝑖𝑖
𝑝𝑝 will treat a patient with signal sj if and 

only if 𝜇̅𝜇𝑗𝑗
𝑝𝑝 + 𝑎𝑎𝑖𝑖

𝑝𝑝 ≥ 0. 11 That is, if the signal 𝑠𝑠𝑗𝑗  is greater than a threshold 𝑠𝑠(𝑎𝑎𝑖𝑖
𝑝𝑝) defined by: 

 𝑠𝑠𝑗𝑗 ≥ 𝑠𝑠(𝑎𝑎𝑖𝑖
𝑝𝑝) ≡ − (1−𝛼𝛼)

𝛼𝛼
𝜇̅𝜇 − 𝑎𝑎𝑖𝑖

𝑝𝑝

𝛼𝛼
.       (4) 

 

ICD usage. The probability of implanting an ICD for a doctor with perceived skill 𝑎𝑎𝑖𝑖
𝑝𝑝 is 

  Pr� 𝐼𝐼𝐼𝐼𝐼𝐼 = 1|𝑎𝑎𝑖𝑖
𝑝𝑝� = ∫ 𝑓𝑓(𝑠𝑠)∞

𝑠𝑠(𝑎𝑎𝑖𝑖
𝑝𝑝) 𝑑𝑑𝑑𝑑,       (5) 

where 𝑠𝑠(𝑎𝑎𝑖𝑖
𝑝𝑝) is defined by equation (4) and where f(.) is the pdf of the signal 𝑠𝑠𝑗𝑗. That is, it is a 

normal distribution with mean 𝜇̅𝜇, and variance 𝜎𝜎𝜇𝜇2 + 𝜎𝜎𝜀𝜀2. 

Proposition 1 (Determinants of diffusion). Ceteris paribus, the use of ICDs increases 

with perceived skilled, 𝑎𝑎𝑖𝑖
𝑝𝑝.  

Proof: 
𝜕𝜕Pr� 𝐼𝐼𝐼𝐼𝐼𝐼=1|𝑎𝑎𝑖𝑖

𝑝𝑝�
𝜕𝜕𝑎𝑎𝑖𝑖

𝑝𝑝 = - 𝑓𝑓 �𝑠𝑠�𝑎𝑎𝑖𝑖
𝑝𝑝�� ∗ 𝜕𝜕𝑠𝑠(.)

𝜕𝜕𝑎𝑎𝑖𝑖
𝑝𝑝 > 0, because, from expression (4),  𝜕𝜕𝑠𝑠(.)

𝜕𝜕𝑎𝑎𝑖𝑖
𝑝𝑝 < 0 .□ 

Intuitively, the threshold signal required to implant an ICD decreases with perceived 

skill. Therefore, doctors that think have a high skill are more likely to observe a patient’ signal 

above their threshold. Note that what matters for the incidence of ICDs is the doctors perceived 

signal, 𝑎𝑎𝑖𝑖
𝑝𝑝. (Recall that 𝑎𝑎𝑖𝑖

𝑝𝑝 = 𝑎𝑎𝑖𝑖 + 𝑜𝑜𝑖𝑖.) Therefore, for a given skill, ia , the use of ICDs increases 

with over-confidence, 𝑜𝑜𝑖𝑖. Similarly, for a given level of overconfidence, higher (true) skill 

induces a greater use of ICDs.  

Outcomes. Most empirical studies on technology adoption do not have access to adopter-

level proxies for the outcomes after adopting the technology. Our dataset has the advantage of 

containing information on the patients’ mortality after they have received an ICD. Our model can 

capture the event of death in a short horizon as a low ex-post realization. Naturally, the further in 

the future the patient dies, the higher the ex-post utility of the patient.  

                                                           
11 Note that because doctors are risk neutral, they only take into account their average perceived skill (and the 
patient’ signal) to determine whether they should implant an ICD.  
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This logic allows us to establish a mapping between mortality and utility. In particular, 

we interpret the death of the patient within x years as an ex-post utility below a threshold 𝜅𝜅𝑥𝑥, 

where 𝜅𝜅𝑥𝑥 is increasing in x. 

Now we can compute the x-years mortality rate conditional on ICD implant for a doctor 

with perceived skill, 𝑎𝑎𝑖𝑖
𝑝𝑝, and actual skill, 𝑎𝑎𝑖𝑖, is:  

𝑃𝑃𝑃𝑃�𝑣𝑣𝑗𝑗 + 𝑎𝑎𝑖𝑖 ≤ 𝜅𝜅𝑥𝑥�𝐼𝐼𝐼𝐼𝐼𝐼 = 1,𝑎𝑎𝑖𝑖
𝑝𝑝,𝑎𝑎𝑖𝑖) = Pr�𝑣𝑣𝑗𝑗≤𝜅𝜅𝑥𝑥−𝑎𝑎𝑖𝑖∩ 𝐼𝐼𝐼𝐼𝐼𝐼=1�

Pr� 𝐼𝐼𝐼𝐼𝐼𝐼=1|𝑎𝑎𝑖𝑖
𝑝𝑝�

=
∫ 𝑓𝑓𝜀𝜀(𝜀𝜀′)∞
−∞ �∫ 𝑓𝑓𝑣𝑣(𝑣𝑣′)𝑑𝑑

𝜅𝜅𝑥𝑥−𝑎𝑎𝑖𝑖
𝑠𝑠(𝑎𝑎𝑖𝑖

𝑝𝑝)−𝜀𝜀
𝑣𝑣′�𝑑𝑑𝑑𝑑′

∫ 𝑓𝑓𝑠𝑠(𝑠𝑠′)∞
𝑠𝑠(𝑎𝑎𝑖𝑖

𝑝𝑝) 𝑑𝑑𝑑𝑑′
 (6)   

where 𝑓𝑓𝜀𝜀(. ) is the pdf for ε, 𝑓𝑓𝑣𝑣(. ) is the pdf for patient’s type vj, and 𝑓𝑓𝑠𝑠(. ) is the pdf for the signal 

s. While utilization is affected only by perceived skill, conditional mortality is affected by both 

the doctor’ true skill and perceived skill.  

Proposition 2 (Determinants of mortality conditional on ICD implant).  Here we show 

that (i) the probability of death conditional on implanting an ICD (but not adjusting for patient 

characteristics) increases with overconfidence, and (ii) skill has an ambiguous effect on the 

physician’s post-ICD (unconditional) mortality rate.  

Proof: The proofs are as follows: 

(i)  

𝜕𝜕Pr (𝑣𝑣𝑗𝑗 + 𝑎𝑎𝑖𝑖 ≤ 𝜅𝜅𝑥𝑥| 𝐼𝐼𝐼𝐼𝐼𝐼 = 1,𝑎𝑎𝑖𝑖
𝑝𝑝,𝑎𝑎𝑖𝑖)

𝜕𝜕𝑜𝑜𝑖𝑖
= 

�1 − 𝑃𝑃𝑃𝑃(𝑣𝑣𝑗𝑗 ≤ 𝜅𝜅𝑥𝑥| 𝐼𝐼𝐼𝐼𝐼𝐼 = 1, 𝑎𝑎𝑖𝑖
𝑝𝑝,𝑎𝑎𝑖𝑖)� �−

𝜕𝜕𝑠̅𝑠
𝜕𝜕𝑜𝑜𝑖𝑖
� � ∫ 𝑓𝑓𝜀𝜀(𝜀𝜀′)𝑓𝑓𝑣𝑣(𝑠𝑠(𝑎𝑎𝑖𝑖

𝑝𝑝)−𝜀𝜀′)𝑑𝑑𝑑𝑑′∞
−∞

∫ 𝑓𝑓𝜀𝜀(𝜀𝜀′)∞
−∞ �∫ 𝑓𝑓𝑣𝑣(𝑣𝑣′)𝑑𝑑∞

𝑠𝑠(𝑎𝑎𝑖𝑖
𝑝𝑝)−𝜀𝜀 𝑣𝑣′�𝑑𝑑𝑑𝑑′

� > 0  (7) 

Both the first and third terms are positive, but the key is the middle expression; that when 

overconfidence rises, the “hurdle” point at which the physician does the procedure declines, thus 

expanding the number of patients for which the net benefit is negative.     

(ii)  

𝜕𝜕Pr (𝑣𝑣𝑗𝑗 + 𝑎𝑎𝑖𝑖 ≤ 𝜅𝜅𝑥𝑥| 𝐼𝐼𝐼𝐼𝐼𝐼 = 1,𝑎𝑎𝑖𝑖
𝑝𝑝,𝑎𝑎𝑖𝑖)

𝜕𝜕𝑎𝑎𝑖𝑖
= −�

∫ 𝑓𝑓𝜀𝜀(𝜀𝜀′)𝑓𝑓𝑣𝑣(𝜅𝜅𝑥𝑥 − 𝑎𝑎𝑖𝑖)𝑑𝑑𝑑𝑑′
∞
−∞

∫ 𝑓𝑓𝜀𝜀(𝜀𝜀′)∞
−∞ �∫ 𝑓𝑓𝑣𝑣(𝑣𝑣′)𝑑𝑑∞

𝑠𝑠(𝑎𝑎𝑖𝑖
𝑝𝑝)−𝜀𝜀 𝑣𝑣′� 𝑑𝑑𝑑𝑑′

� 

+
�1−𝑃𝑃𝑃𝑃(𝑣𝑣𝑗𝑗≤𝜅𝜅𝑥𝑥| 𝐼𝐼𝐼𝐼𝐼𝐼=1,𝑎𝑎𝑖𝑖

𝑝𝑝,𝑎𝑎𝑖𝑖)�
𝛼𝛼

� ∫ 𝑓𝑓𝜀𝜀(𝜀𝜀′)𝑓𝑓𝑣𝑣(𝑠𝑠(𝑎𝑎𝑖𝑖
𝑝𝑝)−𝜀𝜀′)𝑑𝑑𝑑𝑑′∞

−∞

∫ 𝑓𝑓𝜀𝜀(𝜀𝜀′)∞
−∞ �∫ 𝑓𝑓𝑣𝑣(𝑣𝑣′)𝑑𝑑∞

𝑠𝑠(𝑎𝑎𝑖𝑖
𝑝𝑝)−𝜀𝜀 𝑣𝑣′�𝑑𝑑𝑑𝑑′

�    (8) 
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Here we show that the net effect of skill on mortality is to both improve outcomes for 

patients who would have been treated anyway, but to also bring in more patients with net benefit, 

but whose underlying mortality probability could be higher as well.12  This result holds only for 

unconditional mortality; once we adjust for characteristics of patients, skill exerts an 

unambiguously positive effect on health outcomes. 

 

3.2 Dynamics through learning 

We explore the dynamic properties of the model by allowing doctors to learn about their 

true skill. The learning problem we pose is one where doctors are uncertain both about the level 

of their skill and about the precision of the signals they receive. By allowing for an unknown 

precision, we can investigate the relevance of heterogeneity in confidence about the precision of 

the prior distribution of skill to explain the evolution of perceived skill in the data.  

We start by describing the nature of the signals and the priors. After implanting n ICDs 

for patients newly covered by the CMS rules, doctors receive n imperfect signal, {𝑠𝑠𝑖𝑖𝑖𝑖𝑎𝑎 }𝑘𝑘=1𝑛𝑛 . 

Signals are random draws from a normal distribution with unknown value of the mean 𝑎𝑎𝑖𝑖 and 

known value of the precision 𝜌𝜌𝑠𝑠𝑠𝑠. In particular, the signal 𝑠𝑠𝑖𝑖𝑖𝑖𝑎𝑎 = 𝑎𝑎𝑖𝑖 + ξ𝑖𝑖𝑖𝑖, where the noise term 

ξ𝑖𝑖𝑖𝑖  is distributed according to a normal   with zero mean and precision 𝜌𝜌ξ. Therefore, the 

precision of the signal net of noise is 𝜌𝜌𝑎𝑎 =
𝜌𝜌𝑠𝑠𝑠𝑠𝜌𝜌ξ
𝜌𝜌ξ−𝜌𝜌𝑠𝑠𝑠𝑠

.  The doctor’s prior of the distribution of 𝑎𝑎𝑖𝑖 is 

normal with mean 𝑎𝑎𝑖𝑖
𝑝𝑝 and precision τi such that τi>0 and −∞ < 𝑎𝑎𝑖𝑖

𝑝𝑝 < ∞.  

There are two possible biases in the doctor’s prior. The first is the familiar bias between 

true and perceived skill (overconfidence). The second is a bias in the precision of the conditional 

prior distribution of skill. This bias is reflected by the gap between the precision in the prior 

distribution of skill, τi, and the precision of the signal net of noise, 𝜌𝜌𝑎𝑎. To explore the evolution 

of perceived skill, we use the following lemma to compute the posterior distribution of skill.  

 

Lemma 1 (Posterior distribution of skill) The posterior distribution of 𝑎𝑎𝑖𝑖 is normal with 

mean 𝑎𝑎𝑖𝑖
𝑝𝑝′ and precision τi+n𝜌𝜌𝑠𝑠𝑠𝑠, where  

                                                           
12 This is one reason why some highly-skilled physicians may appear to be lower quality; because they end up with 
the most difficult patients.   
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𝑎𝑎𝑖𝑖
𝑝𝑝′ = 𝜏𝜏𝑖𝑖𝑎𝑎𝑖𝑖

𝑝𝑝+𝑛𝑛𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠𝚤𝚤𝑎𝑎����

𝜏𝜏𝑖𝑖+𝑛𝑛𝜌𝜌𝑠𝑠𝑠𝑠
       (9) 

and 𝑠𝑠𝚤𝚤𝑎𝑎��� = ∑ 𝑠𝑠𝑖𝑖𝑖𝑖
𝑎𝑎𝑛𝑛

𝑘𝑘=1
𝑛𝑛

 .  

 

Proof: See De Groot (1971), page 167.□ 

 

Lemma 1 describes the evolution in perceived skill. Subtracting 𝑎𝑎𝑖𝑖 in both sides of 

expression (9) and substituting the tildes by time subscripts we obtain  

                                    𝑎𝑎𝑖𝑖,𝑡𝑡+1
𝑝𝑝 − 𝑎𝑎𝑖𝑖,𝑡𝑡

𝑝𝑝 = −𝛼𝛼𝑖𝑖𝑖𝑖𝑎𝑎 ∗ �𝑎𝑎𝑖𝑖,𝑡𝑡
𝑝𝑝 − 𝑎𝑎𝑖𝑖� + 𝛼𝛼𝑖𝑖𝑖𝑖𝑎𝑎 ∗ ∑ 𝜉𝜉𝑖𝑖𝑖𝑖𝑛𝑛

𝑘𝑘=1    (10) 

where  

𝛼𝛼𝑖𝑖𝑖𝑖𝑎𝑎 = 𝑛𝑛𝜌𝜌𝑠𝑠𝑠𝑠
𝜏𝜏𝑖𝑖+𝑛𝑛𝜌𝜌𝑠𝑠𝑠𝑠

         (11) 

Replacing in 𝑎𝑎�𝑖𝑖,𝑡𝑡
𝑝𝑝 − 𝑎𝑎𝑖𝑖 by 𝑜𝑜𝑖𝑖,𝑡𝑡, we obtain13 

𝑎𝑎𝑖𝑖,𝑡𝑡+1
𝑝𝑝 − 𝑎𝑎𝑖𝑖,𝑡𝑡

𝑝𝑝 = −𝛼𝛼𝑖𝑖𝑖𝑖𝑎𝑎 ∗ 𝑜𝑜𝑖𝑖,𝑡𝑡 + 𝛼𝛼𝑖𝑖𝑖𝑖𝑎𝑎 ∗ ∑ 𝜉𝜉𝑖𝑖𝑖𝑖𝑛𝑛
𝑘𝑘=1      (12) 

Because 𝛼𝛼𝑎𝑎𝑎𝑎 is independent of the overconfidence bias, equation (12) shows that the 

larger the bias in perceived skill, the larger the expected correction in the perceived skilled. 

Adding and subtracting 𝑎𝑎𝑖𝑖 to the left-hand-side of (12), we can express the law of motion for 

overconfidence as 

𝑜𝑜𝑖𝑖,𝑡𝑡+1 − 𝑜𝑜𝑖𝑖,𝑡𝑡 = −𝛼𝛼𝑖𝑖𝑖𝑖𝑎𝑎 ∗ 𝑜𝑜𝑖𝑖,𝑡𝑡 + 𝛼𝛼𝑖𝑖𝑖𝑖𝑎𝑎 ∗ ∑ 𝜉𝜉𝑖𝑖𝑖𝑖𝑛𝑛
𝑘𝑘=1      (13) 

Equation (13) shows that learning induces mean-reversion in the level of doctor 

overconfidence.  

The speed of learning in our model is captured by coefficient 𝛼𝛼𝑖𝑖𝑖𝑖𝑎𝑎 . Expression (11) shows 

that 𝛼𝛼𝑖𝑖𝑖𝑖𝑎𝑎  varies across doctors. Other things equal, 𝛼𝛼𝑖𝑖𝑖𝑖𝑎𝑎  decreases in the precision of the prior 

precision of skill (𝜏𝜏𝑖𝑖), and increases in the precision of the signal (𝜌𝜌𝑠𝑠𝑠𝑠) and in the number of 

signals/ICD implants (𝑛𝑛).14  

                                                           
13 Subtracting and adding 𝑎𝑎𝑖𝑖 to the right-hand side of (14) we obtain the following expression for the 

evolution of overconfidence:  

∆𝑜𝑜𝑖𝑖,𝑡𝑡+1 = −𝛼𝛼𝑎𝑎𝑎𝑎 ∗ 𝑜𝑜𝑖𝑖,𝑡𝑡 + 𝛼𝛼𝑎𝑎𝑎𝑎 ∗ 𝜉𝜉𝑡𝑡   where ∆𝑜𝑜𝑖𝑖,𝑡𝑡+1 = 𝑜𝑜𝑖𝑖,𝑡𝑡+1 − 𝑜𝑜𝑖𝑖,𝑡𝑡. 

 
14 Furthermore, 𝛼𝛼𝑖𝑖𝑖𝑖𝑎𝑎  evolves over time. In particular, combining equation (11) and the evolution of precision of the prior 

distribution of skill (from Lemma 1), variance of perceived skill, 𝜎𝜎𝑎𝑎𝑡𝑡𝑝𝑝
2 , we can write the following difference equation for 𝛼𝛼𝑎𝑎𝑎𝑎: 
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4. Analysis and Model Estimation 
We next use the model to explore the determinants of empirical patterns documented in 

Section 2. Our strategy has three steps. First, we use the reduced form parameters from Section 2 

to calibrate the key parameters of the economy-wide distributions of patient type, and doctor true 

and perceived skill so as to match aggregate moments. Note that these parameters are common 

across hospitals. Second, using the common parameters and the data on usage rate of ICDs and 

mortality conditional on ICD at each hospital and year, we identify the hospital-level true and 

perceived skill, 𝑎𝑎𝑖𝑖𝑖𝑖 and 𝑎𝑎𝑖𝑖𝑖𝑖
𝑝𝑝 . Note that these parameters are specific for each hospital/year. Third, 

we use the identified parameters to validate some of the model assumptions and explore 

determinants of ICD use and conditional mortality in the cross-section and time series, including 

out-of-sample predictions.  

 

4.1 Identification 

Thus far the model has considered the decision-making process of individual physicians, 

while the unit of observation in our analysis is the hospital. Because our data is at the hospital 

level, thus reflecting utilization decisions and outcomes for the entire team of physicians, nurses, 

and other health workers, we are not able to measure the specific contribution of the cardiologist 

or electrophysiologist who performs the procedure.  That said, typically there are typically only a 

few physician (or just one) who performs to the procedure at a given hospital.15 

Estimating treatment effects. As noted above, we measure mortality rates accurately at 

the hospital level, but our primary interest is in treatment effects, or the beneficial outcomes of 

an ICD relative to not being treated with an ICD. To address this concern, we use published data 

                                                           
  𝛼𝛼𝑎𝑎𝑎𝑎+1 = 𝛼𝛼𝑎𝑎𝑎𝑎

1+𝛼𝛼𝑎𝑎𝑎𝑎
        (14) 

The solution to this difference equation is 

𝛼𝛼𝑎𝑎𝑎𝑎 = 𝛼𝛼0𝑖𝑖
1+𝑡𝑡∗𝛼𝛼0𝑖𝑖

         (15) 

where 𝛼𝛼0𝑖𝑖 =
𝜎𝜎
𝑎𝑎0
𝑝𝑝
2

𝜎𝜎
𝑎𝑎0
𝑝𝑝
2 +𝜎𝜎𝑖𝑖𝑖𝑖

2  is the learning coefficient in the initial period.  

 
15 To avoid identifying specific hospitals, we translate the hospital-level mortality predictions back to the HRR level 
for presentation. For example, the patient from Jackson TN whose procedure was done in Atlanta would have her 
outcome transferred back to the Jackson HRR.  That said, health care is still quite local, so that an HRR-level rate is 
heavily weighted towards patients in the same HRR.   
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from Medicare Part D claims describing regional rates of guideline-appropriate drug treatments 

in the months leading up to ICD implantation (Roth et al., 2016).16   

Aggregate parameters. We start by calibrating the parameters that are common across 

hospitals. Without loss of generality can normalize the average skill in population, 𝒂𝒂�𝒊𝒊, and the 

average utility of a patient with heart failure in the absence of ICD treatments, 𝒘𝒘� , to 0. These 

parameters are isomorphic to 𝒗𝒗� in the ICD use equation (5). 

 An important aspect of the calibration is to bridge the (conceptual) gap between the units 

in the model (i.e., utility) and in the outcomes we observe (i.e., years of survival after ICD 

implant). We do this by calibrating the thresholds 𝜅𝜅𝑥𝑥 to match the unconditional mortality rates 

for patients with congestive heart failure (CHF).17 Specifically, we set 𝜅𝜅𝑥𝑥 so that the cdf of 𝑤𝑤𝑗𝑗is 

equal to the x-years mortality of patients with CHF.  

These leaves 7 parameters to calibrate, the average level in population of overconfidence 

and the value of ICDs (𝑜̅𝑜 and 𝑣̅𝑣), and the variance in population of three patient-level parameters, 

𝑣𝑣𝑗𝑗 ,𝑤𝑤𝑗𝑗, 𝜀𝜀𝑗𝑗 , and two hospital/doctor level parameters 𝑎𝑎𝑖𝑖 and 𝑜𝑜𝑖𝑖 (𝜎𝜎𝑣𝑣2,𝜎𝜎𝑤𝑤2 ,𝜎𝜎𝜀𝜀2,𝜎𝜎𝑎𝑎2,𝜎𝜎𝑜𝑜2). To calibrate 

these parameters, we use 8 moments: the mean and variance ICD use rate across hospitals, the 

mean and variance conditional 1- and 2-year mortality across hospitals, and the cross-hospital 

correlations between the ICD use rate and the 1- and 2-year conditional mortality rates.18 Note 

that our system is over-identified.  

A narrative for the model identification is as follows.19 For the time being, let’s take as 

given the values of the variance of the three patient level variables M = (𝜎𝜎𝑣𝑣2,𝜎𝜎𝑤𝑤2 ,𝜎𝜎𝜀𝜀2). Given these, 

the average level of overconfidence, 𝑜̅𝑜, and ICDs value, 𝑣̅𝑣, determine the average ICD use rate, 

while the variance of perceived skill (𝜎𝜎𝑎𝑎2 + 𝜎𝜎𝑜𝑜2) determines the variance of ICD use across 

                                                           
16 These are, of course, different guidelines, and relate to appropriate drugs to treat the congestive heart failure 
medically.  Often these combinations of drugs will improve the functioning of the heart sufficiently to avoid having 
to require an ICD at all.  
17 The rate of ICD use among potentially appropriate patients, 18.5 percent, is derived from Al Khatab et al. (2012) 
based on their study of ICD use in a cohort of CHF patients; we assume that variation in this parameter is 
proportional to observed variation in population-based utilization, which is of course much lower.  We know the 
mortality rate among those treated with an ICD, but we impute the mortality for those without an ICD (and the 
average treatment effect jµ ) used estimates from the largest randomized trial, which showed no impact after one 
year, and an approximately 2.5 percentage point reduction in mortality after 2 years (Bardy et al., 2005). 
18 All of these moments are computed over the period 2006-2013. 
19 In reality, some of the parameters impact more than one moment for example, the variances of all hospital level 
variables affect the variance of ICD use rates as well as the one- and two-year conditional mortalities.  
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hospitals. Conditional mortality across hospitals is determined by M, 𝑜̅𝑜, and the average value of 

the ICD, 𝑣̅𝑣,, while the variance of one- and two-year conditional mortality helps us pin down the 

variance of true skill across hospitals/doctors and the relative variance of v and w.  

The variance of μ, (𝜎𝜎𝑣𝑣2 + 𝜎𝜎𝑤𝑤2), and the noise of the signals (𝜎𝜎𝜀𝜀2) is identified from the 

correlation between ICD use rates and conditional mortalities. Intuitively, αi is identified by the 

correlation between ICD use and one-year mortality conditional on ICD implant; a high α 

reduces the sensitivity of the decision of implanting an ICD to the level of perceived skill, 𝑎𝑎𝑖𝑖
𝑝𝑝. 

Therefore, those doctors with higher perceived skill, and hence higher ICD use, will not go as 

deep into the distribution of patients when αi is low. For this reason, their marginal patient has a 

higher μ, leading to lower mortality rates. As a result, a higher α is associated with a lower 

correlation between ICD use and mortality conditional on having an ICD. 

The model does a good job of matching aggregate moments. Table 3 reports the data and 

moment implied moments. The only target that the model misses is the average 2-year mortality. 

Table 4 reports the calibrated values for the aggregate parameters.  First, we find that on average 

doctors are overconfident. Second, the cross-hospital variance of overconfidence is more than 

three times larger than the variance in true skill. This suggests the coexistence of overconfident 

and under-confident hospitals. Third, the variance of patient-level variables is more than thirty 

times larger than the variance of hospital-level variables. This is necessary to match the 

relatively low cross-sectional dispersion of conditional mortality rates.  

Hospital level parameters. Once we have calibrated the common parameters, we identify 

for each hospital and year the true skill and overconfidence that produce the observed ICD use 

rate and (1-year) conditional mortality. Proposition 1 has shown that the ICD use rate is 

increasing in the perceived skill of the hospital. Therefore, we can identify perceived skill from 

the ICD use rat. Proposition 2 shows that, for a given perceived skill, the conditional mortality is 

decreasing in true skill. Therefore, we can invert equation (6) to identify the hospital/year true 

skill level. 

We start by analyzing the identified levels of 𝑎𝑎𝑖𝑖 and 𝑜𝑜𝑖𝑖; reassuringly, the variance of the 

distributions are close to the estimates of 𝜎𝜎𝑎𝑎2 and 𝜎𝜎𝑜𝑜2 identified in the calibration of the aggregate 
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parameters.20  Figure 6 plots in a US map the average identified levels of oi for each hospital. 

There are significant geographic differences in overconfidence. The regions with greater 

overconfidence are in the South (e.g. Texas), South-East, and Great Lakes (Michigan, Indiana, 

Ohio).21  Our estimates imply that hospitals with greater skill are more overconfident since the 

correlation between 𝑎𝑎𝑖𝑖 and 𝑜𝑜𝑖𝑖 is 0.38.  Given that risk-adjusted mortality is also higher in high-

utilization regions, these estimates imply that in high-use hospitals, the adverse effects on 

clinical quality of overconfidence more than compensates for the somewhat higher skill levels. 

To further understand the nature of variation in the hospital level estimates of skill and 

overconfidence we conduct a variance covariance decomposition. Specifically, let  𝑥𝑥𝑖𝑖𝑖𝑖 be the 

estimate of x in hospital i and year t, for 𝑥𝑥𝑖𝑖𝑖𝑖 = {𝑎𝑎𝑖𝑖𝑖𝑖
𝑝𝑝 ,𝑎𝑎𝑖𝑖𝑖𝑖, 𝑜𝑜𝑖𝑖𝑡𝑡}. Then we can decompose the 

variance of  𝑥𝑥𝑖𝑖𝑖𝑖 into the “within hospital” over time component, and the “between hospital” 

component (See Table 6).22 For all three parameters, the variance of the within component is 

smaller than the variance of the between component. However, there is significant variation in 

the relative contribution of the within and between components across the three variables. For 

perceived skill and overconfidence, the variance of the within component is approximately half 

the variance of the between component; this means there is significant learning-by-doing about 

the appropriateness of ICDs over time.   By contrast, for skill, the variance of the within 

component is less than one fourth the variance of the between component, which is consistent 

                                                           
20 The variance of overconfidence is equal to 0.032 in the hospital-level identification vs. 0.0292 in the aggregate 
calibration while the variance of skill is 0.0068 in the hospital-level identification vs.  0.0092 in the aggregate 
calibration. 
21 Interestingly, we find a strong correlation between overconfidence and life expectancy at the bottom quartile of 
the income distribution (Chetty et al.). 
22 Specifically, let 𝑇𝑇𝑖𝑖 denote the number of observations corresponding o hospital i,  𝑥̅𝑥𝑖𝑖 the average of x in hospital i, and 𝑥̿𝑥 be the 
average of x across all hospitals. Then the within hospital i variance of x is 

𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖 = ∑ (𝑥𝑥𝑖𝑖𝑖𝑖−𝑥̅𝑥𝑖𝑖)2𝑡𝑡

𝑇𝑇𝑖𝑖
      (16) 

The between hospital variance is defined as  

𝑉𝑉𝑉𝑉𝑉𝑉𝑏𝑏𝑏𝑏 = ∑ (𝑥̅𝑥𝑖𝑖−𝑥̿𝑥)2𝑖𝑖

𝑁𝑁𝑖𝑖
      (17) 

Then variance of 𝑥𝑥𝑖𝑖𝑖𝑖 can be expressed as: 

𝑉𝑉𝑉𝑉𝑟𝑟(𝑥𝑥𝑖𝑖𝑖𝑖) = ∑ 𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖

𝑁𝑁𝑖𝑖
+ 𝑉𝑉𝑉𝑉𝑉𝑉𝑏𝑏𝑏𝑏    (18) 
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with our earlier findings suggesting very little learning-by-doing with regard to hospital-level 

skill over time.   

4.2 Analysis  

Now that we have identified the key parameters of the model at both the aggregate and 

hospital level, we can return to our primary goal, which is to test whether the presence and 

magnitude of hospital-specific skill and overconfidence is strongly predictive of the evolution of 

ICD utilization and health outcomes.  

Effects of skill and overconfidence. We start by exploring the empirical consequences of 

skill and overconfidence for ICD use and mortality. To this end, we alternatively eliminate 

hospital-level variation in skill and overconfidence and use the model to compute the ICD use 

rate and conditional mortality rates in each hospital. The model predicts that getting rid of 

overconfidence would reduce one-year mortality by 8 percent, from 11.3 to 10.5 percentage 

points; reducing the variation in overconfidence, however would have little impact on average 

mortality.  

We also calculate the fraction of the variation in ICD use (conditional mortality) that can 

be attributed to hospital variation in skill by the covariance between the actual ICD use 

(conditional mortality) and the vector of ICD usage rates (conditional mortality rates) that 

emerges if overconfidence is equal to the mean value in all hospitals, divided by the actual 

variance of ICD use (conditional mortality). The fraction of the variation in ICD use (conditional 

mortality) attributable to overconfidence is the complementary share. The decomposition 

indicates that 76% of the hospital variation in ICD utilization is because of variation in 

overconfidence, with the remaining 24% because of variation in skill. Similarly, over 70% of the 

hospital variation in mortality is due to variation in overconfidence, while variation in true skill 

accounts for 29% of the variation across hospitals in the one-year mortality conditional on ICD 

use. Therefore, we conclude that overconfidence is significantly more important than true skill to 

account for the large variation we observe in ICD use rates and conditional mortality. 

Determinants of time variation in overconfidence. Next, we turn our attention to the 

time variation in overconfidence, and in perceived skill. In particular, we study whether the 

learning model we have posed in section 2 does a good job in explaining the evolution of 

perceived skill and conditional mortality. To this end, we estimate the following econometric 

counterpart of equation (12) 
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𝑎𝑎𝑖𝑖,𝑡𝑡+1
𝑝𝑝 − 𝑎𝑎𝑖𝑖,𝑡𝑡

𝑝𝑝 = 𝛼𝛼0𝑖𝑖 − 𝛼𝛼𝑖𝑖𝑖𝑖𝑎𝑎 ∗ 𝑜𝑜𝑖𝑖,𝑡𝑡 + 𝑢𝑢𝑖𝑖,𝑡𝑡.    (19) 

Comparing specification (19) with equation (12), it follows that the intercept captures the 

average realization of 𝛼𝛼𝑎𝑎𝑎𝑎𝑎𝑎 ∗ 𝜉𝜉𝑖𝑖𝑖𝑖 for hospital i.23 We estimate two versions of (19), the first 

(reported in column I of Table 7) allows for a hospital-specific intercept and learning coefficient. 

The second (in column II) imposes the same intercept and learning coefficient across hospitals.24 

Despite its simplicity, the learning model fits quite well the evolution of perceived skill. In the 

baseline specification, the learning model accounts for 49% of the variation in the change of 

perceived skill, while in the version where both the intercept and learning coefficients are 

restricted to be the same across hospitals, the R2 still is 23%. As predicted by our model, the 

median learning coefficient 𝛼𝛼𝑎𝑎𝑎𝑎 is significantly positive and between zero and one. The median 

point estimate is 0.47 which implies that the variance of the noise in the signal about the doctor’s 

skill is approximately the same as the variance of the prior of perceived skill. Nevertheless, there 

is significant variation in the estimated learning coefficients. The standard deviation of 𝛼𝛼𝑎𝑎𝑎𝑎 

across hospitals is 0.6.25  

To gain further insights about the determinants of learning, we explore the association between 

the learning coefficient and initial overconfidence and ICD volume in the hospital, which we 

measure as the annual rate of utilization across all types of ICD implantation using the registry 

data. We find that hospitals with lower learning coefficient 𝛼𝛼𝑎𝑎𝑎𝑎 have greater initial 

overconfidence and higher ICD volume. This observation suggests that more overconfident 

hospitals also have tighter priors about their skill. As a result, they perform more ICD procedures 

and, despite the greater number of signals, they learn more slowly about their true skill.  

We conclude our analysis by exploring whether the decline in ICD use and conditional 

mortality between 2006 and 2013 can be a consequence of learning about overconfidence. To 

explore this hypothesis, we use the estimates of the learning model (column I of Table 8) to build 

a counterfactual measure of perceived skill due to learning. Then, we use our model to simulate 

the ICD use and conditional mortality levels in 2006 and 2013 for the counterfactual measures of 

                                                           
23 Equation (19) abstracts from the possibility that 𝛼𝛼𝑎𝑎𝑎𝑎𝑎𝑎 varies over time. 
24 The difference in the number of observations between both specifications is due to the fact that we 
require hospitals to have at least four observations to estimate the hospital-specific parameters. 
25 In 8% of the hospitals the estimate of the learning coefficient is negative, while in 21% it is greater than 
one. 
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perceived skill. Then we compare the evolution of the relevant moments under the counterfactual 

with those observed in the data. Table 8 presents the results from this exercise. 

The first three columns of Table 8 report the moments with respect to the ICD use rate, 

with the first two rows for 2006 and the second two rows for 2013. The moments in 2006 are 

very similar in both model and data by construction. However, the model’s out-of-sample 

predictions for 2013 also provide a close match to actual 2013 values. The key finding is that the 

learning model fully accounts for the observed 6.8 percentage point decline in ICD.  The 

learning model also predicts the reduced dispersion in ICD usage rates across hospitals and the 

correlation between skill and ICD use by similar amounts observed in the data.  

The second three columns report the moments for the conditional mortality rate. In the 

data, we observed a mild decline in the one-year conditional mortality rate from 12.8% to 12.0%. 

Our learning model fully accounts for this reduction in the conditional mortality. Furthermore, 

the cross-sectional distribution of conditional mortality in 2013 and its correlation with true skill 

across hospitals is very similar in the model and in the counterfactual. Thus the evolution of 

physician beliefs about the efficacy of ICDs for this new population of CHF patients can explain 

both the sharp exnovation in the use of ICDs during this period, as well as a more modest decline 

in conditional mortality rates.  

 

5. Discussion and Conclusion 
What drives the diffusion of new technologies?  Research in economics has focused on 

factors primarily related to rates of return, whether because of input prices, differential factor 

productivity, or higher rates of return; the puzzle has often been why so many economic agents 

diffuse so slowly. In this paper, we test for a different determinant of technological diffusion, 

overconfidence, in which an individual’s perception of their own skill and ability causes them to 

step up the use of a new technology, even when true skills fall short of their beliefs. For the case 

of a specific medical technology, implantable defibrillators (ICDs), these behavioral biases 

appear to be important quantitatively and explain otherwise puzzling empirical regularities. 

While we have interpreted the parameter oi, we acknowledge that there are several 

competing interpretations that are isomorphic in the context of our model. For example, it can 

reflect biases in the doctor’s prior about the mean net value of ICD, 𝜇̅𝜇; that is, the physician may 

have strongly-held beliefs about treatment efficacy that are inconsistent with clinical evidence 
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(as in Cutler et al., 2017). Second, it can capture classic supplier-induced demand, in which the 

individual physician in pursuit of monetary profits treats patients beyond the point where they 

might benefit, or other variants of principal-agent models.26  Finally, we have not addressed 

potential demand-side factors – e.g., patient pressures to seek the procedure – that could also lead 

to systematically overusing or underusing the procedure. Thus the parameter oi should be 

broadly interpreted as a “portmanteau” of additional factors that affect physician behavior. The 

behavioral and policy implications of these different interpretations of overconfidence, however, 

are similar, even if the prescribed policy prescriptions are different.27   

Many studies of learning-by-doing find improvements in mortality over time (Gong, 

2017; Jovanovik and Nyarko, 1995; although see Huesch, 2009).  The lack of strong progress in 

mortality that we observe may be explained by the long years of experience many physicians 

already have with implanting ICDs in other types of patients.  Thus the innovation that was 

introduced in 2006 – which, based on the rapid rise prior to 2006, appeared to have been 

anticipated by physicians – is the expansion of the patient population.  It is perhaps less 

surprising then that the learning that we observe in the data was with regard to appropriateness 

for patients, rather than technical skill per se.     

Still, one might expect to see a sharp decline in ICD implantation rates for hospitals with 

the poorest mortality outcomes (as in Chandra et al., 2016). Yet there was little or no way for 

most physicians (or referral physicians) to observe their own skill, and to know whether their 

own risk-adjusted rates were above or below average.  The SCD-HeFT trial could have provided 

a rough guideline for mortality (roughly 8 percent mortality in the first year), but the patient mix 

in the community was substantially older than in randomized trials, so community-level 

physicians had no benchmark against which they could compare outcomes in their patients 

compared to the trial physicians.   

There are several limitations of the study.  One is that we are considering just one 

specific technology that has turned out to perhaps yield less than expected in net benefits.  By 

contrast, Currie, MacLeod, and Van Parys (2015) found that cardiologists who were more 

                                                           
26 For example, one study by Cutler et al. (2017) used survey and vignette data to find that that physician beliefs 
about the effectiveness of technologies with uncertain (or even adverse) clinical effects were the single largest 
predictor of risk-adjusted utilization. 
27 One additional way to generalize the model is to introduce (and estimate) a potential correlation between skill and 
overconfidence; low-skilled physicians may also be overconfident.     
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aggressive than then-current guidelines for percutaneous coronary interventions (PCI) gained 

better results.  One difference between PCIs and ICDs is that the value of PCIs were 

underestimated while the value of ICDs was overestimated.  Which characteristic of new medical 

technology is more common? Some argue that “Scott’s Parabola” of high expectations followed 

by discouraging reports and a decline in use, is a not unreasonable paradigm.  For example, 

Jupiter and Burke (2013) write:  

Artelon® arthroplasty, thermal shrinkage, Vioxx®, metal-on-metal hip 
arthroplasty, and Infuse® bone grafting in the spine—all had come onto the 
“market” with enthusiastic reports only to fall from grace to unhappy outcomes, 
permanent disabilities, and malpractice litigation. (p. 249).  
 

A better understanding of the long-term value of new innovations would be useful, particularly 

given hysteresis in the extent to which existing and ineffective technologies remain in practice 

(Duffy and Farley, 1992).   

A second limitation is that we may not be adjusting adequately for differences across 

regions in the demand for ICDs, so that unmeasured confounding, in which high rates of ICD use 

are correlated with (e.g.) socioeconomic status, which in turn adversely affects mortality 

conditional on risk-adjusters. While preliminary estimates including zip code income did not 

affect our mortality results, we are pursuing additional strategies to test the sensitivity of our 

results to risk-adjustment for utilization rates. One challenge to risk adjustment is to avoid 

measures such as CHF hospitalizations where “risk-adjusters” are themselves reflective of 

practice style (Song et al., 2010; Finkelstein et al., 2017).   

 

How generalizable are ICDs to technology outside of health care?  The result that 

physicians overestimate their skill is certainly consistent with other data from laboratory 

experiments in which hypothetical entrepreneurs are overconfident about their own ability and 

enter into markets or games where failure is likely (Camerer and Lovallo, 1999). And a pattern 

of overconfidence is common across non-physicians, as for example with regard to individual 

assessment of one’s own driving skills (Svenson, 1981). Whether this translates as well into 

more rapid diffusion of new and less-effective technologies is less well-understood, but certainly 

the complexity of the “production process” in involving a large team of health professionals, 

from diagnosis to implementation and subsequent ICD maintenance, is not inconsistent with 
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complex technology in the non-medical sectors of the economy.  Further data and case studies 

are clearly required, but despite these caveats, it would appear that for elderly people with 

congestive heart failure, living in a region where their physicians exhibit less rather than more 

overconfidence is likely to have been good for their health.  
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Schröder, J . H . ,  J. Hugosson, M. J. Roobol, T. L. Tammela, S. Ciatto, V. Nelen, M. 
Kwiatkowski, M. Lujan, H. Lilja, M. Zappa, et al. Prostate-cancer mortality at 11 years of follow-
up. New England J Medicine, 366(11):981–990, 2012. 
Skinner J., and D. Staiger. Technological diffusion from hybrid corn to beta blockers. Hard-to-
Measure Goods and Services: Essays in Honor of Zvi Griliches. University of Chicago Press and 
NBER, 2007. 
Skinner, J., and D. Staiger. Skinner, J., & Staiger, D. Technology diffusion and productivity 
growth in health care. Review of Economics and Statistics, 97(5), 951-964, 2015. 
Song, Y., Skinner, J., Bynum, J., Sutherland, J., Wennberg, J. E., & Fisher, E. S. Regional 
variations in diagnostic practices. New England J Medicine, 363(1), 45-53, 2010. 



31 
 

Suri, T.   Selection and comparative advantage in technology adoption. Econometrica, 
79(1):159–209, 2011. 
Svenson, Ola. "Are we all less risky and more skillful than our fellow drivers?" Acta 
Psychologica, 47(2), pp. 143-48, 1981. 
van Rees, J.B. Implantable cardioverter defibrillators: translating evidence from randomized 
clinical trials to routine clinical practice. PhD thesis, Department Cardiology, Faculty of 
Medicine/Leiden University Medical Center (LUMC), Leiden University, 2014. 
Wennberg, D.E., F. Lucas, J. D. Birkmeyer, C. E. Bredenberg, and E. S. Fisher. Variation in 
carotid endarterectomy mortality in the medicare population: trial hospitals, volume, and patient 
characteristics. JAMA, 279(16):1278–1281, 1998. 
  



32 
 

 
 
Figure 1: Rates of ICD use per 100 Medicare Enrollees for Selected Hospital Referral 
Regions, and the U.S. Average, 2002-13.   
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Figure 2. Implantable Cardioverter Defibrillator (ICD) rates per 100 Medicare enrollees, 
2006. Age-sex-race-adjusted, for the over-65 Medicare Fee-for-service population. 
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Figure 3: Correlation between 2002-05 and 2006-13 ICD Utilization Rates, at the HRR level 
(Rates per 100 Medicare enrollees for all types of ICDs).  

-.3
-.2

-.1
0

.1

-.2 0 .2 .4 .6
Change in ICD Rates per 100, 2002-05

Change in ICD Rates per 100, 2006-13 Fitted values



35 
 

 
 
Figure 4: Distribution of Risk-adjusted Random-Effects 2-Year Mortality by Hospital: 
2006-13 
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Figure 5:  Correlation Between Average ICD Utilization (2006-13) and 2-Year Risk-
adjusted Mortality 
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Figure 6: Estimated Overconfidence Parameter by Region   
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Table 1: Summary Statistics from ICD Registry Data (N = 253, 613) 
 

Variable        Mean 
       Standard     
      Deviation 

2-Year Mortality: 2006-13  0.218 0.413 
  2-Year Mortality: 2006 0.219 0.414 
  2-Year Mortality: 2013 0.216 0.411 
1-Year Mortality: 2006-13 0.123 0.328 
  1-Year Mortality: 2006 0.122 0.328 
  1-Year Mortality: 2012 0.118 0.323 
Fraction Inappropriate 0.098 0.297 
Ejection Fraction (Percentage) 25.766 7.319 
Fraction with EF > 35% 0.034 0.182 
Fraction Class I 0.029 0.169 
Fraction Class IV 0.043 0.202 
Age  74.897 6.248 
Previous cardiac arrest 0.020 0.142 
Family history: Sudden death 0.030 0.171 
Ventricular tacchycardia  0.225 0.418 
Non-ischemic dilated 
cardiomyopathy 0.320 0.467 
Ischemic heart disease 0.696 0.460 
Previous myocardial infarction 0.548 0.498 
Previous CABG 0.395 0.489 
Previous PCI 0.345 0.475 
Electrophysiology study 0.083 0.276 
VT indication (ES study) 0.021 0.143 
Female 0.282 0.450 
Black 0.101 0.301 
Hispanic (Medicare) 0.052 0.222 
Other race 0.025 0.157 
Hispanic ethnicity (Registry) 0.051 0.219 
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Table 2: Regression Coefficients for OLS, Random, and Fixed Effects Models: Two-Year Mortality 
 
  (1) (2) (3) (4) (5) (6) 

VARIABLES OLS OLS 
Random 
Effect 

Random 
Effect 

Fixed 
Effect 

Fixed 
Effect 

          
HRR-level ICD Rate 0.136*** 0.159*** 0.128*** 0.147*** 0.0445 0.071 

 (0.0298) (0.0289) (0.0263) (0.0261) (0.0470) (0.0479) 
Ln(volume)  -0.014***  -0.014***  -0.009*** 

  (0.001)  (0.001)  (0.003) 
HRR-level Rx Rate  -0.110***  -0.115***  -0.091 

  (0.018)  (0.018)  (0.101) 
       

Observations 253,247 252,613 253,247 252,613 253,247 252,613 
R-squared 0.046 0.047     0.057 0.057 
Number of Groups     1,548 1,542     
Note: Covariates included in all regressions – see Appendix Tables A.1 (OLS), A.2 (Random Effects), and 
A.3 (Fixed Effects) for full sets of estimates.  Robust standard errors in parentheses. 
*** p<0.01, ** p<0.05, * p<0.1       
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Table 3: Aggregate Moments from Empirical Data and Model Estimates 

Moments 
 

Data Model 

One-year mortality rate conditional on an ICD 
 0.122 0.113 

Two-year mortality rate conditional on an ICD 
 0.218 0.308 

One-year mortality rate for a candidate not receiving 
an ICD 0.122* 0.122 

Two-year mortality rate for a candidate not 
receiving an  ICD 0.243* 0.243 

Standard deviation of one-year mortality rate 
conditional on ICD across hospitals 0.023 0.02 

Standard deviation of two-year mortality rate 
conditional on ICD across hospitals 0.031 0.036 

Average use of ICDs among candidates for an ICD 
 0.185 0.186 

Standard deviation (risk-adjusted) of the use of ICDs 
across hospitals 0.050 0.044 

Correlation between ICD use and one-year mortality 
rate conditional on ICD use, across hospitals 0.231 0.218 

Correlation between ICD use and two-year mortality 
rate conditional on ICD use, across hospitals 0.204 0.207 

 
Notes: All data from CMS ICD registry merged to claims data, unless otherwise noted.  
* Using the SCD-HeFT trial estimates of survival gain (Bardy et al, 2005) of roughly 2.5 
percentage points at 2 years, 0 at 1 year, subtracted from observed mortality conditional on 
receiving an ICD. 
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Table 4: Calibration, Identification, and Aggregate Parameters 

Parameter   Value 
     

𝜎𝜎𝑤𝑤𝑗𝑗
2   1.06 

 
𝜎𝜎𝑜𝑜𝑖𝑖
2   0.03 

 
𝜎𝜎𝑎𝑎𝑖𝑖
2   0.01 

 
𝜎𝜎εj2   1.05 

     
𝜎𝜎𝜀𝜀𝑗𝑗
2   0.83 

     
𝑜̅𝑜  0.06 

     
𝑣̅𝑣 − 𝑤𝑤� + 𝑎𝑎�   -1.06 
   

 

 

Table 5: Model Estimates of the Mean and Standard Deviation in Risk-adjusted Mortality 
and Utilization Rates 

  

 

  

Data Baseline obar=0 abar=.1 Var (oi)=0 Var(ai)=0

ICD Use 0.185 0.186 0. 163 0.21 0.187 0.186

Conditional 
Mortality 0.122 0.113 0.105 0.097 0.112 0.112

Std(ICD) 0.05 0.044 0.04 0.05 0.0218 0.038

Std(Cond-Mort) 0.023 0.02 0.019 0.018 0.0159 0.0145

Corr( ICD, Cond 
Mortality) 0.23 0.22 0.22 0.21 -0.8465 0.84
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Table 6: Variance Covariance Decomposition of Hospital-Level Parameters 

 

 

 

 

 

 

 

 

Table 7: Regression Estimates from the Learning Model 

 

 
I 

 
II 

    
 

α0 -0.023* 
 

0.0281 

 
(0.0013) 

 
(0.0113) 

    
 

αa 0.471* 
 

0.1953 

 
(0.007) 

 
(0.0067) 

    
N 7776 

 
8359 

R2 0.49   0.23 

    
Note: Standard deviation of estimates in Parenthesis. * Median estimate across hospitals 

 

  

 
ap 

 
a 

 
o 

      
Within Component 0.0181 

 
0.0013 

 
0.0101 

      
Between Component 0.0328 

 
0.0056 

 
0.0225 

      
Total Variance 0.051 

 
0.0068 

 
0.0327 
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Table 8: Predicted Evolution of Overconfidence and Utilization, 2006-13 

                    

   
ICD Use 

 
Conditional Mortality 

          

   
Mean Std 

Correlation 

with ai 
 

Mean Std 

Correlation 

with ai 

          
2006 Data 

 
0.21 0.053 0.94 

 
0.128 0.016 0.65 

          

 
Model 

 
0.21 0.053 0.94 

 
0.129 0.018 0.695 

          
2013 Data 

 
0.142 0.033 0.905 

 
0.1205 0.0152 0.644 

          
  Model   0.142 0.032 0.895   0.1198 0.0174 0.708 
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Appendix 

Expression (4) defines the diffusion of ICD for a doctor/hospital with a given perceived skill. To 
compute the aggregate diffusion of ICDs we just need to compute the expectation of (4) over the 
initial distribution of perceived skills across hospitals. Formally, the diffusion of ICD in 
population is given by  

Pr(𝐼𝐼𝐼𝐼𝐼𝐼) = ∫ 𝑓𝑓𝑎𝑎𝑝𝑝(𝑞𝑞) Pr( 𝐼𝐼𝐼𝐼𝐼𝐼 = 1|𝑞𝑞)𝑑𝑑𝑑𝑑∞
−∞ = ∫ 𝑓𝑓𝑎𝑎𝑝𝑝(𝑞𝑞) �∫ 𝑓𝑓(𝑠𝑠)∞

𝑠̅𝑠(𝑞𝑞) 𝑑𝑑𝑑𝑑� 𝑑𝑑𝑑𝑑∞
−∞   (A.1) 

where 𝑓𝑓𝑎𝑎𝑝𝑝(. ) is the distribution of perceived skill in population. 

Similarly, we can compute the standard deviation of the use of ICD’s across hospitals as  

𝑆𝑆𝑆𝑆𝑆𝑆(𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆�∫ 𝑓𝑓𝑎𝑎𝑝𝑝(𝑞𝑞)(Pr( 𝐼𝐼𝐼𝐼𝐼𝐼 = 1|𝑞𝑞) − Pr(𝐼𝐼𝐼𝐼𝐼𝐼))2𝑑𝑑𝑑𝑑∞
−∞ �   (A.2) 

The mortality rate conditional on ICD implant is    

𝑃𝑃𝑃𝑃�𝑣𝑣𝑗𝑗 + 𝑎𝑎𝑖𝑖 ≤ 𝜅𝜅�𝐼𝐼𝐼𝐼𝐼𝐼 = 1) =
Pr�𝑣𝑣𝑗𝑗 ≤ 𝜅𝜅 − 𝑎𝑎𝑖𝑖 ∩  𝐼𝐼𝐼𝐼𝐼𝐼 = 1�

Pr( 𝐼𝐼𝐼𝐼𝐼𝐼)  

=
∫ 𝑓𝑓𝑎𝑎,𝑎𝑎𝑝𝑝(𝑞𝑞,𝑞𝑞𝑝𝑝)�∫ ∫ 𝑓𝑓𝜀𝜀�𝜀𝜀′�

∞
−∞ 𝑓𝑓𝑤𝑤�𝑤𝑤′�∞

−∞ �∫ 𝑓𝑓𝜇𝜇�𝜇𝜇′�𝑑𝑑
𝜅𝜅−𝑞𝑞
𝑠𝑠�(𝑞𝑞𝑝𝑝)−𝜀𝜀′−𝑤𝑤′ 𝜇𝜇′�𝑑𝑑𝑑𝑑′𝑑𝑑𝑑𝑑′�𝑑𝑑𝑑𝑑𝑑𝑑𝑞𝑞𝑝𝑝∞

−∞

Pr( 𝐼𝐼𝐼𝐼𝐼𝐼)   (A.3) 

where 𝑓𝑓𝑎𝑎,𝑎𝑎𝑝𝑝(. , . ) is the joint distribution of the duple skill, and perceived skill in population. 

The standard deviation of mortality rates across hospitals is computed as  

𝑆𝑆𝑆𝑆𝑆𝑆(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 �∫ 𝑓𝑓𝑎𝑎,𝑎𝑎𝑝𝑝(𝑞𝑞, 𝑞𝑞𝑝𝑝)�𝑃𝑃𝑃𝑃�𝑣𝑣𝑗𝑗 + 𝑎𝑎𝑖𝑖 ≤ 𝜅𝜅�𝐼𝐼𝐼𝐼𝐼𝐼 = 1, 𝑞𝑞𝑝𝑝, 𝑞𝑞)−𝑃𝑃𝑃𝑃�𝑣𝑣𝑗𝑗 + 𝑎𝑎𝑖𝑖 ≤
∞
−∞

𝜅𝜅�𝐼𝐼𝐼𝐼𝐼𝐼 = 1)�
2
𝑑𝑑𝑑𝑑 𝑑𝑑𝑞𝑞𝑝𝑝�          (A.4) 

           

Finally, the correlation between mortality and ICD use across hospitals is computed as 

𝜌𝜌𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖,𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖,𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖)
𝑆𝑆𝑆𝑆𝑆𝑆(𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖)𝑆𝑆𝑆𝑆𝑆𝑆(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖)

       (A.5) 
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Table A.1:  Mortality (One & Two Years) OLS Regression     
  (1) (2) (3) (4) (5) (6) 
VARIABLES death1yr death1yr death1yr death2yr death2yr death2yr 
              
HRR-level ICD Rate 0.116*** 0.153*** 0.127*** 0.136*** 0.195*** 0.159*** 

 (0.0217) (0.0218) (0.0213) (0.0298) (0.0297) (0.0289) 

Ln(volume)  
-

0.00903*** 
-

0.00888***  -0.0142*** -0.0141*** 

  (0.00108) (0.00107)  (0.00139) (0.00138) 
HRR-level Rx Rate   -0.0823***   -0.110*** 

   (0.0141)   (0.0185) 

Ejection Fraction (EF) <20% 
-

0.00344*** 
-

0.00345*** 
-

0.00347*** -0.00443*** -0.00444*** -0.00448*** 
 (0.000382) (0.000381) (0.000381) (0.000472) (0.000470) (0.000470) 

EF 20-25% 
-

0.00460*** 
-

0.00460*** 
-

0.00459*** -0.00546*** -0.00545*** -0.00543*** 
 (0.000406) (0.000406) (0.000406) (0.000503) (0.000502) (0.000503) 

EF 25-30% 
-

0.00223*** 
-

0.00226*** 
-

0.00225*** -0.00388*** -0.00393*** -0.00394*** 
 (0.000355) (0.000355) (0.000357) (0.000451) (0.000450) (0.000452) 

EF 30-35% -0.000754* -0.000747* -0.000748* -0.00111** -0.00110** -0.00108* 

 (0.000413) (0.000412) (0.000413) (0.000557) (0.000554) (0.000554) 
EF > 35% 0.00153*** 0.00152*** 0.00150*** 0.00198*** 0.00196*** 0.00191*** 

 (0.000326) (0.000325) (0.000325) (0.000395) (0.000395) (0.000396) 
EF Missing 0.0219*** 0.0203*** 0.0202*** 0.0312*** 0.0287*** 0.0274*** 

 (0.00725) (0.00727) (0.00730) (0.00976) (0.00976) (0.00970) 
NY Heart Assoc. Class II 0.00266 0.00215 0.00137 0.00621 0.00541 0.00443 

 (0.00342) (0.00339) (0.00338) (0.00486) (0.00479) (0.00478) 
NY Heart Assoc. Class III 0.0478*** 0.0473*** 0.0464*** 0.0711*** 0.0703*** 0.0691*** 

 (0.00346) (0.00341) (0.00340) (0.00487) (0.00477) (0.00478) 
NY Heart Assoc. Class IV 0.154*** 0.152*** 0.151*** 0.191*** 0.188*** 0.187*** 

 (0.00584) (0.00583) (0.00584) (0.00726) (0.00721) (0.00722) 
NY Heart Assoc. Class missing 0.0554*** 0.0526*** 0.0521*** 0.0934*** 0.0889*** 0.0885*** 

 (0.0113) (0.0113) (0.0112) (0.0138) (0.0136) (0.0137) 
Age 70-74 0.0151*** 0.0152*** 0.0154*** 0.0278*** 0.0279*** 0.0279*** 

 (0.00165) (0.00165) (0.00165) (0.00206) (0.00205) (0.00206) 
Age 75-79 0.0365*** 0.0367*** 0.0367*** 0.0647*** 0.0649*** 0.0649*** 

 (0.00181) (0.00181) (0.00181) (0.00227) (0.00226) (0.00227) 
Age 80-84 0.0631*** 0.0632*** 0.0633*** 0.109*** 0.109*** 0.109*** 

 (0.00212) (0.00213) (0.00213) (0.00258) (0.00257) (0.00257) 
Age 85-89 0.102*** 0.102*** 0.101*** 0.175*** 0.175*** 0.174*** 

 (0.00331) (0.00332) (0.00332) (0.00408) (0.00411) (0.00409) 
Age 90+ 0.181*** 0.181*** 0.181*** 0.273*** 0.273*** 0.273*** 

 (0.0107) (0.0107) (0.0107) (0.0124) (0.0124) (0.0124) 
Previous cardiac arrest 0.0586*** 0.0577*** 0.0577*** 0.0590*** 0.0577*** 0.0579*** 

 (0.00552) (0.00552) (0.00553) (0.00633) (0.00634) (0.00636) 
Family history sudden arrest -0.0118*** -0.0121*** -0.0118*** -0.0191*** -0.0196*** -0.0193*** 

 (0.00398) (0.00390) (0.00389) (0.00490) (0.00479) (0.00478) 
Ventricular tacchycardia 0.0444*** 0.0445*** 0.0444*** 0.0566*** 0.0567*** 0.0565*** 

 (0.00194) (0.00194) (0.00194) (0.00230) (0.00230) (0.00231) 
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Non-ischemic dilated cardiomyopathy -0.0219*** -0.0212*** -0.0210*** -0.0319*** -0.0307*** -0.0304*** 

 (0.00247) (0.00247) (0.00247) (0.00316) (0.00316) (0.00316) 
Ischemic heart disease 0.0164*** 0.0169*** 0.0168*** 0.0261*** 0.0270*** 0.0269*** 

 (0.00271) (0.00271) (0.00271) (0.00333) (0.00333) (0.00333) 
Previous myocardial infarction 0.00777*** 0.00811*** 0.00820*** 0.0125*** 0.0130*** 0.0132*** 

 (0.00171) (0.00171) (0.00171) (0.00224) (0.00223) (0.00223) 
Previous CABG 0.00864*** 0.00873*** 0.00851*** 0.0202*** 0.0203*** 0.0202*** 

 (0.00165) (0.00165) (0.00165) (0.00200) (0.00199) (0.00199) 

Previous PCI 
-

0.00980*** 
-

0.00980*** 
-

0.00981*** -0.0125*** -0.0125*** -0.0125*** 
 (0.00163) (0.00163) (0.00163) (0.00198) (0.00198) (0.00199) 

Electrophysiology study -0.0189*** -0.0174*** -0.0179*** -0.0277*** -0.0253*** -0.0257*** 
 (0.00301) (0.00289) (0.00292) (0.00414) (0.00395) (0.00401) 

VT indication (ES study) -0.00564 -0.00472 -0.00497 -0.00700 -0.00555 -0.00590 

 (0.00512) (0.00513) (0.00510) (0.00664) (0.00665) (0.00673) 

Female 
-

0.00729*** 
-

0.00732*** 
-

0.00730*** -0.0166*** -0.0166*** -0.0165*** 

 (0.00148) (0.00148) (0.00148) (0.00186) (0.00187) (0.00187) 
Black 0.0344*** 0.0341*** 0.0336*** 0.0551*** 0.0546*** 0.0541*** 

 (0.00239) (0.00238) (0.00236) (0.00297) (0.00292) (0.00291) 
Hsipanic (Medicare) 0.0126** 0.0116** 0.0123** 0.0185*** 0.0168*** 0.0169*** 

 (0.00507) (0.00506) (0.00506) (0.00646) (0.00647) (0.00647) 
Other race 0.0162*** 0.0151*** 0.0146*** 0.0237*** 0.0220*** 0.0210*** 

 (0.00425) (0.00424) (0.00422) (0.00543) (0.00544) (0.00542) 
Hispanic ethnicity (Registry)  0.00798 0.00642 0.00530 0.00437 0.00191 0.00121 

 (0.00499) (0.00499) (0.00502) (0.00631) (0.00635) (0.00639) 
2007.year 0.00453* 0.00636*** 0.00592** 0.00588* 0.00877*** 0.00799*** 

 (0.00240) (0.00240) (0.00239) (0.00301) (0.00304) (0.00302) 
2008.year 0.0101*** 0.0124*** 0.0117*** 0.00974*** 0.0132*** 0.0122*** 

 (0.00259) (0.00260) (0.00258) (0.00339) (0.00341) (0.00338) 
2009.year 0.00959*** 0.0121*** 0.0111*** 0.0122*** 0.0161*** 0.0147*** 

 (0.00273) (0.00272) (0.00273) (0.00348) (0.00347) (0.00347) 
2010.year 0.0141*** 0.0163*** 0.0151*** 0.00985*** 0.0133*** 0.0115*** 

 (0.00288) (0.00289) (0.00288) (0.00352) (0.00355) (0.00352) 
2011.year 0.0104*** 0.0122*** 0.0106*** 0.0148*** 0.0177*** 0.0153*** 

 (0.00300) (0.00303) (0.00305) (0.00381) (0.00385) (0.00385) 
2012.year 0.0162*** 0.0174*** 0.0155*** 0.0182*** 0.0201*** 0.0173*** 

 (0.00321) (0.00322) (0.00322) (0.00397) (0.00401) (0.00399) 
2013.year 0.0161*** 0.0175*** 0.0154*** 0.0238*** 0.0261*** 0.0231*** 

 (0.00316) (0.00317) (0.00317) (0.00393) (0.00394) (0.00391) 
Constant 0.0874*** 0.118*** 0.175*** 0.151*** 0.199*** 0.276*** 

 (0.00947) (0.00993) (0.0137) (0.0126) (0.0128) (0.0181) 

       
Observations 253,247 253,247 252,613 253,247 253,247 252,613 
R-squared 0.034 0.035 0.035 0.046 0.047 0.047 
Robust standard errors in parentheses       
*** p<0.01, ** p<0.05, * p<0.1       
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Table A2: Mortality (One & Two Years) Random Effects Regression  
  (1) (2) (3) (4) (5) (6) 
VARIABLES death1yr death1yr death1yr death2yr death2yr death2yr 
              
HRR-level ICD Rate 0.108*** 0.139*** 0.120*** 0.128*** 0.176*** 0.147*** 

 (0.0204) (0.0203) (0.0205) (0.0263) (0.0259) (0.0261) 
Ln(volume)  -0.00902*** -0.00890***  -0.0136*** -0.0136*** 

  (0.00102) (0.00102)  (0.00130) (0.00130) 
HRR-level Rx Rate   -0.0843***   -0.115*** 

   (0.0143)   (0.0183) 
Ejection Fraction (EF) <20% -0.00358*** -0.00358*** -0.00359*** -0.00466*** -0.00466*** -0.00468*** 

 (0.000342) (0.000342) (0.000342) (0.000428) (0.000428) (0.000428) 
EF 20-25% -0.00461*** -0.00460*** -0.00459*** -0.00547*** -0.00547*** -0.00545*** 

 (0.000394) (0.000394) (0.000395) (0.000494) (0.000493) (0.000494) 
EF 25-30% -0.00224*** -0.00225*** -0.00224*** -0.00389*** -0.00390*** -0.00390*** 

 (0.000384) (0.000384) (0.000384) (0.000480) (0.000480) (0.000481) 
EF 30-35% -0.000791* -0.000781* -0.000787* -0.00110* -0.00109* -0.00108* 

 (0.000466) (0.000466) (0.000466) (0.000583) (0.000583) (0.000584) 
EF > 35% 0.00152*** 0.00152*** 0.00151*** 0.00199*** 0.00199*** 0.00195*** 

 (0.000294) (0.000294) (0.000295) (0.000368) (0.000368) (0.000369) 
EF Missing 0.0183*** 0.0177** 0.0181*** 0.0265*** 0.0256*** 0.0249*** 

 (0.00694) (0.00694) (0.00696) (0.00869) (0.00869) (0.00872) 
NY Heart Assoc. Class II 0.00207 0.00204 0.00154 0.00537 0.00534 0.00476 

 (0.00394) (0.00394) (0.00394) (0.00493) (0.00493) (0.00494) 
NY Heart Assoc. Class III 0.0474*** 0.0475*** 0.0470*** 0.0707*** 0.0709*** 0.0703*** 

 (0.00387) (0.00387) (0.00387) (0.00485) (0.00484) (0.00485) 
NY Heart Assoc. Class IV 0.154*** 0.153*** 0.152*** 0.189*** 0.189*** 0.188*** 

 (0.00492) (0.00491) (0.00492) (0.00616) (0.00615) (0.00616) 
NY Heart Assoc. Class missing 0.0513*** 0.0500*** 0.0498*** 0.0880*** 0.0861*** 0.0860*** 

 (0.0120) (0.0120) (0.0120) (0.0150) (0.0150) (0.0150) 
Age 70-74 0.0152*** 0.0152*** 0.0154*** 0.0279*** 0.0280*** 0.0279*** 

 (0.00182) (0.00182) (0.00182) (0.00228) (0.00228) (0.00228) 
Age 75-79 0.0365*** 0.0366*** 0.0367*** 0.0647*** 0.0648*** 0.0648*** 

 (0.00183) (0.00183) (0.00184) (0.00230) (0.00230) (0.00230) 
Age 80-84 0.0625*** 0.0626*** 0.0628*** 0.108*** 0.109*** 0.109*** 

 (0.00201) (0.00201) (0.00201) (0.00252) (0.00251) (0.00252) 
Age 85-89 0.0998*** 0.0999*** 0.0999*** 0.172*** 0.172*** 0.172*** 

 (0.00288) (0.00288) (0.00288) (0.00361) (0.00361) (0.00361) 
Age 90+ 0.177*** 0.177*** 0.177*** 0.268*** 0.268*** 0.269*** 

 (0.00783) (0.00783) (0.00783) (0.00980) (0.00980) (0.00981) 
Previous cardiac arrest 0.0570*** 0.0565*** 0.0565*** 0.0567*** 0.0561*** 0.0562*** 

 (0.00456) (0.00456) (0.00456) (0.00571) (0.00571) (0.00571) 
Family history sudden arrest -0.0117*** -0.0117*** -0.0117*** -0.0185*** -0.0185*** -0.0185*** 

 (0.00378) (0.00378) (0.00378) (0.00474) (0.00473) (0.00473) 
Ventricular tacchycardia 0.0444*** 0.0444*** 0.0443*** 0.0567*** 0.0566*** 0.0565*** 

 (0.00161) (0.00160) (0.00161) (0.00201) (0.00201) (0.00201) 
Non-ischemic dilated 
cardiomyopathy -0.0205*** -0.0202*** -0.0201*** -0.0299*** -0.0294*** -0.0293*** 

 (0.00231) (0.00231) (0.00231) (0.00290) (0.00289) (0.00290) 
Ischemic heart disease 0.0169*** 0.0172*** 0.0172*** 0.0269*** 0.0274*** 0.0274*** 
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 (0.00246) (0.00246) (0.00247) (0.00309) (0.00309) (0.00309) 
Previous myocardial infarction 0.00870*** 0.00877*** 0.00882*** 0.0133*** 0.0134*** 0.0135*** 

 (0.00165) (0.00165) (0.00165) (0.00207) (0.00207) (0.00207) 
Previous CABG 0.00870*** 0.00872*** 0.00857*** 0.0203*** 0.0203*** 0.0202*** 

 (0.00156) (0.00156) (0.00156) (0.00195) (0.00195) (0.00196) 
Previous PCI -0.00992*** -0.00991*** -0.00996*** -0.0124*** -0.0124*** -0.0125*** 

 (0.00153) (0.00153) (0.00153) (0.00191) (0.00191) (0.00192) 
Electrophysiology study -0.0190*** -0.0181*** -0.0183*** -0.0268*** -0.0255*** -0.0256*** 

 (0.00277) (0.00277) (0.00277) (0.00347) (0.00347) (0.00347) 
VT indication (ES study) -0.00443 -0.00406 -0.00402 -0.00548 -0.00490 -0.00485 

 (0.00523) (0.00522) (0.00523) (0.00655) (0.00654) (0.00655) 
Female -0.00734*** -0.00734*** -0.00733*** -0.0166*** -0.0166*** -0.0165*** 

 (0.00147) (0.00147) (0.00147) (0.00184) (0.00184) (0.00184) 
Black 0.0298*** 0.0297*** 0.0296*** 0.0492*** 0.0491*** 0.0491*** 

 (0.00226) (0.00225) (0.00226) (0.00283) (0.00283) (0.00283) 
Hsipanic (Medicare) 0.00922* 0.00884* 0.00975* 0.0140** 0.0135** 0.0137** 

 (0.00506) (0.00506) (0.00507) (0.00634) (0.00634) (0.00635) 
Other race 0.0124*** 0.0120*** 0.0118*** 0.0186*** 0.0180*** 0.0175*** 

 (0.00418) (0.00417) (0.00418) (0.00524) (0.00523) (0.00524) 
Hispanic ethnicity (Registry)  0.00442 0.00388 0.00293 8.57e-05 -0.000684 -0.00118 

 (0.00515) (0.00515) (0.00516) (0.00645) (0.00645) (0.00646) 
2007.year 0.00446* 0.00630** 0.00598** 0.00587* 0.00864*** 0.00801*** 

 (0.00247) (0.00248) (0.00248) (0.00309) (0.00310) (0.00311) 
2008.year 0.00975*** 0.0119*** 0.0115*** 0.00920*** 0.0125*** 0.0117*** 

 (0.00255) (0.00256) (0.00257) (0.00320) (0.00321) (0.00322) 
2009.year 0.00904*** 0.0115*** 0.0108*** 0.0115*** 0.0153*** 0.0142*** 

 (0.00257) (0.00258) (0.00258) (0.00322) (0.00323) (0.00324) 
2010.year 0.0129*** 0.0151*** 0.0143*** 0.00810** 0.0115*** 0.0101*** 

 (0.00269) (0.00269) (0.00270) (0.00338) (0.00338) (0.00339) 
2011.year 0.00895*** 0.0106*** 0.00958*** 0.0128*** 0.0154*** 0.0137*** 

 (0.00294) (0.00293) (0.00294) (0.00370) (0.00369) (0.00370) 
2012.year 0.0148*** 0.0159*** 0.0146*** 0.0162*** 0.0179*** 0.0158*** 

 (0.00304) (0.00302) (0.00303) (0.00382) (0.00380) (0.00382) 
2013.year 0.0146*** 0.0160*** 0.0145*** 0.0216*** 0.0237*** 0.0216*** 

 (0.00307) (0.00305) (0.00307) (0.00386) (0.00384) (0.00386) 
Constant 0.0955*** 0.124*** 0.180*** 0.163*** 0.206*** 0.283*** 

 (0.00904) (0.00958) (0.0135) (0.0114) (0.0121) (0.0172) 
Observations 253,247 253,247 252,613 253,247 253,247 252,613 
Groups 1,548 1,548 1,542 1,548 1,548 1,542 
Robust standard errors in 
parentheses       
*** p<0.01, ** p<0.05, * p<0.1       
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Table A.3: Mortality (One & Two Year) OLS Fixed Effects Regression 
  (1) (2) (3) (4) (5) (6) 
VARIABLES death1yr death1yr death1yr death2yr death2yr death2yr 
              
HRR-level ICD Rate 0.0552 0.0720* 0.0734* 0.0445 0.0703 0.0709 

 (0.0368) (0.0374) (0.0376) (0.0470) (0.0475) (0.0479) 
Ln(volume)  -0.00577*** -0.00598***  -0.00890*** -0.00925*** 

  (0.00221) (0.00223)  (0.00277) (0.00280) 
HRR-level Rx Rate   -0.0643   -0.0913 

   (0.0791)   (0.101) 
Ejection Fraction (EF) <20% -0.00368*** -0.00368*** -0.00369*** -0.00482*** -0.00482*** -0.00485*** 

 (0.000380) (0.000380) (0.000381) (0.000470) (0.000470) (0.000471) 
EF 20-25% -0.00457*** -0.00456*** -0.00454*** -0.00542*** -0.00542*** -0.00539*** 

 (0.000408) (0.000408) (0.000408) (0.000503) (0.000503) (0.000504) 
EF 25-30% -0.00224*** -0.00224*** -0.00224*** -0.00387*** -0.00386*** -0.00387*** 

 (0.000356) (0.000356) (0.000357) (0.000452) (0.000452) (0.000453) 
EF 30-35% -0.000750* -0.000750* -0.000763* -0.00104* -0.00104* -0.00103* 

 (0.000412) (0.000412) (0.000412) (0.000551) (0.000551) (0.000552) 
EF > 35% 0.00153*** 0.00153*** 0.00152*** 0.00199*** 0.00199*** 0.00195*** 

 (0.000318) (0.000318) (0.000318) (0.000387) (0.000387) (0.000388) 
EF Missing 0.0156** 0.0155** 0.0162** 0.0241** 0.0240** 0.0239** 

 (0.00773) (0.00772) (0.00779) (0.0102) (0.0102) (0.0102) 
NY Heart Assoc. Class II 0.00201 0.00205 0.00160 0.00541 0.00548 0.00496 

 (0.00348) (0.00348) (0.00349) (0.00494) (0.00494) (0.00495) 
NY Heart Assoc. Class III 0.0477*** 0.0478*** 0.0475*** 0.0713*** 0.0714*** 0.0712*** 

 (0.00351) (0.00351) (0.00352) (0.00494) (0.00494) (0.00495) 
NY Heart Assoc. Class IV 0.154*** 0.154*** 0.153*** 0.189*** 0.189*** 0.189*** 

 (0.00586) (0.00586) (0.00587) (0.00731) (0.00731) (0.00733) 
NY Heart Assoc. Class missing 0.0469*** 0.0468*** 0.0467*** 0.0848*** 0.0847*** 0.0848*** 

 (0.0119) (0.0119) (0.0119) (0.0151) (0.0151) (0.0151) 
Age 70-74 0.0152*** 0.0152*** 0.0153*** 0.0280*** 0.0280*** 0.0278*** 

 (0.00166) (0.00166) (0.00167) (0.00206) (0.00206) (0.00206) 
Age 75-79 0.0365*** 0.0365*** 0.0365*** 0.0646*** 0.0647*** 0.0647*** 

 (0.00182) (0.00182) (0.00183) (0.00228) (0.00228) (0.00228) 
Age 80-84 0.0618*** 0.0618*** 0.0620*** 0.108*** 0.108*** 0.108*** 

 (0.00215) (0.00215) (0.00215) (0.00258) (0.00258) (0.00258) 
Age 85-89 0.0975*** 0.0975*** 0.0976*** 0.170*** 0.170*** 0.170*** 

 (0.00329) (0.00329) (0.00330) (0.00410) (0.00410) (0.00410) 
Age 90+ 0.172*** 0.172*** 0.172*** 0.263*** 0.263*** 0.264*** 

 (0.0107) (0.0107) (0.0107) (0.0125) (0.0125) (0.0125) 
Previous cardiac arrest 0.0549*** 0.0548*** 0.0546*** 0.0542*** 0.0541*** 0.0542*** 

 (0.00553) (0.00553) (0.00553) (0.00634) (0.00634) (0.00635) 
Family history sudden arrest -0.0116*** -0.0116*** -0.0116*** -0.0178*** -0.0178*** -0.0178*** 

 (0.00362) (0.00362) (0.00361) (0.00468) (0.00468) (0.00468) 
Ventricular tacchycardia 0.0441*** 0.0442*** 0.0440*** 0.0564*** 0.0564*** 0.0562*** 

 (0.00193) (0.00193) (0.00193) (0.00229) (0.00229) (0.00230) 
Non-ischemic dialated  -0.0190*** -0.0190*** -0.0190*** -0.0282*** -0.0281*** -0.0280*** 

 (0.00243) (0.00243) (0.00244) (0.00315) (0.00315) (0.00315) 
ischemichd 0.0181*** 0.0181*** 0.0181*** 0.0284*** 0.0285*** 0.0286*** 
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 (0.00264) (0.00264) (0.00265) (0.00330) (0.00330) (0.00331) 
prevmi 0.00920*** 0.00922*** 0.00929*** 0.0135*** 0.0135*** 0.0136*** 

 (0.00172) (0.00172) (0.00172) (0.00222) (0.00222) (0.00222) 
prevcabg 0.00876*** 0.00874*** 0.00864*** 0.0201*** 0.0201*** 0.0201*** 

 (0.00165) (0.00165) (0.00165) (0.00200) (0.00200) (0.00200) 
prevpci -0.00991*** -0.00992*** -0.0100*** -0.0123*** -0.0123*** -0.0124*** 

 (0.00164) (0.00164) (0.00164) (0.00201) (0.00201) (0.00201) 
epstudy -0.0193*** -0.0193*** -0.0193*** -0.0263*** -0.0263*** -0.0261*** 

 (0.00282) (0.00282) (0.00283) (0.00380) (0.00381) (0.00382) 
epsvtind -0.00425 -0.00410 -0.00382 -0.00630 -0.00606 -0.00582 

 (0.00513) (0.00513) (0.00513) (0.00661) (0.00662) (0.00663) 
female -0.00735*** -0.00733*** -0.00732*** -0.0168*** -0.0168*** -0.0167*** 

 (0.00147) (0.00147) (0.00147) (0.00187) (0.00187) (0.00187) 
raceblack 0.0255*** 0.0255*** 0.0257*** 0.0444*** 0.0444*** 0.0448*** 

 (0.00232) (0.00232) (0.00232) (0.00293) (0.00293) (0.00293) 
racehisp 0.00489 0.00492 0.00596 0.00951 0.00954 0.00996 

 (0.00511) (0.00511) (0.00512) (0.00646) (0.00646) (0.00648) 
raceother 0.00780* 0.00776* 0.00784* 0.0138** 0.0137** 0.0136** 

 (0.00426) (0.00425) (0.00427) (0.00554) (0.00553) (0.00553) 
hispethnicity 0.000518 0.000507 -0.000397 -0.00397 -0.00398 -0.00436 

 (0.00500) (0.00500) (0.00500) (0.00629) (0.00629) (0.00630) 
2007.year 0.00373 0.00484* 0.00495* 0.00462 0.00634** 0.00634** 

 (0.00250) (0.00253) (0.00254) (0.00308) (0.00314) (0.00314) 
2008.year 0.00832*** 0.00962*** 0.00976*** 0.00692** 0.00893** 0.00902** 

 (0.00269) (0.00274) (0.00275) (0.00350) (0.00358) (0.00359) 
2009.year 0.00702** 0.00852*** 0.00849*** 0.00875** 0.0111*** 0.0110*** 

 (0.00280) (0.00287) (0.00287) (0.00355) (0.00362) (0.00364) 
2010.year 0.00997*** 0.0113*** 0.0114*** 0.00348 0.00557 0.00553 

 (0.00310) (0.00316) (0.00315) (0.00382) (0.00386) (0.00386) 
2011.year 0.00473 0.00569 0.00607* 0.00605 0.00753* 0.00790* 

 (0.00352) (0.00354) (0.00354) (0.00455) (0.00457) (0.00458) 
2012.year 0.0102*** 0.0109*** 0.0109*** 0.00873* 0.00979** 0.00963** 

 (0.00383) (0.00384) (0.00385) (0.00483) (0.00483) (0.00485) 
2013.year 0.0100*** 0.0108*** 0.0110*** 0.0139*** 0.0152*** 0.0153*** 

 (0.00388) (0.00388) (0.00389) (0.00481) (0.00481) (0.00483) 
Constant 0.106*** 0.127*** 0.168*** 0.180*** 0.212*** 0.270*** 

 (0.0115) (0.0139) (0.0517) (0.0147) (0.0178) (0.0659) 

       
Observations 253,247 253,247 252,613 253,247 253,247 252,613 
R-squared 0.045 0.045 0.045 0.057 0.057 0.057 
Robust standard errors in parentheses      
*** p<0.01, ** p<0.05, * p<0.1       

 




