Supervisory Stress Tests, Model Risk, and Model Disclosure: Lessons from OFHEO

W.S. Frame, K. Gerardi, and P. Willen

Federal Reserve Bank of Atlanta

Financial Markets Conference
April, 9 2013
I am speaking today as a researcher and as a concerned citizen not as a representative of:
- The Atlanta Fed
- or the Federal Reserve System

When I say “we”, I don’t mean Ben and me.
I am speaking today as a researcher and as a concerned citizen not as a representative of:

- The Atlanta Fed
- or the Federal Reserve System

When I say “we”, I don’t mean Ben and me.
I am speaking today as a researcher and as a concerned citizen not as a representative of:

- The Atlanta Fed
- or the Federal Reserve System

When I say “we”, I don’t mean Ben and me.
I am speaking today as a researcher and as a concerned citizen not as a representative of:

- The Atlanta Fed
- or the Federal Reserve System

When I say “we”, I don’t mean Ben and me.
I am speaking today as a researcher and as a concerned citizen not as a representative of:

- The Atlanta Fed
- or the Federal Reserve System

When I say “we”, I don’t mean Ben and me.
In the aftermath of the 2008 financial crisis and Great Recession, stress tests have become a primary tool for macro prudential risk management.

U.S. started this trend with its 2009 Supervisory Capital Assessment Program (SCAP) which targeted its 19 largest banking organizations.

SCAP was used as a confidence building tool at the time.

In 2010, the Federal Reserve introduced an annual Comprehensive Capital Assessment and Review (CCAR).

Stress testing framework to evaluate capital planning processes and capital adequacy at banking organizations with total assets > $100 billion.

Capital adequacy: Post-stress ratio of common equity to risk-weighted assets > 5%.
Motivation

- In the aftermath of the 2008 financial crisis and Great Recession, stress tests have become a primary tool for macro prudential risk management.

- U.S. started this trend with its 2009 Supervisory Capital Assessment Program (SCAP) which targeted its 19 largest banking organizations.
 - SCAP was used as a confidence building tool at the time.

- In 2010, the Federal Reserve introduced an annual Comprehensive Capital Assessment and Review (CCAR).
 - Stress testing framework to evaluate capital planning processes and capital adequacy at banking organizations with total assets > $100 billion.
 - Capital adequacy: Post-stress ratio of common equity to risk-weighted assets > 5%.
Motivation

- In the aftermath of the 2008 financial crisis and Great Recession, stress tests have become a primary tool for macro prudential risk management.

- U.S. started this trend with its 2009 Supervisory Capital Assessment Program (SCAP) which targeted its 19 largest banking organizations.
 - SCAP was used as a confidence building tool at the time.

- In 2010, the Federal Reserve introduced an annual Comprehensive Capital Assessment and Review (CCAR).
 - Stress testing framework to evaluate capital planning processes and capital adequacy at banking organizations with total assets $>\$100$ billion.
 - Capital adequacy: Post-stress ratio of common equity to risk-weighted assets $>5\%$.
Motivation

- In the aftermath of the 2008 financial crisis and Great Recession, stress tests have become a primary tool for macro prudential risk management.

- U.S. started this trend with its 2009 Supervisory Capital Assessment Program (SCAP) which targeted its 19 largest banking organizations.
 - SCAP was used as a confidence building tool at the time.

- In 2010, the Federal Reserve introduced an annual Comprehensive Capital Assessment and Review (CCAR).
 - Stress testing framework to evaluate capital planning processes and capital adequacy at banking organizations with total assets > $100 billion.
 - Capital adequacy: Post-stress ratio of common equity to risk-weighted assets > 5%.
Motivation

- In the aftermath of the 2008 financial crisis and Great Recession, stress tests have become a primary tool for macro prudential risk management.

- U.S. started this trend with its 2009 Supervisory Capital Assessment Program (SCAP) which targeted its 19 largest banking organizations.
 - SCAP was used as a confidence building tool at the time.

- In 2010, the Federal Reserve introduced an annual Comprehensive Capital Assessment and Review (CCAR).
 - Stress testing framework to evaluate capital planning processes and capital adequacy at banking organizations with total assets > 100 billion.
 - Capital adequacy: Post-stress ratio of common equity to risk-weighted assets $> 5\%$.
Motivation

Introduction of supervisory stress testing requirements may confer substantial benefits.

- Insight into the portfolio decisions and risk management practices of large financial institutions that could lead to enhanced risk measurement and management.
- Increased knowledge with respect to system-wide vulnerabilities.

But, there are inherent risks in stress-testing:
Motivation

- Introduction of supervisory stress testing requirements may confer substantial benefits.
 - Insight into the portfolio decisions and risk management practices of large financial institutions that could lead to enhanced risk measurement and management.
 - Increased knowledge with respect to system-wide vulnerabilities.
- But, there are inherent risks in stress-testing:
Motivation

- Introduction of supervisory stress testing requirements may confer substantial benefits.
 - Insight into the portfolio decisions and risk management practices of large financial institutions that could lead to enhanced risk measurement and management.
 - Increased knowledge with respect to system-wide vulnerabilities.

- But, there are inherent risks in stress-testing:
Motivation

- Introduction of supervisory stress testing requirements may confer substantial benefits.
 - Insight into the portfolio decisions and risk management practices of large financial institutions that could lead to enhanced risk measurement and management.
 - Increased knowledge with respect to system-wide vulnerabilities.

- But, there are inherent risks in stress-testing:
Failure of the OFHEO Risk-Based Capital Stress Test

Stress testing can fail because...

(1) Wrong scenario
(2) Modeling errors
Or both...
Failure of the OFHEO Risk-Based Capital Stress Test

Scenario 1: Falling House Prices

- Stress testing can fail because...
 - (1) Wrong scenario
 - (2) Modeling errors
 - Or both...
Failure of the OFHEO Risk-Based Capital Stress Test

Scenario 1: Falling House Prices

Portfolio → Stress testing can fail because...
(1) Wrong scenario
(2) Modeling errors
Or both...

Loss
Failure of the OFHEO Risk-Based Capital Stress Test

- Scenario 1: Falling House Prices
- Scenario 2: Rising Interest Rates
- Loss

Stress testing can fail because...
- (1) Wrong scenario
- (2) Modeling errors
- Or both...
Failure of the OFHEO Risk-Based Capital Stress Test

- Stress testing can fail because...
 - (1) Wrong scenario
 - (2) Modeling errors
 - Or both...

Scenario 1: Falling House Prices
Scenario 2: Rising Interest Rates
Loss
Stress testing can fail because...
(1) Wrong scenario
(2) Modeling errors
Or both...
Failure of the OFHEO Risk-Based Capital Stress Test

- Stress testing can fail because...
 - (1) Wrong scenario
 - (2) Modeling errors
 - Or both...

Portfolio
 - Scenario 1: Falling House Prices → Loss
 - Scenario 2: Rising Interest Rates → Loss
 - Scenario 3: Recession → Loss
Failure of the OFHEO Risk-Based Capital Stress Test

Scenario 1: Falling House Prices
Scenario 2: Rising Interest Rates
Scenario 3: Recession

Model

Loss
Loss
Loss

Stress testing can fail because...
(1) Wrong scenario
(2) Modeling errors
Or both...
Stress testing can fail because...

(1) Wrong scenario
(2) Modeling errors
Or both...

Scenario 1: Falling House Prices
Scenario 2: Rising Interest Rates
Scenario 3: Recession
Failure of the OFHEO Risk-Based Capital Stress Test

Scenario 1: Falling House Prices
Scenario 2: Rising Interest Rates
Scenario 3: Recession

Model

Data Sample
Variables

Loss
Loss
Loss

Stress testing can fail because...

(1) Wrong scenario
(2) Modeling errors
Or both...
Failure of the OFHEO Risk-Based Capital Stress Test

- Scenario 1: Falling House Prices
- Scenario 2: Rising Interest Rates
- Scenario 3: Recession

Data Sample → Techniques → Variables

Stress testing can fail because...

- (1) Wrong scenario
- (2) Modeling errors
- Or both...
Failure of the OFHEO Risk-Based Capital Stress Test

- Scenario 1: Falling House Prices
- Scenario 2: Rising Interest Rates
- Scenario 3: Recession

Stress testing can fail because...
(1) Wrong scenario
(2) Modeling errors
Or both...

Gerardi (FRB Atlanta) OFHEO Stress Test April, 9 2013
Stress testing can fail because...

1. Wrong scenario
2. Modeling errors
 Or both...
Stress testing can fail because...

1. Wrong scenario
2. Modeling errors
 Or both...

Scenario 1: Falling House Prices
Scenario 2: Rising Interest Rates
Scenario 3: Recession

Model

Data Sample
Techniques
Variables
Failure of the OFHEO Risk-Based Capital Stress Test

Scenario 1: Falling House Prices
Scenario 2: Rising Interest Rates
Scenario 3: Recession

Model

Loss
Loss
Loss

Data Sample
Techniques
Variables

Stress testing can fail because...
(1) Wrong scenario
(2) Modeling errors
Or both...

Gerardi (FRB Atlanta)
Failure of the OFHEO Risk-Based Capital Stress Test

Scenario 1: Falling House Prices
Scenario 2: Rising Interest Rates
Scenario 3: Recession

Model

Data Sample
Techniques
Variables

OFHEO Risk-Based Capital Model
- Risk of insolvency was “effectively zero” (Stiglitz, Orszag, and Orszag 2002).
- FNMA and FHLMC failed, costing taxpayers > $100 billion.
- What went wrong?
Failure of the OFHEO Risk-Based Capital Stress Test

Scenario 1: Falling House Prices
Scenario 2: Rising Interest Rates
Scenario 3: Recession

Model

Data Sample
Techniques
Variables

OFHEO Risk-Based Capital Model
- Risk of insolvency was “effectively zero” (Stiglitz, Orszag, and Orszag 2002).
- FNMA and FHLMC failed, costing taxpayers > $100 billion.
- What went wrong?
Failure of the OFHEO Risk-Based Capital Stress Test

Scenario 1: Falling House Prices
Scenario 2: Rising Interest Rates
Scenario 3: Recession

Model

Loss
Loss
Loss

Data Sample
Techniques
Variables

OFHEO Risk-Based Capital Model
- Risk of insolvency was “effectively zero” (Stiglitz, Orszag, and Orszag 2002).
- FNMA and FHLMC failed, costing taxpayers > $100 billion.

What went wrong?
OFHEO Risk-Based Capital Model
- Risk of insolvency was “effectively zero” (Stiglitz, Orszag, and Orszag 2002).
- FNMA and FHLMC failed, costing taxpayers > $100 billion.
- What went wrong?
Failure of the OFHEO Risk-Based Capital Stress Test

Scenario 1: Falling House Prices
Scenario 2: Rising Interest Rates
Scenario 3: Recession

We show that failure caused by:

1. Insufficiently stressful scenario
2. Lack of key variables
3. Stale data.

With (3) by far the most important.

Using more data, would have overpredicted losses.
Failure of the OFHEO Risk-Based Capital Stress Test

Scenario 1: Falling House Prices
Scenario 2: Rising Interest Rates
Scenario 3: Recession

Model

Data Sample Techniques

Variables

1. Insufficiently stressful scenario
2. Lack of key variables
3. Stale data.

With (3) by far the most important.

We show that failure caused by:

Using more data, would have overpredicted losses.
We show that failure caused by:
1. Insufficiently stressful scenario
2. Lack of key variables
3. Stale data.
With (3) by far the most important.
We show that failure caused by:
1. Insufficiently stressful scenario
2. Lack of key variables
3. Stale data.

With (3) by far the most important.

Using more data, would have *overpredicted* losses.
We show that failure caused by:

1. Insufficiently stressful scenario
2. Lack of key variables
3. Stale data.

With (3) by far the most important.

Using more data, would have overpredicted losses.
Failure of the OFHEO Risk-Based Capital Stress Test

We show that failure caused by:

1. Insufficiently stressful scenario
2. Lack of key variables
3. Stale data.

With (3) by far the most important.

Using more data, would have overpredicted losses.

“HEL Bond Profile Across HPA Scenarios”

<table>
<thead>
<tr>
<th>#</th>
<th>Name</th>
<th>Scenario</th>
<th>Loss</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>Aggressive</td>
<td>11% HPA over the life of the pool</td>
<td>1.4%</td>
<td>15%</td>
</tr>
<tr>
<td>(2)</td>
<td></td>
<td>8% HPA for life</td>
<td>3.2%</td>
<td>15%</td>
</tr>
<tr>
<td>(3)</td>
<td>Base</td>
<td>HPA slows to 5% by end-2005</td>
<td>5.6%</td>
<td>50%</td>
</tr>
<tr>
<td>(4)</td>
<td>Pessimistic</td>
<td>0% HPA for the next 3 years 5% thereafter</td>
<td>11.1%</td>
<td>15%</td>
</tr>
<tr>
<td>(5)</td>
<td>Meltdown</td>
<td>-5% for the next 3 years, 5% thereafter</td>
<td>17.1%</td>
<td>5%</td>
</tr>
</tbody>
</table>

Actual HPA: -10% annualized from Q4, 2005 to Q4, 2008

Forecast losses as of 2/2009 in 2006-1 ABX from JPM: 23.44% (assuming -30% HPA in 2009!)
OFHEO Experience in Context

- “HEL Bond Profile Across HPA Scenarios”

<table>
<thead>
<tr>
<th>#</th>
<th>Name</th>
<th>Scenario</th>
<th>Loss</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>Aggressive</td>
<td>11% HPA over the life of the pool</td>
<td>1.4%</td>
<td>15%</td>
</tr>
<tr>
<td>(2)</td>
<td>8% HPA for life</td>
<td></td>
<td>3.2%</td>
<td>15%</td>
</tr>
<tr>
<td>(3)</td>
<td>Base</td>
<td>HPA slows to 5% by end-2005</td>
<td>5.6%</td>
<td>50%</td>
</tr>
<tr>
<td>(4)</td>
<td>Pessimistic</td>
<td>0% HPA for the next 3 years 5% thereafter</td>
<td>11.1%</td>
<td>15%</td>
</tr>
<tr>
<td>(5)</td>
<td>Meltdown</td>
<td>-5% for the next 3 years, 5% thereafter</td>
<td>17.1%</td>
<td>5%</td>
</tr>
</tbody>
</table>

- Actual HPA: -10% annualized from Q4, 2005 to Q4, 2008

- Forecast losses as of 2/2009 in 2006-1 ABX from JPM: 23.44% (assuming -30% HPA in 2009!)
OFHEO Experience in Context

- “HEL Bond Profile Across HPA Scenarios”

<table>
<thead>
<tr>
<th>#</th>
<th>Name</th>
<th>Scenario</th>
<th>Loss</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Aggressive</td>
<td>11% HPA over the life of the pool</td>
<td>1.4%</td>
<td>15%</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>8% HPA for life</td>
<td>3.2%</td>
<td>15%</td>
</tr>
<tr>
<td>3</td>
<td>Base</td>
<td>HPA slows to 5% by end-2005</td>
<td>5.6%</td>
<td>50%</td>
</tr>
<tr>
<td>4</td>
<td>Pessimistic</td>
<td>0% HPA for the next 3 years 5% thereafter</td>
<td>11.1%</td>
<td>15%</td>
</tr>
<tr>
<td>5</td>
<td>Meltdown</td>
<td>-5% for the next 3 years, 5% thereafter</td>
<td>17.1%</td>
<td>5%</td>
</tr>
</tbody>
</table>

- Actual HPA: -10% annualized from Q4, 2005 to Q4, 2008

- Forecast losses as of 2/2009 in 2006-1 ABX from JPM: 23.44% (assuming -30% HPA in 2009!)

“HEL Bond Profile Across HPA Scenarios”

<table>
<thead>
<tr>
<th>#</th>
<th>Name</th>
<th>Scenario</th>
<th>Loss</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>Aggressive</td>
<td>11% HPA over the life of the pool</td>
<td>1.4%</td>
<td>15%</td>
</tr>
<tr>
<td>(2)</td>
<td></td>
<td>8% HPA for life</td>
<td>3.2%</td>
<td>15%</td>
</tr>
<tr>
<td>(3)</td>
<td>Base</td>
<td>HPA slows to 5% by end-2005</td>
<td>5.6%</td>
<td>50%</td>
</tr>
<tr>
<td>(4)</td>
<td>Pessimistic</td>
<td>0% HPA for the next 3 years 5% thereafter</td>
<td>11.1%</td>
<td>15%</td>
</tr>
<tr>
<td>(5)</td>
<td>Meltdown</td>
<td>-5% for the next 3 years, 5% thereafter</td>
<td>17.1%</td>
<td>5%</td>
</tr>
</tbody>
</table>

- Actual HPA: -10% annualized from Q4, 2005 to Q4, 2008
- Forecast losses as of 2/2009 in 2006-1 ABX from JPM: 23.44% (assuming -30% HPA in 2009!)

- “HEL Bond Profile Across HPA Scenarios”

<table>
<thead>
<tr>
<th>#</th>
<th>Name</th>
<th>Scenario</th>
<th>Loss</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>Aggressive</td>
<td>11% HPA over the life of the pool</td>
<td>1.4%</td>
<td>15%</td>
</tr>
<tr>
<td>(2)</td>
<td></td>
<td>8% HPA for life</td>
<td>3.2%</td>
<td>15%</td>
</tr>
<tr>
<td>(3)</td>
<td>Base</td>
<td>HPA slows to 5% by end-2005</td>
<td>5.6%</td>
<td>50%</td>
</tr>
<tr>
<td>(4)</td>
<td>Pessimistic</td>
<td>0% HPA for the next 3 years 5% thereafter</td>
<td>11.1%</td>
<td>15%</td>
</tr>
<tr>
<td>(5)</td>
<td>Meltdown</td>
<td>-5% for the next 3 years, 5% thereafter</td>
<td>17.1%</td>
<td>5%</td>
</tr>
</tbody>
</table>

- Actual HPA: -10% annualized from Q4, 2005 to Q4, 2008

- Forecast losses as of 2/2009 in 2006-1 ABX from JPM: 23.44% (assuming -30% HPA in 2009!)
OFHEO Experience in Context

- “HEL Bond Profile Across HPA Scenarios”

<table>
<thead>
<tr>
<th>#</th>
<th>Name</th>
<th>Scenario</th>
<th>Loss</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>Aggressive</td>
<td>11% HPA over the life of the pool</td>
<td>1.4%</td>
<td>15%</td>
</tr>
<tr>
<td>(2)</td>
<td></td>
<td>8% HPA for life</td>
<td>3.2%</td>
<td>15%</td>
</tr>
<tr>
<td>(3)</td>
<td>Base</td>
<td>HPA slows to 5% by end-2005</td>
<td>5.6%</td>
<td>50%</td>
</tr>
<tr>
<td>(4)</td>
<td>Pessimistic</td>
<td>0% HPA for the next 3 years 5% thereafter</td>
<td>11.1%</td>
<td>15%</td>
</tr>
<tr>
<td>(5)</td>
<td>Meltdown</td>
<td>-5% for the next 3 years, 5% thereafter</td>
<td>17.1%</td>
<td>5%</td>
</tr>
</tbody>
</table>

- Actual HPA: -10% annualized from Q4, 2005 to Q4, 2008

- Forecast losses as of 2/2009 in 2006-1 ABX from JPM: 23.44% (assuming -30% HPA in 2009!)
OFHEO Experience in Context

- “HEL Bond Profile Across HPA Scenarios”

<table>
<thead>
<tr>
<th>#</th>
<th>Name</th>
<th>Scenario</th>
<th>Loss</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>Aggressive</td>
<td>11% HPA over the life of the pool</td>
<td>1.4%</td>
<td>15%</td>
</tr>
<tr>
<td>(2)</td>
<td></td>
<td>8% HPA for life</td>
<td>3.2%</td>
<td>15%</td>
</tr>
<tr>
<td>(3)</td>
<td>Base</td>
<td>HPA slows to 5% by end-2005</td>
<td>5.6%</td>
<td>50%</td>
</tr>
<tr>
<td>(4)</td>
<td>Pessimistic</td>
<td>0% HPA for the next 3 years 5% thereafter</td>
<td>11.1%</td>
<td>15%</td>
</tr>
<tr>
<td>(5)</td>
<td>Meltdown</td>
<td>-5% for the next 3 years, 5% thereafter</td>
<td>17.1%</td>
<td>5%</td>
</tr>
</tbody>
</table>

- Actual HPA: -10% annualized from Q4, 2005 to Q4, 2008

- Forecast losses as of 2/2009 in 2006-1 ABX from JPM: 23.44% (assuming -30% HPA in 2009!)

“HEL Bond Profile Across HPA Scenarios”

<table>
<thead>
<tr>
<th>#</th>
<th>Name</th>
<th>Scenario</th>
<th>Loss</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>Aggressive</td>
<td>11% HPA over the life of the pool</td>
<td>1.4%</td>
<td>15%</td>
</tr>
<tr>
<td>(2)</td>
<td></td>
<td>8% HPA for life</td>
<td>3.2%</td>
<td>15%</td>
</tr>
<tr>
<td>(3)</td>
<td>Base</td>
<td>HPA slows to 5% by end-2005</td>
<td>5.6%</td>
<td>50%</td>
</tr>
<tr>
<td>(4)</td>
<td>Pessimistic</td>
<td>0% HPA for the next 3 years 5% thereafter</td>
<td>11.1%</td>
<td>15%</td>
</tr>
<tr>
<td>(5)</td>
<td>Meltdown</td>
<td>-5% for the next 3 years, 5% thereafter</td>
<td>17.1%</td>
<td>5%</td>
</tr>
</tbody>
</table>

Actual HPA: -10% annualized from Q4, 2005 to Q4, 2008

Forecast losses as of 2/2009 in 2006-1 ABX from JPM: 23.44% (assuming -30% HPA in 2009!)
OFHEO Experience in Context

- “HEL Bond Profile Across HPA Scenarios”

<table>
<thead>
<tr>
<th>#</th>
<th>Name</th>
<th>Scenario</th>
<th>Loss</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>Aggressive</td>
<td>11% HPA over the life of the pool</td>
<td>1.4%</td>
<td>15%</td>
</tr>
<tr>
<td>(2)</td>
<td></td>
<td>8% HPA for life</td>
<td>3.2%</td>
<td>15%</td>
</tr>
<tr>
<td>(3)</td>
<td>Base</td>
<td>HPA slows to 5% by end-2005</td>
<td>5.6%</td>
<td>50%</td>
</tr>
<tr>
<td>(4)</td>
<td>Pessimistic</td>
<td>0% HPA for the next 3 years 5% thereafter</td>
<td>11.1%</td>
<td>15%</td>
</tr>
<tr>
<td>(5)</td>
<td>Meltdown</td>
<td>-5% for the next 3 years, 5% thereafter</td>
<td>17.1%</td>
<td>5%</td>
</tr>
</tbody>
</table>

- Actual HPA: -10% annualized from Q4, 2005 to Q4, 2008

- Forecast losses as of 2/2009 in 2006-1 ABX from JPM: 23.44% (assuming -30% HPA in 2009!)

“HEL Bond Profile Across HPA Scenarios”

<table>
<thead>
<tr>
<th>#</th>
<th>Name</th>
<th>Scenario</th>
<th>Loss</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Aggressive</td>
<td>11% HPA over the life of the pool</td>
<td>1.4%</td>
<td>15%</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>8% HPA for life</td>
<td>3.2%</td>
<td>15%</td>
</tr>
<tr>
<td>3</td>
<td>Base</td>
<td>HPA slows to 5% by end-2005</td>
<td>5.6%</td>
<td>50%</td>
</tr>
<tr>
<td>4</td>
<td>Pessimistic</td>
<td>0% HPA for the next 3 years 5% thereafter</td>
<td>11.1%</td>
<td>15%</td>
</tr>
<tr>
<td>5</td>
<td>Meltdown</td>
<td>-5% for the next 3 years, 5% thereafter</td>
<td>17.1%</td>
<td>5%</td>
</tr>
</tbody>
</table>

Actual HPA: -10% annualized from Q4, 2005 to Q4, 2008

Forecast losses as of 2/2009 in 2006-1 ABX from JPM: 23.44% (assuming -30% HPA in 2009!)

“HEL Bond Profile Across HPA Scenarios”

<table>
<thead>
<tr>
<th>#</th>
<th>Name</th>
<th>Scenario</th>
<th>Loss</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Aggressive</td>
<td>11% HPA over the life of the pool</td>
<td>1.4%</td>
<td>15%</td>
</tr>
<tr>
<td>2</td>
<td>8% HPA for life</td>
<td></td>
<td>3.2%</td>
<td>15%</td>
</tr>
<tr>
<td>3</td>
<td>Base</td>
<td>HPA slows to 5% by end-2005</td>
<td>5.6%</td>
<td>50%</td>
</tr>
<tr>
<td>4</td>
<td>Pessimistic</td>
<td>0% HPA for the next 3 years 5% thereafter</td>
<td>11.1%</td>
<td>15%</td>
</tr>
<tr>
<td>5</td>
<td>Meltdown</td>
<td>-5% for the next 3 years, 5% thereafter</td>
<td>17.1%</td>
<td>5%</td>
</tr>
</tbody>
</table>

Actual HPA: -10% annualized from Q4, 2005 to Q4, 2008

Forecast losses as of 2/2009 in 2006-1 ABX from JPM: 23.44% (assuming -30% HPA in 2009!)
GSEs subject to both minimum leverage and risk-based capital requirement:

- Minimum leverage requirement set in statute at 2.5% for balance sheet assets (plus 0.45% for off-balance sheet liabilities).
- Risk-based requirement produced by OFHEO and based on a stress test.
- Capital requirement = max[2.5%, RBC from stress test]

Stress test largely developed by OFHEO, but constrained in some important ways by the enabling statute.

- Overall treatment of credit, market, and operational risks.
- Notice and comment requirements; full disclosure of model for replicability.
GSEs subject to both minimum leverage and risk-based capital requirement:

- Minimum leverage requirement set in statute at 2.5% for balance sheet assets (plus 0.45% for off-balance sheet liabilities).
- Risk-based requirement produced by OFHEO and based on a stress test.
- Capital requirement = max[2.5%, RBC from stress test]

Stress test largely developed by OFHEO, but constrained in some important ways by the enabling statute.

- Overall treatment of credit, market, and operational risks.
- Notice and comment requirements; full disclosure of model for replicability.
GSEs subject to *both* minimum leverage and risk-based capital requirement:

- Minimum leverage requirement set in statute at 2.5% for balance sheet assets (plus 0.45% for off-balance sheet liabilities).
- Risk-based requirement produced by OFHEO and based on a stress test.
 - Capital requirement = max[2.5%, RBC from stress test]

Stress test largely developed by OFHEO, but constrained in some important ways by the enabling statute.

- Overall treatment of credit, market, and operational risks.
- Notice and comment requirements; full disclosure of model for replicability.
GSEs subject to both minimum leverage and risk-based capital requirement:

- Minimum leverage requirement set in statute at 2.5% for balance sheet assets (plus 0.45% for off-balance sheet liabilities).
- Risk-based requirement produced by OFHEO and based on a stress test.
- Capital requirement = \(\max[2.5\%, \text{RBC from stress test}] \)

Stress test largely developed by OFHEO, but constrained in some important ways by the enabling statute.

- Overall treatment of credit, market, and operational risks.
- Notice and comment requirements; full disclosure of model for replicability.
GSEs subject to both minimum leverage and risk-based capital requirement:

- Minimum leverage requirement set in statute at 2.5% for balance sheet assets (plus 0.45% for off-balance sheet liabilities).
- Risk-based requirement produced by OFHEO and based on a stress test.
- Capital requirement = max[2.5%, RBC from stress test]

Stress test largely developed by OFHEO, but constrained in some important ways by the enabling statute.

- Overall treatment of credit, market, and operational risks.
- Notice and comment requirements; full disclosure of model for replicability.
GSEs subject to both minimum leverage and risk-based capital requirement:

- Minimum leverage requirement set in statute at 2.5% for balance sheet assets (plus 0.45% for off-balance sheet liabilities).
- Risk-based requirement produced by OFHEO and based on a stress test.
- Capital requirement = max[2.5%, RBC from stress test]

Stress test largely developed by OFHEO, but constrained in some important ways by the enabling statute.

- Overall treatment of credit, market, and operational risks.
- Notice and comment requirements; full disclosure of model for replicability.
GSEs subject to both minimum leverage and risk-based capital requirement:

- Minimum leverage requirement set in statute at 2.5% for balance sheet assets (plus 0.45% for off-balance sheet liabilities).
- Risk-based requirement produced by OFHEO and based on a stress test.
- Capital requirement = \(\max[2.5\%, \text{RBC from stress test}] \)

Stress test largely developed by OFHEO, but constrained in some important ways by the enabling statute.

- Overall treatment of credit, market, and operational risks.
- Notice and comment requirements; full disclosure of model for replicability.
Simulated 10 years of adverse economic conditions on Fannie Maes and Freddie Macs existing assets, liabilities, and off-balance sheet obligations.

- Assumed no new business.

Stress applied via house prices and interest rates.

House price scenario derived from “benchmark loss experience”.

- Based on worst cumulative credit losses originated during a period of two consecutive years in contiguous states with at least five percent of the population.

 AR + LA + MS + OK = ALMO during 1983-1984. 10-year default rate = 14.9%

Interest rates: “down rate” and “up rate”.

Loss severity – no model, simple 61% recovery rate assumption.
Simulated 10 years of adverse economic conditions on Fannie Maes and Freddie Macs existing assets, liabilities, and off-balance sheet obligations.

- Assumed no new business.

Stress applied via house prices and interest rates.

House price scenario derived from “benchmark loss experience”.

- Based on worst cumulative credit losses originated during a period of two consecutive years in contiguous states with at least five percent of the population.
- AR + LA + MS + OK = ALMO during 1983-1984. 10-year default rate = 14.9%

Interest rates: “down rate” and “up rate”.

Loss severity – no model, simple 61% recovery rate assumption.
Simulated 10 years of adverse economic conditions on Fannie Maes and Freddie Macs existing assets, liabilities, and off-balance sheet obligations.

- Assumed no new business.

Stress applied via house prices and interest rates.

- House price scenario derived from “benchmark loss experience”.
 - Based on worst cumulative credit losses originated during a period of two consecutive years in contiguous states with at least five percent of the population.
 - AR + LA + MS + OK = ALMO during 1983-1984. 10-year default rate = 14.9%

- Interest rates: “down rate” and “up rate”.

- Loss severity – no model, simple 61% recovery rate assumption.
Simulated 10 years of adverse economic conditions on Fannie Maes and Freddie Macs existing assets, liabilities, and off-balance sheet obligations.

- Assumed no new business.

Stress applied via house prices and interest rates.

House price scenario derived from “benchmark loss experience”.

- Based on worst cumulative credit losses originated during a period of two consecutive years in contiguous states with at least five percent of the population.
 - \(AR + LA + MS + OK = ALMO \) during 1983-1984. 10-year default rate = 14.9%

Interest rates: “down rate” and “up rate”.

- Loss severity – no model, simple 61% recovery rate assumption.
OFHEO Stress Test

- Simulated 10 years of adverse economic conditions on Fannie Maes and Freddie Macs existing assets, liabilities, and off-balance sheet obligations.
 - Assumed no new business.

- Stress applied via house prices and interest rates.

- House price scenario derived from “benchmark loss experience”.
 - Based on worst cumulative credit losses originated during a period of two consecutive years in contiguous states with at least five percent of the population.
 - AR + LA + MS + OK = ALMO during 1983-1984. 10-year default rate = 14.9%

- Interest rates: “down rate” and “up rate”.

- Loss severity – no model, simple 61% recovery rate assumption.
Simulated 10 years of adverse economic conditions on Fannie Maes and Freddie Macs existing assets, liabilities, and off-balance sheet obligations.

- Assumed no new business.

Stress applied via house prices and interest rates.

House price scenario derived from “benchmark loss experience”.

- Based on worst cumulative credit losses originated during a period of two consecutive years in contiguous states with at least five percent of the population.

 \[\text{AR} + \text{LA} + \text{MS} + \text{OK} = \text{ALMO} \] during 1983-1984. 10-year default rate = 14.9%

Interest rates: “down rate” and “up rate”.

- Loss severity – no model, simple 61% recovery rate assumption.
Simulated 10 years of adverse economic conditions on Fannie Maes and Freddie Macs existing assets, liabilities, and off-balance sheet obligations.

- Assumed no new business.

Stress applied via house prices and interest rates.

House price scenario derived from “benchmark loss experience”.

- Based on worst cumulative credit losses originated during a period of two consecutive years in contiguous states with at least five percent of the population.

- AR + LA + MS + OK = ALMO during 1983-1984. 10-year default rate = 14.9%

Interest rates: “down rate” and “up rate”.

Loss severity – no model, simple 61% recovery rate assumption.

Joint estimation of default and prepayment using a multinominal logit model.

Defined default as having occurred when a loan terminated with a loss. In such cases, default was recorded as having occurred as of the last mortgage payment.

Included following covariates:
- Loan age, original LTV ratio, probability of negative equity, measure of “burnout”, and investor/owner-occupant status.
- Continuous variables translated into sets of indicator variables.

Joint estimation of default and prepayment using a multinominal logit model.

Defined default as having occurred when a loan terminated with a loss. In such cases, default was recorded as having occurred as of the last mortgage payment.

Included following covariates:
- Loan age, original LTV ratio, probability of negative equity, measure of “burnout”, and investor/owner-occupant status.
- Continuous variables translated into sets of indicator variables.

Joint estimation of default and prepayment using a multinominal logit model.

Defined default as having occurred when a loan terminated with a loss. In such cases, default was recorded as having occurred as of the last mortgage payment.

Included following covariates:
- Loan age, original LTV ratio, probability of negative equity, measure of “burnout”, and investor/owner-occupant status.
- Continuous variables translated into sets of indicator variables.

Joint estimation of default and prepayment using a multinomial logit model.

Defined default as having occurred when a loan terminated with a loss. In such cases, default was recorded as having occurred as of the last mortgage payment.

Included following covariates:

- Loan age, original LTV ratio, probability of negative equity, measure of “burnout”, and investor/owner-occupant status.
- Continuous variables translated into sets of indicator variables.
Risk-based capital requirement from stress test *never* binding – even in beginning of 2008!
Timeline of the OFHEO Stress Test

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1992</td>
<td>Congress passes Federal Housing Enterprise Financial Safety and Soundness Act (the 1992 Act)</td>
</tr>
<tr>
<td>1996</td>
<td>First Notice of Proposed Rulemaking</td>
</tr>
<tr>
<td>1999</td>
<td>Second Notice of Proposed Rulemaking</td>
</tr>
<tr>
<td>2001</td>
<td>Final Rule Announced</td>
</tr>
<tr>
<td>2002</td>
<td>Stiglitz, Orszag and Orszag conclude that stress test means that risk of insolvency of GSEs is “effectively zero.”</td>
</tr>
<tr>
<td>Q4, 2002</td>
<td>Stress Test Becomes Effective</td>
</tr>
<tr>
<td>September 2008</td>
<td>Treasury concludes that Fannie Mae and Freddie Mac are insolvent and imposes conservatorship.</td>
</tr>
</tbody>
</table>
Timeline of the OFHEO Stress Test

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1992</td>
<td>Congress passes Federal Housing Enterprise Financial Safety and Soundness Act (the 1992 Act)</td>
</tr>
<tr>
<td>1996</td>
<td>First Notice of Proposed Rulemaking</td>
</tr>
<tr>
<td>1999</td>
<td>Second Notice of Proposed Rulemaking</td>
</tr>
<tr>
<td>2001</td>
<td>Final Rule Announced</td>
</tr>
<tr>
<td>2002</td>
<td>Stiglitz, Orszag and Orszag conclude that stress test means that risk of insolvency of GSEs is “effectively zero.”</td>
</tr>
<tr>
<td>Q4, 2002</td>
<td>Stress Test Becomes Effective</td>
</tr>
<tr>
<td>September 2008</td>
<td>Treasury concludes that Fannie Mae and Freddie Mac are insolvent and imposes conservatorship.</td>
</tr>
</tbody>
</table>
Timeline of the OFHEO Stress Test

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1992</td>
<td>Congress passes Federal Housing Enterprise Financial Safety and Soundness Act (the 1992 Act)</td>
</tr>
<tr>
<td>1996</td>
<td>First Notice of Proposed Rulemaking</td>
</tr>
<tr>
<td>1999</td>
<td>Second Notice of Proposed Rulemaking</td>
</tr>
<tr>
<td>2001</td>
<td>Final Rule Announced</td>
</tr>
<tr>
<td>2002</td>
<td>Stiglitz, Orszag and Orszag conclude that stress test means that risk of insolvency of GSEs is “effectively zero.”</td>
</tr>
<tr>
<td>Q4, 2002</td>
<td>Stress Test Becomes Effective</td>
</tr>
<tr>
<td>September 2008</td>
<td>Treasury concludes that Fannie Mae and Freddie Mac are insolvent and imposes conservatorship.</td>
</tr>
</tbody>
</table>
Timeline of the OFHEO Stress Test

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1992</td>
<td>Congress passes Federal Housing Enterprise Financial Safety and Soundness Act (the 1992 Act)</td>
</tr>
<tr>
<td>1996</td>
<td>First Notice of Proposed Rulemaking</td>
</tr>
<tr>
<td>1999</td>
<td>Second Notice of Proposed Rulemaking</td>
</tr>
<tr>
<td>2001</td>
<td>Final Rule Announced</td>
</tr>
<tr>
<td>2002</td>
<td>Stiglitz, Orszag and Orszag conclude that stress test means that risk of insolvency of GSEs is “effectively zero.”</td>
</tr>
<tr>
<td>Q4, 2002</td>
<td>Stress Test Becomes Effective</td>
</tr>
<tr>
<td>September 2008</td>
<td>Treasury concludes that Fannie Mae and Freddie Mac are insolvent and imposes conservatorship.</td>
</tr>
<tr>
<td>Year</td>
<td>Event</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
</tr>
<tr>
<td>1992</td>
<td>Congress passes Federal Housing Enterprise Financial Safety and Soundness Act (the 1992 Act)</td>
</tr>
<tr>
<td>1996</td>
<td>First Notice of Proposed Rulemaking</td>
</tr>
<tr>
<td>1999</td>
<td>Second Notice of Proposed Rulemaking</td>
</tr>
<tr>
<td>2001</td>
<td>Final Rule Announced</td>
</tr>
<tr>
<td>2002</td>
<td>Stiglitz, Orszag and Orszag conclude that stress test means that risk of insolvency of GSEs is “effectively zero.”</td>
</tr>
<tr>
<td>Q4, 2002</td>
<td>Stress Test Becomes Effective</td>
</tr>
<tr>
<td>September 2008</td>
<td>Treasury concludes that Fannie Mae and Freddie Mac are insolvent and imposes conservatorship.</td>
</tr>
<tr>
<td>Year</td>
<td>Event</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>1992</td>
<td>Congress passes Federal Housing Enterprise Financial Safety and Soundness Act (the 1992 Act)</td>
</tr>
<tr>
<td>1996</td>
<td>First Notice of Proposed Rulemaking</td>
</tr>
<tr>
<td>1999</td>
<td>Second Notice of Proposed Rulemaking</td>
</tr>
<tr>
<td>2001</td>
<td>Final Rule Announced</td>
</tr>
<tr>
<td>2002</td>
<td>Stiglitz, Orszag and Orszag conclude that stress test means that risk of insolvency of GSEs is “effectively zero.”</td>
</tr>
<tr>
<td>Q4, 2002</td>
<td>Stress Test Becomes Effective</td>
</tr>
<tr>
<td>September 2008</td>
<td>Treasury concludes that Fannie Mae and Freddie Mac are insolvent and imposes conservatorship.</td>
</tr>
</tbody>
</table>
Timeline of the OFHEO Stress Test

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1992</td>
<td>Congress passes Federal Housing Enterprise Financial Safety and Soundness Act (the 1992 Act)</td>
</tr>
<tr>
<td>1996</td>
<td>First Notice of Proposed Rulemaking</td>
</tr>
<tr>
<td>1999</td>
<td>Second Notice of Proposed Rulemaking</td>
</tr>
<tr>
<td>2001</td>
<td>Final Rule Announced</td>
</tr>
<tr>
<td>2002</td>
<td>Stiglitz, Orszag and Orszag conclude that stress test means that risk of insolvency of GSEs is “effectively zero.”</td>
</tr>
<tr>
<td>Q4, 2002</td>
<td>Stress Test Becomes Effective</td>
</tr>
<tr>
<td></td>
<td>September 2008 Treasury concludes that Fannie Mae and Freddie Mac are insolvent and imposes conservatorship.</td>
</tr>
</tbody>
</table>
Timeline of the OFHEO Stress Test

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1992</td>
<td>Congress passes Federal Housing Enterprise Financial Safety and Soundness Act (the 1992 Act)</td>
</tr>
<tr>
<td>1996</td>
<td>First Notice of Proposed Rulemaking</td>
</tr>
<tr>
<td>1999</td>
<td>Second Notice of Proposed Rulemaking</td>
</tr>
<tr>
<td>2001</td>
<td>Final Rule Announced</td>
</tr>
<tr>
<td>2002</td>
<td>Stiglitz, Orszag and Orszag conclude that stress test means that risk of insolvency of GSEs is “effectively zero.”</td>
</tr>
<tr>
<td>Q4, 2002</td>
<td>Stress Test Becomes Effective</td>
</tr>
<tr>
<td>September 2008</td>
<td>Treasury concludes that Fannie Mae and Freddie Mac are insolvent and imposes conservatorship.</td>
</tr>
</tbody>
</table>
Figure out why OFHEO stress test failed in identifying the sensitivity of the GSEs’ portfolios to the dramatic decline in house prices.

Focus on single-family, 30-year, FRMs (they account for the vast majority of loans guaranteed by the GSEs).

Evaluate model performance during the housing bust.

Determine if model re-estimation and/or the introduction of new predictors like credit scores would have improved forecasting ability.

Despite being used since 2002, OFHEO never re-estimated the model nor introduced new variables – even as the mortgage market evolved dramatically during the boom.

Determine if stress scenario was adequate in light of the dynamics of housing prices during the crisis.
Figure out why OFHEO stress test failed in identifying the sensitivity of the GSEs' portfolios to the dramatic decline in house prices.

Focus on single-family, 30-year, FRMs (they account for the vast majority of loans guaranteed by the GSEs).

Evaluate model performance during the housing bust.

Determine if model re-estimation and/or the introduction of new predictors like credit scores would have improved forecasting ability.

Despite being used since 2002, OFHEO never re-estimated the model nor introduced new variables – even as the mortgage market evolved dramatically during the boom.

Determine if stress scenario was adequate in light of the dynamics of housing prices during the crisis.
Figure out why OFHEO stress test failed in identifying the sensitivity of the GSEs’ portfolios to the dramatic decline in house prices.

Focus on single-family, 30-year, FRMs (they account for the vast majority of loans guaranteed by the GSEs).

Evaluate model performance during the housing bust.

Determine if model re-estimation and/or the introduction of new predictors like credit scores would have improved forecasting ability.

Despite being used since 2002, OFHEO never re-estimated the model nor introduced new variables – even as the mortgage market evolved dramatically during the boom.

Determine if stress scenario was adequate in light of the dynamics of housing prices during the crisis.
Figure out why OFHEO stress test failed in identifying the sensitivity of the GSEs’ portfolios to the dramatic decline in house prices.

Focus on single-family, 30-year, FRMs (they account for the vast majority of loans guaranteed by the GSEs).

Evaluate model performance during the housing bust.

Determine if model re-estimation and/or the introduction of new predictors like credit scores would have improved forecasting ability.

- Despite being used since 2002, OFHEO never re-estimated the model nor introduced new variables – even as the mortgage market evolved dramatically during the boom.

Determine if stress scenario was adequate in light of the dynamics of housing prices during the crisis.
Figure out why OFHEO stress test failed in identifying the sensitivity of the GSEs’ portfolios to the dramatic decline in house prices.

Focus on single-family, 30-year, FRMs (they account for the vast majority of loans guaranteed by the GSEs).

Evaluate model performance during the housing bust.

Determine if model re-estimation and/or the introduction of new predictors like credit scores would have improved forecasting ability.

Despite being used since 2002, OFHEO never re-estimated the model nor introduced new variables – even as the mortgage market evolved dramatically during the boom.

Determine if stress scenario was adequate in light of the dynamics of housing prices during the crisis.
Figure out why OFHEO stress test failed in identifying the sensitivity of the GSEs’ portfolios to the dramatic decline in house prices.

Focus on single-family, 30-year, FRMs (they account for the vast majority of loans guaranteed by the GSEs).

Evaluate model performance during the housing bust.

Determine if model re-estimation and/or the introduction of new predictors like credit scores would have improved forecasting ability.

- Despite being used since 2002, OFHEO never re-estimated the model nor introduced new variables – even as the mortgage market evolved dramatically during the boom.

Determine if stress scenario was adequate in light of the dynamics of housing prices during the crisis.
Data

- Data used to estimate original OFHEO model, proprietary GSE data from 1979–1999.

- We use loan-level data from Lender Processing Services (LPS).
 - Servicer-provided data that currently accounts for 75-80% of active mortgages.
 - Detailed mortgage characteristics (at origination) and payment behavior.
 - Able to identify mortgage holder – FHA/GNMA, FNMA/FHLMC, portfolio, or private-label MBS investor.

- Use GSE mortgages in LPS to forecast with OFHEO model and (random sample) to estimate new variants of model.

- Limit sample to: single-family, first-lien, 30-year fixed-rate mortgages in the 48 contiguous states.
Data

- Data used to estimate original OFHEO model, proprietary GSE data from 1979–1999.
- We use loan-level data from Lender Processing Services (LPS).
 - Servicer-provided data that currently accounts for 75-80% of active mortgages.
 - Detailed mortgage characteristics (at origination) and payment behavior.
 - Able to identify mortgage holder – FHA/GNMA, FNMA/FHLMC, portfolio, or private-label MBS investor.
- Use GSE mortgages in LPS to forecast with OFHEO model and (random sample) to estimate new variants of model.
- Limit sample to: single-family, first-lien, 30-year fixed-rate mortgages in the 48 contiguous states.
Data

- Data used to estimate original OFHEO model, proprietary GSE data from 1979–1999.
- We use loan-level data from Lender Processing Services (LPS).
 - Servicer-provided data that currently accounts for 75-80% of active mortgages.
 - Detailed mortgage characteristics (at origination) and payment behavior.
 - Able to identify mortgage holder – FHA/GNMA, FNMA/FHLMC, portfolio, or private-label MBS investor.
- Use GSE mortgages in LPS to forecast with OFHEO model and (random sample) to estimate new variants of model.
- Limit sample to: single-family, first-lien, 30-year fixed-rate mortgages in the 48 contiguous states.
Data

- Data used to estimate original OFHEO model, proprietary GSE data from 1979–1999.

- We use loan-level data from Lender Processing Services (LPS).
 - Servicer-provided data that currently accounts for 75-80% of active mortgages.
 - Detailed mortgage characteristics (at origination) and payment behavior.
 - Able to identify mortgage holder – FHA/GNMA, FNMA/FHLMC, portfolio, or private-label MBS investor.

- Use GSE mortgages in LPS to forecast with OFHEO model and (random sample) to estimate new variants of model.

- Limit sample to: single-family, first-lien, 30-year fixed-rate mortgages in the 48 contiguous states.
Data

- Data used to estimate original OFHEO model, proprietary GSE data from 1979–1999.

- We use loan-level data from Lender Processing Services (LPS).
 - Servicer-provided data that currently accounts for 75-80% of active mortgages.
 - Detailed mortgage characteristics (at origination) and payment behavior.
 - Able to identify mortgage holder – FHA/GNMA, FNMA/FHLMC, portfolio, or private-label MBS investor.

- Use GSE mortgages in LPS to forecast with OFHEO model and (random sample) to estimate new variants of model.

- Limit sample to: single-family, first-lien, 30-year fixed-rate mortgages in the 48 contiguous states.
Sample means for LTV and UPB for Fannie Mae loans originated 1995 to 2005:

<table>
<thead>
<tr>
<th>Year</th>
<th>Avg. LTV Ratio (%)</th>
<th>Avg. UPB ($)</th>
<th>Avg. Interest Rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OFHEO</td>
<td>LPS</td>
<td>OFHEO</td>
</tr>
<tr>
<td>1995</td>
<td>80.1</td>
<td>79.5</td>
<td>101,518</td>
</tr>
<tr>
<td>1996</td>
<td>79.1</td>
<td>77.3</td>
<td>105,059</td>
</tr>
<tr>
<td>1997</td>
<td>78.1</td>
<td>78.5</td>
<td>111,398</td>
</tr>
<tr>
<td>1998</td>
<td>76.2</td>
<td>78.0</td>
<td>122,646</td>
</tr>
<tr>
<td>1999</td>
<td>77.6</td>
<td>76.8</td>
<td>123,600</td>
</tr>
<tr>
<td>2000</td>
<td>78.9</td>
<td>77.9</td>
<td>128,041</td>
</tr>
<tr>
<td>2001</td>
<td>76.2</td>
<td>74.9</td>
<td>145,435</td>
</tr>
<tr>
<td>2002</td>
<td>74.3</td>
<td>74.2</td>
<td>153,982</td>
</tr>
<tr>
<td>2003</td>
<td>72.2</td>
<td>72.4</td>
<td>162,743</td>
</tr>
<tr>
<td>2004</td>
<td>74.4</td>
<td>70.8</td>
<td>162,513</td>
</tr>
<tr>
<td>2005</td>
<td>73.8</td>
<td>72.4</td>
<td>175,886</td>
</tr>
</tbody>
</table>
Focus on quarterly 1-step ahead forecasts of 30-year FRM default and prepayments based on OFHEO model parameters using LPS data.

- Also can look at k-steps ahead forecasts, which are always significantly worse than the 1-step ahead forecasts.
- Assume perfect foresight regarding next quarter’s house prices and interest rates.

Compare predicted versus actual default/prepayment rate levels.
Focus on quarterly 1-step ahead forecasts of 30-year FRM default and prepayments based on OFHEO model parameters using LPS data.

- Also can look at k-steps ahead forecasts, which are always significantly worse than the 1-step ahead forecasts.
- Assume perfect foresight regarding next quarter’s house prices and interest rates.

Compare predicted versus actual default/prepayment rate levels.
Focus on quarterly 1-step ahead forecasts of 30-year FRM default and prepayments based on OFHEO model parameters using LPS data.

- Also can look at k-steps ahead forecasts, which are always significantly worse than the 1-step ahead forecasts.
- Assume perfect foresight regarding next quarter’s house prices and interest rates.

- Compare predicted versus actual default/prepayment rate levels.
Default Forecasts (1-Quarter Ahead)
Model Analysis

Prepayment Forecasts (1-Quarter Ahead)

- Actual Prepayments
- Predicted Prepayments

Prepayment Rate (%) - 1 Quarter Ahead

Gerardi (FRB Atlanta)
What if OFHEO had updated their model by simply re-estimating it with newer data?

- Re-estimate OFHEO model with LPS data using 7-year rolling windows (also tried 3 year windows).
- Assume perfect foresight regarding next quarter’s house prices and interest rates.

- Compare ratio of predicted versus actual default rates.
 - Significantly improved forecast during crisis.
What if OFHEO had updated their model by simply re-estimating it with newer data?

- Re-estimate OFHEO model with LPS data using 7-year rolling windows (also tried 3 year windows).
- Assume perfect foresight regarding next quarter’s house prices and interest rates.

Compare ratio of predicted versus actual default rates.

- Significantly improved forecast during crisis.
What if OFHEO had updated their model by simply re-estimating it with newer data?

- Re-estimate OFHEO model with LPS data using 7-year rolling windows (also tried 3 year windows).
- Assume perfect foresight regarding next quarter’s house prices and interest rates.

Compare ratio of predicted versus actual default rates.

- Significantly improved forecast during crisis.
Model Analysis

Default Forecasts (1-Quarter Ahead)

![Graph showing the ratio of actual to predicted defaults over time. The graph includes two lines: one for Actual/Predicted Defaults (OFHEO Coefficients) and another for Actual/Predicted Defaults (Updated Coefficients). The y-axis represents the ratio of actual to predicted defaults, and the x-axis represents the dates from 3/1/2006 to 12/1/2009. Key values include 1.39, 3.9, 2.55, 0.64, 1.53, and 0.93 at specific dates.]

Gerardi (FRB Atlanta)
What if OFHEO had updated their model by including additional variables that have been found to be predictive of default rates?

- More disaggregated house prices (county-level Corelogic indices)
- FICO score at origination.
- Documentation levels
- Unemployment rates (county-level).
- Vintage effects to proxy for unobservable decline in underwriting standards.
- Also tried interaction terms to capture potential non-linearities.

Model with all of these variables actually *over-predicts* defaults during crisis.
Model Analysis

What if OFHEO had updated their model by including additional variables that have been found to be predictive of default rates?

- More disaggregated house prices (county-level Corelogic indices)
- FICO score at origination.
- Documentation levels
- Unemployment rates (county-level).
- Vintage effects to proxy for unobservable decline in underwriting standards.
- Also tried interaction terms to capture potential non-linearities.

Model with all of these variables actually *over-predicts* defaults during crisis.
What if OFHEO had updated their model by including additional variables that have been found to be predictive of default rates?

- More disaggregated house prices (county-level Corelogic indices)
- FICO score at origination.
- Documentation levels
- Unemployment rates (county-level).
- Vintage effects to proxy for unobservable decline in underwriting standards.
- Also tried interaction terms to capture potential non-linearities.

Model with all of these variables actually over-predicts defaults during crisis.
Model Analysis

What if OFHEO had updated their model by including additional variables that have been found to be predictive of default rates?

- More disaggregated house prices (county-level Corelogic indices)
- FICO score at origination.
- Documentation levels
 - Unemployment rates (county-level).
 - Vintage effects to proxy for unobservable decline in underwriting standards.
 - Also tried interaction terms to capture potential non-linearities.

Model with all of these variables actually over-predicts defaults during crisis.
What if OFHEO had updated their model by including additional variables that have been found to be predictive of default rates?

- More disaggregated house prices (county-level Corelogic indices)
- FICO score at origination.
- Documentation levels
- Unemployment rates (county-level).
- Vintage effects to proxy for unobservable decline in underwriting standards.
- Also tried interaction terms to capture potential non-linearities.

Model with all of these variables actually *over-predicts* defaults during crisis.
What if OFHEO had updated their model by including additional variables that have been found to be predictive of default rates?

- More disaggregated house prices (county-level Corelogic indices)
- FICO score at origination.
- Documentation levels
- Unemployment rates (county-level).
- Vintage effects to proxy for unobservable decline in underwriting standards.
- Also tried interaction terms to capture potential non-linearities.

Model with all of these variables actually over-predicts defaults during crisis.
Model Analysis

What if OFHEO had updated their model by including additional variables that have been found to be predictive of default rates?

- More disaggregated house prices (county-level Corelogic indices)
- FICO score at origination.
- Documentation levels
- Unemployment rates (county-level).
- Vintage effects to proxy for unobservable decline in underwriting standards.
- Also tried interaction terms to capture potential non-linearities.

Model with all of these variables actually *over-predicts* defaults during crisis.
Model Analysis

What if OFHEO had updated their model by including additional variables that have been found to be predictive of default rates?

- More disaggregated house prices (county-level Corelogic indices)
- FICO score at origination.
- Documentation levels
- Unemployment rates (county-level).
- Vintage effects to proxy for unobservable decline in underwriting standards.
- Also tried interaction terms to capture potential non-linearities.

Model with all of these variables actually over-predicts defaults during crisis.
Model Analysis

- Default Forecasts (1-Quarter Ahead)

Ratio of Actual to Predicted Defaults

- Baseline
- FICO added
- Documentation Type added
- Origination Years added
- Cumulative Change in Unemployment Rate added
- Unemployment Rate added

Date Range:
- 3/1/2006 to 12/1/2009

Values:
- 1.56
- 0.73
- 1.26
- 0.58
- 1.08
- 0.84
- 1.02
- 0.97

Gerardi (FRB Atlanta)
How stressful was the house price stress scenario used by OFHEO compared to what happened during the crisis?

OFHEO house price stress scenario:

- Realized path of house prices for the West South Central Census Region between 1984 and 1993.
- First 10 quarters, home prices increased approximately 2%.
- Next 10 quarters, 13% decrease.
How stressful was the house price stress scenario used by OFHEO compared to what happened during the crisis?

OFHEO house price stress scenario:

- Realized path of house prices for the West South Central Census Region between 1984 and 1993.
- First 10 quarters, home prices *increased* approximately 2%.
- Next 10 quarters, 13% decrease.
How stressful was the house price stress scenario used by OFHEO compared to what happened during the crisis?

OFHEO house price stress scenario:

- Realized path of house prices for the West South Central Census Region between 1984 and 1993.
 - First 10 quarters, home prices *increased* approximately 2%.
 - Next 10 quarters, 13% decrease.
How stressful was the house price stress scenario used by OFHEO compared to what happened during the crisis?

OFHEO house price stress scenario:

- Realized path of house prices for the West South Central Census Region between 1984 and 1993.
- First 10 quarters, home prices increased approximately 2%.
- Next 10 quarters, 13% decrease.
How stressful was the house price stress scenario used by OFHEO compared to what happened during the crisis?

• OFHEO house price stress scenario:
 • Realized path of house prices for the West South Central Census Region between 1984 and 1993.
 • First 10 quarters, home prices *increased* approximately 2%.
 • Next 10 quarters, 13% decrease.
Stress Scenario

FHFA House Price Index Level

OFHEO Stress Scenario Path
Actual House Price Path

Gerardi (FRB Atlanta)
OFHEO Stress Test
April, 9 2013
Stress Scenario

Predicted Default Rate (2007 onwards FHFA HPI path)

Predicted Default Rate (OFHEO Stress Test HPI path)

Cumulative Default Rate (%) - 3 years ahead

0.88

0.74

0.59

0.43

0.48

Gerardi (FRB Atlanta)
Stress testing can provide valuable insights regarding financial health and risk exposures of large institutions.

However, stress tests, like any other forecasting exercise, are vulnerable to model risk.

OFHEO experience is an unfortunate example of what can go wrong without appropriate model validation.

Terrible forecasting performance of OFHEO mortgage default/prepayment model due to:

- Failure to update parameter estimates.
- Failure to incorporate important market developments into the model.

Open question as to why this occurred...
Stress testing can provide valuable insights regarding financial health and risk exposures of large institutions.

However, stress tests, like any other forecasting exercise, are vulnerable to model risk.

OFHEO experience is an unfortunate example of what can go wrong without appropriate model validation.

Terrible forecasting performance of OFHEO mortgage default/prepayment model due to:
 - Failure to update parameter estimates.
 - Failure to incorporate important market developments into the model.

Open question as to why this occurred...
Stress testing can provide valuable insights regarding financial health and risk exposures of large institutions.

However, stress tests, like any other forecasting exercise, are vulnerable to model risk.

OFHEO experience is an unfortunate example of what can go wrong without appropriate model validation.

Terrible forecasting performance of OFHEO mortgage default/prepayment model due to:
- Failure to update parameter estimates.
- Failure to incorporate important market developments into the model.

Open question as to why this occurred...
Concluding Remarks

- Stress testing can provide valuable insights regarding financial health and risk exposures of large institutions.

- However, stress tests, like any other forecasting exercise, are vulnerable to model risk.

- OFHEO experience is an unfortunate example of what can go wrong without appropriate model validation.

- Terrible forecasting performance of OFHEO mortgage default/prepayment model due to:
 - Failure to update parameter estimates.
 - Failure to incorporate important market developments into the model.

- Open question as to why this occurred...
Stress testing can provide valuable insights regarding financial health and risk exposures of large institutions.

However, stress tests, like any other forecasting exercise, are vulnerable to model risk.

OFHEO experience is an unfortunate example of what can go wrong without appropriate model validation.

Terrible forecasting performance of OFHEO mortgage default/prepayment model due to:
- Failure to update parameter estimates.
- Failure to incorporate important market developments into the model.

Open question as to why this occurred...
Stress testing can provide valuable insights regarding financial health and risk exposures of large institutions.

However, stress tests, like any other forecasting exercise, are vulnerable to model risk.

OFHEO experience is an unfortunate example of what can go wrong without appropriate model validation.

Terrible forecasting performance of OFHEO mortgage default/prepayment model due to:
- Failure to update parameter estimates.
- Failure to incorporate important market developments into the model.

Open question as to why this occurred...