Idea Flows, Economic Growth, and Trade

Fernando Alvarez Francisco Buera

Robert E. Lucas, Jr.

Atlanta Fed Conference Honoring Warren Weber

February 17, 2012
• Economists have long believed that international trade serves as a vehicle for the diffusion of technology—of ideas

• Much evidence of important growth effects of openness, trade

• Next slides, based on Maddison data, 1960 - 2000
INCOME LEVELS AND GROWTH RATES, 112 COUNTRIES

INCOME LEVELS AND GROWTH RATES, 112 COUNTRIES

Annual Growth Rate, 1960-2000

Income per capita, 1990 $, 1960
INCOME LEVELS AND GROWTH RATES, 39 OPEN ECONOMIES

Parameter Values

\[\theta = 0.67 \]

\[\mu = 0.017 \]
• What we do not have is good understanding of how this trade/diffusion effect works

• What is the process that links trade policy to diffusion, growth?

• What are the key parameters of this process?

• What evidence do we have on their magnitudes?

• Seek a framework that can help make progress on these questions
• We develop an endogenous growth model with many countries that explicitly connects trade and trade policy to sustained growth rates and transition dynamics.

• Model is built on work of Eaton, Kortum in two ways:

• View technology as distribution of productivity-related knowledge held by heterogeneous, individual people, firms, countries
• Construct a model of \(n \) country world, engaged in continuously balanced trade

• Many goods, many people in each: details later

• State variables are \(F_1, F_2, \ldots, F_n \): right cdfs of “cost” in \(\mathbb{R}_+ \)

\[
F_i(z) = \Pr\{\text{randomly chosen good has cost } \geq z \text{ if produced in } i\}
\]

• Densities \(f_i = -\partial F_i(z, t)/\partial x \)

(In E/K, A/L \(F_i \)'s are Weibull RVs. Not so here.)
• Constant trade costs matrix \(K = [\kappa_{ij}] : \kappa_{ij} = \text{units of goods arriving in } i \text{ per unit shipped from } j \)

• Populations \(L = (L_1, ..., L_n) \)

• Given \(K, L \) and technology profile \(F \), can solve for static trade equilibrium, including wage rates \(w = (w_1, ..., w_n) \)

• Theory also gives us equilibrium distributions of the costs of producers in \(j \) who sell in country \(i \), all \(i, j \).

• From these, can calculate right cdfs \(G_1, G_2, ..., G_n \) where

\[
G_i(z, t) = \Pr\{\text{seller active in } i \text{ at } t \text{ has cost } \geq z\}
\]
• We will use these to motivate a law of motion for F_1, F_2, \ldots, F_n of the form

$$\frac{\partial \log(F_i(z, t))}{\partial t} = \alpha_i \log(G_i(z, t))$$ (*)

• Trade theory tells us how F, K determine G; gives autonomous system

• Simulatable model of world trade, economic growth

• Law of motion (*) is main new idea of this paper
PLAN OF TALK

1 Technology Diffusion, Closed Economy

2 Technology Diffusion, n-Country World

3 Numerical Illustrations

4 Conclusions
1 Diffusion in Closed Economy

- Consumers have identical preferences over $[0, 1]$ continuum of goods
 \[C = \left[\int_0^1 c(s)^{1-1/\eta} ds \right]^{\eta/(\eta-1)} \]

- Good s is produced with a linear, labor-only technology
 \[y(s) = \frac{l(s)}{z(s)} \]

- $l(s)$ is labor input—1 unit per person—and $z(s)$ is cost (labor requirement)
• Exploit symmetry of utility function

• Re-label goods by their costs \(z \) and write time \(t \) utility as

\[
C(t) = \left[\int_{\mathbb{R}_+} c(z)^{1-1/\eta} f(z, t) \, dz \right]^{\eta/(\eta-1)}
\]

• Here \(f(\cdot, t) \) is the density of costs.

• Use \(F(z, t) \) for the \textbf{right} cdf of cost, so density is \(f(z, t) = -\partial F(z, t) / \partial z \)
• In competitive equilibrium, price of good z is $p(z) = wz$

• Ideal price index for the economy at date t is

\[
p(t) = \left[\int_{\mathbb{R}_+} p(z)^{1-1/\eta} f(z, t) dz \right]^{\eta/(\eta-1)}
\]

• Real per capita GDP $y(t)$ is real wage $w/p(t)$:

\[
y(t) = \left[\int_{\mathbb{R}_+} z^{1-1/\eta} f(z, t) dz \right]^{-\eta/(\eta-1)}
\]

• Now need to describe evolution of f, F
• Model technological diffusion as process of search involving *technology managers*

• One manager per good, each identified with current cost z

• Technology management requires no time, earns no private return

• Manager of good z operates the CRS, zero profit production described earlier

• Or others imitate him and do so: Who cares?
• Each manager z meets others at given rate α per unit of time

• Each meeting a random draw from the population f, F of managers of all goods

• When he meets another with cost $z' < z$ he adopts z' for his own good

• Motivate law of motion for F as

$$F(z, t + \Delta) = \Pr\{\text{my cost} > z \text{ at } t + \Delta\}$$
$$= \Pr\{\text{my cost} > z \text{ at } t\} \times \Pr\{\text{no lower draw in } (t, t + \Delta)\}$$
$$= F(z, t)F(z, t)^\alpha\Delta.$$

• Continuous draws, not Poisson arrivals
• Let $\Delta \to 0$ to obtain:

$$\frac{1}{F(z, t)} \frac{\partial F(z, t)}{\partial t} = \alpha \log(F(z, t))$$ \hspace{1cm} (DE)

• Write out general solution:

$$\log(F(z, t)) = \log(F(z, 0)) e^{\alpha t}$$

where $F(z, 0)$ is any given initial distribution (right cdf)

• Clear that model implies GDP growth of some kind.

• Easy to compute. How to interpret results, characterize possibilities?
• For empirical reasons, interest is in sustained growth of economies that either grow at a constant rate or will do so asymptotically.

• Central construct is balanced growth path (BGP): right cdf \(\Phi(z) \) (density \(\phi = -\Phi'(z) \)) and a growth rate \(\nu > 0 \) such that \(F(z, t) = \Phi(e^{\nu t} z) \) and

\[
\log(\Phi(e^{\nu t} z)) = \log(\Phi(z))e^{\alpha t}
\]

• On BGP

\[
f(z, t) = -\frac{\partial F(z, t)}{\partial z} = \phi(e^{\nu t} z)e^{\nu t}
\]
Then real GDP path is

\[y(t) = \left[\int_{\mathbb{R}^+} z^{1-1/\eta} \phi(e^{vt} z) e^{vt} dz \right]^{-\eta/(\eta-1)} \]

\[= e^{vt} \left[\int_{\mathbb{R}^+} x^{1-1/\eta} \phi(x) dx \right]^{-\eta/(\eta-1)} \]

We show that BGP takes Weibull form

\[\Phi(z) = \exp(-\lambda z^\theta) \]

for some pair \(\lambda, \theta > 0 \) and \(\nu = \alpha \theta \)

Note that Weibull RV is just exponential RV raised to power \(\theta \)
• Also show that if initial distribution \(F(z, 0) \) satisfies

\[
\lim_{z \to 0} \frac{f(z, 0)z}{1 - F(z, 0)} = \frac{1}{\theta}
\]

for some \(\theta > 0 \) and

\[
\lim_{z \to 0} \frac{\log [F(z^\theta, 0)]}{z} = -\lambda
\]

for some \(\lambda > 0 \) then

\[
\lim_{t \to \infty} \log [F(e^{-\alpha \theta t}z, t)] = -\lambda z^{1/\theta} \quad \text{for all} \quad z > 0
\]
- Parameter θ measures mass near $z = 0$

- Costs are headed to zero so long run behavior determined by “left tail”

- High θ value means more low cost ideas waiting to be discovered

- Inverse of cost is productivity so high θ means thick “right tail” of productivity distribution, high growth rate

- Power Law
2 Diffusion in World Economy

- An n country world. Populations L_1, \ldots, L_n

- Each country in autarky exactly as discussed

- Now open all of them to Eaton-Kortum trade in all goods

- Rename each good by its cost profile $z = (z_1, \ldots, z_n)$

\[
C_i(t) = \left[\int_{\mathbb{R}_+^n} c_i(z)^{1-1/\eta} f(z, t) dz \right]^{\eta/(\eta-1)}
\]

where $f(z, t) = \prod_{i=1}^n f_i(z, t)$ is joint density
Given fixed trade costs K, technologies $F = (F_1, ..., F_n)$, solve for balanced growth equilibrium wages $w = (w_1, ..., w_n)$

Turn to dynamics. Technology managers native to i now draw ideas from all managers, foreign and domestic, whose goods are currently being sold in i.

Searching managers include all managers in i, good and bad.

They meet managers from all j, but only those good enough to sell goods in i.
• Want to replace autarky law of motion

\[
\frac{\partial \log(F_i(z, t))}{\partial t} = \alpha_i \log(F_i(z, t))
\]

with

\[
\frac{\partial \log(F_i(z, t))}{\partial t} = \alpha_i \log(G_i(z, t))
\] (*)

where

\[
G_i(z, t) = \Pr\{\text{seller active in } i \text{ at } t \text{ and has cost } \geq z\}
\]

• Theory tells us who these sellers are, given \(K, F\), and \(w\)
• Distributions G_i stochastically dominate F_i

• Statement of familiar static gains from trade

• Also key to dynamic gains: G_i provides people in i a better intellectual environment than F_i does

• Formula is

$$G_i(z, t) = \sum_{j=1}^{n} \int_{z}^{\infty} f(z_j, t) \prod_{k \neq j} F_k \left[\frac{w_j(t) \kappa_{ik}}{w_k(t) \kappa_{ij} z_j} \right] dz_j$$
Can show that if (i) some F_i consistent with sustained growth under autarchy, and (ii) trade is possible between any pair, then for all i

$$\lim_{z \to 0} \frac{zg_i(x)}{1 - G_i(x)} = \frac{1}{\theta} \quad \text{where} \quad \theta = \max_i \theta_i$$

That is $G_i's$ inherit common, fattest left tail from $F_i's$

Can also show that all countries have common BGP growth rate

$$\nu = \theta \sum_{i=1}^{n} \alpha_i \quad \text{where} \quad \theta = \max_i \theta_i$$

Scale economy? Yes. And note that trade costs not in the formula

Does not take much trade for the really good ideas to get around: think of Marco Polo and pasta
3 Numerical Illustrations

- Begin with world of \(n \) identical countries; symmetric trade cost \(\kappa \)

- Already know a lot from general theory:

 - Relative wages identical: set \(w = 1 \), all countries

 - common BGP growth rate: \(\nu = \theta \sum_{i=1}^{n} \alpha_i \), where \(\theta = \max_i \theta_i \)

 - \(\nu \) independent of \(\kappa \) value
Like to know more:

- what do the distributions F and G look like on a BGP?

- how do trade volumes and GDP levels vary with trade costs κ and substitution elasticities η?

Consider world of identical economies, $n = 50$, $\theta = 0.2$, $\alpha = 0.002$, $\nu = 0.02$
• Next figure describes the distributions F and G

• Have plotted distributions of productivities, $1/z$, rather than costs z

• x-axis on both panels is BGP productivity relative to mean of 1 for $\kappa = 1$ (costless trade) world

• Top panel shows productivity densities of each country (F) at different κ levels. Bottom panel shows densities of sellers’ productivities (G) at different κ levels

• Both are Frechet distributions in right tail: note common tails on each panel
Potential Producers from a Country

Sellers to a Country

productivity, $z^{-\theta} / \text{costless trade average}$
• Next figure also describes the symmetric world economy: the effects of changes in trade costs on real incomes and trade shares

• The x-axis shows trade costs, varying from autarky for all \((\kappa = 0)\) to costless trade \((\kappa = 1)\).

• Top panel plots per capita gdp levels, relative to gdp with costless trade

• Bottom panel plots trade volumes, relative to the costless trade case
• Solid blue lines show impact, static trade effects

• Other three curves on top panel are real gdp levels along the BGP

• Levels are shown for three values of η: elasticity of substitution

• Three curves on bottom panel are trade share levels along the BGP for three η values
GDP / costless trade

Per-capita Income

impact
long-run, $\eta=2$
long-run, $\eta=4$
long-run, $\eta=5$

1−trade cost, κ

Trade Share

Import/GDP

1−trade cost, κ
• Next figures describe world with n countries:

 – $n - 1$ identical (as above), common trade costs $\kappa = .75$

 – one small, open, larger trade cost κ_n applied to all imports

• First figure shows BGP income levels and trade shares—relative to costless trade benchmark—for different trade cost levels of deviant
GDP / Costless trade

Per–capita Income

Import/GDP

Trade Share

1−trade cost, κ_n

$n−1$ symmetric

n^{th} asymmetric
• Last figure shows time series of income and trade shares of the deviant country

• Deviant begins with higher trade costs, poorer economy

• At \(t = 0 \), deviant adopts trade cost \(\kappa = .75 \) of other countries

• Immediate jump in income, trade share shown: static trade effect

• Slow convergence to common BGP also shown
Per-capita Income, \(n^{th} \) Asymmetric Country

\[
\kappa_n(0) = 0.50 \\
\kappa_n(0) = 0.30 \\
\kappa_n(0) = 0.05
\]

Volume of Trade, \(n^{th} \) Asymmetric Country

Import/GDP

Years (since trade liberalization)
3 Conclusions

- Basic model general enough to support realistic calibration, policy simulations: see e.g. Alvarez/Lucas (2007)

- Our immediate goal here more modest: to understand the operating characteristics of a new, combined model of trade and growth

- General structure shares features of von Neumann (1937) or Parente/Prescott (1994): long run growth rate common to all; different policies induce different income levels

- Model makes operational distinction between static effects of trade policies and dynamic effects via trade related technology diffusion