discussion of Cogley, Sargent and Surico

The Return of the Gibson Paradox

Lawrence Christiano
February 17, 2012
Conference in honor of Warren Weber
Summary

• The Gibson Paradox has returned
 – Gibson Paradox: negative or zero long-run relationship between the interest rate and rate of inflation.
 – It has returned in the sense that the relationship was positive 1965-1985 and flipped negative or zero after 1995.

• Result documented in two ways:
 – Estimated time-varying VAR.
 – DSGE models estimated over the two periods.

• Use DSGE model to uncover economic reason for the return of the Gibson paradox.
 – Change in monetary policy and in a parameter governing the private economy.
What ‘Long Run’ Does Not Mean Here

• It does not mean....

 – ‘steady state’.
 – A negative relationship between R and π in steady state would be truly hard to explain.
 • I am not aware of interesting theories with the property $\pi \uparrow, R\downarrow$.
The Concept of ‘Long Run’ Here

• Lucas (‘Two Illustrations of Quantity Theory’, AER, 1980) low-frequency idea
 – First, smooth data for \(\beta \) close to, but less than unity:

\[
\pi_t(\beta) = \frac{1 - \beta}{1 + \beta} \sum_{k=-\infty}^{\infty} \beta^{|k|} \pi_{t+k}, \quad R_t(\beta) = \frac{1 - \beta}{1 + \beta} \sum_{k=-\infty}^{\infty} \beta^{|k|} R_{t+k}
\]

 – Second, perform regression

\[
R_t(\beta) = a\pi_t(\beta) + \epsilon_t
\]

 – In practice, authors exploit connection between \(a \) and features of the spectrum of \((R_t, \pi_t) \) at frequency zero (Whiteman (1984)).

• The return of the Gibson paradox: \(a \) flipped from positive in early post-war, to negative more recently.
Long run relationship between R and π (with 68% posterior probability intervals)

Long-run relationship between R and π implied by VAR with time-varying coefficients.

Posterior mode of parameter, a.
At the same time, there has been a decline in inflation persistence
US Annual Inflation

first order autocorrelation, 1968-1983 = 0.96

first order autocorrelation, 1995-2007 = 0.75
Reduced Form ‘Explanation’

• Suppose

\[\hat{R}_t = R_{\text{real}} + E_t \pi_{t+1} \]

• If \(\pi \) is a random walk, then

\[R_t = R_{\text{real}} + \pi_t \rightarrow \text{corr}(R_t, \pi_t) = 1 \]

• If \(\pi \) is iid, then

\[R_t = R_{\text{real}} + \text{constant} \rightarrow \text{corr}(\text{constant}, \pi_t) = 0 \]

• This story leaves details unspecified:
 – Real rate held constant.
 – What are the economics behind the changes that have occurred?
Remarks

• Long-standing theme in time series analysis:
 – Long run relationships are hard to pin down in the data.

• With a specific statistical model, long-run relationships may appear easy to pin down.
 – Lag length and other restrictions set up a link between high frequency component of the data (easy to estimate) and low frequency component of the data.

\[
y_t = \hat{\rho} y_{t-1} + \varepsilon_t
\]

identified from high-frequency, first order autocorrelation in data

zero-frequency spectral density

\[
\widehat{S(0)} = \frac{\sigma_\varepsilon^2}{(1 - \rho)^2}
\]

– Difficulty of pinning down long-run relationships is manifested in a lack of robustness...not necessarily in large prob. intervals.
Robustness of Inference About a

- Would like to see robustness of Gibson Paradox finding to:
 - Including more variables in the VAR analysis.
 - Including more lags in the VAR (say lags = 4 rather than 2).

- Concern:
 - When I apply Lucas’ inefficient (but, presumably, robust) procedure, fail to find Gibson Paradox.
 - When I estimate a different DSGE model, fail to find Gibson Paradox.
Applying Lucas’ Procedure

USA - Original Data for 2nd Quarters, 1965-1985

USA - Smoothed Data ($\beta=0.9$) for 2nd Quarters, 1965-1985

USA - Original Data for 2nd Quarters, 1995-2011

USA - Smoothed Data ($\beta=0.9$) for 2nd Quarters, 1995-2011

No sign here of Gibson Paradox
DSGE-based Estimate of a

- In the paper, C-S-S estimate a simple NK model without capital over 1995-2007 period:

 The C-S-S model estimated over the earlier period has positive a, the two models have the same steady state (R_t, π_t).

 - At posterior mode, $a=-0.278\ (-1.4,1.2)$

 - At posterior mode, $a=1.15$
Conclusion

• The C-S-S paper suggests that interesting changes in the low frequency relationship between inflation and the interest rate have occurred.

• They provide an interesting economic interpretation of why the changes happened.

• This work is in the best tradition of using equilibrium models to interpret data.

• Still, would like to see a defense of robustness.