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1 Introduction and Motivation

The search for (theoretically justified or empirically motivated) risk factors that improve the pric-

ing performance of various asset-pricing models has generated a large, and constantly growing,

literature in financial economics. A typical empirical strategy involves the development of a struc-

tural asset-pricing model and the evaluation of the pricing ability of the proposed factors in the

linearized version of the model using actual data. The resulting linear asset-pricing model can be

estimated and tested using a beta representation or, alternatively, using a linear stochastic dis-

count factor (SDF) representation. Given the appealing efficiency and invariance properties of the

maximum likelihood (ML) and continuously-updated generalized method of moments (CU-GMM)

estimators,1 it seems natural to opt for these estimators when conducting statistical inference (es-

timation, testing, and model evaluation) in these linear asset-pricing models. It is often the case

that a high correlation between the realized and fitted expected returns (in the beta representation

framework) or statistically small model pricing errors (in the SDF framework) appear to be suffi-

cient for the applied researcher to conclude that the model is well specified and proceed with testing

for statistical significance of the risk premium parameters using the standard tools for inference.

Many asset-pricing studies have followed this empirical strategy and collectively, the literature has

identified a large set of macroeconomic and financial factors (see Harvey, Liu, and Zhu, 2013) that

are believed to explain the cross-sectional variation of various portfolio returns, such as the returns

on the 25 Fama-French size and book-to-market ranked portfolios.

Despite these advances in the asset-pricing literature, two observations that consistently emerge

in empirical work might call for a more cautious approach to statistical validation and economic

interpretation of asset-pricing models. First, all asset-pricing models should be viewed only as ap-

proximations to reality and, hence, potentially misspecified. There is plenty of empirical evidence,

mainly based on non-invariant estimators, which suggests that the asset-pricing models used in

practice are misspecified. This raises the concern of using standard errors, derived under the as-

sumption of correct model specification, that tend to underestimate the degree of uncertainty that

the researcher faces. Second, the macroeconomic factors in several asset-pricing specifications tend

to be only weakly correlated with the portfolio returns. As a result, it is plausible to conjecture

1See Shanken and Zhou (2007) and Peñaranda and Sentana (2014) for some recent results on the ML and CU-GMM
estimators, respectively, for asset-pricing models.
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that many of these macroeconomic factors may be irrelevant for pricing and explaining the cross-

sectional variation of stock returns. Importantly, the inclusion of useless factors (that is, factors

that are independent of the returns on the test assets) leads to serious identification issues regarding

the parameters associated with all risk factors and gives rise to a non-standard statistical infer-

ence. In a recent paper, Gospodinov, Kan, and Robotti (2014a) analyze the detrimental effects of

misspecification and factor irrelevance (lack of identification) in estimation, testing, and evaluation

of asset-pricing models using the Hansen and Jagannathan (HJ, 1997) distance. In this study, we

show that the use of optimal and invariant estimators does not alleviate these inference problems

and, somewhat surprisingly, makes them substantially worse.

The invariant (ML and CU-GMM) estimators considered here have a generic form

θ̂ = argminθ ḡ(θ)
′Ŵ (θ)−1ḡ(θ), (1)

with model-implied choices of moment conditions ḡ(θ), a weighting matrix Ŵ (θ), and a parame-

ter vector of interest θ. This objective function makes the resulting estimator invariant to data

scaling, reparameterizations and normalizations, curvature-altering and stationarity-inducing trans-

formations, etc. (Hall, 2005). Under standard regularity conditions (that include global and local

identification as well as correct model specification), these invariant estimators are asymptotically

well-behaved and efficient. However, we show in this paper that in the presence of lack of identifi-

cation and model misspecification, the tests based on these estimators could be highly misleading.

In summary, we argue that the standard inference procedures based on the ML and CU-GMM

estimators lead to spurious results that suggest that the model is correctly specified and the risk

premium parameters are highly significant (that is, the risk factors are priced) when, in fact, the

model is misspecified and the factors are irrelevant. The distorted nature of these results bears

strong similarities to spurious regressions with nonstationary data (Granger and Newbold, 1974,

among many others). Phillips (1989) makes an analogous observation regarding the estimators

in partially identified (albeit correctly specified) linear structural models and time series spurious

regressions. Phillips (1989, p. 201) points out that “both regressions share a fundamental inde-

terminacy” due to a contaminated signal arising from either lack of identification or strength of

the noise component. We show that allowing for model misspecification further exacerbates the

spuriousness of the results and renders them completely unreliable.

To illustrate the seriousness of the problem, we report some representative empirical results
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from four popular asset-pricing models. The test asset returns are the monthly gross returns on

the widely used value-weighted 25 Fama-French size and book-to-market ranked portfolios from

February 1959 until December 2012.2 The first model is the static capital asset-pricing model

(CAPM) with the market return (the return on the value-weighted NYSE-AMEX-NASDAQ stock

market index in excess of the one-month T-bill rate, vw) as a risk factor. The second model is

the three-factor model (FF3) of Fama and French (1993) with (i) the market excess return (vw),

(ii) the return difference between portfolios of stocks with small and large market capitalizations

(smb), and (iii) the return difference between portfolios of stocks with high and low book-to-

market ratios (hml) as risk factors. It should be noted that all of these risk factors are traded

and exhibit a relatively high correlation with the 25 Fama-French portfolio returns. The last two

models are models with macroeconomic factors: the model (C-LAB) proposed by Jagannathan

and Wang (1996) which, in addition to the market excess return, includes the growth rate in per

capita labor income (labor) and the lagged default premium (prem, the yield spread between Baa

and Aaa-rated corporate bonds) as risk factors; and the model (CC-CAY) proposed by Lettau

and Ludvigson (2001) with risk factors that include the growth rate in real per capita nondurable

consumption (cg), the lagged consumption-aggregate wealth ratio (cay), and an interaction term

between these two factors (cg · cay).

Table I about here

The SDF and beta representations of the four asset-pricing models are estimated by CU-GMM

and ML, respectively. Table I reports results from the invariant tests of correct model specifi-

cation (Hansen, Heaton, and Yaron’s (1996) over-identifying restrictions test, J , for CU-GMM

and Shanken’s (1985) Wald-type test, S, for ML), the t-statistics for each factor computed using

standard errors that assume correct model specification, as well as the pseudo-R2s from regressing

fitted expected returns on average returns. In addition, we include rank tests to determine whether

the asset-pricing models are properly identified,3 and two popular specification tests based on non-

2The results that we report in this section are largely unchanged when we augment the 25 Fama-French portfolio
returns with additional test asset returns (for example, the 17 Fama-French industry portfolio returns) as recom-
mended by Lewellen, Nagel, and Shanken (2010).

3In the SDF framework, we use the rank test of Cragg and Donald (1997) to assess whether the second moment
matrix of the returns and the factors is of reduced rank. In the beta-pricing framework, we employ the rank test of
Cragg and Donald (1997) to test whether the matrix of multivariate betas has a reduced rank. The details of the
Cragg and Donald (1997) test in the beta-pricing framework can be found in Kan and Robotti (2012).
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invariant estimators (the HJ-distance test and the generalized least squares (GLS) cross-sectional

regression test of Shanken, 1985). Figures 1 and 2 visualize the cross-sectional goodness-of-fit of

the models by plotting average realized returns versus fitted (by CU-GMM and ML, respectively)

expected returns from each model.

Figures 1 and 2 about here

The results are striking. The models that contain factors that are only weakly correlated with

the test asset returns (C-LAB and CC-CAY) exhibit an almost perfect fit. The specification tests

based on the invariant estimators cannot reject the null of correct specification, which suggests that

the models are well specified and one could proceed with constructing significance tests based on

standard errors derived under correct model specification. These t-tests indicate that the proposed

macroeconomic factors (labor growth and default premium in C-LAB and the interaction term in

CC-CAY, for example) are highly statistically significant. Interestingly, benchmark models such as

CAPM and FF3 do not perform nearly as well according to these statistical measures. The tests

for correct model specification based on CU-GMM and ML suggest that both of these models are

rejected by the data, and their associated pseudo-R2s are 0.1999 and 0.7847 for CU-GMM, and

0.1346 and 0.7677 for ML, respectively.

In this paper, we show that, due to the combined effect of identification failure and model

misspecification, the results for C-LAB and CC-CAY can be spurious. While some warning signs

of these problems are already present in Table I, they are often ignored by applied researchers.

For example, the rank tests provide strong evidence that C-LAB and CC-CAY are not identified,

which violates the regularity conditions for consistency and asymptotic normality of the ML and

CU-GMM estimators. Furthermore, the HJ-distance and GLS cross-sectional regression tests, that

we show to possess much higher power than the J and S tests in the presence of identification

failure, point to severe misspecification of all the considered asset-pricing models.

Another interesting observation that emerges from these results is that the factors with low

correlations with the returns tend to drive out the factors that are highly correlated with the

returns. For example, the highly significant market factor in CAPM turns insignificant with the

inclusion of the labor growth and default premium in the C-LAB model. To further examine this

point, we simulate data for the returns on the test assets and the market factor from a misspecified
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model that is calibrated to the CAPM as estimated in Table I (for more details on the simulation

design, see Section 5 below). With a sample size of 600 time series observations, the rejection

rate (at the 5% significance level) of the t-test (based on the CU-GMM estimator) of whether

the market factor is priced or not is 93.6%, while the test for correct model specification rejects

the null of correct specification 100% of the time. In sharp contrast, when a completely useless

factor (generated as an independent standard normal random variable) is included in the model,

the rejection rate of the t-test for the market factor drops to 9.5% and the specification test rejects

the null of correct specification only 4% of the time. Strikingly, the rejection rate of the t-test for

the useless factor is 100%. This example clearly illustrates the severity of the problem and the

perils for inference based on invariant tests in unidentified models. In summary, an arbitrarily poor

model with factors that are independent of the test asset returns would be deemed to be correctly

specified with a spectacular fit and priced risk factors.

In addition to identifying a serious problem with invariant tests of asset-pricing models, our

paper also provides a number of theoretical contributions. First, we demonstrate the numerical

equivalence of the invariant (ML and CU-GMM) and rank restriction frameworks for estimation

and model specification testing. This equivalence proves to be useful from both a computational

and a statistical inference perspective. For instance, it allows us to show that, under model misspec-

ification and rank deficiency, the specification tests have power that is equal to their size. Second,

we characterize the limiting behavior of the invariant estimators and their t-statistics under model

misspecification and identification failure. While we show that all estimators are inconsistent and

asymptotically non-normal, the estimates associated with the factors that cause the rank deficiency

diverge at rate root-T and the t-tests have a bimodal and heavy-tailed distribution. The explosive

behavior of the estimates on the useless factors tends to dominate and forces the goodness-of-fit

statistic to approach one.

Finally, it is useful to position our results in the existing literature. In the statistics and

econometrics literature, the analysis of rank restrictions, model under-identification, and inference

under model misspecification has generated substantial interest since the seminal work of Ander-

son (1951), Koopmans and Hood (1953), and Maasoumi and Phillips (1982), respectively. We

contribute to this literature by developing the appropriate limiting theory for invariant estimators

and reduced rank tests in unidentified and possibly misspecified models. On the other hand, some
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of the recent asset-pricing studies have also expressed concerns about the appropriateness of the

pseudo-R2 as a reliable goodness-of-fit measure. In models with excess returns and under some

particular normalizations of the SDF, Burnside (2012) derives a similar behavior of the goodness-

of-fit statistic for non-invariant GMM estimators. This result, however, is normalization and setup

specific and alternative normalizations or models based on gross returns render the non-invariant

estimators immune to the perfect fit problem. Furthermore, Kleibergen and Zhan (2013) show

that a sizeable unexplained factor structure (generated by a low correlation between the observed

proxy factors and the true unobserved factors) in a two-pass cross-sectional regression framework

can also produce spuriously large values of the ordinary least squares (OLS) R2 coefficient. Their

results complement the findings of Lewellen, Nagel, and Shanken (2010) who criticize the use of the

OLS R2 coefficient by showing that it provides an overly positive assessment of the performance

of the asset-pricing model. Despite the suggestive nature of these findings, model evaluation tests

based on non-invariant estimators, which are the focus of the analysis in these studies, tend to be

relatively robust to lack of identification as we show later in the paper. In contrast, for invariant

estimators in unidentified asset-pricing models, the spurious perfect fit is pervasive regardless of

the model structure (gross or excess returns), estimation framework (SDF or beta pricing), and

chosen normalization.

The rest of the paper is organized as follows. Section 2 introduces the main notation and assump-

tions. Section 3 studies the limiting behavior of the parameter estimates, t-statistics, goodness-of-fit

measures, and model specification tests in the beta-pricing and SDF setups. Section 4 presents re-

sults for non-invariant estimators that allow for some comparisons with the limiting behavior of

the ML and CU-GMM estimators. Section 5 reports Monte Carlo simulation results. Section 6

summarizes our main conclusions and provides some practical recommendations. All proofs are

relegated to the Appendix. Some supplementary results, that we refer to throughout the paper,

are available in an Internet Appendix.

The paper adopts the following notation. We denote convergence in probability by
p→ and

convergence in distribution by
d→. In addition, let Z = (Z1, . . . , Zn)′ be a vector of n independent

standard normal random variables, and let ξ = (ξ1, . . . , ξn)′ be a vector of n real numbers. Then,

Fn(ξ) =
n
∑

i=1
ξiZ

2
i denotes a random variable which is distributed as a weighted sum of n independent

chi-squared random variables with one degree of freedom.
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2 Preliminaries

In this section, we first introduce the SDF and beta representations of an asset-pricing model. Next,

we briefly describe the rank test of Cragg and Donald (1997) and lay out our main assumptions.

2.1 Stochastic Discount Factor and Beta-Pricing Model Representations

Let

yt(λ) = x′tλ (2)

be a candidate SDF at time t, where xt = [1, f ′t]
′, ft is a (K − 1)-vector of systematic risk factors,

and λ = [λ0, λ
′
1]
′ is a K-vector of SDF parameters. Also, let Rt denote the gross returns on

N (N > K) test assets and et(λ) = Dtλ − 1N , where Dt = Rtx
′
t and 1N is an N × 1 vector of

ones.4 When the asset-pricing model is correctly specified and well identified, there exists a unique

λ∗ = [λ∗0, λ
∗′
1 ]′ such that the pricing errors of the model are zero, that is,

E[et(λ
∗)] = Dλ∗ − 1N = 0N , (3)

where D = E[Rtx
′
t].

Alternatively, we can express the linear asset-pricing model using the beta representation. Let

Yt = [f ′t, R
′
t]
′ with

E[Yt] ≡
[

µf

µR

]

(4)

and

Var[Yt] ≡ V =

[

Vf VfR

VRf VR

]

, (5)

and γ = [γ0, γ
′
1]
′ be a K-vector of parameters. When the asset-pricing model is correctly specified

and well identified, there exists a unique γ∗ = [γ∗0, γ
∗′
1 ]′ such that

µR = 1Nγ
∗
0 + βγ∗1, (6)

where β = [β1, . . . , βK−1] = VRfV
−1
f is an N × (K − 1) matrix of the betas of the N assets. Also,

define

α = µR − βµf , (7)

4When Rt is a vector of payoffs with initial cost q 6= 0N , we just need to replace 1N with q. In addition, the
analysis in the paper can be easily adapted to handle the case of excess returns, that is, the q = 0N case.
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and Σ = VR − VRfV
−1
f VfR.

There are two main reasons why the beta-pricing framework is very popular in the empirical

asset-pricing literature. First, unlike the SDF coefficients λ, the parameters γ0 and γ1 have a

direct interpretation of zero-beta rate and risk premium parameters, respectively. Second, the

beta representation allows for conveniently measuring and plotting the goodness-of-fit as a model’s

expected returns versus average realized returns. To capitalize on these advantages, the SDF

parameters can be transformed into the beta-pricing model parameters using the mapping

γ0 =
1

λ0 + µ′fλ1
, (8)

γ1 = − Vfλ1

λ0 + µ′fλ1
. (9)

The main statistics of interest in evaluating asset-pricing models are the t-tests for statistical

significance of λ1 and γ1,
5 the goodness-of-fit statistic defined as the squared correlation between

the realized and model-implied expected returns, and the statistics for correct model specification

that test the validity of the asset-pricing model restrictions: Dλ = 1N in the SDF representation,

and µR = 1Nγ0 + βγ1 in the beta-pricing setup. The limiting behavior of these statistics, which is

the primary focus of our analysis below, is determined by the rank of the matrices H ≡ [1N , D] (in

the SDF representation) and G ≡ [1N , B], where B = [α, β] (in the beta-pricing representation).

2.2 Rank Restriction Test and Assumptions

In the subsequent analysis, we rely repeatedly on the representation of the rank restriction test of

Cragg and Donald (1997) as an invariant test. Let Π be a generic notation for an N ×K matrix

and π = vec(Π). Under the null that Π is of (reduced) rank K − 1, H0 : rank(Π) = K − 1, there

exists a nonzero K vector c such that Πc = 0N with the normalization c′c = 1.6 Suppose Π̂ is an

estimator of Π and assume that

√
Tvec(Π̂ − Π)

d→ N (0NK,M), (10)

5It should be stressed that in a multi-factor model, testing H0 : γ1,i = 0 is not the same as testing H0 : λ1,i = 0
for i = 1, . . . , K − 1. More importantly, acceptance or rejection of γ1,i = 0 does not tell us whether the i-th factor
makes an incremental contribution to the model’s overall explanatory power, given the presence of the other factors.
See Kan, Robotti, and Shanken (2013) for a discussion of this subtle point.

6See Cragg and Donald (1997), Robin and Smith (2000), and Kleibergen and Paap (2006) for a detailed analysis
of rank restriction tests.
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where M is a finite and positive-definite matrix. Then, the Cragg and Donald (1997) test of

H0 : rank(Π) = K−1 can be rewritten as an invariant test of the form (see, for example, Kleibergen

and Mavroeidis, 2009, and Arellano, Hansen, and Sentana, 2012)

CD = min
c:c′c=1

T π̂′Q(c)′(Q(c)M̂Q(c)′)−1Q(c)π̂, (11)

where Q(c) = c′ ⊗ IN and M̂ is a consistent estimator of M .

For our main results, some of the following assumptions are needed.

Assumption 1. Assume that Yt is a jointly stationary and ergodic process with finite fourth

moments and a positive-definite covariance matrix V .

Assumption 2. Assume that et(λ) − E[et(λ)] forms a martingale difference sequence and has a

positive-definite covariance matrix We(λ).

Assumption 3. Assume that Yt is iid normally distributed.

Assumption 3 is restrictive but it is used only for the ML estimator in the beta-pricing model

(Shanken, 1985) and not for the CU-GMM estimator in the SDF framework. Assumption 2, which

is used for the CU-GMM estimator, is much weaker; it could be further relaxed to allow for serial

correlation in et(λ) − E[et(λ)], at the cost of a more cumbersome notation. In what follows, the

model is said to be misspecified if there does not exist a γ such that µR = 1Nγ0 + βγ1 holds (or a

λ such that Dλ = 1N holds).

3 Main Results for Invariant Estimators

In this section, we establish the numerical equivalence between the tests of correct model specifica-

tion (in the beta-pricing and SDF setups) and the reduced rank test. In addition, we characterize

the limiting behavior of the corresponding parameter estimates and t-tests under the assumptions

of model misspecification and lack of identification (which arises when a useless factor is included

in the model).
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3.1 Maximum Likelihood

We start with the more restrictive ML estimation of the beta-pricing model that imposes the joint

normality assumption on Yt (Assumption 3). Combining equations (6) and (7), we arrive at the

restriction

α = 1Nγ
∗
0 + β(γ∗1 − µf). (12)

Then, the ML estimator of γ∗ is defined as (see Shanken, 1992, and Shanken and Zhou, 2007)

γ̂ML = argmin
γ

(α̂− 1Nγ0 − β̂(γ1 − µ̂f ))′Σ̂−1(α̂− 1Nγ0 − β̂(γ1 − µ̂f ))

1 + γ′1V̂
−1
f γ1

, (13)

where α̂, β̂, µ̂f , V̂f , and Σ̂ are the sample estimators of α, β, µf , Vf , and Σ, respectively. The test

for correct model specification of Shanken (1985) is given by

S = T min
γ

(α̂− 1Nγ0 − β̂(γ1 − µ̂f ))′Σ̂−1(α̂− 1Nγ0 − β̂(γ1 − µ̂f ))

1 + γ′1V̂
−1
f γ1

, (14)

and is asymptotically distributed as S d→ χ2
N−K under the null H0 : α = 1Nγ0 + β(γ1 − µf) and

Assumptions 1 and 3.7

Note that the ML estimator can be recast as the invariant estimator in equation (1) with

ḡ(γ) =
√
T (α̂ − 1Nγ0 − β̂(γ1 − µ̂f )) and Ŵ (γ) = (1 + γ′1V̂

−1
f γ1)Σ̂. Due to the special structure

of this objective function, the ML estimator of γ∗ can be obtained explicitly as the solution to

an eigenvector problem. Let v = [−γ0, 1, −(γ1 − µ̂f )′]′ and Ĝ = [1N , α̂, β̂], and noting that

α̂− 1Nγ0 − β̂(γ1 − µ̂f ) = Ĝv, we can write the objective function of the ML estimator as

min
v

v′Ĝ′Σ̂−1Ĝv

v′A(X ′X/T )−1A′v
, (15)

where A = [0K , IK ]′ and X is a T × K matrix with a typical row x′t. Let v̂ be the eigenvector

associated with the largest eigenvalue of8

Ω̂ = (Ĝ′Σ̂−1Ĝ)−1[A(X ′X/T )−1A′]. (16)

7Our limiting result for the S test is also applicable to the asymptotically equivalent likelihood ratio (LR) test,
which is given by LR = T ln(1 + S/T ) (Shanken, 1985). Note also that in deriving the asymptotic distribution
of S (and LR), Assumption 3 can be relaxed to conditional normality of returns (conditional on ft). In fact, the
asymptotic result for S (and LR) continues to hold under the more general case of conditional homoskedasticity.

8See also Zhou (1995) and Bekker, Dobbelstein, and Wansbeek (1996) for expressing the beta-pricing model as a
reduced rank regression whose parameters are obtained as an eigenvalue problem.
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Then, the ML estimator of γ∗ can be constructed as

γ̂ML
0 = − v̂1

v̂2
, (17)

γ̂ML
1,i = µ̂f,i −

v̂i+2

v̂2
, i = 1, . . . , K − 1. (18)

When the model is correctly specified and B is of full column rank, we have that Gv∗ = 0N for

v∗ = [−γ∗0, 1, −(γ∗1 − µ̂f )′]′ and, under Assumptions 1 and 3,

√
T

[

γ̂ML
0 − γ∗0

γ̂ML
1 − γ∗1

]

d→ N
(

0K , (1 + γ∗′1 V
−1
f γ∗1)(B

′
1Σ

−1B1)
−1 +

[

0 0′K−1

0K−1 Vf

])

, (19)

where B1 = [1N , β]. As a result, the t-statistics for statistical significance of γ0 and γ1,i (i =

1, . . . , K − 1) are constructed as

t(γ̂ML
0 ) =

√
T γ̂ML

0

s(γ̂ML
0 )

, (20)

t(γ̂ML
1,i ) =

√
T γ̂ML

1,i

s(γ̂ML
1,i )

, (21)

where s(γ̂ML
0 ), s(γ̂ML

1,1 ), . . . , s(γ̂ML
1,K−1) denote the square root of the diagonal elements of

(1 + γ̂ML′
1 V̂ −1

f γ̂ML
1 )(B̂′

1Σ̂
−1B̂1)

−1 +

[

0 0′K−1

0K−1 V̂f

]

, (22)

and B̂1 = [1N , β̂]. Using the ML estimates γ̂ML
0 and γ̂ML

1 , the ML estimate of β, β̂
ML

, and the

fitted expected returns on the test assets, µ̂ML
R , are obtained as

β̂
ML

= β̂ +
[α̂− 1N γ̂

ML
0 − β̂(γ̂ML

1 − µ̂f)]γ̂ML′
1 V̂ −1

f

1 + γ̂ML′
1 V̂ −1

f γ̂ML
1

(23)

and

µ̂ML
R = 1N γ̂

ML
0 + β̂

ML
γ̂ML

1 . (24)

When the asset-pricing model holds, rank(G) = K, that is, G has a reduced rank. Note that

rank(G) = K if and only if rank(P ′
1B) = K − 1, where P1 is an N × (N − 1) orthonormal matrix

whose columns are orthogonal to 1N . Instead of using the S test to test the asset-pricing model,

one may want to use the Cragg and Donald (1997) rank test to test rank(P ′
1B) = K − 1. Under

Assumptions 1 and 3, the Cragg and Donald (1997) test statistic is given by

CD1 = T min
c:c′c=1

(P ′
1B̂c)

′[(c′ ⊗ P ′
1)((X

′X/T )−1 ⊗ Σ̂)(c⊗ P1)]
−1(P ′

1B̂c)

= T min
c:c′c=1

c′B̂′P1(P
′
1Σ̂P1)

−1P ′
1B̂c

c′[(X ′X/T )−1]c
, (25)

11



where B̂ = [α̂, β̂]. Under the null H0 : rank(P ′
1B) = K − 1, we have

CD1
d→ χ2

N−K . (26)

Lemma 1 below establishes the numerical equivalence of the tests S and CD1 and the relationship

between their corresponding estimators.

Lemma 1. Consider the S and CD1 tests defined in (14) and (25), and let γ̂ML = [γ̂ML
0 , γ̂ML′

1 ]′ and

ĉ = [ĉ1, ĉ
′
2]
′ denote the estimators that minimize (14) and (25), respectively. Then, under Assump-

tions 1 and 3, we have S = CD1, γ̂
ML
1 = − ĉ2

ĉ1
+ µ̂f , and γ̂ML

0 = 1′N Σ̂−1(µ̂R − β̂γ̂ML
1 )/(1′N Σ̂−11N).

Proof. See Appendix.

Lemma 1 reveals that the S test is in fact a rank test of H0 : rank(P ′
1B) = K − 1, that is,

G has a reduced rank. While G has a reduced rank when the asset-pricing model is correctly

specified, there are also misspecified models that can give rise to a reduced rank of G. For ex-

ample, G can have a reduced rank when the model contains a factor that is independent of the

returns (useless factor) or when the model contains two factors that are noisy (due to measure-

ment error, for instance) versions of the same underlying factor. An example of this latter scenario

is a consumption-based asset-pricing model whose empirical specification includes several noisy

measures of consumption growth. It is of interest to investigate how the ML estimation behaves

under these other scenarios. The following theorem characterizes the limiting behavior of the ML

estimates γ̂ML, the t-statistics t(γ̂ML
0 ) and t(γ̂ML

1,i ) (i = 1, . . . , K − 1), the pseudo-R2 statistic

R2
ML = Corr(µ̂ML

R , µ̂R)2, and the specification test S in misspecified models that contain a useless

factor. Without loss of generality, we assume that the useless factor is the last element of the

vector ft with βK−1 = 0N and is independent of the test asset returns and the other factors.9

Let z = [z1, z2, . . . , zK]′ ∼ N (0K , (G
′
1Σ

−1G1)
−1/σ2

f,K−1), where G1 = [1N , α, β1, . . . , βK−2] and

σ2
f,K−1 = Var[fK−1,t]. In addition, let σ2

i = Var[zi], σij ≡ Cov[zi, zj], ρij = σij/(σiσj), and define

the random variables z̃2 ≡ z2/σ2 ∼ N (0, 1), x ∼ χ2
N−K , qi ∼ N (0, 1), where x and qi are inde-

pendent of z̃2, and bi = (x + z̃2
2)/(x + z̃2

2 + q2i ) for i = 1, . . . , K − 1. Then, we have the following

result.

Theorem 1. Suppose that the model is misspecified and it contains a useless factor (that is,

9Our analysis can be easily modified to deal with the case in which the betas of the factors are constant across
assets instead of being equal to zero.
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rank(B) = K − 1). Then, under Assumptions 1 and 3 and as T → ∞, we have

(a) (i) γ̂ML
0

d→ −z1
z2

; (ii) γ̂ML
1,i

d→ µf,i −
zi+2

z2
for i = 1, . . . , K − 2; and (iii)

γ̂ML
1,K−1√
T

d→ 1

z2
;

(b) (i) t(γ̂ML
0 )

d→ −
(

ρ12|z̃2|
√

1− ρ2
12

+ q1

)

b
1

2

1 ; (ii) t(γ̂ML
1,i )

d→





µf,iσ2

σi+2
− ρi+2,2

√

1− ρ2
i+2,2

|z̃2| − qi+1



 b
1

2

i+1 for

i = 1, . . . , K − 2; and (iii) t2(γ̂ML
1,K−1)

d→ χ2
N−K+1;

(c) R2
ML

p→ 1;

(d) limT→∞ Pr[S > pη] = η, where η denotes the significance level of the specification test and pη

is the 100(1− η)-th percentile of χ2
N−K .

Proof. See Appendix.

Theorem 1 establishes the limiting behavior of the parameter estimates, t-tests, and pseudo-

R2 statistic, R2
ML, in misspecified models with identification failure. In addition, it characterizes

the asymptotic power of the S test under rank deficiency. When a useless factor is present, the

estimates on the useful factors are inconsistent and converge to ratios of normal random variables.

The estimate for the useless factor (γ̂ML
1,K−1) diverges at rate root-T , and the standardized estimator

converges to the reciprocal of a normal random variable.10 The t-tests for the useful factors converge

to bounded random variables and, hence, are inconsistent. In fact, as our simulations illustrate, the

tests t(γ̂ML
1,i ) for i = 1, . . . , K − 2 tend to exhibit power that is close to their size. In contrast, the

t-test for the useless factor will over-reject substantially (with the probability of rejection rapidly

approaching one as N increases) when N (0, 1) critical values are used. Furthermore, part (c)

of Theorem 1 shows that the pseudo-R2 of a misspecified model that contains a useless factor

approaches one. This leads to completely spurious inference as the useless factors do not contribute

to the pricing performance of the model and yet the sample pseudo-R2 would indicate that the model

perfectly explains the cross-sectional variations in the expected returns on the test assets.

Finally, part (d) of Theorem 1 demonstrates that the specification test in the beta-pricing

model has asymptotic power equal to its size when a useless factor is included in the model. This

10Kan and Zhang (1999a) and Kleibergen (2009) also show that the estimate for the useless factor diverges at rate
root-T when employing non-invariant two-pass cross-sectional regression estimators. Similar results are documented
by Kan and Zhang (1999b) and Gospodinov, Kan, and Robotti (2014a) for models estimated via non-invariant
(optimal and suboptimal) GMM.
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result follows directly from the numerical equivalence of S and CD1 and has two main implications.

First, it suggests that the test for over-identifying restrictions will erroneously conclude, with a

limiting probability of 1 − η, that a model with an arbitrarily large degree of misspecification is

correctly specified. While this result applies to the case of a model with a useless factor, it also has

implications for models with factors that are weakly correlated with the test asset returns. In finite

samples, factors with low correlations with returns are indistinguishable from useless factors, so the

S test has almost no power in rejecting such models.11 Second, it indicates that the conventional

inference on the parameter estimates γ̂ML is likely to be distorted and highly misleading as the

standard errors under correct specification will not account for the additional uncertainty arising

from model misspecification. It should be stressed that, apart from the rates of convergence and

the asymptotic distribution of t2(γ̂ML
1,K−1), these ML results sharply differ from the results for

non-invariant estimators. As further emphasized in Section 4 below, the considered non-invariant

estimators appear to exhibit less sensitivity to lack of identification.

As previously discussed, the full rank condition on G may also be violated when the model

includes two (or more) factors that are noisy versions of the same underlying factor. In this case

(a proof for this result is available in Internet Appendix Section 2), the behavior of the parameter

estimates, t-ratios, and pseudo-R2 is the same as the one described in Theorem 1 with the limiting

representations for the noisy factors being the same as the asymptotic distributions for the useless

factor in parts (a) and (b) of Theorem 1. In Theorem 2 below, we present a general result for the

asymptotic distribution of the specification test that covers both correctly specified and misspecified

models that are possibly fully identified or under-identified of arbitrary order (that is, G has rank

K + 1 − r for an integer r ≥ 1).

Theorem 2: Suppose that the matrix G has a column rank K + 1 − r ( r = 1, 2, . . .), that is,

there exist r linear combinations of the columns of G that are equal to zero vectors. Then, under

Assumptions 1 and 3 and as T → ∞, we have

S d→ wr, (27)

where wr is the smallest eigenvalue of W ∼ Wr(N −K − 1 + r, Ir), and Wr(N − K − 1 + r, Ir)

denotes the Wishart distribution with N − K − 1 + r degrees of freedom and a scaling matrix Ir.

11The result also suggests that if a model is rejected by the S test, one can easily “save” the model by adding
measurement errors to the factors in the model.
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Furthermore, Pr[wr < a] ≥ Pr[x < a], where x ∼ χ2
N−K .

Proof : See Appendix.

Theorem 2 shows that the limiting distribution of S depends only on r and not on whether the

model is correctly specified or misspecified. Note that Theorem 2 nests several cases of interest

depending on the value of r. When r = 1, that is, the model is correctly specified with a useful

factor or the model is misspecified with a useless factor, we have S d→ χ2
N−K . This case subsumes

the standard asymptotic approximation for identified models as well as the result in part (d) of

Theorem 1. When the model is correctly specified with a useless factor or when the model is

misspecified but it contains two useless factors, we have r = 2 and S d→ w2, where w2 is the

smallest eigenvalue of W2(N − K + 1, I2). In this situation, as the second part of Theorem 2

suggests, the specification test, which is based on critical values from the χ2
N−K distribution, will

under-reject the null hypothesis. The following figure shows the limiting distribution of S for the

case of N −K = 7.

Figure 3 about here

Finally, in Internet Appendix Section 1, we present limiting results for correctly specified models

with identification failure. In this case, the parameter estimates for the useful factors (γ̂ML
0 and

γ̂ML
1,i for i = 1, . . . , K − 2) are consistent but have non-normal asymptotic distributions. The

parameter estimate for the useless factor (γ̂ML
1,K−1) is inconsistent and is asymptotically distributed

as a Cauchy random variable. The t-statistics are also asymptotically non-normal and using N (0, 1)

critical values will lead to under-rejections for the parameters on the useful factors and to over-

rejections for the parameter on the useless factor.

Figure 4 about here

The reason for the over-rejection is clearly illustrated in Figure 4 which plots the limiting

probability density functions of t(γ̂ML
1,K−1) under correctly specified and misspecified models (N −

K = 7), along with the standard normal density. Given the bimodal shape and large variance of

the probability density function of the limiting distribution of t(γ̂ML
1,K−1) under correctly specified

models (which arises from the model’s lack of identification), using N (0, 1) critical values will
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lead to an over-rejection of the hypothesis of zero risk premium on the useless factor. This over-

rejection is further exacerbated by model misspecification, as illustrated by the outward shift of

the probability density function when the model is misspecified. Hence, with lack of identification,

misleading inference also arises in correctly specified models although the inference problems are

more pronounced in misspecified models.

3.2 Continuously-Updated GMM

We now consider the more general GMM estimation of SDF and beta-pricing models. The CU-

GMM estimator of the SDF parameters λ∗ is defined as (see Hansen, Heaton, and Yaron, 1996)

λ̂ = argmin
λ

ē(λ)′Ŵe(λ)−1ē(λ), (28)

where ē(λ) = T−1
∑T

t=1 et(λ) and

Ŵe(λ) =
1

T

T
∑

t=1

(et(λ) − ē(λ))(et(λ)− ē(λ))′. (29)

The over-identifying restriction test of the asset-pricing model is given by

J = T min
λ
ē(λ)′Ŵe(λ)−1ē(λ), (30)

and J d→ χ2
N−K when the asset-pricing model holds.

When the model is correctly specified and D is of full column rank, we have, under Assump-

tions 1 and 2, that (Hansen, 1982; Newey and Smith, 2004)

√
T (λ̂− λ∗)

d→ N
(

0K , (D
′We(λ

∗)−1D)−1
)

, (31)

where We(λ
∗) = E[et(λ

∗)et(λ
∗)′]. The t-statistics for statistical significance of λ0 and λ1,i (i =

1, . . . , K − 1) are constructed as

t(λ̂0) =

√
T λ̂0

s(λ̂0)
, (32)

t(λ̂1,i) =

√
T λ̂1,i

s(λ̂1,i)
, (33)

where the quantities s(λ̂0), s(λ̂1,1), . . . , s(λ̂1,K−1) denote the square root of the diagonal elements

of (D̂′Ŵe(λ̂)
−1D̂)−1. Internet Appendix Section 3 describes how to use the CU-GMM estimates of
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the SDF parameters λ∗ to obtain (in a computationally very efficient way) the CU-GMM estimates

of γ∗, β, µf , and Vf . More specifically, let

wt(λ̂) =
1 − (et(λ̂) − ē(λ̂))′Ŵe(λ̂)

−1ē(λ̂)

T
. (34)

Then, the CU-GMM estimates of µf , Vf , and β are given by

µ̂CU
f =

T
∑

t=1

wt(λ̂)ft, (35)

V̂ CU
f =

T
∑

t=1

wt(λ̂)ft(ft − µ̂CU
f )′, (36)

and

β̂
CU

=
T
∑

t=1

wt(λ̂)Rt(ft − µ̂CU
f )′(V̂ CU

f )−1. (37)

These estimates are subsequently used to construct estimates of the risk premium parameters

γ̂CU
0 =

1

λ̂0 + µ̂CU ′
f λ̂1

, (38)

γ̂CU
1 = −

V̂ CU
f λ̂1

λ̂0 + µ̂CU ′
f λ̂1

. (39)

The fitted (model-implied) expected returns, µ̂CU
R = 1N γ̂

CU
0 + β̂

CU
γ̂CU

1 , are used to compute the

pseudo-R2 for CU-GMM.

When the asset-pricing model holds, rank(H) = K. Note that rank(H) = K if and only if

rank(P ′
1D) = K−1. Instead of using the J statistic to test the asset-pricing model, one may want

to use the Cragg and Donald (1997) rank test to test H0 : rank(P ′
1D) = K − 1, which is given by

CD2 = T min
c:c′c=1

(P ′
1D̂c)

′[(c′ ⊗ P ′
1)V̂d(c⊗ P1)]

−1(P ′
1D̂c), (40)

where D̂ is the sample estimate of D and V̂d = 1
T

∑T
t=1 vec(Dt − D̂)vec(Dt − D̂)′.

The following lemma establishes the numerical equivalence of the J and CD2 tests so that the

CU-GMM specification test of the asset-pricing model is in essence a rank test.12 The lemma also

explains how to obtain the CU-GMM estimator of λ∗ from the ĉ that minimizes (40).

12We can also interpret Lemma 2 below in terms of Proposition 3 in Peñaranda and Sentana (2014), which states
that the J statistic obtained from the N gross returns is numerically equivalent to the J statistic from N − 1 excess
returns. The CD2 statistic is a quadratic form in P ′

1D̂c, where the N × (N − 1) orthonormal matrix P1 is effectively
transforming the N -vector of gross returns into an (N − 1)-vector of excess returns with zero costs. Therefore, we
can interpret the CD2 statistic as the J statistic obtained from the N − 1 pricing errors for those excess returns.
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Lemma 2. Consider the J and CD2 tests defined in (30) and (40), and let λ̂ and ĉ be the estimators

that minimize (30) and (40), respectively. Then, under Assumptions 1 and 2, we have J = CD2

and λ̂ = [1′NŴe(ĉ)
−11N/(1

′
NŴe(ĉ)

−1D̂ĉ)]ĉ.

Proof. See Appendix.

As in the MLE case, H can have a reduced rank even when the model is misspecified. This can

happen when the model contains a useless factor. It is of interest to understand how CU-GMM

behaves under unidentified and misspecified models. The following theorem describes the limiting

behavior of the CU-GMM estimates, their corresponding t-statistics, the pseudo-R2, and the J test

for misspecified models that contain a useless factor. Without loss of generality, we assume that

the useless factor is ordered last with mean µf,K−1 and variance σ2
f,K−1. The CU-GMM estimator

and the t-statistic corresponding to the useless factor are λ̂1,K−1 and t(λ̂1,K−1), respectively. Let

z = [z1, z2, . . . , zK ]′ ∼ N (0K, σ
2
f,K−1(H

′
1U

−1H1)
−1), where U = E[RtR

′
t], H1 = [1N , D1], D1 =

[d1, d2, . . . , dK−1], and di (i = 1, . . . , K − 1) is the i-th column of D. Also, let σ2
i = Var[zi],

σij ≡ Cov[zi, zj], ρij = σij/(σiσj), and define the random variables z̃1 ≡ z1/σ1 ∼ N (0, 1), x ∼
χ2

N−K , qi ∼ N (0, 1), where x and qi are independent of z̃1, and bi = (x + z̃2
1)/(x + z̃2

1 + q2i ) for

i = 1, . . . , K − 1.

Theorem 3. Suppose that the model is misspecified and it contains a useless factor (that is,

rank(D) = K − 1). Then, under Assumptions 1 and 2 and as T → ∞, we have

(a) (i) λ̂0
d→ −z2

z1
if µf,K−1 = 0 or

λ̂0√
T

d→ µf,K−1

z1
if µf,K−1 6= 0; (ii) λ̂1,i

d→ −zi+2

z1
for

i = 1, . . . , K − 2; and (iii)
λ̂1,K−1√

T

d→ − 1

z1
;

(b) (i) t(λ̂0)
d→ −





ρ1,2|z̃1|
√

1 − ρ2
1,2

+ q2



 b
1

2

1 if µf,K−1 = 0 or t2(λ̂0)
d→ χ2

N−K+1 if µf,K−1 6= 0; (ii)

t(λ̂1,i)
d→ −





ρ1,i+2|z̃1|
√

1 − ρ2
1,i+2

+ qi+2



 b
1

2

i+1 for i = 1, . . . , K−2; and (iii) t2(λ̂1,K−1)
d→ χ2

N−K+1;

(c) R2
CU = Corr(µ̂CU

R , µ̂R)2
p→ 1;

(d) limT→∞ Pr[J > pη] = η, where η denotes the significance level of the test for over-identifying

restrictions and pη is the 100(1− η)-th percentile of χ2
N−K .
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Proof. See Appendix.

While the limiting distributions in Theorem 3 for the CU-GMM estimator are broadly con-

sistent with those in Theorem 1 for MLE, some interesting differences emerge. In particular, the

asymptotic behavior of λ̂0 and t(λ̂0) depends on whether the population mean of the useless factor

is zero or not. In the practically relevant case when this mean is nonzero, λ̂0 and t(λ̂0) inherit the

limiting properties of λ̂1,K−1 and t(λ̂1,K−1) for the useless factor. This provides another example

of the highly irregular behavior of the invariant estimators in misspecified and unidentified mod-

els. Similarly to the beta-pricing setup, parts (c) and (d) of Theorem 3 show that the pseudo-R2

measure converges to one and the asymptotic power of the CU-GMM specification test is equal to

its size when one or more factors are independent of the test asset returns.

As for the beta-pricing model, it is desirable to characterize the asymptotic behavior of the

specification test when the model is possibly unidentified of arbitrary order, that is, the matrix H

has rank K + 1 − r for an integer r ≥ 1. Theorem 4 below establishes that the J test shares the

same limiting distribution as the S test under some additional restrictions on the data.

Assumption 3’. Assume that

√
Tvec(B̂ − B)

d→ N (0NK, E[xtx
′
t]
−1 ⊗ Σ). (41)

Note that Assumption 3’ imposes weaker restrictions on the data than Assumption 3. For

example, the result in Assumption 3’ holds under conditional homoskedasticity without any distri-

butional requirements on the data.

Theorem 4: Suppose that the matrix H has a column rank K + 1 − r ( r = 1, 2, . . .), that is,

there exist r linear combinations of the columns of H that are equal to zero vectors. Then, under

Assumptions 1, 2, and 3’ and as T → ∞, we have

J d→ wr, (42)

where wr is the smallest eigenvalue of W ∼ Wr(N − K − 1 + r, Ir), and Wr(N −K − 1 + r, Ir)

denotes the Wishart distribution with N − K − 1 + r degrees of freedom and a scaling matrix Ir.

Furthermore, Pr[wr < a] ≥ Pr[x < a], where x ∼ χ2
N−K .

Proof : See Appendix.
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Theorem 4 nests the standard asymptotic approximation for identified models (Hansen, 1982)

as well as the result in part (d) of Theorem 3. Note, however, that the χ2
N−K limiting distribution

in these two cases is a more general result and does not hinge on the validity of Assumption 3’.

When the model is correctly specified with a useless factor or when the model is misspecified but it

contains two useless factors, we have J d→ w2 and the specification test, which is based on critical

values from the χ2
N−K distribution, tends to under-reject.

4 Non-Invariant Estimators

The results so far suggest that the invariant estimators (ML and CU-GMM) are extremely sensitive

to model misspecification and lack of identification. It is instructive to study some popular non-

invariant estimators (two-pass cross-sectional regression estimators in the beta-pricing setup and

the HJ-distance estimators in the SDF setup) under misspecified and unidentified models, and

compare their properties with the properties of the invariant estimators analyzed in Section 3. It

is well known (see, for example, Shanken and Zhou, 2007) that the GLS cross-sectional regression

estimator is the argument that minimizes the numerator of the ML objective function

min
γ

(µ̂R − 1Nγ0 − β̂γ1)
′Σ̂−1(µ̂R − 1Nγ0 − β̂γ1)

1 + γ′1V̂
−1
f γ1

, (43)

which suggests that the non-standard behavior of the ML estimator and test statistics documented

above can be due to or exacerbated by the “denominator” problem.

Specifically, the GLS cross-sectional regression estimator of γ∗ is given by

γ̂GLS = (B̂′
1Σ̂

−1B̂1)
−1B̂′

1Σ̂
−1µ̂R. (44)

The cross-sectional regression (CSR) test for correct model specification of Shanken (1985) is based

on the statistic

Q̂ = (µ̂R − B̂1γ̂
GLS)′Σ̂−1(µ̂R − B̂1γ̂

GLS). (45)

To characterize the asymptotic distribution of the CSR test, let

lt(γ) = [Rt − µR − β(ft − µf )][1− γ′1V
−1
f (ft − µf)], (46)

Sl = E[lt(γ
∗)lt(γ

∗)′], (47)
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and PṼ be an N × (N −K) orthonormal matrix with columns orthogonal to Ṽ = Σ− 1

2 [1N , VRf ].

Then, under Assumptions 1 and 2 and when the asset-pricing model is correctly specified and well

identified, the limiting distribution of the CSR test is given by (Kan, Robotti, and Shanken, 2013)

T Q̂ d→ FN−K(ξ), (48)

where the ξi’s are the eigenvalues of the matrix

P ′
Ṽ

Σ− 1

2SlΣ
− 1

2PṼ . (49)

Similarly, define the HJ-distance estimator of λ∗ as

λ̂
HJ

= argmin
λ

ē(λ)′Û−1ē(λ) = (D̂′Û−1D̂)−1D̂′Û−11N , (50)

where Û is the sample estimate of U = E[RtR
′
t] defined above Theorem 3, and let

δ̂
2

= ē(λ̂
HJ

)′Û−1 ē(λ̂
HJ

) (51)

denote the sample squared HJ-distance. Then, under Assumptions 1 and 2 and when the asset-

pricing model is correctly specified and well identified, the HJ-distance test, T δ̂
2
, follows a weighted

chi-squared limiting distribution (Jagannathan and Wang, 1996):

T δ̂
2 d→ FN−K(ξ), (52)

where the ξi’s are the nonzero eigenvalues of the matrix

S
1

2

d U
−1S

1

2

d − S
1

2

d U
−1D(D′U−1D)−1D′U−1S

1

2

d , (53)

and Sd = E[et(λ
∗)et(λ

∗)′]. The next theorem characterizes the limiting behavior of the sample

squared HJ-distance and CSR tests in the presence of a useless factor.

Theorem 5. Let B ∼ Beta
(

N−K
2 , 1

2

)

with density fB(·) and pη be the 100(1− η)-th percentile of

χ2
N−K .

(a) Suppose that Assumptions 1 and 2 hold, the asset-pricing model is misspecified and it contains

a useless factor. In addition, denote by δ2 = 1′NU
−11N − 1′NU

−1D1(D
′
1U

−1D1)
−1D′

1U
−11N

the squared population HJ-distance. Then, we have

δ̂
2 d→ δ2B, (54)
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and the limiting probability of rejecting the null hypothesis of correct model specification by

the HJ-distance test of size η is

∫ 1

0
P

[

χ2
N−K+1 >

pηs

1 − s

]

fB(s)ds < 1. (55)

(b) Suppose that Assumption 1 holds and lt(γ) − E[lt(γ)] forms a martingale difference se-

quence. In addition, suppose that the beta-pricing model is misspecified and it contains

a useless factor. Finally, let G2 = [1N , β1, . . . , βK−2] and denote by Q = µ′RΣ−1µR −
µ′RΣ−1G2(G

′
2Σ

−1G2)
−1G′

2Σ
−1µR the population CSR.13 Then, we have

Q̂ d→ QB, (56)

and the limiting probability of rejecting the null hypothesis of correct model specification by

the CSR test of size η is also given by (55).

Proof. See Appendix.

While Theorem 5 shows that the HJ-distance and CSR tests are inconsistent under identification

failure, the limiting probability of rejection of the null hypothesis is different from the ones for the

invariant estimator-based tests. In particular, this limiting probability is a function of N −K and

is very close to one when N − K is of the magnitude typically encountered in empirical work.

Consider again the same test assets and asset-pricing models described in Section 1. Figures 5

and 6 visualize the cross-sectional goodness-of-fit of the models by plotting average realized returns

versus fitted (by HJ-distance and GLS, respectively) expected returns from each model.

Figures 5 and 6 about here

In sharp contrast to the results for invariant estimators in Figures 1 and 2, the models that

contain factors that are only weakly correlated with the test asset returns (C-LAB and CC-CAY)

no longer exhibit a perfect fit, and the HJ-distance and CSR tests strongly reject the null of correct

specification (see Panel A of Table I). As a result, these non-invariant tests appear to be more

robust to lack of identification and can detect model misspecification with higher probability than

their invariant counterparts.

13The explicit expression for Σ when the model contains a useless factor is provided in the proof of Theorem 5 (b).

22



5 Simulation Results

In this section, we undertake a Monte Carlo simulation experiment to study the empirical rejection

rates of the specification and t-tests for the CU-GMM and ML estimators as well as the finite-

sample distribution of the goodness-of-fit measure. We consider three linear models: (i) a model

with a constant term and a useful factor, (ii) a model with a constant term and a useless factor, and

(iii) a model with a constant term, a useful, and a useless factor. All three models are misspecified.

The returns on the test assets and the useful factor are drawn from a multivariate normal

distribution. In all simulation designs, the covariance matrix of the simulated test asset returns

is set equal to the sample covariance matrix from the 1959:2–2012:12 sample of monthly gross

returns on the 25 Fama-French size and book-to-market ranked portfolios (from Kenneth French’s

website). The means of the simulated returns are set equal to the sample means of the actual

returns, and they are not exactly linear in the chosen betas for the useful factors. As a result, the

models are misspecified in all three cases. The mean and variance of the simulated useful factor

are calibrated to the sample mean and variance of the value-weighted market excess return. The

covariances between the useful factor and the returns are chosen based on the sample covariances

estimated from the data. The useless factor is generated as a standard normal random variable

which is independent of the returns and the useful factor. The time series sample size is T = 200,

400, 600, 800, 1000, and 3600, and all results are based on 100,000 Monte Carlo replications. We

also report the limiting rejection probabilities (denoted by T = ∞) for the specification and t-tests

based on our asymptotic results in Sections 3 and 4.

Table II about here

Table II presents the probabilities of rejection of the model specification tests based on invariant

(CU-GMM and ML) and non-invariant (HJ-distance and GLS) estimators at the 10%, 5%, and 1%

nominal levels. Table II.a reports the rejection probabilities of the J and HJ-distance tests for

the SDF representation, while Table II.b includes the S and CSR tests for the beta-pricing model.

Consistent with our theoretical results, the specification tests based on invariant estimators do

not exhibit any power in the presence of a useless factor and the empirical rejection probabilities

approach the nominal size under the alternative of a misspecified model. As a result, when a useless
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factor is included in the model, the researcher will conclude erroneously (with probability one minus

the nominal size of the test) that the model is correctly specified even when the misspecification

of the model is arbitrarily large. In contrast, the HJ-distance and the CSR tests, albeit still

inconsistent, prove to be much more successful at detecting model misspecification.

Table III about here

An alternative and popular way to look at the performance of the model is to compute the

squared correlation between the expected fitted returns of the model and the average realized

returns. The distribution of this pseudo-R2 is reported in Table III (III.a for CU-GMM and III.b

for ML). Again, as our theoretical analysis suggests, the empirical distribution of the pseudo-R2 in

models with a useless factor collapses to 1 as the sample size gets large. For example, this measure

will indicate a perfect fit for models that include a factor that is independent of the returns on the

test assets. These spurious results should serve as a warning signal in applied work where many

macroeconomic factors are only weakly correlated with the returns on the test assets.

Table IV about here

Finally, Table IV (IV.a for CU-GMM and IV.b for ML) presents the rejection probabilities of

the t-tests of H0 : λ1,i = 0 and H0 : γ1,i = 0 (tests of statistical significance) for the useful and

the useless factor in the SDF and beta representations of models (i), (ii), and (iii). The t-statistics

are computed under the assumption that the model is correctly specified and are compared against

the critical values from the standard normal distribution, as is commonly done in the literature.

Table IV reveals that for models with a useless factor, the t-tests will give rise to spurious results,

suggesting that these completely irrelevant factors are priced. Moreover, the useless factor (which,

by construction, does not contribute to the pricing performance of the model) drives out the useful

factor and leads to the grossly misleading conclusion to keep the useless factor and drop the useful

factor from the model (see Panel C of Table IV.a and IV.b).

6 Concluding Remarks

In this paper, we study the limiting properties of some invariant tests of asset-pricing models, and

show that the inference based on these tests can be spurious when the models are unidentified. In
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particular, we demonstrate that, in the presence of factors that are independent of the returns on

the test assets (useless factors), the power of the specification tests based on invariant estimators is

equal to their size, and the pseudo-R2 that measures the distance between the fitted and realized

average returns approaches one. As a consequence, an applied researcher would conclude with high

probability that the model is correctly specified and proceed with constructing standard errors and

test statistics that assume correct model specification. Since these statistics would not take into

the account the extra uncertainty arising from potential model misspecification, the inference on

the model parameters would be highly distorted and would manifest in highly significant estimates

for factors that do not contribute to improved pricing.

The spurious results in these models arise from the combined effect of identification failure and

model misspecification. It is important to stress that this is not an isolated problem limited to a

particular sample (data frequency), test assets, and asset-pricing models. This suggests that the

statistical evidence on the pricing ability of many macro factors and their usefulness in explaining

the cross-section of asset returns should be interpreted with caution. Some warning signs about

this problem (for example, the outcome of a rank test) are often ignored by applied researchers.

While non-invariant estimators (HJ-distance non-optimal GMM and GLS two-pass cross-sectional

regressions) also suffer from similar problems, the invariant (CU-GMM and ML) estimators turn

out to be much more sensitive to model misspecification and lack of identification.

Given the severity of the inference problems associated with invariant estimators of possibly

unidentified and misspecified asset-pricing models that we document in this paper, our recommen-

dations for empirical practice can be summarized as follows. The lack of power of the specification

tests in unidentified models suggests that the decision regarding the model specification should be

augmented with additional diagnostics. For instance, the tests developed by Arellano, Hansen, and

Sentana (2012) and Peñaranda and Sentana (2014) can detect if the lack of rejection of the model

specification tests is genuine or is due to the presence of a useless factor. Importantly, any model

should be subjected to a rank test which will provide evidence on whether the model parameters

are identified or not. If the null hypothesis of a reduced rank is rejected, the researcher can pro-

ceed with the standard tools for inference in analyzing and evaluating the model. If the null of a

reduced rank is not rejected, there are two possible ways to proceed. A first possibility is to work

with non-invariant estimators (HJ-distance and cross-sectional regression estimators, for example)
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and pursue misspecification-robust inference that is asymptotically valid regardless of the degree of

identification (see Gospodinov, Kan, and Robotti, 2014a). Second, if there is a strong preference

for using invariant estimators, the researcher needs to estimate consistently the reduced rank of

the model (as in Ahn, Horenstein, and Wang, 2010, for instance) and select a subset of the original

factors such that its dimension is equal to the estimated rank, and the resulting model is identified.

For example, one could perform a rank test for each possible combination of factors and choose

the combination that delivers the largest rejection of the reduced rank hypothesis. This procedure

would restore the standard inference although it may still need to be robustified against possible

model misspecification as in Gospodinov, Kan, and Robotti (2013).

While the results in this paper are developed in the context of linear factor models, we conjecture

that similar results characterize the limiting behavior of specification tests in a different or more

general setup. For example, Cragg and Donald (1996) establish the inconsistency of the Anderson-

Rubin test for over-identifying restrictions in unidentified linear instrumental variable models while

Dovonon and Renault (2013) derive the asymptotic distribution of the test for over-identifying

restrictions under lack of first-order identification. Furthermore, the CU-GMM is a member of the

class of generalized empirical likelihood (GEL) estimators (Newey and Smith, 2004) that provides

a unifying framework for assessing asset-pricing models (Almeida and Garcia, 2012). To the best

of our knowledge, the statistical properties of the GEL estimators under model misspecification

(Schennach, 2007) and potential identification failure (Otsu, 2006; Guggenberger and Smith, 2008)

have been analyzed only in isolation. Establishing whether the results in this paper for the CU-

GMM estimator carry over to other GEL estimators or constructing GEL-based tests of correct

model specification that are robust to a complete or partial lack of identification is a promising

direction for future research.
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Appendix: Proofs of Lemmas and Theorems

A.1 Proof of Lemma 1

Note that the ĉ that minimizes (25) can be analytically obtained as the eigenvector associated with

the smallest eigenvalue of

Ω̃ = (X ′X/T )B̂′P1(P
′
1Σ̂P1)

−1P ′
1B̂. (A.1)

For the numerical equivalence of S and CD1 to hold, it is sufficient to show that Ω̂ and Ω̃−1 share

the same nonzero eigenvalues. Using the formula for the inverse of a partitioned matrix, we obtain

Ω̂ = (Ĝ′Σ̂−1Ĝ)−1

[

0 0′K
0K (X ′X/T )−1

]

=

[

0 −(1′N Σ̂−11N )−1(1′N Σ̂−1B̂)C

0K C

]

,

where

C = [B̂′Σ̂−1B̂ − B̂′Σ̂−11N (1′N Σ̂−11N)−11′N Σ̂−1B̂]−1(X ′X/T )−1. (A.2)

Note that

IN − Σ̂− 1

2 1N(1′N Σ̂−11N)−11′N Σ̂− 1

2 = Σ̂
1

2P1(P
′
1Σ̂P1)

−1P ′
1Σ̂

1

2 (A.3)

since P ′
1Σ̂

1

2 Σ̂− 1

2 1N = 0N−1. Then, it follows that

B̂′Σ̂−1B̂ − B̂′Σ̂−11N(1′N Σ̂−11N )−11′N Σ̂−1B̂ = B̂′Σ̂− 1

2 [IN − Σ̂− 1

2 1N(1′N Σ̂−11N)−11′N Σ̂− 1

2 ]Σ̂− 1

2 B̂

= B̂′P1(P
′
1Σ̂P1)

−1P ′
1B̂ (A.4)

and

Ω̂ =

[

0 −(1′N Σ̂−11N)−1(1′N Σ̂−1B̂)Ω̃−1

0K Ω̃−1

]

. (A.5)

If ξ is a nonzero eigenvalue of Ω̃−1 and c is the corresponding eigenvector, then we have

Ω̂v = ξv, (A.6)

where v = [−(1′N Σ̂−11N)−1(1′N Σ̂−1B̂c), c′]′. Therefore, Ω̂ and Ω̃−1 share the same nonzero

eigenvalues. In particular, if ĉ = [ĉ1, ĉ
′
2]
′ is the eigenvector associated with the largest eigen-

value of Ω̃−1 or equivalently the eigenvector associated with the smallest eigenvalue of Ω̃, then

v̂ = [−(1′N Σ̂−11N)−1(1′N Σ̂−1B̂ĉ), ĉ′]′ is proportional to the eigenvector associated with the largest
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eigenvalue of Ω̂. Finally, using (17) and (18), we obtain

γ̂ML
1 = − ĉ2

ĉ1
+ µ̂f , (A.7)

γ̂ML
0 =

1′N Σ̂−1B̂ĉ

(1′N Σ̂−11N )ĉ1
=

1′N Σ̂−1(µ̂R − β̂γ̂ML
1 )

1′N Σ̂−11N

. (A.8)

This completes the proof.

A.2 Proof of Theorem 1

part (a): When the model is misspecified and contains a useless factor (ordered last), we have

Gv∗ = 0N for v∗ = [0′K, 1]′. Let v̂ be the eigenvector associated with the largest eigenvalue of

Ω̂ = (Ĝ′Σ̂−1Ĝ)−1[A(X ′X/T )−1A′]. (A.9)

Define ψ̂ = [ψ̂1, ψ̂2, . . . , ψ̂K ]′ as

ψ̂i = − v̂i

v̂K+1
, i = 1, . . . , K, (A.10)

which is asymptotically equivalent to the estimator

ψ̃ = (Ĝ′
1Σ̂

−1Ĝ1)
−1(Ĝ′

1Σ̂
−1β̂K−1). (A.11)

Since
√
Tβ̂K−1

d→ N (0N ,Σ/σ
2
f,K−1), we have

√
T ψ̃

d→ N (0K , (G
′
1Σ

−1G1)
−1/σ2

f,K1
), (A.12)

and
√
T ψ̂ also has the same asymptotic distribution. Therefore, we can write

γ̂ML
0 = −

√
T ψ̂1√
T ψ̂2

d→ −z1
z2
, (A.13)

γ̂ML
1,i = µ̂f,i −

√
T ψ̂i+2√
T ψ̂2

d→ µf,i −
zi+2

z2
, i = 1, . . . , K − 2, (A.14)

γ̂ML
1,K−1√
T

=
µ̂f,K−1√

T
+

1√
T ψ̂2

d→ 1

z2
. (A.15)

This completes the proof of part (a).
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part (b): We start with the squared t-ratio of the useless factor, t2(γ̂ML
1,K−1). Define G2 =

[1N , β1, . . . , βK−2] and Ĝ2 = [1N , β̂1, . . . , β̂K−2]. Using the formula for the inverse of a parti-

tioned matrix, we obtain

s2(γ̂ML
1,K−1) = (1 + γ̂ML′

1 V̂ −1
f γ̂ML

1 )
(

β̂
′
K−1[Σ̂

−1 − Σ̂−1Ĝ2(Ĝ
′
2Σ̂

−1Ĝ2)
−1Ĝ′

2Σ̂
−1]β̂K−1

)−1
+ σ̂2

f,K−1

=

(

γ̂ML
1,K−1

σ̂f,K−1

)2
(

β̂
′
K−1[Σ̂

−1 − Σ̂−1Ĝ2(Ĝ
′
2Σ̂

−1Ĝ2)
−1Ĝ′

2Σ̂
−1]β̂K−1

)−1
+ Op(T

1

2 ) (A.16)

by using the fact that γ̂ML
1,i = Op(1) for i = 1, . . . , K − 2 and γ̂ML

1,K−1 = Op(T
1

2 ). In addition, by

defining u as follows:
√
T σ̂f,K−1Σ̂

− 1

2 β̂K−1
d→ u ∼ N (0N , IN), (A.17)

we obtain

t2(γ̂ML
1,K−1) =

T (γ̂ML
1,K−1)

2β̂
′
K−1[Σ̂

−1 − Σ̂−1Ĝ2(Ĝ
′
2Σ̂

−1Ĝ2)
−1Ĝ2Σ̂

−1]β̂K−1

(γ̂ML
1,K−1/σ̂f,K−1)2

+ Op(T
− 1

2 )

= u′[IN − Σ̂− 1

2 Ĝ2(Ĝ
′
2Σ̂

−1Ĝ2)
−1Ĝ′

2Σ̂
− 1

2 ]u+ Op(T
− 1

2 )

d→ u′[IN − Σ− 1

2G2(G
′
2Σ

−1G2)
−1G′

2Σ
− 1

2 ]u ∼ χ2
N−K+1. (A.18)

For the limiting distributions of t(γ̂ML
0 ) and t(γ̂ML

1,i ), i = 1, . . . , K − 2, we use the formula for

the inverse of a partitioned matrix to obtain the upper left (K−1)×(K−1) block of (B̂′
1Σ̂

−1B̂1)
−1

as

(Ĝ′
2Σ̂

−1Ĝ2)
−1 +

(Ĝ′
2Σ̂

−1Ĝ2)
−1Ĝ′

2Σ̂
−1β̂K−1β̂

′
K−1Σ̂

−1Ĝ2(Ĝ
′
2Σ̂

−1Ĝ2)
−1

β̂
′
K−1Σ̂

−1β̂K−1 − β̂
′
K−1Σ̂

−1Ĝ2(Ĝ′
2Σ̂

−1Ĝ2)−1Ĝ′
2Σ̂

−1β̂K−1

= (G′
2Σ

−1G2)
−1 +

(G′
2Σ

−1G2)
−1G′

2Σ
− 1

2uu′Σ− 1

2G2(G
′
2Σ

−1G2)
−1

u′[IN − Σ− 1

2G2(G
′
2Σ

−1G2)−1G′
2Σ

− 1

2 ]u
+Op(T

− 1

2 ). (A.19)

Note that we can write

IN − Σ− 1

2G1(G
′
1Σ

−1G1)
−1G′

1Σ
− 1

2 = IN − Σ− 1

2G2(G
′
2Σ

−1G2)
−1G′

2Σ
− 1

2 − hh′, (A.20)

where

h =
[IN − Σ− 1

2G2(G
′
2Σ

−1G2)
−1G′

2Σ
− 1

2 ]Σ− 1

2α
(

α′Σ− 1

2 [IN − Σ− 1

2G2(G
′
2Σ

−1G2)−1G′
2Σ

− 1

2 ]Σ− 1

2α
) 1

2

. (A.21)

With this expression, we can write

u′[IN − Σ− 1

2G2(G
′
2Σ

−1G2)
−1G′

2Σ
− 1

2 ]u = u′[IN − Σ− 1

2G1(G
′
1Σ

−1G1)
−1G′

1Σ
− 1

2 ]u+ (h′u)2

= x+ z̃2
2, (A.22)
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where x ∼ χ2
N−K and it is independent of z̃2 ∼ N (0, 1). To establish the last equality, we need

to show that h′u = z̃2. Denote by ιm,i an m-vector with its i-th element equals to one and zero

elsewhere, and let σij ≡ Cov[zi, zj] = ι′K,i(G
′
1Σ

−1G1)
−1ιK,j/σ

2
f,K−1. Using the formula for the

inverse of a partitioned matrix, we obtain

z2 =
1

σf,K−1
ι′K,2(G

′
1Σ

−1G1)
−1G′

1Σ
− 1

2u

=
1

σf,K−1

α′Σ− 1

2 [IN − Σ− 1

2G2(G
′
2Σ

−1G2)
−1G′

2Σ
− 1

2 ]u

α′Σ− 1

2 [IN − Σ− 1

2G2(G′
2Σ

−1G2)−1G′
2Σ

− 1

2 ]Σ− 1

2α
. (A.23)

It follows that

σ2
2 =

1

σ2
f,K−1α

′Σ− 1

2 [IN − Σ− 1

2G2(G′
2Σ

−1G2)−1G′
2Σ

− 1

2 ]Σ− 1

2α
(A.24)

and h′u = z2/σ2 = z̃2.

Denote by wi the i-th diagonal element of (B̂′
1Σ̂

−1B̂1)
−1, i = 1, . . . , K − 1. Using (A.19), we

have

wi
d→ ι′K−1,i(G

′
2Σ

−1G2)
−1ιK−1,i +

ι′K−1,i(G
′
2Σ

−1G2)
−1G′

2Σ
− 1

2uu′Σ− 1

2G2(G
′
2Σ

−1G2)
−1ιK−1,i

x+ z̃2
2

= ι′K−1,i(G
′
2Σ

−1G2)
−1ιK−1,i

(

1 +
q2i

x+ z̃2
2

)

, (A.25)

where

qi =
ι′K−1,i(G

′
2Σ

−1G2)
−1G′

2Σ
− 1

2u

[ι′K−1,i(G
′
2Σ

−1G2)−1ιK−1,i]
1

2

∼ N (0, 1). (A.26)

Using the fact that Var[u] = IN and

(G′
1Σ

−1G1)
−1G′

1Σ
−1G2 = [ιK,1, ιK,3, . . . , ιK,K ], (A.27)

it is straightforward to show that

Cov[z1, q1] =
ι′K,1(G

′
1Σ

−1G1)
−1G′

1Σ
−1G2(G

′
2Σ

−1G2)
−1ιK−1,1

σf,K−1[ι
′
K−1,1(G

′
2Σ

−1G2)−1ιK−1,1]
1

2

= [ι′K−1,1(G
′
2Σ

−1G2)
−1ιK−1,1/σ

2
f,K−1]

1

2 , (A.28)

Cov[z2, q1] =
ι′K,2(G

′
1Σ

−1G1)
−1G′

1Σ
−1G2(G

′
2Σ

−1G2)
−1ιK−1,1

σf,K−1[ι′K−1,1(G
′
2Σ

−1G2)−1ιK−1,1]
1

2

= 0. (A.29)

From the formula for the inverse of a partitioned matrix, we have

1

σ2
f,K−1

ι′K−1,1(G
′
2Σ

−1G2)
−1ιK−1,1 = σ2

1 −
σ2

12

σ2
2

= σ2
1(1 − ρ2

12). (A.30)
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It follows that

Cov

[

z1 −
σ12

σ2
2

z2, q1

]

= [ι′K−1,1(G
′
2Σ

−1G2)
−1ιK−1,1/σ

2
f,K−1]

1

2 = σ1

√

1 − ρ2
12. (A.31)

Therefore, z1 − (σ12/σ
2
2)z2 is perfectly correlated with q1 and we can write

z1 =
σ12

σ2
2

z2 +
√

1− ρ2
12σ1q1 = σ1

(

ρ12z̃2 +
√

1 − ρ2
12q1

)

. (A.32)

Similarly,

zi+1 =
σi+1,2

σ2
2

z2+
√

1 − ρ2
i+1,2σi+1qi = σi+1

(

ρi+1,2z̃2 +
√

1 − ρ2
i+1,2qi

)

, i = 2, . . . , K−1. (A.33)

Let

bi =
x + z̃2

2

x+ z̃2
2 + q2i

, i = 1, . . . , K − 1. (A.34)

With the above results, we can now write the limiting distribution of the t-ratios as

t(γ̂ML
0 )

d→ − z1|z2|b
1

2

1

z2[ι
′
K−1,1(G

′
2Σ

−1G2)−1ιK−1,1/σ
2
f,K−1]

1

2

= −
(

ρ12|z̃2|
√

1 − ρ2
12

+ q1

)

b
1

2

1 , (A.35)

t(γ̂ML
1,i )

d→

(

µf,i − zi+2

z2

)

|z2|b
1

2

i+1

[ι′K−1,i+1(G
′
2Σ

−1G2)−1ιK−1,i+1/σ
2
f,K−1]

1

2

=





µf,iσ2

σi+2
− ρi+2,2

√

1 − ρ2
i+2,2

|z̃2| − qi+1



 b
1

2

i+1, i = 1, . . . , K − 2. (A.36)

This completes the proof of part (b).

part (c): Let ê = µ̂R − 1N γ̂
ML
0 − β̂γ̂ML

1 and note that the fitted (model-implied) expected returns

can be rewritten as

µ̂ML
R = 1N γ̂

ML
0 + β̂

ML
γ̂ML

1

= 1N γ̂
ML
0 + β̂γ̂ML

1 + ê
γ̂ML′

1 V̂ −1
f γ̂ML

1

1 + γ̂ML′
1 V̂ −1

f γ̂ML
1

= µ̂R − ê + ê
γ̂ML′

1 V̂ −1
f γ̂ML

1

1 + γ̂ML′
1 V̂ −1

f γ̂ML
1

= µ̂R − ê
1

1 + γ̂ML′
1 V̂ −1

f γ̂ML
1

. (A.37)
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Using the result from part (a) that γ̂ML
1,i = Op(1) for i = 1, . . . , K − 2 and γ̂ML

1,K−1 = Op(T
1

2 ), we

have µ̂ML
R − µ̂R

p→ 0N and

R2
ML = Corr(µ̂ML

R , µ̂R)2
p→ 1 (A.38)

as T → ∞. This completes the proof of part (c).

part (d): Because B is of reduced rank due to the presence of a useless factor, CD1
d→ χ2

N−K .

From the numerical equivalence of S and CD1 in Lemma 1, it follows that S d→ χ2
N−K even though

the model is misspecified. This completes the proof of part (d).

A.3 Proof of Theorem 2

It follows from Lemma 1 that the S test is asymptotically distributed as T times the smallest

eigenvalue of

Ω̃ = (X ′X/T )B̂′P1(P
′
1Σ̂P1)

−1P ′
1B̂. (A.39)

Let Lf be a lower triangular matrix such that LfL
′
f = Vf and define

L =

[

1 0′K−1

µf Lf

]

. (A.40)

Using that (X ′X)/T
p→ LL′ and Σ̂

p→ Σ, the S test has the same distribution as the smallest

eigenvalue of

W0 = TLL′B̂′P1(P
′
1ΣP1)

−1P ′
1B̂. (A.41)

Let P̃1 be an N × (N − 1) orthonormal matrix such that P̃ ′
1Σ

− 1

2 1N = 0N−1. Then, we have

P1(P
′
1ΣP1)

−1P ′
1 = Σ− 1

2 P̃1P̃
′
1Σ

− 1

2 (A.42)

and

W0 = TLL′B̂′Σ− 1

2 P̃1P̃
′
1Σ

− 1

2 B̂. (A.43)

Define

Z =
√
T P̃ ′

1Σ
− 1

2 B̂L (A.44)

and

M = E[Z] =
√
T P̃ ′

1Σ
− 1

2BL. (A.45)
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Then, under Assumptions 1 and 3,

vec(Z) ∼ N
(

vec(M), I(N−1)K

)

. (A.46)

Since W0 and Z ′Z share the same eigenvalues, the smallest eigenvalue of W0 has the same limiting

distribution as the smallest eigenvalue ofW1 = Z ′Z ∼ WK(N−1, IK,M
′M), which has a noncentral

Wishart distribution. Since B has rank K − r, there exists a K × r orthonormal matrix C1

such that MC1 = 0(N−1)×r. Let C = [C1, C2] be a K × K orthonormal matrix, and define

Z̃ = [Z̃1, Z̃2] = [ZC1, ZC2]. Then, we have E[Z̃1] = 0(N−1)×r and E[Z̃2] ≡ M̃2 = MC2. Using

the fact that W1 = Z ′Z and W2 = Z̃ ′Z̃ share the same eigenvalues, it is sufficient to obtain the

limiting distribution of the smallest eigenvalue of W2 which is equal to the reciprocal of the largest

eigenvalue of

W−1
2 =

[

W 11
2 W 12

2

W 21
2 W 22

2

]

. (A.47)

Using the formula for the inverse of a partitioned matrix, we have

W 11
2 =

(

Z̃ ′
1[IN−1 − Z̃2(Z̃

′
2Z̃2)

−1Z̃ ′
2]Z̃1

)−1
∼ Wr(N −K − 1 + r, Ir)

−1, (A.48)

W 12
2 = −W 11

2 Z̃ ′
1Z̃2(Z̃

′
2Z̃2)

−1 = Op(T
− 1

2 ), (A.49)

W 22
2 = (Z̃ ′

2Z̃2)
−1 + (Z̃ ′

2Z̃2)
−1(Z̃ ′

2Z̃1)W
11
2 (Z̃ ′

1Z̃2)(Z̃
′
2Z̃2)

−1 = Op(T
−1). (A.50)

Therefore, the limiting distribution of the largest eigenvalue of W−1
2 is the same as the limiting

distribution of the largest eigenvalue of W 11
2 . Equivalently, the smallest eigenvalue of T Ω̃ has the

same limiting distribution as the smallest eigenvalue of W ∼ Wr(N −K − 1 + r, Ir).

We now show that Pr[wr < a] ≥ Pr[x < a], where wr is the smallest eigenvalue of W and

x ∼ χ2
N−K . By the Bartlett decomposition of a Wishart matrix, we can write

W =





W1 W
1

2

1 z

z′W
1

2

1 x + z′z



 , (A.51)

where W1 ∼ Wr−1(N −K−2+ r, Ir−1), z ∼ N (0r−1, Ir−1), and they are independent of each other

and x. Using the fact that the eigenvalues of W are the same as the reciprocal of the eigenvalues

of W−1, it follows that

wr = min
ω:ω′ω=1

ω′Wω =

(

max
ω:ω′ω=1

ω′W−1ω

)−1

≤ ([0′r−1, 1]W−1[0′r−1, 1]′)−1 = x ∼ χ2
N−K . (A.52)

This completes the proof.
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A.4 Proof of Lemma 2

Let Ht = [1N , Dt], Ĥ = 1
T

∑T
t=1 Ht = [1N , D̂], V̂h = 1

T

∑T
t=1 vec(Ht − Ĥ)vec(Ht − Ĥ)′, and

Q(λ) = [−1, λ′] ⊗ IN . Then, we have

et(λ) = Q(λ)vec(Ht), (A.53)

Ŵe(λ) = Q(λ)V̂hQ(λ)′ = (λ′ ⊗ IN )V̂d(λ⊗ IN ), (A.54)

and

J (λ) = T (D̂λ− 1N)′[(λ′ ⊗ IN )V̂d(λ⊗ IN )]−1(D̂λ− 1N). (A.55)

Let P = [1N/
√
N, P1] be an orthonormal matrix. Then, we can write

J (λ) = T (D̂λ− 1N)′[(λ′ ⊗ IN )V̂d(λ⊗ IN )]−1(D̂λ− 1N)

= T (D̂λ− 1N)′P (P ′Ŵe(λ)P )−1P ′(D̂λ− 1N)

= T

[

1′
N

(D̂λ−1N )√
N

P ′
1D̂λ

]′ 



1′NŴe(λ)1N

N

1′NŴe(λ)P1√
N

P ′

1
Ŵe(λ)1N√

N
P ′

1Ŵe(λ)P1





−1
[

1′
N

(D̂λ−1N )√
N

P ′
1D̂λ

]

. (A.56)

Denote the matrix in the middle as

A ≡





1′NŴe(λ)1N

N

1′NŴe(λ)P1√
N

P ′

1Ŵe(λ)1N√
N

P ′
1Ŵe(λ)P1



 =

[

A11 A12

A21 A22

]

. (A.57)

Using the following formula for the inverse of a partitioned matrix

A−1 =

[

0 0′N−1

0N−1 A−1
22

]

+
1

A11 − A12A
−1
22 A21

[

−1

A−1
22 A21

][

−1

A−1
22 A21

]′

, (A.58)

we obtain

J (λ) = CD2(λ) +
T

N (A11 − A12A
−1
22 A21)

[1′NŴe(λ)
−1P1(P

′
1Ŵe(λ)

−1P1)
−1P ′

1D̂λ− 1′N (D̂λ− 1N )]2,

(A.59)

where

CD2(λ) = Tλ′D̂′P1[(λ
′ ⊗ P ′

1)V̂d(λ⊗ P1)]
−1P ′

1D̂λ. (A.60)

The above identity suggests that J (λ) ≤ CD2(λ), with the equality holding if and only if

1′NŴe(λ)
−1P1(P

′
1Ŵe(λ)

−1P1)
−1P ′

1D̂λ = 1′N(D̂λ− 1N). (A.61)
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Note that CD2(λ) is invariant to multiplying λ by a nonzero constant and, hence, we can only

identify the λ that minimizes CD2(λ) up to a scalar multiple. Consider the following normalization:

ĉ = argminc:c′c=1CD2(c). (A.62)

Then, we have

CD2 ≡ CD2(ĉ) = CD2(aĉ) ≥ J (aĉ) (A.63)

for any nonzero scalar a. To satisfy the equality in (A.61), we need to set a equal to

â =
N

[1N − P1(P ′
1Ŵe(ĉ)P1)−1P ′

1Ŵe(ĉ)1N ]′D̂ĉ
=

1′NŴe(ĉ)
−11N

1′NŴe(ĉ)−1D̂ĉ
, (A.64)

where the last equality follows from

1N − P1(P
′
1Ŵe(ĉ)P1)

−1P ′
1Ŵe(ĉ)1N = Ŵe(ĉ)

− 1

2 [IN − Ŵe(ĉ)
1

2P1(P
′
1Ŵe(ĉ)P1)

−1P ′
1Ŵe(ĉ)

1

2 ]Ŵe(ĉ)
1

2 1N

= Ŵe(ĉ)
− 1

2 [Ŵe(ĉ)
− 1

2 1N(1′NŴe(ĉ)
−11N)−11′NŴe(ĉ)

− 1

2 ]Ŵe(ĉ)
1

2 1N

=
Ŵe(ĉ)

−11N (1′N1N)

1′NŴe(ĉ)−11N

=
NŴe(ĉ)

−11N

1′NŴe(ĉ)−11N

. (A.65)

With this choice of a, we have J ≡ J (âĉ) = CD2 ≤ J (λ) and hence λ̂ = âĉ. This completes the

proof.

A.5 Proof of Theorem 3

part (a): We first perform an alternative parameterization of the problem. Let

gt(c) = Ht

[

c

1

]

. (A.66)

When the useless factor is ordered last, we have that E[RtfK−1,t] = µRµf,K−1 and H [c∗′, 1]′ = 0N ,

where

c∗ =





0
−µf,K−1

0K−2



 . (A.67)

Consider the CU-GMM estimator of c∗:

ĉ = argmincḡ(c)
′Ŵg(c)

−1ḡ(c), (A.68)
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where ḡ(c) =
∑T

t=1 gt(c)/T and

Ŵg(c) =
1

T

T
∑

t=1

[gt(c)− ḡ(c)][gt(c)− ḡ(c)]′. (A.69)

The asymptotic distribution of ĉ is given by

√
T (ĉ− c∗)

d→ N
(

0K , (H
′
1S

−1
g H1)

−1
)

, (A.70)

where

Sg = E[gt(c
∗)gt(c

∗)′] = E[RtR
′
t(fK−1,t − µf,K−1)

2] = Uσ2
f,K−1, (A.71)

and U = E[RtR
′
t]. Note that ĉ has the same asymptotic distribution as the estimator

c̃ = (Ĥ ′
1Û

−1Ĥ1)
−1Ĥ ′

1Û
−1d̂K, (A.72)

where Ĥ1 = [1N , D̂1] with D̂1 being the first K − 1 columns of D̂, and d̂K being the last column

of D̂. Let

z ∼ N (0K , σ
2
f,K−1(H

′
1U

−1H1)
−1). (A.73)

Then, we have

√
T ĉ1

d→ z1, (A.74)
√
T (ĉ2 + µf,K−1)

d→ z2, (A.75)
√
T ĉi

d→ zi, i = 3, . . . , K. (A.76)

Due to the invariance property of CU-GMM, we know that [−1, λ̂
′
] is proportional to [ĉ′, 1]. Then,

it follows that

λ̂0 = − ĉ2
ĉ1
, (A.77)

λ̂1,i = − ĉi+2

ĉ1
, i = 1, . . . , K − 2, (A.78)

λ̂1,K−1 = − 1

ĉ1
. (A.79)

Therefore, the limiting distributions of the K − 1 elements of λ̂1 are given by

λ̂1,i
d→ −zi+2

z1
, i = 1, . . . , K − 2, (A.80)

λ̂1,K−1√
T

d→ − 1

z1
. (A.81)
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The limiting distribution of λ̂0 depends on whether µf,K−1 = 0 or not. If µf,K−1 = 0, we have

λ̂0
d→ −z2/z1. If µf,K−1 6= 0, we have λ̂0/

√
T

d→ µf,K−1/z1. This completes the proof of part (a).

part (b): It is easy to show that

σ2
1 =

σ2
f,K−1

1′N [U−1 − U−1D1(D
′
1U

−1D1)−1D′
1U

−1]1N
=
σ2

f,K−1

δ2
, (A.82)

where δ is the HJ-distance of the misspecified model. Then,

λ̂1,K−1√
T

d→ − 1

σ1z̃1
= − δ

σf,K−1z̃1
, (A.83)

where z̃1 = z1/σ1 ∼ N (0, 1). In addition, using the same proof as in Theorem 1 part (b), we can

write

zi+1 = σi+1

(

ρ1,i+1z̃1 +
√

1− ρ2
1,i+1qi+1

)

, (A.84)

where qi+1 ∼ N (0, 1) and it is independent of z̃1.

Using the fact that

et(λ̂)√
T

= −Rt(fK−1,t − µf,K−1)

z1
+Op(T

− 1

2 ), (A.85)

we can show that

Ŵe(λ̂)

T
=
σ2

f,K−1

z2
1

U + op(1). (A.86)

This allows us to show that the squared t-ratio of λ̂1,K−1 can be expressed as

t2(λ̂1,K−1) =
T λ̂

2

1,K−1

ι′K,K(D̂′Ŵe(λ̂)−1D̂)−1ιK,K

=
T d̂′K [U−1 − U−1D1(D

′
1U

−1D1)
−1D′

1U
−1]d̂K

σ2
f,K−1

+ op(1).

(A.87)

Let

d̃K = d̂K − µ̂Rµf,K−1 =
1

T

T
∑

t=1

Rt(fK−1,t − µf,K−1). (A.88)

Then, we have
√
T d̃K

d→ N (0N , σ
2
f,K−1U). Since µ̂Rµf,K−1 = D̂1[µf,K−1, 0′K−2]

′, it follows that

T d̂′K [U−1 − U−1D̂1(D̂
′
1U

−1D̂1)
−1D̂′

1U
−1]d̂K

= T d̃′K [U−1 − U−1D̂1(D̂
′
1U

−1D̂1)
−1D̂′

1U
−1]d̃K

= T d̃′K [U−1 − U−1D1(D
′
1U

−1D1)
−1D′

1U
−1]d̃K + op(1). (A.89)
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Let PU be an N × (N −K+ 1) orthonormal matrix with its columns orthogonal to U− 1

2D1. Then,

we have
1

σf,K−1

√
TP ′

UU
− 1

2 d̃K
d→ N (0N−K+1, IN−K+1) (A.90)

and

t2(λ̂1,K−1)
d→ χ2

N−K+1. (A.91)

For the derivation of the limiting distributions for t(λ̂0) and t(λ̂1,i) (i = 1, . . . , K − 2), we use

the identity

IN − U− 1

2H1(H
′
1U

−1H1)
−1H ′

1U
− 1

2 = IN − U− 1

2D1(D
′
1U

−1D1)
−1D′

1U
− 1

2 − hh′, (A.92)

where

h =
[IN − U− 1

2D1(D
′
1U

−1D1)
−1D′

1U
− 1

2 ]U− 1

2 1N

δ
=
PUP

′
UU

− 1

2 1N

δ
(A.93)

and h′h = 1. Note that

√
Th′U− 1

2 d̃K/σf,K−1 =
√
T1′NU

− 1

2PUP
′
UU

− 1

2 d̃K/(σf,K−1δ)
d→ z̃1 ∼ N (0, 1), (A.94)

T d̃′K[IN − U− 1

2H1(H
′
1U

−1H1)
−1H ′

1U
− 1

2 ]d̃K/σ
2
f,K−1

d→ x ∼ χ2
N−K , (A.95)

and they are independent of each other. Using the formula for the inverse of a partitioned matrix,

we can show that

σ2
f,K−1ι

′
K−1,i(D

′
1U

−1D1)
−1ιK−1,i = σ2

i+1 −
σ1,i+1

σ2
1

= σ2
i+1(1− ρ2

1,i+1). (A.96)

In addition, we can easily show that for i = 2, . . . , K − 1
√
T ι′K−1,i(D

′
1U

−1D1)
−1D′

1U
−1d̂K

σf,K−1[ι′K−1,i(D
′
1U

−1D1)−1ιK−1,i]
1

2

d→ qi+1 ∼ N (0, 1). (A.97)

For i = 1, the result depends on whether µf,K−1 = 0 or not. If µf,K−1 = 0, we have
√
TU− 1

2 d̂K/σf,K−1
d→

N (0N , IN) and hence
√
T ι′K−1,1(D

′
1U

−1D1)
−1D′

1U
−1d̂K

σf,K−1[ι′K−1,1(D
′
1U

−1D1)−1ιK−1,1]
1

2

d→ q2 ∼ N (0, 1). (A.98)

If µf,K−1 6= 0, we have d̂K
p→ µRµf,K−1 = D1[µf,K−1, 0′K−2]

′ and hence

ι′K−1,1(D
′
1U

−1D1)
−1D′

1U
−1d̂K/σf,K−1

p→ ι′K−1,1(D
′
1U

−1D1)
−1D′

1U
−1D1[µf,K−1, 0′K−2]

′/σf,K−1

= µf,K−1/σf,K−1. (A.99)

38



Note that the qi’s are independent of z̃1 and x.

Consider the upper left (K − 1) × (K − 1) submatrix of (D̂′Ŵe(λ̂)
−1D̂)−1/T , which has the

same limit as

σ2
f,K−1

z2
1

[

(D′
1U

−1D1)
−1 +

(D′
1U

−1D1)
−1D′

1U
−1d̂K d̂

′
KU

−1D1(D
′
1U

−1D1)
−1

d̃′KU
− 1

2 [IN − U− 1

2D1(D′
1U

−1D1)−1D′
1U

− 1

2 ]U− 1

2 d̃K

]

. (A.100)

In particular, for i = 2, . . . , K−1, the i-th diagonal element of this matrix has a limiting distribution

σ2
f,K−1ι

′
K−1,i(D

′
1U

−1D1)
−1ιK−1,i

z2
1

(

1 +
q2i+1

x+ z̃2
1

)

=
σ2

i+1(1 − ρ2
1,i+1)

z2
1

(

1 +
q2i+1

x+ z̃2
1

)

. (A.101)

Let

bi+1 =
x+ z̃2

1

q2i+1 + x+ z̃2
1

. (A.102)

Then, we can write the limiting distribution of t(λ̂1,i) for i = 1, . . . , K − 2 as

t(λ̂1,i)
d→ − zi+2/z1

σi+2

√

1 − ρ2
1,i+2|z1|b

− 1

2

i+1

= −|z̃1|
z̃1

(

ρ1,i+2z̃1 +
√

1 − ρ2
1,i+2qi+2

)

b
1

2

i+1
√

1 − ρ2
1,i+2

= −





ρ1,i+2|z̃1|
√

1 − ρ2
1,i+2

+ qi+2



 b
1

2

i+1. (A.103)

The limiting distribution of t(λ̂0) depends on whether µf,K−1 = 0 or not. If µf,K−1 = 0, we have

a similar limiting expression

t(λ̂0)
d→ −





ρ1,2|z̃1|
√

1 − ρ2
1,2

+ q2



 b
1

2

1 . (A.104)

If µf,K−1 6= 0, we have

t2(λ̂0)
d→

µ2
f,K−1

z2
1

σ2
f,K−1

z2
1

[

µ2
f,K−1

σ2
f,K−1

(x+z̃2
1
)

] = x+ z̃2
1 ∼ χ2

N−K+1. (A.105)

This completes the proof of part (b).

part (c): The proof follows similar arguments as the proof of part (c) in Theorem 1 by replacing

the expression for β̂
ML

with the expression for β̂
CU

and, to conserve space, is omitted.
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part (d): Because D is of reduced rank due to the presence of a useless factor, CD2
d→ χ2

N−K .

From the numerical equivalence of the J and CD2 tests in Lemma 2, we have J d→ χ2
N−K even

when the model is misspecified. This completes the proof of part (d).

A.6 Proof of Theorem 4

First, note that

B̂ = D̂

(

X ′X

T

)−1

(A.106)

and the CD1 specification test in Section 3.1 can be rewritten as

CD1 = T min
c

c′B̂′P1(P
′
1Σ̂P1)

−1P ′
1B̂c

c′[(X ′X/T )−1]c
= T min

c

c′D̂′P1(P
′
1Σ̂P1)

−1P ′
1D̂c

c′(X ′X/T )c
. (A.107)

Also, recall that CD1 is numerically equivalent to S whose asymptotic distribution is presented in

Theorem 2.

Using (A.106) and Assumption 3’, we obtain

√
Tvec(P ′

1D̂ − P ′
1D)

d→ N
(

0(N−1)K, E[xtx
′
t] ⊗ P ′

1ΣP1 + (IK ⊗ P ′
1B)Vx(IK ⊗ B′P1)

)

, (A.108)

where Vx is the asymptotic variance of
√
Tvec ((X ′X)/T − E[xtx

′
t]). For any c such that P ′

1Dc =

0N−1, we have

√
TP ′

1D̂c
d→ N

(

0N−1, c
′E[xtx

′
t]cP

′
1ΣP1

)

(A.109)

since

lim
T→∞

P ′
1B

(

X ′X

T

)

c = P ′
1BE[xtx

′
t]c = P ′

1Dc = 0N−1. (A.110)

Hence, under Assumption 3’ and when H (or equivalently P ′
1D) has a reduced rank, we have

CD2 = T min
c

(P ′
1D̂c)

′[(c′ ⊗ P ′
1)V̂d(c⊗ P1)]

−1(P ′
1D̂c)

= T min
c

c′D̂′P1(P
′
1Σ̂P1)

−1P ′
1D̂c

c′(X ′X/T )c
+ op(1) = CD1 + op(1). (A.111)

Therefore, the J test, which is numerically equivalent to the CD2 test (see Lemma 2), shares the

same asymptotic distribution of the S test in Theorem 2. This completes the proof.
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A.7 Proof of Theorem 5

part (a): The proof closely follows the proof of part (b) of Theorem 3 in Gospodinov, Kan,

and Robotti (2014b) and is provided here for completeness.14 Let D̃ = U− 1

2D1, 1̃N = U− 1

2 1N ,

PU be an N × (N − K + 1) orthonormal matrix whose columns are orthogonal to D̃ so that

PUP
′
U = IN − D̃(D̃′D̃)−1D̃′, u ∼ N (0N , IN), and w = P ′

Uu ∼ N (0N−K+1, IN−K+1). When the

model contains a useless factor, we have (see Gospodinov, Kan, and Robotti, 2014b)

−Û− 1

2 ē(λ̂
HJ

)
d→ PU [IN−K+1 − w(w′w)−1w′]P ′

U 1̃N , (A.112)

and the limiting distribution of δ̂
2

is given by

δ̂
2 d→ 1̃′NPU [IN−K+1 −w(w′w)−1w′]P ′

U 1̃N

= (1̃′NPUP
′
U 1̃N )

w′[IN−K+1 − P ′
U 1̃N(1̃′NPUP

′
U 1̃N )−11̃′NPU ]w

w′w
= δ2B, (A.113)

where

B =
w′[IN−K+1 − P ′

U 1̃N(1̃′NPUP
′
U 1̃N)−11̃′NPU ]w

w′w
∼ Beta

(

N −K

2
,
1

2

)

(A.114)

and it is independent of w. Furthermore, the estimated weights ξ̂i for the weighted chi-squared

distribution are asymptotically distributed as (see Gospodinov, Kan, and Robotti, 2014b)

ξ̂i

T

d→ δ2(1 −B)

w′w
. (A.115)

When comparing T δ̂
2

with FN−K(ξ̂), we are effectively comparing B with (1−B)/(w′w)χ2
N−K , and

we will reject H0 : δ2 = 0 when

w′w >
pηB

1 −B . (A.116)

Note that w′w ∼ χ2
N−K+1 and it is independent of B. Therefore, the limiting probability of rejection

for a test with size η is
∫ 1

0
P

[

χ2
N−K+1 >

pηs

1 − s

]

fB(s)ds. (A.117)

This completes the proof of part (a).

14The results in Gospodinov, Kan, and Robotti (2014b) are derived under the assumption that the mean and the
variance of the useless factor are 0 and 1, respectively. However, since the sample pricing errors and the sample
HJ-distance are invariant to affine transformations of the factors, their results also apply when the useless factor has
a generic mean and a generic variance.
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part (b): Denote by ft = [f1,t, f2,t, . . . , fK−1,t]
′ ≡ [f̃ ′t, fK−1,t]

′ the (K − 1)-vector of useful and

useless factors, where the last factor is assumed to be useless. We denote by µ
f̃

and V
f̃

the mean

and covariance matrix of the useful factors f̃t. Since Q̂ is invariant to linear transformations of the

factors, without loss of generality we assume that the useless factor fK−1,t has zero mean and unit

variance. The GLS CSR estimator of γ∗ is defined as

γ̂GLS = (B̂′
1Σ̂

−1B̂1)
−1B̂′

1Σ̂
−1µ̂R, (A.118)

where B̂1 = [Ĝ2, β̂K−1] with Ĝ2 = [1N , β̂1, . . . , β̂K−2]. Note that the estimator in (A.118) can

be obtained equivalently by running an OLS regression of Σ̂− 1

2 µ̂R on Σ̂− 1

2 Ĝ2 and Σ̂− 1

2 β̂K−1. To

obtain γ̂GLS
1,K−1, we can project Σ̂− 1

2 µ̂R and Σ̂− 1

2 β̂K−1 on Σ̂− 1

2 Ĝ2, and then regress the residuals

from the first projection onto the residuals from the second projection. It follows that

γ̂GLS
1,K−1 =

β̂
′
K−1Σ̂

− 1

2 [IN − Σ̂− 1

2 Ĝ2(Ĝ
′
2Σ̂

−1Ĝ2)
−1Ĝ′

2Σ̂
− 1

2 ]Σ̂− 1

2 µ̂R

β̂
′
K−1Σ̂

− 1

2 [IN − Σ̂− 1

2 Ĝ2(Ĝ
′
2Σ̂

−1Ĝ2)−1Ĝ′
2Σ̂

− 1

2 ]Σ̂− 1

2 β̂K−1

. (A.119)

Similarly, the first (K−1) sub-vector of γ̂GLS, denoted by γ̂GLS
u ≡ [γ̂0, γ̂1,1, . . . , γ̂1,K−2]

′, is obtained

by projecting Σ̂− 1

2 µ̂R and Σ̂− 1

2 Ĝ2 on Σ̂− 1

2 β̂K−1, and then regressing the residuals from the first

projection onto the residuals from the second projection, which yields

γ̂GLS
u = (Ĝ′

2Σ̂
− 1

2 [IN − Σ̂− 1

2 β̂K−1(β̂
′
K−1Σ̂

−1β̂K−1)
−1β̂

′
K−1Σ̂

− 1

2 ]Σ̂− 1

2 Ĝ2)
−1

× Ĝ′
2Σ̂

− 1

2 [IN − Σ̂− 1

2 β̂K−1(β̂
′
K−1Σ̂

−1β̂K−1)
−1β̂

′
K−1Σ̂

− 1

2 ]Σ̂− 1

2 µ̂R. (A.120)

We adopt the following simplifying notation. Let G̃2 = Σ− 1

2G2, µ̃R = Σ− 1

2µR, M = IN −
G̃2(G̃

′
2G̃2)

−1G̃′
2, u ∼ N (0N , IN), and denote by PΣ an N × (N − K + 1) orthonormal matrix

whose columns are orthogonal to G̃2 so that PΣP
′
Σ = IN − G̃2(G̃

′
2G̃2)

−1G̃′
2. In addition, let

w = P ′
Σu ∼ N (0N−K+1, IN−K+1). Then, we have15

√
T Σ̂− 1

2 β̂K−1
d→ u, (A.121)

√
TP ′

ΣΣ̂− 1

2 β̂K−1
d→ w, (A.122)

M̂ = IN − Σ̂− 1

2 Ĝ2(Ĝ
′
2Σ̂

−1Ĝ2)
−1Ĝ′

2Σ̂
− 1

2
p→ M = PΣP

′
Σ, (A.123)

Σ̂− 1

2 µ̂R

p→ µ̃R, (A.124)

15Note that (A.121) holds under conditional heteroskedasticity because the returns are assumed to be independent
of fK−1,t.
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and

T− 1

2 γ̂GLS
1,K−1 =

(
√
Tβ̂

′
K−1Σ̂

− 1

2 )M̂Σ̂− 1

2 µ̂R

(
√
T β̂

′
K−1Σ̂

− 1

2 )M̂(
√
T Σ̂− 1

2 β̂K−1)

d→ u′Mµ̃R

u′Mu
=

√
Qs

w′w
, (A.125)

where Q = µ̃′RPΣP
′
Σµ̃R and s = µ̃′RPΣP

′
Σu/

√
Q ∼ N (0, 1). Similarly, since Σ̂− 1

2 Ĝ2
p→ G̃2, we have

γ̂GLS
u

d→ (G̃′
2[IN − u(u′u)−1u′]G̃2)

−1G̃′
2[IN − u(u′u)−1u′]µ̃R = Op(1). (A.126)

Using the identity

IN − Σ̂− 1

2 B̂1(B̂
′
1Σ̂

−1B̂1)
−1B̂′

1Σ̂
− 1

2 = M̂ − M̂Σ̂− 1

2 β̂K−1(β̂
′
K−1Σ̂

− 1

2 M̂Σ̂− 1

2 β̂K−1)
−1β̂

′
K−1Σ̂

− 1

2 M̂,

(A.127)

(A.122)–(A.124), and (A.127), we obtain

Σ̂− 1

2 ê = Σ̂− 1

2 [µ̂R − B̂1(B̂
′
1Σ̂

−1B̂1)
−1B̂′

1Σ̂
−1µ̂R]

d→ PΣ[IN−K+1 −w(w′w)−1w′]P ′
Σµ̃R. (A.128)

After simplification, we have

Q̂ = ê′Σ̂−1ê
d→ QB, (A.129)

where

B =
w′[IN−K+1 − P ′

Σµ̃R(µ̃′RPΣP
′
Σµ̃R)−1µ̃′RPΣ]w

w′w
∼ Beta

(

N −K

2
,
1

2

)

(A.130)

and it is independent of w. To characterize the asymptotic distribution of the CSR test, we let PṼ

be an N× (N−K) orthonormal matrix with columns orthogonal to Ṽ = Σ− 1

2 [1N , VRf ] and denote

by P̂Ṽ its sample counterpart. In addition, denote by µ̂f and V̂f the sample mean and covariance

matrix of ft, and let ε̂t = (Rt − µ̂R)− β̂(ft − µ̂f ). When testing H0 : Q = 0, we compare T Q̂ with

FN−K(ξ̂), where the estimated weights, ξ̂i, are the eigenvalues of the matrix

P̂ ′
Ṽ

Σ̂− 1

2 ŜlΣ̂
− 1

2 P̂Ṽ , (A.131)

with

Ŝl =
1

T

T
∑

t=1

l̂t l̂
′
t (A.132)

and

l̂t = ε̂t[1− γ̂GLS ′V̂ −1
f (ft − µ̂f)]. (A.133)

We first need to determine the limiting behavior of Ŝl/T when the model contains a useless

factor. Using that

V̂ −1
f

p→
[

V −1
f̃

0K−2

0′K−2 1

]

, (A.134)
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we have

l̂t√
T

=
1√
T
ε̂t[1 − γ̂GLS ′V̂ −1

f (ft − µ̂f )]

= εt

[

1√
T

− γ̂GLS
u

′
√
T

V −1

f̃
(f̃t − µ̂

f̃
) − γ̂GLS

1,K−1√
T

fK−1,t

]

+ op(1)

d→ −εt
fK−1,t

√
Qs

w′w
, (A.135)

where εt = Rt − µR − β(ft − µf). It follows that

Ŝl

T

d→ Qs2
(w′w)2

Σ. (A.136)

This implies that

P̂ ′
Ṽ

Σ̂− 1

2 ŜlΣ̂
− 1

2 P̂Ṽ

T

d→ Qs2
(w′w)2

IN−K (A.137)

and
ξ̂i

T

d→ Qs2
(w′w)2

=
Q(1 − B)

w′w
. (A.138)

Following similar arguments as in the proof of part (a), we obtain the limiting probability of

rejection for the CSR test. This completes the proof of part (b).
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Table I

Test Statistics for Various Asset-Pricing Models

The table reports test statistics for the four asset-pricing models (CAPM, FF3, C-LAB, and CC-CAY)
described in Section 1. CDSDF and CDBeta denote the Cragg and Donald (1997) test for the null of a
reduced rank in the SDF and beta-pricing setups, respectively. HJD and CSR denote the tests of correct
model specification based on the distance measure of Hansen and Jagannathan (1997) and on the GLS
cross-sectional regression test of Shanken (1985). J denotes Hansen, Heaton, and Yaron’s (1996) test for
over-identifying restrictions based on the CU-GMM estimator. S denotes Shanken’s (1985) Wald-type test of
correct model specification based on the ML estimator. tx denotes the t-test of statistical significance for the
parameter associated with factor x, with standard errors computed under the assumption of correct model
specification. Finally, R2 denotes the squared correlation coefficient between the fitted expected returns and
the average realized returns.

Panel A: Rank, HJD, and CSR Tests

CAPM FF3 C-LAB CC-CAY

CDSDF
(p-value)

133.43
(0.0000)

86.18
(0.0000)

20.82
(0.5320)

10.44
(0.9818)

HJD
(p-value)

67.67
(0.0000)

51.15
(0.0024)

66.36
(0.0000)

69.15
(0.0005)

CDBeta
(p-value)

421.73
(0.0000)

183.61
(0.0000)

24.05
(0.3448)

13.27
(0.9255)

CSR
(p-value)

69.96
(0.0000)

53.00
(0.0020)

68.60
(0.0000)

70.56
(0.0005)

Panel B: CU-GMM

CAPM FF3 C-LAB CC-CAY

J
(p-value)

64.58
(0.0000)

45.10
(0.0017)

20.58
(0.4848)

10.57
(0.9705)

tvw 4.29 3.92 −0.93

tsmb −4.23
thml −2.01

tlabor 4.32
tprem 2.82

tcg 1.46
tcay 0.85
tcg·cay −3.22

R2 0.1999 0.7847 0.9595 0.9952

Panel C: ML

CAPM FF3 C-LAB CC-CAY

S
(p-value)

67.66
(0.0000)

49.06
(0.0005)

23.10
(0.3388)

11.58
(0.9503)

tvw −3.24 −3.43 −1.34

tsmb 2.08
thml 2.33
tlabor 2.81

tprem 4.21
tcg −0.90

tcay 0.76
tcg·cay 3.45

R2 0.1346 0.7677 0.9997 0.9994
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Table II.a

Rejection Rates of Specification Tests (SDF Setup)

The table presents the rejection rates of specification tests under misspecified models. J denotes Hansen,
Heaton, and Yaron’s (1996) test for over-identifying restrictions based on the CU-GMM estimator. HJD
denotes the Hansen and Jagannathan’s (1997) distance test of correct model specification. The results are
reported for different levels of significance (10%, 5%, and 1%) and for different values of the number of
time series observations (T ) using 100,000 simulations, assuming that the returns are generated from a
multivariate normal distribution with means and covariance matrix calibrated to the 25 size and book-to-
market Fama-French portfolio returns for the period 1959:2–2012:12. The J test statistic is compared with
the critical values from a χ2

N−K
distribution. The HJ-distance test is compared with the critical values from

a weighted chi-squared distribution as in Jagannathan and Wang (1996). The rejection rates for the limiting
case (T = ∞) in Panels B and C are based on the results in part (d) of Theorem 3 and part (a) of Theorem 5.

J Test HJD Test

T 10% 5% 1% 10% 5% 1%

Panel A: Model with a Useful Factor Only

200 0.900 0.831 0.635 0.915 0.856 0.690

400 0.996 0.991 0.963 0.997 0.992 0.967
600 1.000 1.000 0.999 1.000 1.000 0.999

800 1.000 1.000 1.000 1.000 1.000 1.000
1000 1.000 1.000 1.000 1.000 1.000 1.000

3600 1.000 1.000 1.000 1.000 1.000 1.000
∞ 1.000 1.000 1.000 1.000 1.000 1.000

Panel B: Model with a Useless Factor Only

200 0.130 0.063 0.011 0.877 0.810 0.637

400 0.118 0.058 0.011 0.976 0.961 0.910
600 0.113 0.057 0.011 0.990 0.984 0.965
800 0.111 0.055 0.011 0.994 0.990 0.979

1000 0.110 0.055 0.011 0.995 0.993 0.985
3600 0.103 0.052 0.010 0.998 0.997 0.995

∞ 0.100 0.050 0.010 0.999 0.998 0.997

Panel C: Model with a Useful and a Useless Factor

200 0.101 0.046 0.006 0.829 0.747 0.548
400 0.111 0.054 0.009 0.963 0.940 0.864

600 0.110 0.054 0.010 0.985 0.976 0.950
800 0.108 0.054 0.010 0.991 0.986 0.971

1000 0.105 0.053 0.011 0.993 0.990 0.980
3600 0.102 0.051 0.010 0.997 0.997 0.993

∞ 0.100 0.050 0.010 0.999 0.998 0.996
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Table II.b

Rejection Rates of Specification Tests (Beta-Pricing Setup)

The table presents the rejection rates of specification tests under misspecified models. S denotes Shanken’s
(1985) Wald-type test of correct model specification based on the ML estimator. CSR denotes Shanken’s
(1985) cross-sectional regression test of correct model specification based on the non-invariant GLS estimator.
The results are reported for different levels of significance (10%, 5%, and 1%) and for different values of the
number of time series observations (T ) using 100,000 simulations, assuming that the returns are generated
from a multivariate normal distribution with means and covariance matrix calibrated to the 25 size and book-
to-market Fama-French portfolio returns for the period 1959:2–2012:12. The S test statistic is compared
with the critical values from a χ2

N−K
distribution. The CSR test is compared with the critical values from a

weighted chi-squared distribution as shown in Section 4. The rejection rates for the limiting case (T = ∞)
in Panels B and C are based on the results in part (d) of Theorem 1 and part (b) of Theorem 5.

S Test CSR Test

T 10% 5% 1% 10% 5% 1%

Panel A: Model with a Useful Factor Only

200 0.914 0.857 0.697 0.919 0.862 0.702

400 0.997 0.992 0.968 0.997 0.993 0.969
600 1.000 1.000 0.999 1.000 1.000 0.999

800 1.000 1.000 1.000 1.000 1.000 1.000
1000 1.000 1.000 1.000 1.000 1.000 1.000

3600 1.000 1.000 1.000 1.000 1.000 1.000
∞ 1.000 1.000 1.000 1.000 1.000 1.000

Panel B: Model with a Useless Factor Only

200 0.168 0.096 0.025 0.880 0.815 0.648

400 0.135 0.073 0.018 0.976 0.961 0.911
600 0.124 0.066 0.015 0.990 0.984 0.966
800 0.117 0.062 0.014 0.994 0.990 0.980

1000 0.114 0.060 0.013 0.996 0.993 0.986
3600 0.105 0.052 0.011 0.998 0.997 0.995

∞ 0.100 0.050 0.010 0.999 0.998 0.997

Panel C: Model with a Useful and a Useless Factor

200 0.148 0.082 0.020 0.833 0.752 0.558
400 0.128 0.068 0.016 0.964 0.941 0.868

600 0.119 0.063 0.014 0.985 0.976 0.949
800 0.113 0.058 0.013 0.991 0.986 0.972

1000 0.112 0.057 0.012 0.993 0.989 0.979
3600 0.104 0.052 0.010 0.998 0.997 0.994

∞ 0.100 0.050 0.010 0.999 0.998 0.996
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Table III.a
Empirical Distribution of the R2 Coefficient (CU-GMM)

The table presents the empirical distribution of the pseudo-R2 computed as the squared correlation between
the realized and fitted expected returns based on the CU-GMM estimator. The results are based on 100,000
simulations, assuming that the returns are generated from a multivariate normal distribution with means
and covariance matrix calibrated to the 25 size and book-to-market Fama-French portfolio returns for the
period 1959:2–2012:12.

T mean std 1% 5% 10% 25% 50% 75% 90% 95% 99%

Panel A: Model with a Useful Factor Only

200 0.298 0.247 0.000 0.003 0.012 0.073 0.251 0.483 0.669 0.755 0.871

400 0.237 0.204 0.000 0.002 0.010 0.056 0.188 0.378 0.543 0.628 0.757
600 0.214 0.181 0.000 0.003 0.011 0.058 0.176 0.335 0.481 0.563 0.692

800 0.203 0.164 0.000 0.004 0.013 0.063 0.171 0.311 0.443 0.518 0.638
1000 0.196 0.152 0.000 0.004 0.017 0.069 0.169 0.295 0.414 0.483 0.600

3600 0.172 0.089 0.012 0.041 0.062 0.105 0.164 0.230 0.293 0.332 0.404

Panel B: Model with a Useless Factor Only

200 0.900 0.125 0.342 0.658 0.770 0.883 0.944 0.971 0.983 0.988 0.993
400 0.973 0.040 0.809 0.912 0.942 0.970 0.985 0.992 0.995 0.996 0.998

600 0.989 0.015 0.929 0.966 0.976 0.987 0.993 0.996 0.998 0.998 0.999
800 0.994 0.008 0.963 0.982 0.987 0.993 0.996 0.998 0.999 0.999 0.999
1000 0.996 0.005 0.978 0.989 0.992 0.995 0.997 0.999 0.999 0.999 1.000

3600 1.000 0.000 0.999 0.999 0.999 1.000 1.000 1.000 1.000 1.000 1.000

Panel C: Model with a Useful and a Useless Factor

200 0.903 0.125 0.325 0.667 0.779 0.889 0.946 0.973 0.984 0.988 0.993
400 0.974 0.039 0.810 0.916 0.945 0.972 0.986 0.992 0.995 0.996 0.998

600 0.989 0.015 0.933 0.968 0.978 0.988 0.993 0.996 0.998 0.998 0.999
800 0.994 0.007 0.967 0.983 0.988 0.993 0.996 0.998 0.999 0.999 0.999

1000 0.996 0.004 0.980 0.989 0.993 0.996 0.998 0.999 0.999 0.999 1.000
3600 1.000 0.000 0.999 0.999 0.999 1.000 1.000 1.000 1.000 1.000 1.000
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Table III.b
Empirical Distribution of the R2 Coefficient (ML)

The table presents the empirical distribution of the pseudo-R2 computed as the squared correlation between
the realized and fitted expected returns based on the ML estimator. The results are based on 100,000
simulations, assuming that the returns are generated from a multivariate normal distribution with means
and covariance matrix calibrated to the 25 size and book-to-market Fama-French portfolio returns for the
period 1959:2–2012:12.

T mean std 1% 5% 10% 25% 50% 75% 90% 95% 99%

Panel A: Model with a Useful Factor Only

200 0.231 0.220 0.000 0.002 0.006 0.040 0.161 0.376 0.577 0.674 0.806

400 0.194 0.188 0.000 0.001 0.005 0.034 0.135 0.309 0.482 0.578 0.719
600 0.178 0.167 0.000 0.002 0.006 0.036 0.130 0.280 0.429 0.514 0.651

800 0.169 0.152 0.000 0.002 0.007 0.040 0.130 0.263 0.393 0.469 0.601
1000 0.163 0.140 0.000 0.002 0.009 0.045 0.131 0.249 0.367 0.438 0.561

3600 0.143 0.082 0.006 0.026 0.043 0.081 0.133 0.195 0.256 0.294 0.367

Panel B: Model with a Useless Factor Only

200 0.940 0.141 0.150 0.703 0.852 0.955 0.988 0.998 1.000 1.000 1.000
400 0.989 0.035 0.877 0.958 0.976 0.991 0.998 1.000 1.000 1.000 1.000

600 0.996 0.009 0.961 0.985 0.991 0.997 0.999 1.000 1.000 1.000 1.000
800 0.998 0.004 0.981 0.992 0.995 0.998 0.999 1.000 1.000 1.000 1.000
1000 0.999 0.003 0.988 0.995 0.997 0.999 1.000 1.000 1.000 1.000 1.000

3600 1.000 0.000 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Panel C: Model with a Useful and a Useless Factor

200 0.942 0.135 0.216 0.701 0.852 0.956 0.989 0.998 1.000 1.000 1.000
400 0.989 0.036 0.873 0.959 0.977 0.992 0.998 1.000 1.000 1.000 1.000

600 0.996 0.010 0.963 0.986 0.991 0.997 0.999 1.000 1.000 1.000 1.000
800 0.998 0.004 0.983 0.993 0.996 0.998 1.000 1.000 1.000 1.000 1.000

1000 0.999 0.002 0.990 0.996 0.997 0.999 1.000 1.000 1.000 1.000 1.000
3600 1.000 0.000 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Table IV.a

Rejection Rates of t-tests (CU-GMM)

The table presents the rejection rates of t-tests of statistical significance under misspecified models in the
SDF setup. The null hypothesis is that the parameter of interest is equal to zero. The results are reported
for different levels of significance (10%, 5%, and 1%) and for different values of the number of time series
observations (T ) using 100,000 simulations, assuming that the returns are generated from a multivariate
normal distribution with means and covariance matrix calibrated to the 25 size and book-to-market Fama-
French portfolio returns for the period 1959:2–2012:12. The t-statistics are compared with the critical values
from a standard normal distribution. The rejection rates for the limiting case (T = ∞) in Panels B and C
are based on the asymptotic distributions in part (b) of Theorem 3.

useful useless

T 10% 5% 1% 10% 5% 1%

Panel A: Model with a Useful Factor Only

200 0.849 0.814 0.732 – – –
400 0.906 0.879 0.812 – – –
600 0.953 0.936 0.889 – – –

800 0.977 0.968 0.939 – – –
1000 0.989 0.985 0.969 – – –

3600 1.000 1.000 1.000 – – –
∞ 1.000 1.000 1.000 – – –

Panel B: Model with a Useless Factor Only

200 – – – 0.997 0.996 0.994

400 – – – 1.000 1.000 1.000
600 – – – 1.000 1.000 1.000

800 – – – 1.000 1.000 1.000
1000 – – – 1.000 1.000 1.000

3600 – – – 1.000 1.000 1.000
∞ – – – 1.000 1.000 1.000

Panel C: Model with a Useful and a Useless Factor

200 0.330 0.239 0.114 0.993 0.992 0.986
400 0.210 0.130 0.041 1.000 1.000 0.999

600 0.167 0.095 0.023 1.000 1.000 1.000
800 0.148 0.080 0.017 1.000 1.000 1.000

1000 0.136 0.070 0.014 1.000 1.000 1.000
3600 0.108 0.051 0.007 1.000 1.000 1.000

∞ 0.100 0.045 0.006 1.000 1.000 1.000
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Table IV.b

Rejection Rates of t-tests (ML)

The table presents the rejection rates of t-tests of statistical significance under misspecified models in the
beta-pricing setup. The null hypothesis is that the parameter of interest is equal to zero. The results
are reported for different levels of significance (10%, 5%, and 1%) and for different values of the number
of time series observations (T ) using 100,000 simulations, assuming that the returns are generated from a
multivariate normal distribution with means and covariance matrix calibrated to the 25 size and book-to-
market Fama-French portfolio returns for the period 1959:2–2012:12. The t-statistics are compared with the
critical values from a standard normal distribution. The rejection rates for the limiting case (T = ∞) in
Panels B and C are based on the asymptotic distributions in part (b) of Theorem 1.

useful useless

T 10% 5% 1% 10% 5% 1%

Panel A: Model with a Useful Factor Only

200 0.597 0.508 0.336 – – –
400 0.778 0.703 0.527 – – –
600 0.887 0.834 0.690 – – –

800 0.944 0.913 0.810 – – –
1000 0.974 0.955 0.887 – – –

3600 1.000 1.000 1.000 – – –
∞ 1.000 1.000 1.000 – – –

Panel B: Model with a Useless Factor Only

200 – – – 0.992 0.990 0.985

400 – – – 1.000 1.000 1.000
600 – – – 1.000 1.000 1.000

800 – – – 1.000 1.000 1.000
1000 – – – 1.000 1.000 1.000

3600 – – – 1.000 1.000 1.000
∞ – – – 1.000 1.000 1.000

Panel C: Model with a Useful and a Useless Factor

200 0.261 0.176 0.070 0.987 0.984 0.976
400 0.189 0.113 0.033 1.000 0.999 0.999

600 0.163 0.090 0.022 1.000 1.000 1.000
800 0.149 0.080 0.017 1.000 1.000 1.000

1000 0.142 0.076 0.016 1.000 1.000 1.000
3600 0.120 0.058 0.010 1.000 1.000 1.000

∞ 0.113 0.054 0.008 1.000 1.000 1.000
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Figure 1. Realized vs. Fitted (by CU-GMM) Returns: 25 Fama-French Portfolios. The

figure shows the average realized returns versus fitted expected returns (by CU-GMM) for each of
the 25 Fama-French portfolios for CAPM, FF3, C-LAB, and CC-CAY.
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Figure 2. Realized vs. Fitted (by ML) Returns: 25 Fama-French Portfolios. The figure

shows the average realized returns versus fitted expected returns (by ML) for each of the 25 Fama-
French portfolios for CAPM, FF3, C-LAB, and CC-CAY.
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Figure 3. Limiting Distribution of the Specification Test S. The figure plots the asymptotic

distributions of S presented in Theorem 2 for r = 1, 2, and 3 (for N −K = 7).
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Figure 4. Limiting Distributions of t(γ̂ML
1,K−1

) under Correctly Specified and Misspec-

ified Models. The figure plots the limiting densities of t(γ̂ML
1,K−1) for correctly specified and

misspecified models that contain a useless factor (for N −K = 7), along with the standard normal
density.
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Figure 5. Realized vs. Fitted (by HJ-Distance) Returns: 25 Fama-French Portfolios.

The figure shows the average realized returns versus fitted expected returns (by HJ-distance) for
each of the 25 Fama-French portfolios for CAPM, FF3, C-LAB, and CC-CAY.
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Figure 6. Realized vs. Fitted (by GLS) Returns: 25 Fama-French Portfolios. The figure

shows the average realized returns versus fitted expected returns (by GLS) for each of the 25
Fama-French portfolios for CAPM, FF3, C-LAB, and CC-CAY.
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