Interest-Rate Liberalization and Capital Misallocations

Zheng Liua Pengfei Wangb Zhiwei Xuc

aFederal Reserve Bank of San Francisco
bHong Kong University of Science and Technology
cShanghai Jiao Tong University

Fourth IMF-Atlanta Fed Research Workshop on China’s Economy
September 19-20, 2019

1Copyright© 2016-2017 by Liu, Wang, and Xu. The views expressed herein are those of the authors and do not necessarily reflect the views of the Federal Reserve Bank of San Francisco or the Federal Reserve System.
China’s interest rates have been tightly regulated

Recent liberalization: lending rates (2013); deposit rates (2015)
Standard theory: Financial liberalization improves productivity

- Financial frictions lead to misallocation and depressed productivity (e.g., Restuccia and Rogerson, 2008; Hsieh and Klenow, 2009; Buera, et al. 2011; Midrigan and Xu, 2014; Moll, 2014)

- Alleviating financial frictions improves capital allocation and productivity
With multiple distortions, consequences of financial liberalization less clear

- China’s SOEs have distorted incentives
 - SOEs (broadly defined) help provide public goods: need to maintain employment, not just maximizing profit (Bai, et al, 2006)
 - Government subsidizes inefficient SOEs to keep them alive: soft budget constraints (Lin, et al, 1998; Lin and Tan, 1999)
 - SOEs also have superior access to credit (Brandt and Zhu, 2000)

- Financial liberalization may exacerbate SOE over-investment, partly undoing the benefits of liberalization

- Studying full consequences of financial liberalization requires GE framework with multiple distortions
Interest-rate liberalization incurs tradeoff in GE model

- Analytical results: two-sector model with firm heterogeneity and credit constraints
 1. Interest-rate liberalization improves within-sector capital allocation
 2. but exacerbates misallocation across sectors (SOE over-investment)
 3. Overall effects on TFP and welfare ambiguous

- Calibrated quantitative model:
 ▶ Interest-rate liberalization can reduce productivity and welfare
 ▶ SOE reforms can alleviate/eliminate welfare loss from financial liberalization

- Implications for sequencing of reforms: SOE reforms should precede financial liberalization
A static model

- Two types of firms: state-owned enterprises (SOEs) with measure μ and private-owned enterprises (POEs) with measure $1 - \mu$; Each firm endowed with h units of capital

- SOE firm uses 1 unit of capital to produces $z^s \varepsilon$ units output, with TFP z^s and idiosyncratic productivity $\varepsilon \sim F(\varepsilon)$

- POE firm uses 1 unit of capital to produces $z^p \varepsilon$ units output, where TFP $z^p > z^s$

- Interest rate wedge: $r^l = r^d + \phi$
 - Base model: ϕ controlled by gov't, r^l and r^d endogenous
 - Isomorphic setup: r^d controlled by gov't, r^l and ϕ endogenous
POE’s problem

- POE firm with productivity ε maximizes profit

$$\max_{\{k^p(\varepsilon), l^p(\varepsilon), s^p(\varepsilon)\}} z^p \varepsilon k^p (\varepsilon) - \left(r^d + \phi \right) l^p (\varepsilon) + r^d s^p (\varepsilon),$$

- Flow-of-funds constraint

$$k^p (\varepsilon) = h + l^p (\varepsilon) - s^p (\varepsilon),$$

- Borrowing constraint

$$l^p (\varepsilon) \leq \theta^p h,$$

- Constraint on savings

$$0 \leq s^p (\varepsilon) \leq h.$$
SOE’s problem

- SOE firm’s objective function
 \[\tau z^{s} \varepsilon k^{s}(\varepsilon) - \left(r^{d} + \phi \right) l^{s}(\varepsilon) + r^{d} s^{s}(\varepsilon), \]

- \(\tau > 1 \): distorted SOE incentive
 - Parsimony for soft budget constraints: gov’t subsidies, monopoly rents, or fixed costs
 - SOE’s private MPK exceeds social MPK \(\Rightarrow \) incentive to expand scale

- Flow-of-funds constraints
 \[k^{s}(\varepsilon) = h + l^{s}(\varepsilon) - s^{s}(\varepsilon) \]

- Borrowing constraint
 \[l^{s}(\varepsilon) \leq \theta^{s} h \]

- Constraint on savings
 \[0 \leq s^{s}(\varepsilon) \leq h \]

- SOEs have easier access to credit: \(\theta^{p} < \theta^{s} \)
Aggregation and market clearing

- Capital market clearing condition

\[\mu \int k^s(\varepsilon) \, dF(\varepsilon) + (1 - \mu) \int k^p(\varepsilon) \, dF(\varepsilon) = h. \]

- Aggregate output

\[Y = \mu \int z^s \varepsilon k^s(\varepsilon) \, dF(\varepsilon) + (1 - \mu) \int z^p \varepsilon k^p(\varepsilon) \, dF(\varepsilon). \]
Capital allocations

There exist two cutoff productivity levels ε_j and $\bar{\varepsilon}_j$ for each sector $j \in \{s, p\}$ such that

$$s^j(\varepsilon) = \begin{cases} h & \text{if } \varepsilon < \varepsilon^j \\
0 & \text{if } \varepsilon^j \leq \varepsilon \end{cases}$$

$$p^j(\varepsilon) = \begin{cases} 0 & \text{if } \varepsilon < \bar{\varepsilon}_j \\
\theta_j h & \text{if } \bar{\varepsilon}_j \leq \varepsilon \end{cases}$$

$$k^j(\varepsilon) = \begin{cases} 0 & \text{if } \varepsilon < \varepsilon^j \\
h & \text{if } \varepsilon^j \leq \varepsilon < \bar{\varepsilon}_j \\
(1 + \theta^j) h & \text{if } \bar{\varepsilon}_j \leq \varepsilon \end{cases}$$

The cutoff productivity levels are given by

$$\varepsilon^j = \frac{r}{z^j \tau^j}, \quad \bar{\varepsilon}_j = \frac{r + \phi}{z^j \tau^j}$$
Macro effects of interest rate liberalization

- Liberalization (lower ϕ) \Rightarrow capital flows from POE to SOE

\[
\frac{\partial K^s}{\partial \phi} < 0, \quad \frac{\partial K^p}{\partial \phi} > 0.
\]

- Liberalization raises TFP for POE, but not necessarily for SOE
 - Higher deposit rate → low productivity firms become savers, boosting within-sector TFP
 - But across-sector capital reallocation exacerbates SOE over-investment, offsetting TFP gains

- Net effects on aggregate TFP ambiguous
A dynamic model

- Generalize static model to incorporate (1) endogenous capital accumulation; (2) decreasing returns
- Firm in sector $j \in \{s, p\}$ has DRS production function

$$y^j_t = \left[\left(z^j \varepsilon^j_t k^j_t \right)^\alpha \left(n^j_t \right)^{1-\alpha} \right]^\eta$$

where ε^j_t denotes idiosyncratic productivity.
- Flow-of-funds constraint

$$k^j_t = l^j_t + h^j_t - s^j_t$$

where h^j_t is net worth carried over from $t - 1$
- Borrowing constraint

$$0 \leq l^j_t \leq \theta^j h^j_t$$
- Constraint on savings

$$0 \leq s^j_t \leq h^j_t$$
Firm’s decision problem

- Firm in sector $j \in \{s, p\}$ maximizes value function

$$V^j_t \left(h^j_t, \varepsilon^j_t \right) = d^j_t(h^j_t, \varepsilon^j_t) + \beta \frac{\Lambda_{t+1}}{\Lambda_t} \int V^j_{t+1} \left(h^j_{t+1}, \varepsilon^j_{t+1} \right) dF^j \left(\varepsilon^j_{t+1} \right)$$

- Flow dividend d^j_t is given by

$$d^j_t(h^j_t, \varepsilon^j_t) \equiv \tau^j_t R_t \left(z^j_t \varepsilon^j_t k^j_t \right)^{\tilde{\alpha}} + (1 - \delta) k^j_t - (1 + r_{lt}) l^j_t + (1 + r_{dt}) s^j_t - h^j_{t+1}$$

where $R_t \equiv (1 - \gamma) \left(\frac{\gamma}{W_t} \right)^{\frac{\gamma}{1-\gamma}}$ is the pre-subsidy return on capital
The representative household

- Utility function
 \[
 \sum_{t=0}^{\infty} \beta^t \log C_t
 \]

- Budget constraint
 \[
 C_t + \frac{B_{t+1}}{1 + r_{dt}} + \sum_{j=\{s,p\}} \int_{x_{i,t+1}} x_{i,t+1} \left(P_{it}^j - d_{it}^j \right) \, di \leq W_t N_t + B_t + \sum_{j=\{s,p\}} \int x_{it}^j P_{it}^j \, di - T_t
 \]

- Borrowing constraint
 \[
 \frac{B_{t+1}}{1 + r_{dt}} \geq 0
 \]

- Under interest rate controls, low deposit rate ⇒ \(B_{t+1} = 0 \)
Calibration

- Fixed parameters: $\beta = 0.96$, $\delta = 0.1$, $\alpha = 0.5$, $\eta = 0.85$, and $\phi = 0.032$
- Calibrate τ^j, θ^j, Z^j, and σ^j using China’s Annual Survey of Industries, 1998-2007

Calibrated values: $\frac{\tau^s}{\tau^p} = 1.43$, $\frac{Z^p}{Z^s} = 1.92$, $\frac{\theta^s}{\theta^p} = 1.80$, $\frac{\sigma^p}{\sigma^s} = 1.23$
Transition dynamics following liberalization (set $\phi = 0$)

- Tradeoff b/n within-sector TFP gains and across-sector misallocation
- Short run drops in TFP and output; permanent increase in long run
Removing interest-rate wedge leads to modest welfare loss (0.28% consumption equivalent)
SOE reforms reduce or eliminate welfare losses from interest-rate liberalization
Empirical evidence for model’s reallocation mechanism

- Testable empirical implication: interest-rate liberalization can hurt productivity in the presence of distorted allocations

- Empirical specification:

\[
\Delta Y_{mt} = \beta_0 + \beta_1 \times D_{mt} + \beta_2 \times \Delta \phi_t + \beta_3 D_{mt} \times \Delta \phi_t + \beta_4 \times X_{mt} + \delta_m + \rho \Delta Y_{m,t-1} + \varepsilon_{mt}
\]

where \(\Delta Y_{mt} \) denotes labor productivity growth in industry \(m \)

- Distortion dummy:

\[
D_{mt} \equiv 1 \left(z_{mt}^{aut,x\%} \geq z_{mt}^{bott,x\%} \right), \quad x \in \{1, 2, 5\}
\]

where \(z_{mt}^{aut,x\%} \) and \(z_{mt}^{bott,x\%} \) denote TFP of bottom \(x\% \) of, respectively, financially autarkic firms and borrower firms in industry \(m \)

- Estimate empirical specification using firm-level data (NBS)
Response of labor productivity to changes in interest-rate wedge

<table>
<thead>
<tr>
<th>ΔY_{mt}</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta \phi_t$</td>
<td>-0.723^{**}</td>
<td>-0.753^{**}</td>
<td>-0.765^{**}</td>
</tr>
<tr>
<td></td>
<td>(0.299)</td>
<td>(0.313)</td>
<td>(0.308)</td>
</tr>
<tr>
<td>$D_{mt} \times \Delta \phi_t$</td>
<td>0.921^{**}</td>
<td>0.970^{**}</td>
<td>0.979^{**}</td>
</tr>
<tr>
<td></td>
<td>(0.456)</td>
<td>(0.486)</td>
<td>(0.491)</td>
</tr>
<tr>
<td>D_{mt}</td>
<td>-0.020</td>
<td>-0.019</td>
<td>-0.027</td>
</tr>
<tr>
<td></td>
<td>(0.053)</td>
<td>(0.049)</td>
<td>(0.052)</td>
</tr>
<tr>
<td>Number of Observations</td>
<td>2,806</td>
<td>2,806</td>
<td>2805</td>
</tr>
<tr>
<td>Number of Industries</td>
<td>476</td>
<td>476</td>
<td>476</td>
</tr>
<tr>
<td>Controls</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

- Reducing ϕ lowers productivity if industry has distorted allocation
- Without distorted allocation, reducing ϕ raises productivity
Other evidence for model’s reallocation mechanism

- Gao, Ru, Townsend, Yang (2017): Bank entry deregulation of 2009 → new entrant banks mostly lent to SOEs (less productive but safe); increased competition between new and incumbent banks raised loan quality and borrowing firms’ efficiency

- Chang, Liu, Spiegel, Zhang (2017): cutting required reserve ratio raises SOE loan shares, investment shares, and stock returns

- Cong, Gao, Ponticelli, Yang (2018): sharp credit expansion from fiscal stimulus reallocated capital to SOEs, despite their lower productivity
Conclusion

- Under multiple sources of distortions, complete interest-rate liberalization may not be desirable.
- Financial liberalization incurs tradeoff between within-sector productivity gains and across-sector misallocations (SOE over-investment).
- SOE reforms should precede financial liberalization.