The Distributional Consequences of Government Spending

Santanu Chatterjee
University of Georgia

Stephen J. Turnovsky
University of Washington
Government provision of public goods: mechanism to redistribute wealth across society
Background

- Government provision of public goods: mechanism to redistribute wealth across society
- Massive increase in public infrastructure spending in countries like China and India to sustain growth rates of the last decade

What effect might these pro-growth policies have on the distributions of wealth, income, and welfare? This is an important policy question: Inequality has been rising in both OECD and non-OECD countries (Atkinson, 2003, Smeeding, 2002). Reducing inequality may be a social objective for the government (Anand and Segal, 2008).
Government provision of public goods: mechanism to redistribute wealth across society

Massive increase in public infrastructure spending in countries like China and India to sustain growth rates of the last decade

What effect might these pro-growth policies have on the distributions of wealth, income, and welfare?
Government provision of public goods: mechanism to redistribute wealth across society

Massive increase in public infrastructure spending in countries like China and India to sustain growth rates of the last decade

What effect might these pro-growth policies have on the distributions of wealth, income, and welfare?

This is an important policy question:
Government provision of public goods: mechanism to redistribute wealth across society

Massive increase in public infrastructure spending in countries like China and India to sustain growth rates of the last decade

What effect might these pro-growth policies have on the distributions of wealth, income, and welfare?

This is an important policy question:

- Inequality has been rising in both OECD and non-OECD countries (Atkinson, 2003, Smeeding, 2002)
Government provision of public goods: mechanism to redistribute wealth across society

Massive increase in public infrastructure spending in countries like China and India to sustain growth rates of the last decade

What effect might these pro-growth policies have on the distributions of wealth, income, and welfare?

This is an important policy question:

- Inequality has been rising in both OECD and non-OECD countries (Atkinson, 2003, Smeeding, 2002)
- Reducing inequality may be a social objective for the government (Anand and Segal, 2008)
Consensus: Government spending on infrastructure (public capital) leads to significant productivity and growth benefits.
Consensus: Government spending on infrastructure (public capital) leads to significant productivity and growth benefits

Link between public goods and inequality is ambiguous

Growth and inequality are both endogenous outcomes in the development process

Focus on underlying factors that drive both these processes

Need for an underlying mechanism that relates public policy, growth, and inequality
Consensus: Government spending on infrastructure (public capital) leads to significant productivity and growth benefits

- Link between public goods and inequality is ambiguous
Consensus: Government spending on infrastructure (public capital) leads to significant productivity and growth benefits

Link between public goods and inequality is ambiguous

Consensus: Government spending on infrastructure (public capital) leads to significant productivity and growth benefits

Link between public goods and inequality is ambiguous

Growth and inequality are both endogenous outcomes in the development process
Consensus: Government spending on infrastructure (public capital) leads to significant productivity and growth benefits

Link between public goods and inequality is ambiguous

Growth and inequality are both endogenous outcomes in the development process

- Focus on underlying factors that drive both these processes
Consensus: Government spending on infrastructure (public capital) leads to significant productivity and growth benefits

Link between public goods and inequality is ambiguous

Growth and inequality are both endogenous outcomes in the development process

- Focus on underlying factors that drive both these processes
- Need for an underlying mechanism that relates public policy, growth, and inequality
Objectives and Contributions

- Synthesizes two independent strands of research into a unified framework:

 - Growth-Inequality literature has not dealt with issues related to public investment and its financing.
 - Public investment-Growth literature has generally ignored distributional questions.
Objectives and Contributions

- Synthesizes two independent strands of research into a unified framework:
 - **Growth-Inequality literature** has not dealt with issues related to public investment and its financing.
Objectives and Contributions

- Synthesizes two independent strands of research into a unified framework:
 - **Growth-Inequality literature** has not dealt with issues related to public investment and its financing
 - **Public investment-Growth literature** has generally ignored distributional questions
The "representative consumer" assumption does not rule out heterogeneity (Gorman, 1953)
The "representative consumer" assumption does not rule out heterogeneity (Gorman, 1953). Under relatively mild conditions, the behavior of the "mean" agent in a heterogeneous agent economy is identical to that of a representative consumer.
The "representative consumer" assumption does not rule out heterogeneity (Gorman, 1953)

Under relatively mild conditions, the behavior of the "mean" agent in a heterogeneous agent economy is *identical* to that of a *representative* consumer

One can then study the evolution of a cross-section of consumers *relative* to the mean
The "representative consumer" assumption does not rule out heterogeneity (Gorman, 1953).

Under relatively mild conditions, the behavior of the "mean" agent in a heterogeneous agent economy is identical to that of a representative consumer.

One can then study the evolution of a cross-section of consumers relative to the mean.

Source of heterogeneity: initial distribution of private capital (wealth) (Atkinson 2003, Checchi and Garcia-Penalosa 2010)
The Analytical Framework

- Labor-leisure choice is endogenous
The Analytical Framework

- Labor-leisure choice is endogenous
- Initial distribution of private capital \implies equilibrium distribution of labor supply \implies distribution of income and welfare
The Analytical Framework

- Labor-leisure choice is endogenous
- Initial distribution of private capital \rightarrow equilibrium distribution of labor supply \rightarrow distribution of income and welfare
- Government-provided public capital:
The Analytical Framework

- Labor-leisure choice is endogenous
- Initial distribution of private capital \implies equilibrium distribution of labor supply \implies distribution of income and welfare
- Government-provided public capital:
 - non-rival and non-excludable (pure public good)
The Analytical Framework

- Labor-leisure choice is endogenous
- Initial distribution of private capital \(\rightarrow \) equilibrium distribution of labor supply \(\rightarrow \) distribution of income and welfare
- Government-provided public capital:
 - non-rival and non-excludable (pure public good)
 - Interacts with private capital to generate composite externalities for both labor (in production) and leisure (in utility)
The Analytical Framework

- Labor-leisure choice is endogenous
- Initial distribution of private capital \to equilibrium distribution of labor supply \to distribution of income and welfare
- Government-provided public capital:
 - non-rival and non-excludable (*pure* public good)
 - Interacts with private capital to generate *composite* externalities for *both* labor (in production) and leisure (in utility)
 - financed by a range of distortionary taxes (on capital, labor, or consumption) or debt/lumpsum taxes
The Analytical Framework

- Labor-leisure choice is endogenous
- Initial distribution of private capital \rightarrow equilibrium distribution of labor supply \rightarrow distribution of income and welfare
- Government-provided public capital:
 - non-rival and non-excludable (pure public good)
 - Interacts with private capital to generate composite externalities for both labor (in production) and leisure (in utility)
 - financed by a range of distortionary taxes (on capital, labor, or consumption) or debt/lumpsum taxes
 - a determinant of growth and distributional dynamics: affects relative factor returns
Firms (indexed by j) are all identical and use the following CES production technology

$$Y_j = A \left[\alpha (X_P L_j)^{-\rho} + (1 - \alpha) K_j^{-\rho} \right]^{-1/\rho}$$
Firms (indexed by j) are all identical and use the following CES production technology

$$Y_j = A \left[\alpha (X_P L_j)^{-\rho} + (1 - \alpha) K_j^{-\rho} \right]^{-1/\rho}$$

- L_j: employment of labor by firm j
Firms (indexed by j) are all identical and use the following CES production technology

$$Y_j = A \left[\alpha (X_P L_j)^{-\rho} + (1 - \alpha) K_j^{-\rho} \right]^{-1/\rho}$$

- L_j: employment of labor by firm j
- K_j: employment of private capital by firm j
Firms (indexed by j) are all identical and use the following CES production technology:

$$Y_j = A \left[\alpha (X_P L_j)^{-\rho} + (1 - \alpha) K_j^{-\rho} \right]^{-1/\rho}$$

- L_j: employment of labor by firm j
- K_j: employment of private capital by firm j
- $X_P = K^\varepsilon K_G^{1-\varepsilon}$: composite "public-private" externality ($0 \leq \varepsilon \leq 1$)
Firms (indexed by j) are all identical and use the following CES production technology

$$Y_j = A \left[\alpha (X_P L_j)^{-\rho} + (1 - \alpha) K_j^{-\rho} \right]^{-1/\rho}$$

- L_j : employment of labor by firm j
- K_j : employment of private capital by firm j
- $X_P = K^\varepsilon K_G^{1-\varepsilon}$: composite "public-private" externality ($0 \leq \varepsilon \leq 1$)
- K : aggregate stock of private capital-amalgam of physical and human capital, as in Romer (1986)
Firms (indexed by \(j \)) are all identical and use the following CES production technology

\[
Y_j = A \left[\alpha (X_P L_j)^{-\rho} + (1 - \alpha) K_j^{-\rho} \right]^{-1/\rho}
\]

- \(L_j \): employment of labor by firm \(j \)
- \(K_j \): employment of private capital by firm \(j \)
- \(X_P = K^\varepsilon K_G^{1-\varepsilon} \): composite "public-private" externality (\(0 \leq \varepsilon \leq 1 \))
 - \(K \): aggregate stock of private capital-amalgam of physical and human capital, as in Romer (1986)
 - \(K_G \): aggregate stock of public capital (infrastructure), provided by the government
Firms (indexed by j) are all identical and use the following CES production technology

$$Y_j = A \left[\alpha (X_P L_j)^{-\rho} + (1 - \alpha) K_j^{-\rho} \right]^{-1/\rho}$$

- L_j: employment of labor by firm j
- K_j: employment of private capital by firm j
- $X_P = K^\varepsilon K_G^{1-\varepsilon}$: composite "public-private" externality ($0 \leq \varepsilon \leq 1$)
 - K: aggregate stock of private capital-amalgam of physical and human capital, as in Romer (1986)
 - K_G: aggregate stock of public capital (infrastructure), provided by the government
- $s = 1/(1 + \rho)$: elasticity of substitution between private capital and "effective" labor in production
Since all firms are identical, the production function pins down the economy-wide average real wage and return on capital:

\[
w = \omega(z, l) K, \quad \omega(z, l) = \alpha A^{-\rho} \left[\frac{y(z, l)}{1 - l} \right]^{1+\rho} z^{-\rho(1-\varepsilon)}
\]

\[
r = r(z, l) \equiv (1 - \alpha) A^{-\rho} y(z, l)^{1+\rho}
\]
Since all firms are identical, the production function pins down the economy-wide average real wage and return on capital:

\[w = \omega(z, l)K, \quad \omega(z, l) = \alpha A^{-\rho} \left[\frac{y(z, l)}{1 - l} \right]^{1+\rho} z^{-\rho(1-\varepsilon)} \]

\[r = r(z, l) \equiv (1 - \alpha)A^{-\rho}y(z, l)^{1+\rho} \]

- \(z = K_G/K \): economy-wide ratio of public to private capital
Since all firms are identical, the production function pins down the economy-wide average real wage and return on capital:

\[w = \omega(z, l) \frac{y(z, l)}{1 - l} \]

\[\omega(z, l) = \alpha A^{-\rho} \left[\frac{y(z, l)}{1 - l} \right]^{1+\rho} z^{-\rho(1-\varepsilon)} \]

\[r = r(z, l) \equiv (1 - \alpha) A^{-\rho} y(z, l)^{1+\rho} \]

- \(z = K_G / K \): economy-wide ratio of public to private capital
- \(L = 1 - l \): average employment of labor
Since all firms are identical, the production function pins down the economy-wide average real wage and return on capital:

\[w = \omega(z, l) K, \quad \omega(z, l) = \alpha A^{-\rho} \left(\frac{y(z, l)}{1 - l} \right)^{1+\rho} z^{-\rho(1-\varepsilon)} \]

\[r = r(z, l) \equiv (1 - \alpha) A^{-\rho} y(z, l)^{1+\rho} \]

- \(z = K_G / K \): economy-wide ratio of public to private capital
- \(L = 1 - l \): average employment of labor
- \(y(z, l) = A \left[\alpha \left\{ (1 - l) z^{1-\varepsilon} \right\}^{-\rho} + (1 - \alpha) \right]^{-1/\rho} \): average product of private capital (output-capital ratio)
The Model

Consumers

- Continuum of infinitely-lived consumers, indexed by i
The Model
Consumers

- Continuum of infinitely-lived consumers, indexed by i
- Identical in all respects, except for initial endowment of private capital (wealth), $K_{i,0}$
The Model
Consumers

- Continuum of infinitely-lived consumers, indexed by i
- Identical in all respects, except for initial endowment of private capital (wealth), $K_{i,0}$
- The i-th consumer's (cross section's) resource allocation problem:

 $$
 \text{Maximize } U_i = \int_0^{\infty} \frac{1}{\gamma} \left[C_i^{-\upsilon} + \theta (X_U l_i)^{-\upsilon} \right]^{-\gamma/\upsilon} e^{-\beta t} dt
 $$

subject to

 $$
 \dot{K}_i = (1 - \tau_k) rK_i + (1 - \tau_w) w(1 - l_i) - (1 + \tau_c) C_i - T
 $$

 $$
 K_i(0) = K_{i,0}, \quad K_{i,0} \neq K_{m,0}
 $$
The Model
Consumers

- Continuum of infinitely-lived consumers, indexed by i
- Identical in all respects, except for initial endowment of private capital (wealth), $K_i, 0$
- The i-th consumer’s (cross section’s) resource allocation problem:

$$\text{Maximize } U_i = \int_0^\infty \frac{1}{\gamma} \left[C_i^{-\nu} + \theta (X_U l_i)^{-\nu} \right]^{-\gamma/\nu} e^{-\beta t} \, dt$$

subject to

$$\dot{K}_i = (1 - \tau_k) rK_i + (1 - \tau_w) w (1 - l_i) - (1 + \tau_c) C_i - T$$

$$K_i(0) = K_{i,0}, \quad K_{i,0} \neq K_{m,0}$$

- $X_U = K^K 1 - \varphi : \text{composite "public-private" externality (creates units of "effective" leisure), } 0 \leq \varphi \leq 1$
The Model
Consumers

- Continuum of infinitely-lived consumers, indexed by \(i \)
- Identical in all respects, **except** for initial endowment of private capital (wealth), \(K_{i,0} \)
- The \(i \)-th consumer’s (cross section’s) resource allocation problem:

\[
\text{Maximize } U_i = \int_0^\infty \frac{1}{\gamma} \left[C_i^{-\nu} + \theta (X_U l_i)^{-\nu} \right]^{-\gamma/\nu} e^{-\beta t} dt
\]

subject to

\[
\dot{K}_i = (1 - \tau_k) r K_i + (1 - \tau_w) w (1 - l_i) - (1 + \tau_c) C_i - T
\]

\[
K_i(0) = K_{i,0}, \quad K_{i,0} \neq K_{m,0}
\]

- \(X_U = K^\varphi K_G^{1-\varphi} \): composite "public-private" externality (creates units of "effective" leisure), \(0 \leq \varphi \leq 1 \)
- \(q = 1/(1 + \nu) \): intratemporal elasticity of substitution between consumption and effective leisure
Provides the aggregate stock of public capital (e.g. infrastructure), whose evolution is given by

\[\dot{K}_g = G = gY, \quad 0 < g < 1 \]
Government

- Provides the aggregate stock of public capital (e.g. infrastructure), whose evolution is given by
 \[\dot{K}_g = G = gY, \quad 0 < g < 1 \]

- Maintains a balanced budget
 \[G = \tau_k rK + \tau_w w(1 - l) + \tau_c C + T \]
Government

- Provides the aggregate stock of public capital (e.g. infrastructure), whose evolution is given by

\[
\dot{K}_g = G = gY, \quad 0 < g < 1
\]

- Maintains a balanced budget

\[
G = \tau_k rK + \tau_w w(1 - I) + \tau_c C + T
\]

- Lumpsum tax revenues, \(T \), is a fraction of aggregate GDP:

\[
T = \tau Y, \quad 0 < \tau < 1
\]
Due to the Gorman (1953) properties, the aggregate equilibrium is *independent* of distributional characteristics:

\[
\frac{\dot{z}}{z} = g \frac{y(z, l)}{z} - [(1 - g)y(z, l) - \Omega(z, l)l]
\]

\[
\frac{\dot{l}}{l} = \frac{H(z, l)}{J(z, l)}
\]
Due to the Gorman (1953) properties, the aggregate equilibrium is independent of distributional characteristics:

\[\frac{\dot{z}}{z} = g \frac{y(z, l)}{z} - [(1 - g)y(z, l) - \Omega(z, l)l] \]

\[\frac{\dot{l}}{l} = \frac{H(z, l)}{J(z, l)} \]

Evolution of the aggregate economy represents the behavior of averages:

\[z(t) = \bar{z} + (z_0 - \bar{z})e^{\mu t} \]

\[l(t) = \bar{l} + \frac{(\mu - a_{11})}{a_{12}}[z(t) - \bar{z}] \]
Aggregate Equilibrium Dynamics

- Due to the Gorman (1953) properties, the aggregate equilibrium is *independent* of distributional characteristics:

\[
\frac{\dot{z}}{z} = g \frac{y(z, l)}{z} - [(1 - g)y(z, l) - \Omega(z, l)l] \\
\frac{\dot{l}}{l} = \frac{H(z, l)}{J(z, l)}
\]

- Evolution of the aggregate economy represents the behavior of averages:

\[
z(t) = \bar{z} + (z_0 - \bar{z})e^{\mu t} \\
\bar{l} + \frac{(\mu - a_{11})}{a_{12}}[z(t) - \bar{z}]
\]

- \(\mu\) is the stable eigenvalue of the dynamic system, and \(a_{ij}\) are linearized coefficients.
Aggregate Equilibrium Dynamics

- Due to the Gorman (1953) properties, the aggregate equilibrium is *independent* of distributional characteristics:
 \[
 \frac{\dot{z}}{z} = g \frac{y(z, l)}{z} - [(1 - g)y(z, l) - \Omega(z, l)l]
 \]
 \[
 \frac{\dot{l}}{l} = \frac{H(z, l)}{J(z, l)}
 \]

- Evolution of the aggregate economy represents the behavior of averages:
 \[
 z(t) = \tilde{z} + (z_0 - \tilde{z})e^{\mu t}
 \]
 \[
 l(t) = \tilde{l} + \frac{(\mu - a_{11})}{a_{12}}[z(t) - \tilde{z}]
 \]

- μ is the stable eigenvalue of the dynamic system, and a_{ij} are linearized coefficients

- Convergence to a balanced growth path in the steady-state
Relative capital/wealth is defined as $k_i = K_i / K$
Relative capital/wealth is defined as $k_i = K_i / K$

Evolution of relative wealth:

$$k_i(t) - 1 = \left[1 + \frac{\delta_1(\tilde{z}, \tilde{l})}{\mu - \delta_2(\tilde{z}, \tilde{l})} (z_0 - \tilde{z}) e^{\mu t} \right] (\tilde{k}_i - 1)$$
Relative capital/wealth is defined as $k_i = K_i / K$

Evolution of relative wealth:

$$k_i(t) - 1 = \left[1 + \frac{\delta_1(\tilde{z}, \tilde{l})}{\mu - \delta_2(\tilde{z}, \tilde{l})} (z_0 - \tilde{z}) e^{\mu t} \right] (\tilde{k}_i - 1)$$

Steady-state relationship between relative wealth and leisure:

$$\tilde{l}_i - \tilde{l} = \left[\tilde{l} - \frac{\Delta(\tilde{z}, \tilde{l})}{\Gamma(\tilde{z}, \tilde{l})} \right] (\tilde{k}_i - 1)$$
Relative capital/wealth is defined as $k_i = K_i / K$

Evolution of relative wealth:

$$k_i(t) - 1 = \left[1 + \frac{\delta_1(\tilde{z}, \tilde{l})}{\mu - \delta_2(\tilde{z}, \tilde{l})} (z_0 - \tilde{z}) e^{\mu t} \right] (\tilde{k}_i - 1)$$

Steady-state relationship between relative wealth and leisure:

$$\tilde{l}_i - \tilde{l} = \left[\tilde{l} - \frac{\Delta(\tilde{z}, \tilde{l})}{\Gamma(\tilde{z}, \tilde{l})} \right] (\tilde{k}_i - 1) +$$

Agents with above average wealth consume above average leisure (Holtz-Eakin et al., 1993, Algan et al., 2003)
Relative capital/wealth is defined as $k_i = K_i / K$

Evolution of relative wealth:

$$k_i(t) - 1 = \left[1 + \frac{\delta_1(\bar{z}, \bar{l})}{\mu - \delta_2(\bar{z}, \bar{l})} (z_0 - \bar{z}) e^{\mu t} \right] (\bar{k}_i - 1)$$

Steady-state relationship between relative wealth and leisure:

$$\bar{l}_i - \bar{l} = \left[\bar{l} - \frac{\Delta(\bar{z}, \bar{l})}{\Gamma(\bar{z}, \bar{l})} \right] (\bar{k}_i - 1)$$

Agents with above average wealth consume above average leisure (Holtz-Eakin et al., 1993, Algan et al., 2003)

Dispersion of relative wealth:

$$\sigma_{k}(t) = \frac{\sigma_{k,0}}{\left[1 + \frac{\delta_1(\bar{z}, \bar{l})}{\mu - \delta_2(\bar{z}, \bar{l})} \{z(t) - \bar{z}\} \right]}$$
Distributional Dynamics: Income

- Relative income: \(y_i = \frac{Y_i}{Y} \)
Relative income: $y_i = Y_i / Y$

Dispersion of pre-tax relative income:

$$\sigma_y(t) = \zeta(t)\sigma_k(t)$$
Relative income: \(y_i = \frac{Y_i}{Y} \)

- Dispersion of **pre-tax** relative income:
 \[
 \sigma_y(t) = \zeta(t)\sigma_k(t)
 \]

- Dispersion of **post-tax** relative income:
 \[
 \sigma_{y}^N(t) = \left[\zeta(t) + \frac{s_k(t)(\tau_w - \tau_k)(1 - \zeta(t))}{(1 - \tau_w)(1 - s_k(t)) + (1 - \tau_k)s_k(t)} \right] \sigma_k(t)
 \]
Distributional Dynamics: Income

- Relative income: \(y_i = \frac{Y_i}{Y} \)

 - Dispersion of **pre-tax** relative income:
 \[
 \sigma_y(t) = \zeta(t) \sigma_k(t)
 \]

 - Dispersion of **post-tax** relative income:
 \[
 \sigma^N_y(t) = \left[\zeta(t) + \frac{s_k(t)(\tau_w - \tau_k)(1 - \zeta(t))}{(1 - \tau_w)(1 - s_k(t)) + (1 - \tau_k)s_k(t)} \right] \sigma_k(t)
 \]

- \(s_k(t) \): share of capital in total income
Relative income: \(y_i = Y_i / Y \)

Dispersion of **pre-tax** relative income:

\[
\sigma_y(t) = \zeta(t) \sigma_k(t)
\]

Dispersion of **post-tax** relative income:

\[
\sigma^N_y(t) = \left[\zeta(t) + \frac{s_k(t)(\tau_w - \tau_k)(1 - \zeta(t))}{(1 - \tau_w)(1 - s_k(t)) + (1 - \tau_k)s_k(t)} \right] \sigma_k(t)
\]

- \(s_k(t) \): share of capital in total income
- \(\zeta(t) = \)

\[
s_k(t) - [1 - s_k(t)] \frac{l(t)}{1 - l(t)} \left[1 - \frac{\Delta(\tilde{z},\tilde{l})}{\Gamma(\tilde{z},\tilde{l})} \right] \left[1 + \frac{\delta_1(\tilde{z},\tilde{l})}{\mu - \delta_2(\tilde{z},\tilde{l})} \{ z(t) - \tilde{z} \} \right]^{-1}
\]
Relative welfare:

\[
\frac{U_i}{U} = \left[1 + \left(1 - \frac{\Delta(\tilde{z}, \tilde{l})}{\Gamma(\tilde{z}, \tilde{l})} \right) (\tilde{k}_i - 1) \right]^\gamma
\]
Relative welfare:

$$\frac{U_i}{U} = \left[1 + \left(1 - \frac{\Delta(\tilde{z}, \tilde{l})}{\Gamma(\tilde{z}, \tilde{l})} \right) (\tilde{k}_i - 1) \right]^\gamma$$

Dispersion of relative welfare

$$\sigma_u = \left[1 - \frac{\Delta(\tilde{z}, \tilde{l})}{\Gamma(\tilde{z}, \tilde{l})} \right] \tilde{\sigma}_k$$
Increase in government spending on public capital, financed by an increase in
Increase in government spending on public capital, financed by an increase in
- lumpsum tax (or debt)
Increase in government spending on public capital, financed by an increase in:
- lumpsum tax (or debt)
- capital income tax
Increase in government spending on public capital, financed by an increase in
- lumpsum tax (or debt)
- capital income tax
- labor income tax
Increase in government spending on public capital, financed by an increase in

- lumpsum tax (or debt)
- capital income tax
- labor income tax
- consumption tax
Increase in government spending on public capital, financed by an increase in

- lumpsum tax (or debt)
- capital income tax
- labor income tax
- consumption tax

Effects on the distributional dynamics of wealth and income
• **Increase in government spending on public capital**, financed by an increase in
 - lumpsum tax (or debt)
 - capital income tax
 - labor income tax
 - consumption tax

• Effects on the distributional dynamics of wealth and income

• **Nature of the growth-income inequality relationship along the transition path**
Increase in government spending on public capital, financed by an increase in
- lumpsum tax (or debt)
- capital income tax
- labor income tax
- consumption tax

Effects on the distributional dynamics of wealth and income
Nature of the growth-income inequality relationship along the transition path
Relationship between average welfare and its dispersion
Increase in government spending on public capital, financed by an increase in:
- lumpsum tax (or debt)
- capital income tax
- labor income tax
- consumption tax

Effects on the distributional dynamics of wealth and income
Nature of the growth-income inequality relationship along the transition path
Relationship between average welfare and its dispersion
Robustness check:
Increase in government spending on public capital, financed by an increase in
- lumpsum tax (or debt)
- capital income tax
- labor income tax
- consumption tax

Effects on the distributional dynamics of wealth and income
Nature of the growth-income inequality relationship along the transition path
Relationship between average welfare and its dispersion
Robustness check:
- spillover effect (externality) of government spending
Increase in government spending on public capital, financed by an increase in:
- lumpsum tax (or debt)
- capital income tax
- labor income tax
- consumption tax

Effects on the distributional dynamics of wealth and income

Nature of the growth-income inequality relationship along the transition path

Relationship between average welfare and its dispersion

Robustness check:
- spillover effect (externality) of government spending
- intratemporal elasticity of substitution between
• **Increase in government spending on public capital**, financed by an increase in
 • lumpsum tax (or debt)
 • capital income tax
 • labor income tax
 • consumption tax

• Effects on the distributional dynamics of wealth and income

• Nature of the growth-income inequality relationship along the transition path

• Relationship between average welfare and its dispersion

• Robustness check:
 • spillover effect (externality) of government spending
 • intratemporal elasticity of substitution between
 • private capital and labor in production
Increase in government spending on public capital, financed by an increase in
- lumpsum tax (or debt)
- capital income tax
- labor income tax
- consumption tax

Effects on the distributional dynamics of wealth and income
Nature of the growth-income inequality relationship along the transition path
Relationship between average welfare and its dispersion
Robustness check:
- spillover effect (externality) of government spending
- intratemporal elasticity of substitution between
 - private capital and labor in production
 - consumption and leisure in utility
Benchmark Specification of Structural Parameters

<table>
<thead>
<tr>
<th>Preferences</th>
<th>$\beta = 0.04$, $\gamma = -1.5$, $\theta = 1.75$, $\nu = 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Production</td>
<td>$A = 0.6$, $\alpha = 0.6$, $\rho = 0$</td>
</tr>
<tr>
<td>Externalities</td>
<td>$\varepsilon = \varphi = 0.6$</td>
</tr>
<tr>
<td>Fiscal</td>
<td>$g = 0.05$, $\tau = 0.05$, $\tau_k = \tau_w = \tau_c = 0$</td>
</tr>
</tbody>
</table>

- **Benchmark**: Cobb-Douglas production and utility functions
Benchmark Equilibrium and Aggregate Steady-State Effects

- Benchmark equilibrium:
Benchmark Equilibrium and Aggregate Steady-State Effects

Benchmark equilibrium:

<table>
<thead>
<tr>
<th>Financing Policy</th>
<th>ź</th>
<th>Ŷ</th>
<th>ŷ</th>
<th>ñ(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lump-sum tax financing, (\tau = 0.05)</td>
<td>0.531</td>
<td>0.714</td>
<td>0.243</td>
<td>2.29</td>
</tr>
</tbody>
</table>
Benchmark Equilibrium and Aggregate Steady-State Effects

- Benchmark equilibrium:

<table>
<thead>
<tr>
<th>Financing Policy</th>
<th>\tilde{z}</th>
<th>\tilde{l}</th>
<th>\tilde{y}</th>
<th>$\tilde{\psi}(%)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lump-sum tax financing, $\tau = 0.05$</td>
<td>0.531</td>
<td>0.714</td>
<td>0.243</td>
<td>2.29</td>
</tr>
</tbody>
</table>

- An increase in government spending from 5% to 8% of GDP ($dg = 0.03$)
Benchmark Equilibrium and Aggregate Steady-State Effects

- Benchmark equilibrium:

 | Financing Policy | \(\tilde{z} \) | \(\tilde{l} \) | \(\tilde{y} \) | \(\tilde{\psi}(\%) \) |
 |------------------|----------------|----------------|----------------|
 | Lump-sum tax financing, \(\tau = 0.05 \) | 0.531 | 0.714 | 0.243 | 2.29 |

- An increase in government spending from 5% to 8% of GDP (\(dg = 0.03 \))

<table>
<thead>
<tr>
<th>Policy Change ((dg = 0.03))</th>
<th>(d\tilde{z})</th>
<th>(d\tilde{l})</th>
<th>(d\tilde{\psi})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lump-sum tax-financing ((d\tau = 0.03))</td>
<td>0.259</td>
<td>−0.01</td>
<td>0.206</td>
</tr>
<tr>
<td>Capital income tax-financing ((d\tau_k = 0.075))</td>
<td>0.353</td>
<td>−0.006</td>
<td>0.101</td>
</tr>
<tr>
<td>Labor income tax-financing ((d\tau_w = 0.05))</td>
<td>0.268</td>
<td>0.002</td>
<td>0.168</td>
</tr>
<tr>
<td>Consumption tax-financing ((d\tau_c = 0.096))</td>
<td>0.265</td>
<td>−0.001</td>
<td>0.179</td>
</tr>
</tbody>
</table>
Wealth Inequality

Effects of an Increase in Government Spending: Lumpsum Tax-financing
Wealth Inequality

Effects of an Increase in Government Spending: Distortionary Tax-financing

................. Capital income tax-financed ---- Labor income tax-financed ------ Consumption tax-financed
Income Inequality
Effects of an Increase in Government Spending: Lumpsum Tax-financing

Pre- and Post-tax Income Inequality
Income Inequality
Effects of an Increase in Government Spending: Distortionary Tax-financing

Pre-tax income inequality

Post-tax income inequality

................. Capital income tax-financed ----- Labor income tax-financed ----- Consumption tax-financed
The distributional effects of an increase in government spending are robust to

\[s = \frac{1}{1 + \rho} \] (Figure 3)

\[q = \frac{1}{1 + \upsilon} \] (Figure 4)

relative magnitude of the composite public-private externality in the utility and production functions, \(\phi \) and \(\epsilon \) (Table 4)
The distributional effects of an increase in government spending are robust to

- the intratemporal elasticity of substitution between private capital and labor in the production function, $s = 1/(1 + \rho)$ (Figure 3)
The distributional effects of an increase in government spending are robust to

- the intratemporal elasticity of substitution between private capital and labor in the production function, $s = 1/(1 + \rho)$ (Figure 3)
- the intratemporal elasticity of substitution between consumption and leisure in the utility function, $q = 1/(1 + \nu)$ (Figure 4)
Robustness to Structural Parameters

- The distributional effects of an increase in government spending are robust to
 - the intratemporal elasticity of substitution between private capital and labor in the production function, \(s = 1/(1 + \rho) \) (Figure 3)
 - the intratemporal elasticity of substitution between consumption and leisure in the utility function, \(q = 1/(1 + v) \) (Figure 4)
 - relative magnitude of the composite public-private externality in the utility and production functions, \(\phi \) and \(\varepsilon \) (Table 4)
A. Composite Externality in Utility and Production, $\varepsilon = \varphi = 0.6$ (Benchmark Case)

<table>
<thead>
<tr>
<th>Policy Change</th>
<th>Short Run Change</th>
<th>Long Run Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lump-sum tax-financed increase in g</td>
<td>0.129</td>
<td>-2.602</td>
</tr>
<tr>
<td>Capital income tax-financed increase in g</td>
<td>0.044</td>
<td>-9.174</td>
</tr>
<tr>
<td>Labor income tax-financed increase in g</td>
<td>0.096</td>
<td>-0.110</td>
</tr>
<tr>
<td>Consumption tax-financed increase in g</td>
<td>0.106</td>
<td>-3.117</td>
</tr>
</tbody>
</table>

B. Public Good Externality in Utility Function: $\varphi = 0, \varepsilon = 1$

<table>
<thead>
<tr>
<th>Policy Change</th>
<th>Short Run Change</th>
<th>Long Run Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lump-sum tax-financed increase in g</td>
<td>-0.107</td>
<td>-4.964</td>
</tr>
<tr>
<td>Capital income tax-financed increase in g</td>
<td>-0.215</td>
<td>-11.631</td>
</tr>
<tr>
<td>Labor income tax-financed increase in g</td>
<td>-0.136</td>
<td>-2.511</td>
</tr>
<tr>
<td>Consumption tax-financed increase in g</td>
<td>-0.128</td>
<td>-5.468</td>
</tr>
</tbody>
</table>

C. Public Good Externality in Production Function: $\varphi = 1, \varepsilon = 0$

<table>
<thead>
<tr>
<th>Policy Change</th>
<th>Short Run Change</th>
<th>Long Run Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lump-sum tax-financed increase in g</td>
<td>0.409</td>
<td>-2.287</td>
</tr>
<tr>
<td>Capital income tax-financed increase in g</td>
<td>0.377</td>
<td>-9.087</td>
</tr>
<tr>
<td>Labor income tax-financed increase in g</td>
<td>0.375</td>
<td>0.113</td>
</tr>
<tr>
<td>Consumption tax-financed increase in g</td>
<td>0.385</td>
<td>-2.938</td>
</tr>
</tbody>
</table>
A. Composite Externality in Utility and Production, $\varepsilon = \varphi = 0.6$ (Benchmark Case)

<table>
<thead>
<tr>
<th>Policy Change</th>
<th>$d\bar{W}$ (%)</th>
<th>$d\tilde{\sigma}_W$ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lump-sum tax-financed increase in g</td>
<td>4.012</td>
<td>5.415</td>
</tr>
<tr>
<td>Capital income tax-financed increase in g</td>
<td>1.790</td>
<td>3.620</td>
</tr>
<tr>
<td>Labor income tax-financed increase in g</td>
<td>3.139</td>
<td>2.996</td>
</tr>
<tr>
<td>Consumption tax-financed increase in g</td>
<td>3.398</td>
<td>2.946</td>
</tr>
</tbody>
</table>

B. Public Good Externality in Utility Function: $\varphi = 0$, $\varepsilon = 1$

<table>
<thead>
<tr>
<th>Policy Change</th>
<th>$d\bar{W}$ (%)</th>
<th>$d\tilde{\sigma}_W$ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lump-sum tax-financed increase in g</td>
<td>6.830</td>
<td>5.773</td>
</tr>
<tr>
<td>Capital income tax-financed increase in g</td>
<td>5.041</td>
<td>3.872</td>
</tr>
<tr>
<td>Labor income tax-financed increase in g</td>
<td>5.930</td>
<td>3.312</td>
</tr>
<tr>
<td>Consumption tax-financed increase in g</td>
<td>6.198</td>
<td>3.299</td>
</tr>
</tbody>
</table>

C. Public Good Externality in Production Function: $\varphi = 1$, $\varepsilon = 0$

<table>
<thead>
<tr>
<th>Policy Change</th>
<th>$d\bar{W}$ (%)</th>
<th>$d\tilde{\sigma}_W$ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lump-sum tax-financed increase in g</td>
<td>3.384</td>
<td>6.300</td>
</tr>
<tr>
<td>Capital income tax-financed increase in g</td>
<td>1.227</td>
<td>4.929</td>
</tr>
<tr>
<td>Labor income tax-financed increase in g</td>
<td>2.554</td>
<td>3.926</td>
</tr>
<tr>
<td>Consumption tax-financed increase in g</td>
<td>2.801</td>
<td>3.902</td>
</tr>
</tbody>
</table>
Conclusions

- **Three issues:**
 - Effects of pro-growth and pro-scalar policies on inequality
 - Nature of the growth-inequality relationship generated by public investment and financing policies
 - Trade-offs between average welfare and its dispersion due to government spending policies

Summary of results:
- Government spending increases wealth inequality in transition, but income inequality may be subject to intertemporal trade-offs
- The growth-inequality relationship depends on (a) magnitude of externalities (b) financing policies (c) time period of consideration
- Government spending increases average welfare but also its dispersion
- Results robust to variations in structural parameters
Conclusions

Three issues:

- Effects of pro-growth fiscal policies on inequality
Conclusions

- Three issues:
 - Effects of pro-growth fiscal policies on inequality
 - Nature of the growth-inequality relationship generated by public investment and financing policies

Summary of results:
- Government spending increases wealth inequality in transition, but income inequality may be subject to intertemporal trade-offs
- The growth-inequality relationship depends on (a) magnitude of externalities (b) financing policies (c) time period of consideration
- Government spending increases average welfare but also its dispersion
- Results robust to variations in structural parameters
Three issues:

- Effects of pro-growth fiscal policies on inequality
- Nature of the growth-inequality relationship generated by public investment and financing policies
- Trade-offs between average welfare and its dispersion due to government spending policies
Conclusions

- **Three issues:**
 - Effects of pro-growth fiscal policies on inequality
 - Nature of the growth-inequality relationship generated by public investment and financing policies
 - Trade-offs between average welfare and its dispersion due to government spending policies

- **Summary of results:**
 - Government spending increases wealth inequality in transition, but income inequality may be subject to intertemporal trade-offs.
 - The growth-inequality relationship depends on (a) magnitude of externalities (b) financing policies (c) time period of consideration.
 - Government spending increases average welfare but also its dispersion.
 - Results robust to variations in structural parameters.
Conclusions

Three issues:

- Effects of pro-growth fiscal policies on inequality
- Nature of the growth-inequality relationship generated by public investment and financing policies
- Trade-offs between average welfare and its dispersion due to government spending policies

Summary of results:

- Government spending increases wealth inequality in transition, but income inequality may be subject to intertemporal trade-offs
Conclusions

Three issues:

- Effects of pro-growth fiscal policies on inequality
- Nature of the growth-inequality relationship generated by public investment and financing policies
- Trade-offs between average welfare and its dispersion due to government spending policies

Summary of results:

- Government spending increases wealth inequality in transition, but income inequality may be subject to intertemporal trade-offs
- The growth-inequality relationship depends on (a) magnitude of externalities (b) financing policies (c) time period of consideration
Conclusions

Three issues:
- Effects of pro-growth fiscal policies on inequality
- Nature of the growth-inequality relationship generated by public investment and financing policies
- Trade-offs between average welfare and its dispersion due to government spending policies

Summary of results:
- Government spending increases wealth inequality in transition, but income inequality may be subject to intertemporal trade-offs
- The growth-inequality relationship depends on (a) magnitude of externalities (b) financing policies (c) time period of consideration
- Government spending increases average welfare but also its dispersion
Conclusions

- **Three issues:**
 - Effects of pro-growth fiscal policies on inequality
 - Nature of the growth-inequality relationship generated by public investment and financing policies
 - Trade-offs between average welfare and its dispersion due to government spending policies

- **Summary of results:**
 - Government spending increases wealth inequality in transition, but income inequality may be subject to intertemporal trade-offs
 - The growth-inequality relationship depends on (a) magnitude of externalities (b) financing policies (c) time period of consideration
 - Government spending increases average welfare but also its dispersion
 - Results robust to variations in structural parameters
This framework can be used to examine a number of public policy issues and their distributional consequences:
This framework can be used to examine a number of public policy issues and their distributional consequences:

- privatization and pricing of public goods
This framework can be used to examine a number of public policy issues and their distributional consequences:

- privatization and pricing of public goods
- modeling specific public good sectors such as health and education in a multi-sector setting
This framework can be used to examine a number of public policy issues and their distributional consequences:

- privatization and pricing of public goods
- modeling specific public good sectors such as health and education in a multi-sector setting
- foreign aid
This framework can be used to examine a number of public policy issues and their distributional consequences:

- privatization and pricing of public goods
- modeling specific public good sectors such as health and education in a multi-sector setting
- foreign aid
- other sources of initial inequality
Future Work

This framework can be used to examine a number of public policy issues and their distributional consequences:

- privatization and pricing of public goods
- modeling specific public good sectors such as health and education in a multi-sector setting
- foreign aid
- other sources of initial inequality
 - skill differentials
This framework can be used to examine a number of public policy issues and their distributional consequences:

- privatization and pricing of public goods
- modeling specific public good sectors such as health and education in a multi-sector setting
- foreign aid
- other sources of initial inequality
 - skill differentials
 - human capital endowments
This framework can be used to examine a number of public policy issues and their distributional consequences:

- privatization and pricing of public goods
- modeling specific public good sectors such as health and education in a multi-sector setting
- foreign aid
- other sources of initial inequality
 - skill differentials
 - human capital endowments
 - preferences for public goods